1
|
Li X, Lin Y, Zhao C, Meng N, Bai Y, Wang X, Yu J, Ding B. Biodegradable Polyurethane Derived from Hydroxylated Polylactide with Superior Mechanical Properties. Polymers (Basel) 2024; 16:1809. [PMID: 39000664 PMCID: PMC11243797 DOI: 10.3390/polym16131809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/07/2024] [Accepted: 06/20/2024] [Indexed: 07/17/2024] Open
Abstract
Developing biodegradable polyurethane (PU) materials as an alternative to non-degradable petroleum-based PU is a crucial and challenging task. This study utilized lactide as the starting material to synthesize polylactide polyols (PLA-OH). PLA-based polyurethanes (PLA-PUs) were successfully synthesized by introducing PLA-OH into the PU molecular chain. A higher content of PLA-OH in the soft segments resulted in a substantial improvement in the mechanical attributes of the PLA-PUs. This study found that the addition of PLA-OH content significantly improved the tensile stress of the PU from 5.35 MPa to 37.15 MPa and increased the maximum elongation to 820.8%. Additionally, the modulus and toughness of the resulting PLA-PU were also significantly improved with increasing PLA-OH content. Specifically, the PLA-PU with 40% PLA-OH exhibited a high modulus of 33.45 MPa and a toughness of 147.18 MJ m-3. PLA-PU films can be degraded to carbon dioxide and water after 6 months in the soil. This highlights the potential of synthesizing PLA-PU using biomass-renewable polylactide, which is important in green and sustainable chemistry.
Collapse
Affiliation(s)
- Xueqin Li
- Shanghai Frontier Science Research Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
| | - Yanyan Lin
- Shanghai Frontier Science Research Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China
| | - Cengceng Zhao
- Shanghai Frontier Science Research Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
| | - Na Meng
- Shanghai Frontier Science Research Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
| | - Ying Bai
- Textile Industry Science and Technology Development Center, Beijing 100020, China
| | - Xianfeng Wang
- Shanghai Frontier Science Research Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China
| | - Jianyong Yu
- Shanghai Frontier Science Research Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China
| | - Bin Ding
- Shanghai Frontier Science Research Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China
| |
Collapse
|
2
|
Taylor A, Xu J, Rogozinski N, Fu H, Molina Cortez L, McMahan S, Perez K, Chang Y, Pan Z, Yang H, Liao J, Hong Y. Reduced Graphene-Oxide-Doped Elastic Biodegradable Polyurethane Fibers for Cardiomyocyte Maturation. ACS Biomater Sci Eng 2024; 10:3759-3774. [PMID: 38800901 DOI: 10.1021/acsbiomaterials.3c01908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Conductive biomaterials offer promising solutions to enhance the maturity of cultured cardiomyocytes. While the conventional culture of cardiomyocytes on nonconductive materials leads to more immature characteristics, conductive microenvironments have the potential to support sarcomere development, gap junction formation, and beating of cardiomyocytes in vitro. In this study, we systematically investigated the behaviors of cardiomyocytes on aligned electrospun fibrous membranes composed of elastic and biodegradable polyurethane (PU) doped with varying concentrations of reduced graphene oxide (rGO). Compared to PU and PU-4%rGO membranes, the PU-10%rGO membrane exhibited the highest conductivity, approaching levels close to those of native heart tissue. The PU-rGO membranes retained anisotropic viscoelastic behavior similar to that of the porcine left ventricle and a superior tensile strength. Neonatal rat cardiomyocytes (NRCMs) and human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) on the PU-rGO membranes displayed enhanced maturation with cell alignment and enhanced sarcomere structure and gap junction formation with PU-10%rGO having the most improved sarcomere structure and CX-43 presence. hiPSC-CMs on the PU-rGO membranes exhibited a uniform and synchronous beating pattern compared with that on PU membranes. Overall, PU-10%rGO exhibited the best performance for cardiomyocyte maturation. The conductive PU-rGO membranes provide a promising matrix for in vitro cardiomyocyte culture with promoted cell maturation/functionality and the potential for cardiac disease treatment.
Collapse
Affiliation(s)
- Alan Taylor
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Jiazhu Xu
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Nicholas Rogozinski
- Department of Biomedical Engineering, University of North Texas, Denton, Texas 76207, United States
| | - Huikang Fu
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Lia Molina Cortez
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Sara McMahan
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Karla Perez
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Yan Chang
- Department of Graduate Nursing, University of Texas at Arlington, Arlington, Texas 76010, United States
| | - Zui Pan
- Department of Graduate Nursing, University of Texas at Arlington, Arlington, Texas 76010, United States
| | - Huaxiao Yang
- Department of Biomedical Engineering, University of North Texas, Denton, Texas 76207, United States
| | - Jun Liao
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Yi Hong
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas 76019, United States
| |
Collapse
|
3
|
Zhu Y, Deng K, Zhou J, Lai C, Ma Z, Zhang H, Pan J, Shen L, Bucknor MD, Ozhinsky E, Kim S, Chen G, Ye SH, Zhang Y, Liu D, Gao C, Xu Y, Wang H, Wagner WR. Shape-recovery of implanted shape-memory devices remotely triggered via image-guided ultrasound heating. Nat Commun 2024; 15:1123. [PMID: 38321028 PMCID: PMC10847440 DOI: 10.1038/s41467-024-45437-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 01/22/2024] [Indexed: 02/08/2024] Open
Abstract
Shape-memory materials hold great potential to impart medical devices with functionalities useful during implantation, locomotion, drug delivery, and removal. However, their clinical translation is limited by a lack of non-invasive and precise methods to trigger and control the shape recovery, especially for devices implanted in deep tissues. In this study, the application of image-guided high-intensity focused ultrasound (HIFU) heating is tested. Magnetic resonance-guided HIFU triggered shape-recovery of a device made of polyurethane urea while monitoring its temperature by magnetic resonance thermometry. Deformation of the polyurethane urea in a live canine bladder (5 cm deep) is achieved with 8 seconds of ultrasound-guided HIFU with millimeter resolution energy focus. Tissue sections show no hyperthermic tissue injury. A conceptual application in ureteral stent shape-recovery reduces removal resistance. In conclusion, image-guided HIFU demonstrates deep energy penetration, safety and speed.
Collapse
Affiliation(s)
- Yang Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, China.
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
- Binjiang Institute of Zhejiang University, Hangzhou, China.
