1
|
Toledo MV, José C, Suster CRL, Collins SE, Portela R, Bañares MA, Briand LE. Catalytic and molecular insights of the esterification of ibuprofen and ketoprofen with glycerol. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111811] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
2
|
Liyanage ADT, Chen AJ, Puleo DA. Biodegradable Simvastatin-Containing Polymeric Prodrugs with Improved Drug Release. ACS Biomater Sci Eng 2018; 4:4193-4199. [PMID: 30631799 DOI: 10.1021/acsbiomaterials.8b00884] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Simvastatin was previously converted to a polymeric prodrug with higher drug loading, but the hydrophobic nature of the poly(simvastatin) component of the block copolymer led to slow release of the drug in vitro. In this study, we hypothesized that degradation could be accelerated by chemically modifying the polymer backbone by introducing glycolide and lactide comonomers. Copolymers were formed by ring-opening polymerization using 5 kDa monomethyl ether poly(ethylene glycol) as the microinitiator in presence of triazabicyclodecene catalyst. In addition to simvastatin, modified reaction mixtures contained lactide or glycolide. Incorporation of the less hydrophobic glycolide comonomer led to in vitro degradation of up to two times greater mass loss, release of up to ~7 times more simvastatin, and a 2-3 times increase in compressive modulus compared to the lactide-containing and parent polymers.
Collapse
Affiliation(s)
- A D Thilanga Liyanage
- F. Joseph Halcomb III, M.D. Department of Biomedical Engineering, 522 Robotics and Manufacturing Building, 143 Graham Avenue, University of Kentucky, Lexington, KY, USA
| | - Alexander J Chen
- F. Joseph Halcomb III, M.D. Department of Biomedical Engineering, 522 Robotics and Manufacturing Building, 143 Graham Avenue, University of Kentucky, Lexington, KY, USA
| | - David A Puleo
- F. Joseph Halcomb III, M.D. Department of Biomedical Engineering, 522 Robotics and Manufacturing Building, 143 Graham Avenue, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
3
|
Shoda SI, Uyama H, Kadokawa JI, Kimura S, Kobayashi S. Enzymes as Green Catalysts for Precision Macromolecular Synthesis. Chem Rev 2016; 116:2307-413. [PMID: 26791937 DOI: 10.1021/acs.chemrev.5b00472] [Citation(s) in RCA: 329] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The present article comprehensively reviews the macromolecular synthesis using enzymes as catalysts. Among the six main classes of enzymes, the three classes, oxidoreductases, transferases, and hydrolases, have been employed as catalysts for the in vitro macromolecular synthesis and modification reactions. Appropriate design of reaction including monomer and enzyme catalyst produces macromolecules with precisely controlled structure, similarly as in vivo enzymatic reactions. The reaction controls the product structure with respect to substrate selectivity, chemo-selectivity, regio-selectivity, stereoselectivity, and choro-selectivity. Oxidoreductases catalyze various oxidation polymerizations of aromatic compounds as well as vinyl polymerizations. Transferases are effective catalysts for producing polysaccharide having a variety of structure and polyesters. Hydrolases catalyzing the bond-cleaving of macromolecules in vivo, catalyze the reverse reaction for bond forming in vitro to give various polysaccharides and functionalized polyesters. The enzymatic polymerizations allowed the first in vitro synthesis of natural polysaccharides having complicated structures like cellulose, amylose, xylan, chitin, hyaluronan, and chondroitin. These polymerizations are "green" with several respects; nontoxicity of enzyme, high catalyst efficiency, selective reactions under mild conditions using green solvents and renewable starting materials, and producing minimal byproducts. Thus, the enzymatic polymerization is desirable for the environment and contributes to "green polymer chemistry" for maintaining sustainable society.