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Kaicheng Deng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jianwei Zhou
- School of Electromechanical and Energy Engineering, NingboTech University, Ningbo, Zhejiang, China
| | - Chong Lai
- Department of Urology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zuwei Ma
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hua Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiazhen Pan
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Liyin Shen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Matthew D Bucknor
- Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Eugene Ozhinsky
- Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Seungil Kim
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Guangjie Chen
- Department of Urology, The Children's Hospital, School of Medicine, National Clinical Research Center for Child Health, Zhejiang University, Hangzhou, Zhejiang, China
| | - Sang-Ho Ye
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yue Zhang
- San Francisco Veterans Affairs Medical Center, University of California, San Francisco, CA, USA
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, Zhejiang, China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yonghua Xu
- Department of Imaging and Interventional Radiology, Zhongshan-Xuhui Hospital of Fudan University/Shanghai Xuhui Central Hospital, Shanghai, China.
| | - Huanan Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
| | - William R Wagner
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
4
|
Yin Y, Xu Y, Zhang X, Duan B, Xin Z, Bao C. Mechanically Strong and Tough Poly(urea-urethane) Thermosets Capable of Being Degraded under Mild Condition. Macromol Rapid Commun 2023; 44:e2200765. [PMID: 36419259 DOI: 10.1002/marc.202200765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/15/2022] [Indexed: 11/27/2022]
Abstract
The development of degradable polymeric materials such as degradable polyurethane or polyurea has been much highlighted for resource conservation and environmental protection. Herein, a facile strategy of constructing mechanically strong and tough poly(urea-urethane) (PUU) thermosets that can be degraded under mild conditions by using triple boron-urethane bonds (TBUB) as cross-linkers is demonstrated. By tailoring the molecular weight of the soft segment of the prepolymers, the mechanical performance can be finely controlled. Based on the cross-linking of TBUB units and hydrogen-binding interactions between TBUB linkages, the as-prepared PUU thermosets have excellent mechanical strength of ≈40.2 MPa and toughness of ≈304.9 MJ m-3 . Typically, the PBUU900 strip can lift a barbell with 60 000 times its own weight, showing excellent load-bearing capacity. Meanwhile, owing to the covalent cross-linking of TBUB units, all the PUU thermosets show initial decomposition temperatures over 290 °C, which are comparable to those of the traditional thermosets. Moreover, the TBUB cross-linked PUU thermosets can be easily degraded in a mild acid solution. The small pieces of the PBUU sample can be fully decomposed in 1 m HCl/THF solution for 3.5 h at room temperature.
Collapse
Affiliation(s)
- Yanlong Yin
- College of Chemistry & Chemical Engineering, Yantai University, Yantai, 264005, China
| | - Yang Xu
- College of Chemistry & Chemical Engineering, Yantai University, Yantai, 264005, China
| | - Xuhao Zhang
- College of Chemistry & Chemical Engineering, Yantai University, Yantai, 264005, China
| | - Baorong Duan
- College of Chemistry & Chemical Engineering, Yantai University, Yantai, 264005, China
| | - Zhirong Xin
- College of Chemistry & Chemical Engineering, Yantai University, Yantai, 264005, China
| | - Chunyang Bao
- College of Chemistry & Chemical Engineering, Yantai University, Yantai, 264005, China
| |
Collapse
|
5
|
Nadhif MH, Ghiffary MM, Irsyad M, Mazfufah NF, Nurhaliza F, Rahman SF, Rahyussalim AJ, Kurniawati T. Anatomically and Biomechanically Relevant Monolithic Total Disc Replacement Made of 3D-Printed Thermoplastic Polyurethane. Polymers (Basel) 2022; 14:4160. [PMID: 36236107 PMCID: PMC9571194 DOI: 10.3390/polym14194160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/17/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022] Open
Abstract
Various implant treatments, including total disc replacements, have been tried to treat lumbar intervertebral disc (IVD) degeneration, which is claimed to be the main contributor of lower back pain. The treatments, however, come with peripheral issues. This study proposes a novel approach that complies with the anatomical features of IVD, the so-called monolithic total disc replacement (MTDR). As the name suggests, the MTDR is a one-part device that consists of lattice and rigid structures to mimic the nucleus pulposus and annulus fibrosus, respectively. The MTDR can be made of two types of thermoplastic polyurethane (TPU 87A and TPU 95A) and fabricated using a 3D printing approach: fused filament fabrication. The MTDR design involves two configurations-the full lattice (FLC) and anatomy-based (ABC) configurations. The MTDR is evaluated in terms of its physical, mechanical, and cytotoxicity properties. The physical characterization includes the geometrical evaluations, wettability measurements, degradability tests, and swelling tests. The mechanical characterization comprises compressive tests of the materials, an analytical approach using the Voigt model of composite, and a finite element analysis. The cytotoxicity assays include the direct assay using hemocytometry and the indirect assay using a tetrazolium-based colorimetric (MTS) assay. The geometrical evaluation shows that the fabrication results are tolerable, and the two materials have good wettability and low degradation rates. The mechanical characterization shows that the ABC-MTDR has more similar mechanical properties to an IVD than the FLC-MTDR. The cytotoxicity assays prove that the materials are non-cytotoxic, allowing cells to grow on the surfaces of the materials.
Collapse
Affiliation(s)
- Muhammad Hanif Nadhif
- Medical Physiology and Biophysics Department, Faculty of Medicine, Universitas Indonesia, Kampus UI Salemba, Jakarta 10430, Indonesia
- Medical Technology Cluster, Indonesian Medical Education and Research Institute, Kampus UI Salemba, Jakarta 10430, Indonesia
| | - Muhammad Maulana Ghiffary
- Medical Technology Cluster, Indonesian Medical Education and Research Institute, Kampus UI Salemba, Jakarta 10430, Indonesia
| | - Muhammad Irsyad
- Medical Technology Cluster, Indonesian Medical Education and Research Institute, Kampus UI Salemba, Jakarta 10430, Indonesia
- Mechanical Engineering Department, Faculty of Engineering, Universitas Indonesia, Kampus UI Depok, Depok 16424, Indonesia
| | - Nuzli Fahdia Mazfufah
- Stem Cells and Tissue Engineering Cluster, Indonesian Medical Education and Research Institute, Kampus UI Salemba, Jakarta 10430, Indonesia
| | - Fakhira Nurhaliza
- Medical Technology Cluster, Indonesian Medical Education and Research Institute, Kampus UI Salemba, Jakarta 10430, Indonesia
- Biomedical Engineering Program, Electrical Engineering Department, Faculty of Engineering, Universitas Indonesia, Kampus UI Depok, Depok 16424, Indonesia
| | - Siti Fauziyah Rahman
- Biomedical Engineering Program, Electrical Engineering Department, Faculty of Engineering, Universitas Indonesia, Kampus UI Depok, Depok 16424, Indonesia
| | - Ahmad Jabir Rahyussalim
- Stem Cells and Tissue Engineering Cluster, Indonesian Medical Education and Research Institute, Kampus UI Salemba, Jakarta 10430, Indonesia
- Orthopedics and Traumatology Department, Faculty of Medicine/Ciptomangunkusumo Central Hospital, Jakarta 10430, Indonesia
- Integrated Service Unit of Stem Cell Medical Technology, Cipto Mangunkusumo Central Hospital, Jakarta 10430, Indonesia
| | - Tri Kurniawati
- Stem Cells and Tissue Engineering Cluster, Indonesian Medical Education and Research Institute, Kampus UI Salemba, Jakarta 10430, Indonesia
- Integrated Service Unit of Stem Cell Medical Technology, Cipto Mangunkusumo Central Hospital, Jakarta 10430, Indonesia
| |
Collapse
|
6
|
Domain Structure, Thermal and Mechanical Properties of Polycaprolactone-Based Multiblock Polyurethane-Ureas under Control of Hard and Soft Segment Lengths. Polymers (Basel) 2022; 14:polym14194145. [PMID: 36236094 PMCID: PMC9571805 DOI: 10.3390/polym14194145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 12/02/2022] Open
Abstract
A series of multiblock polyurethane-ureas (PUU) based on polycaprolactone diol (PCL) with a molecular mass of 530 or 2000 g/mol, as well as hard segments of different lengths and structures, were synthesized by the step-growth polymerization method. The chemical structure of the synthesized multiblock copolymers was confirmed by IR- and NMR-spectroscopy. Differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) were used to determine the relaxation and phase transition temperatures for the entire series of the obtained PUU. The X-ray diffraction (XRD) method made it possible to identify PUU compositions in which the crystallizability of soft segments (SS) is manifested due to their sufficient length for self-organization and structuring. Visualization of the crystal structure and disordering of the stacking of SS with an increase in their molecular mobility during heating are shown using optical microscopy. The change in the size of the hard phase domains and the value of the interdomain distance depending on the PCL molecular mass, as well as the length and structure of the hard block in the synthesized PUU, were analyzed using small-angle X-ray scattering (SAXS) and small-angle neutron scattering (SANS). The evolution of the domain structure upon passing through the melting and crystallization temperatures of PUU soft blocks was studied using SANS. The studies carried out made it possible to reveal the main correlations between the chemical structure of the synthesized PUU and their supramolecular organization as well as thermal and mechanical properties.
Collapse
|
7
|
Xu C, Hong Y. Rational design of biodegradable thermoplastic polyurethanes for tissue repair. Bioact Mater 2022; 15:250-271. [PMID: 35386346 PMCID: PMC8940769 DOI: 10.1016/j.bioactmat.2021.11.029] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/09/2021] [Accepted: 11/24/2021] [Indexed: 12/25/2022] Open
Abstract
As a type of elastomeric polymers, non-degradable polyurethanes (PUs) have a long history of being used in clinics, whereas biodegradable PUs have been developed in recent decades, primarily for tissue repair and regeneration. Biodegradable thermoplastic (linear) PUs are soft and elastic polymeric biomaterials with high mechanical strength, which mimics the mechanical properties of soft and elastic tissues. Therefore, biodegradable thermoplastic polyurethanes are promising scaffolding materials for soft and elastic tissue repair and regeneration. Generally, PUs are synthesized by linking three types of changeable blocks: diisocyanates, diols, and chain extenders. Alternating the combination of these three blocks can finely tailor the physio-chemical properties and generate new functional PUs. These PUs have excellent processing flexibilities and can be fabricated into three-dimensional (3D) constructs using conventional and/or advanced technologies, which is a great advantage compared with cross-linked thermoset elastomers. Additionally, they can be combined with biomolecules to incorporate desired bioactivities to broaden their biomedical applications. In this review, we comprehensively summarized the synthesis, structures, and properties of biodegradable thermoplastic PUs, and introduced their multiple applications in tissue repair and regeneration. A whole picture of their design and applications along with discussions and perspectives of future directions would provide theoretical and technical supports to inspire new PU development and novel applications.
Collapse
Affiliation(s)
- Cancan Xu
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Yi Hong
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, 76019, USA
| |
Collapse
|
8
|
Xu C, Ding S, Liu X, Wang F, Shi Y, Wang X, Wang Z. Superhigh strength polyurethane materials with oriented microdomains produced through mechanical deformation. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Farzan A, Borandeh S, Seppälä J. Conductive polyurethane/PEGylated graphene oxide composite for 3D-printed nerve guidance conduits. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
10
|
Veetil R, Soundiraraju B, Mathew D, Kalamblayil Sankaranarayanan SK. End-Terminated Poly(urethane-urea) Hybrid Approach toward Nanoporous/Microfilament Morphology. ACS OMEGA 2022; 7:6280-6291. [PMID: 35224390 PMCID: PMC8867484 DOI: 10.1021/acsomega.1c06888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
In the present work, the effect of heteroatomic hydrogen bonding on the properties of -OH/-NH-terminated soft-segment-free polymers, viz, polyurethane (P-UT), polyurea (P-UR), and their hybrid (P-UT-UR), is explored. P-UT was synthesized from phloroglucinol and P-UR was synthesized from 1,3,5-triazine-2,4,6-triamine by employing hexamethylene diisocyanate as a counterpart. P-UT exhibited a spherulitic structure with varying sizes, whereas P-UR displayed a fibrillar structure characteristic as that of crystalline hard segments. The P-UT-UR hybrid exhibited a fine nanospherulitic structure with a high order of interconnectivity. Negative surface skewness values of -0.47 and -0.18 were measured (by AFM) for P-UT and P-UT-UR, respectively, which revealed that the surface is not smooth and is covered with features. Due to the increased H-bonding (-N-H···O-H) in P-UT-UR, its transparency decreased. A block copolymer hybrid of urethane-urea was synthesized, which preferred homoatomic H-bonding, whereas random urethane/urea bridges favored hetreoheteroatom H-bonding. A pentafluorophenyl end-functional hybrid (PFI-P-UT-UR) was synthesized, which displayed filaments of ∼2-3 μm length in contrast to the interconnected nanospherulitic structure observed for P-UT-UR. The self-aggregation and end folding led to the formation of a filament structure. By altering the chemical structure slightly, nano-ordered polyurethanes or their hybrids can be achieved.
Collapse
Affiliation(s)
- Rashmi
Edachery Veetil
- Polymers
and Special Chemicals Division, Vikram Sarabhai
Space Centre, Thiruvananthapuram 695022, India
| | - Bhuvaneswari Soundiraraju
- Analytical
and Spectroscopy Division, Vikram Sarabhai
Space Centre, Thiruvananthapuram 695022, India
| | - Dona Mathew
- Polymers
and Special Chemicals Division, Vikram Sarabhai
Space Centre, Thiruvananthapuram 695022, India
| | | |
Collapse
|
11
|
Revised Manuscript with Corrections: Polyurethane-Based Conductive Composites: From Synthesis to Applications. Int J Mol Sci 2022; 23:ijms23041938. [PMID: 35216059 PMCID: PMC8872548 DOI: 10.3390/ijms23041938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 02/01/2023] Open
Abstract
The purpose of this review article is to outline the extended applications of polyurethane (PU)-based nanocomposites incorporated with conductive polymeric particles as well as to condense an outline on the chemistry and fabrication of polyurethanes (PUs). Additionally, we discuss related research trends of PU-based conducting materials for EMI shielding, sensors, coating, films, and foams, in particular those from the past 10 years. PU is generally an electrical insulator and behaves as a dielectric material. The electrical conductivity of PU is imparted by the addition of metal nanoparticles, and increases with the enhancing aspect ratio and ordering in structure, as happens in the case of conducting polymer fibrils or reduced graphene oxide (rGO). Nanocomposites with good electrical conductivity exhibit noticeable changes based on the remarkable electric properties of nanomaterials such as graphene, RGO, and multi-walled carbon nanotubes (MWCNTs). Recently, conducting polymers, including PANI, PPY, PTh, and their derivatives, have been popularly engaged as incorporated fillers into PU substrates. This review also discusses additional challenges and future-oriented perspectives combined with here-and-now practicableness.