Collapse
Affiliation(s)
- Shin-ichiro Shoda
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University , Aoba-ku, Sendai 980-8579, Japan
| | - Hiroshi Uyama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University , Yamadaoka, Suita 565-0871, Japan
| | - Jun-ichi Kadokawa
- Department of Chemistry, Biotechnology, and Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University , Korimoto, Kagoshima 890-0065, Japan
| | - Shunsaku Kimura
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University , Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Shiro Kobayashi
- Center for Fiber & Textile Science, Kyoto Institute of Technology , Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| |
Collapse
|
4
|
Stebbins ND, Yu W, Uhrich KE. Linear, Mannitol-Based Poly(anhydride-esters) with High Ibuprofen Loading and Anti-Inflammatory Activity. Biomacromolecules 2015; 16:3632-9. [DOI: 10.1021/acs.biomac.5b01088] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Nicholas D. Stebbins
- Department
of Chemistry and Chemical Biology, Rutgers University, 610 Taylor
Road, Piscataway, New Jersey 08854, United States
| | - Weiling Yu
- Department
of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, New Jersey 08854, United States
| | - Kathryn E. Uhrich
- Department
of Chemistry and Chemical Biology, Rutgers University, 610 Taylor
Road, Piscataway, New Jersey 08854, United States
- Department
of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, New Jersey 08854, United States
| |
Collapse
|
5
|
Stebbins ND, Yu W, Uhrich KE. Enzymatic Polymerization of an Ibuprofen-Containing Monomer and Subsequent Drug Release. Macromol Biosci 2015; 15:1115-24. [PMID: 25879779 PMCID: PMC4534339 DOI: 10.1002/mabi.201500030] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 03/10/2015] [Indexed: 11/10/2022]
Abstract
Novel ibuprofen-containing monomers comprising naturally occurring and biocompatible compounds were synthesized and subsequently polymerized via enzymatic methods. Through the use of a malic acid sugar backbone, ibuprofen was attached as a pendant group, and then subsequently polymerized with a linear aliphatic diol (1,3-propanediol, 1,5-pentanediol, or 1,8-octanediol) as comonomer using lipase B from Candida antarctica, a greener alternative to traditional metal catalysts. Polymer structures were elucidated by nuclear magnetic resonance and infrared spectroscopies, and thermal properties and molecular weights were determined. All polymers exhibited sustained ibuprofen release, with the longer chain, more hydrophobic diols exhibiting the slowest release over the 30 d study. Polymers were deemed cytocompatible using mouse fibroblasts, when evaluated at relevant therapeutic concentrations. Additionally, ibuprofen retained its chemical integrity throughout the polymerization and in vitro hydrolytic degradation processes. This methodology of enzymatic polymerization of a drug presents a more environmentally friendly synthesis and a novel approach to bioactive polymer conjugates.
Collapse
Affiliation(s)
- Nicholas D Stebbins
- Department of Chemistry and Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, New Jersey 08854-8087, USA
| | - Weiling Yu
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, New Jersey 08854-8087, USA
| | - Kathryn E Uhrich
- Department of Chemistry and Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, New Jersey 08854-8087, USA.
| |
Collapse
|
6
|
Stebbins ND, Faig JJ, Yu W, Guliyev R, Uhrich KE. Polyactives: controlled and sustained bioactive release via hydrolytic degradation. Biomater Sci 2015; 3:1171-87. [PMID: 26222033 PMCID: PMC4519997 DOI: 10.1039/c5bm00051c] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Significant and promising advances have been made in the polymer field for controlled and sustained bioactive delivery. Traditionally, small molecule bioactives have been physically incorporated into biodegradable polymers; however, chemical incorporation allows for higher drug loading, more controlled release, and enhanced processability. Moreover, the advent of bioactive-containing monomer polymerization and hydrolytic biodegradability allows for tunable bioactive loading without yielding a polymer residue. In this review, we highlight the chemical incorporation of different bioactive classes into novel biodegradable and biocompatible polymers. The polymer design, synthesis, and formulation are summarized in addition to the evaluation of bioactivity retention upon release via in vitro and in vivo studies.
Collapse
Affiliation(s)
- N D Stebbins
- Department of Chemistry and Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, New Jersey 08854, USA.
| | | | | | | | | |
Collapse
|
7
|
Qian X, Wang J, Li Y, Lin X, Wu Q. Two Enzyme Cooperatively Catalyzed Tandem Polymerization for the Synthesis of Polyester Containing Chiral (R)- or (S)-Ibuprofen Pendants. Macromol Rapid Commun 2014; 35:1788-1794. [PMID: 25200738 DOI: 10.1002/marc.201400394] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 07/31/2014] [Indexed: 01/30/2023]
Abstract
An interesting cooperation between Candida antarctica Lipase B (CAL-B) and alkaline protease from Bacillus subtilis (BSP) in the copolymerization of bulky ibuprofen-containing hydroxyacid methyl ester (HAEP) and ε-caprolactone (ε-CL) is observed. This cooperation improved the M¯n of the polymers from 3130 (CAL-B) to 9200 g mol-1 (CAL-B/BSP). Experimental results clearly indicate that CAL-B mainly catalyzes the ring-opening polymerization (ROP) of ε-CL under the initiation of HAEP to form the homopolymer of ε-CL, while BSP catalyzes the subsequent polycondensation of the ROP product to yield the copolymer with increased molecular weight. Furthermore, using suitable chemo-enzymatic methods, valuable polyesters with chiral (R)- or (S)-ibuprofen pendants can be tailor-made.