Collapse
|
12
|
Lashkari R, Tabatabaei-Nezhad SA, Husein MM. Shape memory polyurethane as a wellbore strengthening material. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2021.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
13
|
Boffito M, Servello L, Arango-Ospina M, Miglietta S, Tortorici M, Sartori S, Ciardelli G, Boccaccini AR. Custom-Made Poly(urethane) Coatings Improve the Mechanical Properties of Bioactive Glass Scaffolds Designed for Bone Tissue Engineering. Polymers (Basel) 2021; 14:151. [PMID: 35012176 PMCID: PMC8747464 DOI: 10.3390/polym14010151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/17/2021] [Accepted: 12/23/2021] [Indexed: 12/03/2022] Open
Abstract
The replication method is a widely used technique to produce bioactive glass (BG) scaffolds mimicking trabecular bone. However, these scaffolds usually exhibit poor mechanical reliability and fast degradation, which can be improved by coating them with a polymer. In this work, we proposed the use of custom-made poly(urethane)s (PURs) as coating materials for 45S5 Bioglass®-based scaffolds. In detail, BG scaffolds were dip-coated with two PURs differing in their soft segment (poly(ε-caprolactone) or poly(ε-caprolactone)/poly(ethylene glycol) 70/30 w/w) (PCL-PUR and PCL/PEG-PUR) or PCL (control). PUR-coated scaffolds exhibited biocompatibility, high porosity (ca. 91%), and improved mechanical properties compared to BG scaffolds (2-3 fold higher compressive strength). Interestingly, in the case of PCL-PUR, compressive strength significantly increased by coating BG scaffolds with an amount of polymer approx. 40% lower compared to PCL/PEG-PUR- and PCL-coated scaffolds. On the other hand, PEG presence within PCL/PEG-PUR resulted in a fast decrease in mechanical reliability in an aqueous environment. PURs represent promising coating materials for BG scaffolds, with the additional pros of being ad-hoc customized in their physico-chemical properties. Moreover, PUR-based coatings exhibited high adherence to the BG surface, probably because of the formation of hydrogen bonds between PUR N-H groups and BG surface functionalities, which were not formed when PCL was used.
Collapse
Affiliation(s)
- Monica Boffito
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy; (L.S.); (S.M.); (M.T.); (S.S.); (G.C.)
| | - Lucia Servello
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy; (L.S.); (S.M.); (M.T.); (S.S.); (G.C.)
| | - Marcela Arango-Ospina
- Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstr. 6, 91058 Erlangen, Germany;
| | - Serena Miglietta
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy; (L.S.); (S.M.); (M.T.); (S.S.); (G.C.)
| | - Martina Tortorici
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy; (L.S.); (S.M.); (M.T.); (S.S.); (G.C.)
- Julius Wolff Institut, Charité—Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Susanna Sartori
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy; (L.S.); (S.M.); (M.T.); (S.S.); (G.C.)
| | - Gianluca Ciardelli
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy; (L.S.); (S.M.); (M.T.); (S.S.); (G.C.)
| | - Aldo R. Boccaccini
- Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstr. 6, 91058 Erlangen, Germany;
| |
Collapse
|
14
|
Li X, Ye F, Ouyang J, Chen Z, Yang X. Phase structure and transition behavior of zwitterionic polyurethane containing sulfobetaine. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124303] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
mSLA-based 3D printing of acrylated epoxidized soybean oil - nano-hydroxyapatite composites for bone repair. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 130:112456. [PMID: 34702532 DOI: 10.1016/j.msec.2021.112456] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/08/2021] [Accepted: 09/22/2021] [Indexed: 12/31/2022]
Abstract
Structural bone allografts are used to treat critically sized segmental bone defects (CSBDs) as such defects are too large to heal naturally. Development of biomaterials with competent mechanical properties that can also facilitate new bone formation is a major challenge for CSBD repair. 3D printed synthetic bone grafts are a possible alternative to structural allografts if engineered to provide appropriate structure with sufficient mechanical properties. In this work, we fabricated a set of novel nanocomposite biomaterials consisting of acrylated epoxidized soybean oil (AESO), polyethylene glycol diacrylate (PEGDA) and nanohydroxyapatite (nHA) by using masked stereolithography (mSLA)-based 3D printing. The nanocomposite inks possess suitable rheological properties and good printability to print complex, anatomically-precise, 'by design' grafts. The addition of nHA to the AESO/PEGDA resin improved the tensile strength and fracture toughness of the mSLA printed nanocomposites, presumably due to small-scale reinforcement. By adding 10 vol% nHA, tensile strength, modulus and fracture toughness (KIc) were increased to 30.8 ± 1.2 MPa (58% increase), 1984.4 ± 126.7 MPa (144% increase) and 0.6 ± 0.1 MPa·m1/2 (42% increase), respectively (relative to the pure resin). The nanocomposites did not demonstrate significant hydrolytic, enzymatic or oxidative degradation when incubated for 28 days, assuring chemical and mechanical stability at early stages of implantation. Apatite nucleated and covered the nanocomposite surfaces within 7 days of incubation in simulated body fluid. Good viability and proliferation of differentiated MC3T3-E1 osteoblasts were also observed on the nanocomposites. Taken all together, our nanocomposites demonstrate excellent bone-bioactivity and potential for bone defect repair.
Collapse
|
16
|
Wang L, Zeng X, Yan G, Chen X, Luo K, Zhou S, Zhang P, Li J, Wong TW. Biomimetic scaffolds with programmable pore structures for minimum invasive bone repair. NANOSCALE 2021; 13:16680-16689. [PMID: 34590639 DOI: 10.1039/d1nr04124j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Due to the complexity of surgery for large-area bone injuries, implanting a large volume of materials into the injury site remains a big challenge in orthopedics. To solve this difficulty, in this study, a series of biomimetic hydroxyapatite/shape-memory composite scaffolds were designed and synthesized with programmable pore structures, based on poly(ε-caprolactone) (PCL), polytetrahydrofuran (PTMG) and the osteoconductive hydroxyapatite (HA). The obtained scaffolds presented various pore structures, high connectivity, tunable mechanical properties, and excellent shape memory performance. Moreover, the mineralization activity of the developed scaffolds could enhance the formation of hydroxyapatite and they showed good biocompatibility in vitro. The in vivo experiments show that scaffolds could promote the formation of new bone in critical size cranial defects. The programmable porous scaffold biomaterials exhibited potential application promise in bone regeneration.
Collapse
Affiliation(s)
- Li Wang
- College of Materials, Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, Sichuan, P. R. China.
- College of Chemistry, Sichuan University, Chengdu 610064, Sichuan, P. R. China
| | - Xiyang Zeng
- College of Materials, Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, Sichuan, P. R. China.
| | - Guilong Yan
- College of Materials, Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, Sichuan, P. R. China.
| | - Xiaohu Chen
- College of Materials, Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, Sichuan, P. R. China.
| | - Kun Luo
- College of Materials, Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, Sichuan, P. R. China.
| | - Shiyi Zhou
- College of Materials, Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, Sichuan, P. R. China.
| | - Peicong Zhang
- College of Materials, Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, Sichuan, P. R. China.
| | - Junfeng Li
- College of Materials, Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, Sichuan, P. R. China.
| | - Tuck-Whye Wong
- Advanced Membrane Technology Centre, Universiti Teknologi Malaysia, Johor 81310, Malaysia
| |
Collapse
|
17
|
Tai NL, Ghasemlou M, Adhikari R, Adhikari B. Starch-based isocyanate- and non-isocyanate polyurethane hybrids: A review on synthesis, performance and biodegradation. Carbohydr Polym 2021; 265:118029. [PMID: 33966823 DOI: 10.1016/j.carbpol.2021.118029] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/15/2021] [Accepted: 03/30/2021] [Indexed: 02/06/2023]
Abstract
The challenges related to the persistence of plastics in natural ecosystems fostered strong interest in developing biodegradable bioplastics. Among natural biopolymers, starch gained both academic and industrial interest owing to its impressive physicochemical properties. The use of starch in production of polyurethane (PU) composites not only yields PUs with outstanding mechanical properties but also makes the final PU products biodegradable. The hydrophilic nature of starch limits its dispersion in hydrophobic PU polymers, although it is a significant benefit in creating starch-embedded non-isocyanate polyurethane (NIPU) composites. We present a comprehensive overview to highlight important strategies that are used to improve the compatibility of starch with various PU matrices. This review also gives an overview of the recent advances in the synthesis of starch-NIPU hybrids. Moreover, we aim to deliver critical insight into strategies that boost the biodegradation characteristics of PUs along with a discussion on various methods to assess their biodegradation.
Collapse
Affiliation(s)
- Nyok Ling Tai
- School of Science, College of Science, Technology, Engineering & Mathematics (STEM), RMIT University, Melbourne, VIC 3000, Australia
| | - Mehran Ghasemlou
- School of Science, College of Science, Technology, Engineering & Mathematics (STEM), RMIT University, Melbourne, VIC 3000, Australia.
| | - Raju Adhikari
- School of Science, College of Science, Technology, Engineering & Mathematics (STEM), RMIT University, Melbourne, VIC 3000, Australia
| | - Benu Adhikari
- School of Science, College of Science, Technology, Engineering & Mathematics (STEM), RMIT University, Melbourne, VIC 3000, Australia.
| |
Collapse
|
18
|
Anjum A, Zuber M, Zia KM, Anjum MN, Aftab W. Preparation and characterization of guar gum based polyurethanes. Int J Biol Macromol 2021; 183:2174-2183. [PMID: 34102237 DOI: 10.1016/j.ijbiomac.2021.06.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/25/2021] [Accepted: 06/03/2021] [Indexed: 01/07/2023]
Abstract
Guar gum (plant-based polysaccharide) is a promising candidate with immense potential. It is used as emulsifier, thickener, stabilizer, and as binding agent in many industries. In the present project, it was planned to synthesize guar gum based polyurethanes by varying the amount of guar gum. Guar gum (GG) was used along with hydroxyl-terminated polybutadiene (HTPB) as soft segment, which was then reacted with isophorone diisocyanate (IPDI) to form PU pre-polymers. In last step, these -NCO terminated pre-polymers were extended with 1,4 butane diol as chain extender. The prepared polyurethane samples were then characterized by using FTIR, solid-state 1HNMR and X-ray diffraction (XRD). Thermal behavior of the samples was studied by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Results indicated that the incorporation of guar gum in PU backbone improved its thermal behavior and crystallinity.
Collapse
Affiliation(s)
- Anbreen Anjum
- Department of Applied Chemistry, Government College University, Faisalabad 38030, Pakistan
| | - Mohammad Zuber
- Department of Applied Chemistry, Government College University, Faisalabad 38030, Pakistan
| | - Khalid Mahmood Zia
- Department of Chemistry, Government College University, Faisalabad 38030, Pakistan.
| | - Muhammad Naveed Anjum
- Department of Applied Chemistry, Government College University, Faisalabad 38030, Pakistan
| | - Waseem Aftab
- College of Engineering, Peking University Beijing, 100871, China
| |
Collapse
|
19
|
Plant oil-based polymers. PHYSICAL SCIENCES REVIEWS 2021. [DOI: 10.1515/psr-2020-0070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Polymer materials derived from natural resources have gained increasing attention in recent years because of the uncertainties concerning petroleum supply and prices in the future as well as their environmental pollution problems. As one of the most abundant renewable resources, plant oils are suitable starting materials for polymers because of their low cost, the rich chemistry that their triglyceride structure provides, and their potential biodegradability. This chapter covers the structure, modification of triglycerides and their derivatives as well as synthesis of polymers therefrom. The remarkable advances during the last two decades in organic synthesis using plant oils and the basic oleochemicals derived from them are selectively reported and updated. Various methods, such as condensation, radical/cationic polymerization, metathesis procedure, and living polymerization, have also been applied in constructing oil-based polymers. Based on the advance of these changes, traditional polymers such as polyamides, polyesters, and epoxy resins have been renewed. Partial oil-based polymers have already been applied in some industrial areas and recent developments in this field offer promising new opportunities.
Collapse
|
20
|
Temizkan E, Eroğlu G, Ergün A, Deligöz H. Preparation, characterization, and influence of polyurea coatings on their layered composite materials based on flexible rebonded polyurethane. POLYM ENG SCI 2021. [DOI: 10.1002/pen.25655] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Emir Temizkan
- Research and Development Department SAFAŞ Saf Plastik Sanayi ve Ticaret A.S Gebze Kocaeli Turkey
| | - Gülden Eroğlu
- Research and Development Department SAFAŞ Saf Plastik Sanayi ve Ticaret A.S Gebze Kocaeli Turkey
| | - Ayça Ergün
- Engineering Faculty, Chemical Engineering Department Istanbul University‐Cerrahpasa Istanbul Turkey
| | - Hüseyin Deligöz
- Engineering Faculty, Chemical Engineering Department Istanbul University‐Cerrahpasa Istanbul Turkey
| |
Collapse
|
21
|
Sciortino F, Sanchez-Ballester NM, Mir SH, Rydzek G. Functional Elastomeric Copolymer Membranes Designed by Nanoarchitectonics Approach for Methylene Blue Removal. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-01971-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
22
|
Szczepańczyk P, Szlachta M, Złocista-Szewczyk N, Chłopek J, Pielichowska K. Recent Developments in Polyurethane-Based Materials for Bone Tissue Engineering. Polymers (Basel) 2021; 13:polym13060946. [PMID: 33808689 PMCID: PMC8003502 DOI: 10.3390/polym13060946] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 11/16/2022] Open
Abstract
To meet the needs of clinical medicine, bone tissue engineering is developing dynamically. Scaffolds for bone healing might be used as solid, preformed scaffolding materials, or through the injection of a solidifiable precursor into the defective tissue. There are miscellaneous biomaterials used to stimulate bone repair including ceramics, metals, naturally derived polymers, synthetic polymers, and other biocompatible substances. Combining ceramics and metals or polymers holds promise for future cures as the materials complement each other. Further research must explain the limitations of the size of the defects of each scaffold, and additionally, check the possibility of regeneration after implantation and resistance to disease. Before tissue engineering, a lot of bone defects were treated with autogenous bone grafts. Biodegradable polymers are widely applied as porous scaffolds in bone tissue engineering. The most valuable features of biodegradable polyurethanes are good biocompatibility, bioactivity, bioconductivity, and injectability. They may also be used as temporary extracellular matrix (ECM) in bone tissue healing and regeneration. Herein, the current state concerning polyurethanes in bone tissue engineering are discussed and introduced, as well as future trends.