Collapse
Affiliation(s)
- Xueqi Qian
- Department of Chemistry, Zhejiang University, Zheda Road 38#, Hangzhou, 310027, China
| | | | | | | | | |
Collapse
|
8
|
Chen J, Ye L, Su W. Palladium-catalyzed direct addition of arylboronic acids to 2-aminobenzonitrile derivatives: synthesis, biological evaluation and in silico analysis of 2-aminobenzophenones, 7-benzoyl-2-oxoindolines, and 7-benzoylindoles. Org Biomol Chem 2014; 12:8204-11. [PMID: 25198908 DOI: 10.1039/c4ob00978a] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A palladium-catalyzed direct addition of arylboronic acids to unprotected 2-aminobenzonitriles has been developed, leading to a wide range of 2-aminobenzophenones with moderate to excellent yields. The transformation has broad scope and high functional group tolerance. Moreover, 2-oxoindoline-7-carbonitrile and indole-7-carbonitrile were applicable to this process for the construction of 7-benzoyl-2-oxoindolines and 7-benzoylindoles, respectively. Among the compounds examined, compound 4e possessed the most potent anticancer activity against H446 and HGC-27 in vitro, with IC50 values of 0.02 μmol L(-1) and 0.09 μmol L(-1), respectively, while compound 4a showed the best potent anticancer activity against SGC-7901 with an IC50 value of 0.01 μmol L(-1). Furthermore, we also performed in silico molecular docking calculations to investigate the interaction mode and binding affinity between the examined compounds and their tubulin target.
Collapse
Affiliation(s)
- Jiuxi Chen
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | | | | |
Collapse
|
9
|
Bédouet L, Moine L, Pascale F, Nguyen VN, Labarre D, Laurent A. Synthesis of hydrophilic intra-articular microspheres conjugated to ibuprofen and evaluation of anti-inflammatory activity on articular explants. Int J Pharm 2014; 459:51-61. [DOI: 10.1016/j.ijpharm.2013.11.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 11/01/2013] [Indexed: 01/04/2023]
|
10
|
Kim S, Duc Ngo T, Kim KK, Kim TD. Characterization, crystallization and preliminary X-ray diffraction analysis of an (S)-specific esterase (pfEstA) from Pseudomonas fluorescens KCTC 1767: enantioselectivity for potential industrial applications. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:1374-7. [PMID: 23143253 PMCID: PMC3515385 DOI: 10.1107/s1744309112040626] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 09/26/2012] [Indexed: 11/10/2022]
Abstract
The structures and reaction mechanisms of enantioselective hydrolases, which can be used in industrial applications such as biotransformations, are largely unknown. Here, the X-ray crystallographic study of a novel (S)-specific esterase (pfEstA) from Pseudomonas fluorescens KCTC 1767, which can be used in the production of (S)-ketoprofen, is described. Multiple sequence alignments with other hydrolases revealed that pfEstA contains a conserved Ser67 within the S-X-X-K motif as well as a highly conserved Tyr156. Recombinant protein containing an N-terminal His tag was expressed in Escherichia coli, purified to homogeneity and characterized using SDS-PAGE, MALDI-TOF MS and enantioselective analysis. pfEstA was crystallized using a solution consisting of 1 M sodium citrate, 0.1 M CHES pH 9.5, and X-ray diffraction data were collected to a resolution of 1.9 Å with an Rmerge of 7.9%. The crystals of pfEstA belonged to space group P2(1)2(1)2(1), with unit-cell parameters a=65.31, b=82.13, c=100.41 Å, α=β=γ=90°.
Collapse
Affiliation(s)
- Seulgi Kim
- Department of Molecular Science and Technology, Graduate School of Interdisciplinary Programs, Ajou University, Suwon 443-749, Republic of Korea
| | - Tri Duc Ngo
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Republic of Korea
| | - Kyeong Kyu Kim
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Republic of Korea
| | - T. Doohun Kim
- Department of Molecular Science and Technology, Graduate School of Interdisciplinary Programs, Ajou University, Suwon 443-749, Republic of Korea
| |
Collapse
|
11
|
Li X, Zhou GJ, Chu GH, Lin XF, Wang JL, Shen K, Yin J. Fabrication of size-controllable mPEG-decorated microparticles conjugating optically active ketoprofen based on self-assembly of amphiphilic random copolymers. J Appl Polym Sci 2012. [DOI: 10.1002/app.37756] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
12
|
Qian X, Wu Q, Xu F, Lin X. Amphiphilic mPEG-block-poly (profen amide-co-esters) copolymers: One pot biocatalytic synthesis, self-assembly in water and drug release. POLYMER 2011. [DOI: 10.1016/j.polymer.2011.10.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|