Collapse
|
23
|
Wang S, Wang X, Huang H. Surface modification of
TiO
2
particles with 12‐hydroxy stearic acid and the effect of particle size on the mechanical and thermal properties of thermoplastic polyurethane urea elastomers. J Appl Polym Sci 2021. [DOI: 10.1002/app.49898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Shuxiao Wang
- Jiangsu Key Laboratory for the Design and Application of Advanced Functional Polymers, College of Chemistry, Chemical Engineering and Materials Science Soochow University Suzhou China
| | - Xiaoyan Wang
- Jiangsu Key Laboratory for the Design and Application of Advanced Functional Polymers, College of Chemistry, Chemical Engineering and Materials Science Soochow University Suzhou China
| | - He Huang
- Jiangsu Key Laboratory for the Design and Application of Advanced Functional Polymers, College of Chemistry, Chemical Engineering and Materials Science Soochow University Suzhou China
- National & Local Joint Engineering Laboratory of Advanced Functional Polymeric Materials Soochow University Suzhou China
| |
Collapse
|
24
|
Yu W, Maynard E, Chiaradia V, Arno MC, Dove AP. Aliphatic Polycarbonates from Cyclic Carbonate Monomers and Their Application as Biomaterials. Chem Rev 2021; 121:10865-10907. [DOI: 10.1021/acs.chemrev.0c00883] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Wei Yu
- School of Chemistry, University of Birmingham, Edgbaston, B15 2TT U.K
| | - Edward Maynard
- School of Chemistry, University of Birmingham, Edgbaston, B15 2TT U.K
| | - Viviane Chiaradia
- School of Chemistry, University of Birmingham, Edgbaston, B15 2TT U.K
| | - Maria C. Arno
- School of Chemistry, University of Birmingham, Edgbaston, B15 2TT U.K
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, B15 2TT U.K
| | - Andrew P. Dove
- School of Chemistry, University of Birmingham, Edgbaston, B15 2TT U.K
| |
Collapse
|
25
|
Zheng M, Guo J, Li Q, Yang J, Han Y, Yang H, Yu M, Zhong L, Lu D, Li L, Sun L. Syntheses and characterization of anti-thrombotic and anti-oxidative Gastrodin-modified polyurethane for vascular tissue engineering. Bioact Mater 2021; 6:404-419. [PMID: 32995669 PMCID: PMC7486448 DOI: 10.1016/j.bioactmat.2020.08.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/12/2020] [Accepted: 08/12/2020] [Indexed: 12/15/2022] Open
Abstract
Vascular grafts must avoid negative inflammatory responses and thrombogenesis to prohibit fibrotic deposition immediately upon implantation and promote the regeneration of small diameter blood vessels (<6 mm inner diameter). Here, polyurethane (PU) elastomers incorporating anti-coagulative and anti-inflammatory Gastrodin were fabricated. The films had inter-connected pores with porosities equal to or greater than 86% and pore sizes ranging from 250 to 400 μm. Incorporation of Gastrodin into PU films resulted in desirable mechanical properties, hydrophilicity, swelling ratios and degradation rates without collapse. The released Gastrodin maintained bioactivity over 21 days as assessed by its anti-oxidative capability. The Gastrodin/PU had better anti-coagulation response (less observable BSA, fibrinogen and platelet adhesion/activation and suppressed clotting in whole blood). Red blood cell compatibility, measured by hemolysis, was greatly improved with 2Gastrodin/PU compared to other Gastrodin/PU groups. Notably, Gastrodin/PU upregulated anti-oxidant factors Nrf2 and HO-1 expression in H2O2 treated HUVECs, correlated with decreasing pro-inflammatory cytokines TNF-α and IL-1β in RAW 264.7 cells. Upon implantation in a subcutaneous pocket, PU was encapsulated by an obvious fibrous capsule, concurrent with a large amount of inflammatory cell infiltration, while Gastrodin/PU induced a thinner fibrous capsule, especially 2Gastrodin/PU. Further, enhanced adhesion and proliferation of HUVECs seeded onto films in vitro demonstrated that 2Gastrodin/PU could help cell recruitment, as evidenced by rapid host cell infiltration and substantial blood vessel formation in vivo. These results indicate that 2Gastrodin/PU has the potential to facilitate blood vessel regeneration, thus providing new insight into the development of clinically effective vascular grafts.
Collapse
Affiliation(s)
- Meng Zheng
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, 650500, China
| | - Jiazhi Guo
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, 650500, China
| | - Qing Li
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, 650500, China
| | - Jian Yang
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Yi Han
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, 650500, China
| | - Hongcai Yang
- Department of Neurology, The First Affiliated Hospital, Kunming Medical University, Kunming, 650500, China
| | - Mali Yu
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, 650500, China
| | - Lianmei Zhong
- Department of Neurology, The First Affiliated Hospital, Kunming Medical University, Kunming, 650500, China
| | - Di Lu
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, 650500, China
| | - Limei Li
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, 650500, China
| | - Lin Sun
- Department of Cardiology, The Second Affiliated Hospital, Kunming Medical University, Kunming, 650032, China
| |
Collapse
|
26
|
Brossier T, Volpi G, Lapinte V, Blanquer S. Synthesis of Poly(Trimethylene Carbonate) from Amine Group Initiation: Role of Urethane Bonds in the Crystallinity. Polymers (Basel) 2021; 13:polym13020280. [PMID: 33467051 PMCID: PMC7829917 DOI: 10.3390/polym13020280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 11/16/2022] Open
Abstract
Semi-crystalline poly(trimethylene carbonate) (PTMC) can be efficiently prepared by ring-opening polymerization (ROP) initiated by amine using various catalysts. More promising results were reached with the one-step process of stannous octanoate unlike the two-step one-pot reaction using TBD and MSA catalysts. The ROP-amine of TMC consists in a simple isocyanate free process to produce polycarbonate-urethanes, compatible with the large availability of amines ranging from mono- to multifunctional until natural amino acids. ROP-amine of TMC leads to urethane bonds monitored by FTIR spectroscopy. The relationship between the nature of amines and the crystallinity of PTMC was discussed through X-ray diffraction and thermal studies by DSC and TGA. The impact of the crystallinity was also demonstrated on the mechanical properties of semi-crystalline PTMC in comparison to amorphous PTMC, synthesized by ROP initiated by alcohol. The semi-crystalline PTMC synthesized by ROP-amine opens many perspectives.
Collapse
Affiliation(s)
- Thomas Brossier
- ICGM, Univ. Montpellier, CNRS, ENSCM, 34296 Montpellier, France; (T.B.); (V.L.)
- 3D Medlab, 13700 Marignane, France;
| | | | - Vincent Lapinte
- ICGM, Univ. Montpellier, CNRS, ENSCM, 34296 Montpellier, France; (T.B.); (V.L.)
| | - Sebastien Blanquer
- ICGM, Univ. Montpellier, CNRS, ENSCM, 34296 Montpellier, France; (T.B.); (V.L.)
- Correspondence:
| |
Collapse
|
27
|
Zhu T, Gu H, Zhang H, Wang H, Xia H, Mo X, Wu J. Covalent grafting of PEG and heparin improves biological performance of electrospun vascular grafts for carotid artery replacement. Acta Biomater 2021; 119:211-224. [PMID: 33181359 DOI: 10.1016/j.actbio.2020.11.013] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/21/2020] [Accepted: 11/05/2020] [Indexed: 12/13/2022]
Abstract
Rapid endothelialization of small-diameter vascular grafts remains a significant challenge in clinical practice. In addition, compliance mismatch causes intimal hyperplasia and finally leads to graft failure. To achieve compliance match and rapid endothelialization, we synthesized low-initial-modulus poly(ester-urethane)urea (PEUU) elastomer and prepared it into electrospun tubular grafts and then functionalized the grafts with poly(ethylene glycol) (PEG) and heparin via covalent grafting. The PEG- and heparin-functionalized PEUU (PEUU@PEG-Hep) graft had comparable mechanical properties with the native blood vessel. In vitro data demonstrated that the grafts are of good cytocompatibility and blood compatibility. Covalent grafting of PEG and heparin significantly promoted the adhesion, spreading, and proliferation of human umbilical vein endothelial cells (HUVECs) and upregulated the expression of vascular endothelial cell-related genes, as well as increased the capability of grafts in preventing platelet deposition. In vivo assessments indicated good biocompatibility of the PEUU@PEG-Hep graft as it did not induce severe immune responses. Replacement of resected carotid artery with the PEUU@PEG-Hep graft in a rabbit model showed that the graft was capable of rapid endothelialization, initiated vascular remodeling, and maintained patency. This study demonstrates the PEUU@PEG-Hep vascular graft with compliance match and efficacious antithrombosis might find opportunities for bioactive blood vessel substitutes.
Collapse
|
28
|
Li X, Ye F, Wang J, Chen Z, Yang X. The synthesis of polyurethane with mechanical properties that are responsive to water retention states. Polym Chem 2021. [DOI: 10.1039/d0py01559h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Water-retention-state-responsive polyurethane was designed and synthesized via introducing zwitterionic sulfobetaine onto its polymer chains.
Collapse
Affiliation(s)
- Xuemin Li
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Feng Ye
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Jie Wang
- Polymer Composites Engineering Laboratory
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Zhaobin Chen
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Xiaoniu Yang
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| |
Collapse
|
29
|
Feng Y, Xiao K, He Y, Du B, Hong J, Yin H, Lu D, Luo F, Li Z, Li J, Tan H, Fu Q. Tough and biodegradable polyurethane-curcumin composited hydrogel with antioxidant, antibacterial and antitumor properties. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 121:111820. [PMID: 33579463 DOI: 10.1016/j.msec.2020.111820] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/07/2020] [Accepted: 12/16/2020] [Indexed: 02/08/2023]
Abstract
The functionalization of tough and biodegradable hydrogels is an important way to broaden their applications in biomedical field. However, most of the hydrophobic functional drugs are difficult to incorporate with the hydrogels. In this work, curcumin (Cur), a hydrophobic functional drug, was chosen to composite with polyurethane (PU) to obtain PU-Cur hydrogels by a direct and simple in-situ copolymerization. The incorporation of curcumin in PU hydrogel increases the crosslink but reduces the hydrophilicity and degradation rate of PU-Cur hydrogels. Thus, it can increase the mechanical strength to a maximum of 6.4±0.8 MPa and initial modulus to a maximum of 3.0±0.4 MPa. More importantly, curcumin incorporated in PU networks is not deactivated. The degradation products of PU-Curs at relatively low concentrations (2.5 mg/mL) can scavenge free radicals very efficiently (maximum over 90%), which exhibits strong antioxidant properties to improve wound healing. Moreover, based on the photochemical activity of curcumin, notable inhibition effects of the degradation products of PU-Curs against bacteria (maximum over 80%) and cancer cells are demonstrated with blue light treatment as a photodynamic therapy (PDT). Therefore, the beneficial effects of curcumin are retained in PU-Cur hydrogels, suggesting potential use as wound dressings or tumor isolation membranes. This work proposes a promising strategy to combine hydrophobic functional drugs with hydrophilic hydrogels for applications in a wide range of biomaterials.
Collapse
Affiliation(s)
- Yuan Feng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Kecen Xiao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Yuanyuan He
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Bohong Du
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Jianghui Hong
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Hang Yin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Dan Lu
- Department of Otorhinolaryngology, Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Feng Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Zhen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Jiehua Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Hong Tan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Qiang Fu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
30
|
Farzan A, Borandeh S, Zanjanizadeh Ezazi N, Lipponen S, Santos HA, Seppälä J. 3D scaffolding of fast photocurable polyurethane for soft tissue engineering by stereolithography: Influence of materials and geometry on growth of fibroblast cells. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109988] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
31
|
Yang Z, Wu G. Synthetic scheme to improve the solid content of biodegradable waterborne polyurethane by changing the association relationships of hydrophilic fragments. RSC Adv 2020; 10:28680-28694. [PMID: 35520087 PMCID: PMC9055802 DOI: 10.1039/d0ra04124f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/24/2020] [Indexed: 11/21/2022] Open
Abstract
A synthetic method was developed to prepare biodegradable waterborne polyurethanes (BHPUs) with a high solid content by introducing different molecular weights of poly(ethylene glycol) (PEG) into poly(ε-caprolactone) (PCL)-based polyurethanes. PCL is a semi-crystalline polymer that can be degraded in lipase to prepare biodegradable waterborne polyurethanes. The biodegradability of BHPUs was evaluated, and the results showed that BHPU samples could be degraded in a solution of phosphate-buffered saline (PBS)/lipase but not in PBS. Two different synthesis routes were used to prepare the BHPUs, which resulted in different association relationships between the ionic hydrophilic polymer dimethylol propionic acid (DMPA) and a nonionic hydrophilic polymer (PEG). The influence of the association relationship between DMPA and PEG on the solid content and other BHPU properties was investigated. The results showed that the method of associating all PEG molecules with DMPA increased the crystallization, tensile properties, and water and soil repellency of the BHPU samples. The solid content of the BHPU samples increased from 41% to 52.7%. In addition, PEG with molecular weights of 400 g mol−1 and 1000 g mol−1 had the best effect on the dispersibility and stability of BHPU samples when incorporated into a polyurethane backbone. A synthetic method was developed to prepare biodegradable waterborne polyurethanes (BHPUs) with a high solid content by introducing different molecular weights of poly(ethylene glycol) (PEG) into poly(ε-caprolactone) (PCL)-based polyurethanes.![]()
Collapse
Affiliation(s)
- Zhihui Yang
- Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology Changchun 130012 P. R. China +86-431-85716467 +86-431-85716467
| | - Guangfeng Wu
- Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology Changchun 130012 P. R. China +86-431-85716467 +86-431-85716467
| |
Collapse
|
32
|
Xu Z, Wang X, Huang H. Thermoplastic polyurethane–urea elastomers with superior mechanical and thermal properties prepared from alicyclic diisocyanate and diamine. J Appl Polym Sci 2020. [DOI: 10.1002/app.49575] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Zichong Xu
- Jiangsu Key Laboratory for the Design and Application of Advanced Functional Polymers, College of Chemistry, Chemical Engineering and Materials Science Soochow University Suzhou China
| | - Xiaoyan Wang
- Jiangsu Key Laboratory for the Design and Application of Advanced Functional Polymers, College of Chemistry, Chemical Engineering and Materials Science Soochow University Suzhou China
| | - He Huang
- Jiangsu Key Laboratory for the Design and Application of Advanced Functional Polymers, College of Chemistry, Chemical Engineering and Materials Science Soochow University Suzhou China
- National and Local Joint Engineering Laboratory of Advanced Functional Polymeric Materials Soochow University Suzhou China
| |
Collapse
|
33
|
Jaganathan SK, Mani MP. Electrospun novel nanocomposite comprising polyurethane integrated with ayurveda amla oil for bone tissue engineering. AN ACAD BRAS CIENC 2020; 92:e20180369. [PMID: 32236296 DOI: 10.1590/0001-3765202020180369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 11/22/2018] [Indexed: 11/21/2022] Open
Abstract
Ayurveda oil contains numerous source of biological constituents which plays an important role in reducing the pain relief caused during bone fracture. The aim of the study is to fabricate the polyurethane (PU) scaffold for bone tissue engineering added with ayurveda amla oil using electrospinning technique. Scanning Electron Microscopy (SEM) analysis showed that the fabricated nanocomposites showed reduced fiber diameter (758 ± 185.46 nm) than the pristine PU (890 ± 116.91 nm). Fourier Infrared Analysis (FTIR) revealed the existence of amla oil in the PU matrix by hydrogen bond formation. The contact angle results revealed the decreased wettability (116° ± 1.528) of the prepared nanocomposites compared to the pure PU (100° ± 0.5774). The incorporation of amla oil into the PU matrix improved the surface roughness. Further, the coagulation assay indicated that the addition of amla oil into PU delayed the blood clotting times and exhibited less toxic to red blood cells. Hence, the fabricated nanocomposites showed enhanced physicochemical and better blood compatibility parameters which may serve as a potential candidate for bone tissue engineering.
Collapse
Affiliation(s)
- Saravana Kumar Jaganathan
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam.,Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Mohan P Mani
- School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81310, Malaysia
| |
Collapse
|
34
|
Mori da Cunha MGM, Arts B, Hympanova L, Rynkevic R, Mackova K, Bosman AW, Dankers PY, Deprest J. Functional supramolecular bioactivated electrospun mesh improves tissue ingrowth in experimental abdominal wall reconstruction in rats. Acta Biomater 2020; 106:82-91. [PMID: 32006652 DOI: 10.1016/j.actbio.2020.01.041] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 01/24/2020] [Accepted: 01/24/2020] [Indexed: 12/18/2022]
Abstract
Development of biomaterials for hernia and pelvic organ prolapse (POP) repair is encouraged because of high local complication rates with current materials. Therefore, we aimed to develop a functionalized electrospun mesh that promotes tissue ingrowth and provides adequate mechanical strength and compliance during degradation. We describe the in vivo function of a new supramolecular bioactivated polycarbonate (PC) material based on fourfold hydrogen bonding ureidopyrimidinone (UPy) units (UPy-PC). The UPy-PC material was functionalized with UPy-modified cyclic arginine-glycine-aspartic acid (cRGD) peptide additives. Morphometric analysis of the musculofascial content during wound healing showed that cRGD functionalization promotes myogenesis with inhibition of collagen deposition at 14 days. It also prevents muscle atrophy at 90 days and exerts an immunomodulatory effect on infiltrating macrophages at 14 days and foreign body giant cell formation at 14 and 90 days. Additionally, the bioactivated material promotes neovascularization and connective tissue ingrowth. Supramolecular cRGD-bioactivation of UPy-PC-meshes promotes integration of the implant, accelerates tissue ingrowth and reduces scar formation, resulting in physiological neotissue formation when used for abdominal wall reconstruction in the rat hernia model. Moreover, cRGD-bioactivation prevents muscle atrophy and modulates the inflammatory response. Our results provide a promising outlook towards a new type of biomaterial for the treatment of hernia and POP. STATEMENT OF SIGNIFICANCE: Development of biomaterials for hernia and pelvic organ prolapse (POP) repair is encouraged because of high local complication rates with current materials. Ureidopyrimidinone-polycarbonate is a elastomeric and biodegradable electrospun mesh, which could mimic physiological compliance. The UPy-PC material was functionalized with UPy-modified cyclic arginine-glycine-aspartic acid (cRGD) peptide additives. Supramolecular cRGD-bioactivation of UPy-PC-meshes promotes integration of the implant, accelerates tissue ingrowth and reduces scar formation, resulting in physiological neotissue formation when used for abdominal wall reconstruction in rat hernia model. Moreover, cRGD-bioactivation prevents muscle atrophy and modulates the inflammatory response. These data provide a promising outlook towards a new type of biomaterial for the treatment of hernia and POP.
Collapse
|
35
|
Ali A, Jamil MI, Jiang J, Shoaib M, Amin BU, Luo S, Zhan X, Chen F, Zhang Q. An overview of controlled-biocide-release coating based on polymer resin for marine antifouling applications. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02054-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
36
|
Niu Y, Liu G, Fu M, Chen C, Fu W, Zhang Z, Xia H, Stadler FJ. Designing a multifaceted bio-interface nanofiber tissue-engineered tubular scaffold graft to promote neo-vascularization for urethral regeneration. J Mater Chem B 2020; 8:1748-1758. [PMID: 32031190 DOI: 10.1039/c9tb01915d] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Reconstitution of urethral defects through a tissue-engineered autologous urethra is an exciting area of clinical urology research. Despite rapid advances in this field, a tissue-engineered urethra is still inaccessible to clinical applications because of the poor vascularization of the current scaffold materials, especially for the reconstruction of complex urethral defects. In this study, we report the preparation of multifaceted bio-interfacing tissue-engineered autologous scaffolds based on alternating block polyurethane (abbreviated as PU-alt), a kind of tubular scaffold with a hierarchical nanofiber architecture, flexible mechanical properties and a hydrophilic PEGylation interface capable of promoting adhesion, oriented elongation, and proliferation of New Zealand rabbit autologous urethral epithelial cells (ECs) and smooth muscle cells (SMCs) simultaneously, and also upregulating the expression of keratin (AE1/AE3) in ECs and contractile protein (α-SMA) in SMCs as well as the subsequent synthesis of elastin. Three months in vivo scaffold substitution of rabbit urethras displayed that the engineered autologous PU-alt scaffold grafts, with a coating rich in seed cell-matrix, could induce local neo-vascularization, facilitating oriented SMC remodeling and lumen epithelialization as well as patency. Our findings indicate a central role of the synergistic interplay of seed cell-matrix bio-interface and nano-topographic cues in the vascularized urethral reconstruction.
Collapse
Affiliation(s)
- Yuqing Niu
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China. and Nanshan District Key Lab for Biopolymers and Safety Evaluation, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, P. R. China. and State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Guochang Liu
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Ming Fu
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Chuangbi Chen
- Nanshan District Key Lab for Biopolymers and Safety Evaluation, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, P. R. China.
| | - Wen Fu
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Zhao Zhang
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Huimin Xia
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China. and State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Florian J Stadler
- Nanshan District Key Lab for Biopolymers and Safety Evaluation, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, P. R. China.
| |
Collapse
|
37
|
Ehrmann K, Potzmann P, Dworak C, Bergmeister H, Eilenberg M, Grasl C, Koch T, Schima H, Liska R, Baudis S. Hard Block Degradable Polycarbonate Urethanes: Promising Biomaterials for Electrospun Vascular Prostheses. Biomacromolecules 2020; 21:376-387. [PMID: 31718163 DOI: 10.1021/acs.biomac.9b01255] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We report biodegradable thermoplastic polyurethanes for soft tissue engineering applications, where frequently used carboxylic acid ester degradation motifs were substituted with carbonate moieties to achieve superior degradation properties. While the use of carbonates in soft blocks has been reported, their use in hard blocks of thermoplastic polyurethanes is unprecedented. Soft blocks consist of poly(hexamethylene carbonate), and hard blocks combine hexamethylene diisocyanate with the newly synthesized cleavable carbonate chain extender bis(3-hydroxypropylene)carbonate (BHPC), mimicking the motif of poly(trimethylene carbonate) with highly regarded degradation properties. Simultaneously, the mechanical benefits of segmented polyurethanes are exploited. A lower hard block concentration in BHPC-based polymers was more suitable for vascular grafts. Nonacidic degradation products and hard block dependent degradation rates were found. Implantation of BHPC-based electrospun degradable vascular prostheses in a small animal model revealed high patency rates and no signs of aneurysm formations. Specific vascular graft remodeling and only minimal signs of inflammatory reactions were observed.
Collapse
Affiliation(s)
- Katharina Ehrmann
- Institute of Applied Synthetic Chemistry, Division of Macromolecular Chemistry , TU Wien , Getreidemarkt 9/163 MC , 1060 Vienna , Austria.,Division of Biomedical Research , Medical University of Vienna , Währinger Gürtel 18-20 , 1090 Vienna , Austria.,Austrian Cluster for Tissue Regeneration , 1200 Vienna , Austria
| | - Paul Potzmann
- Institute of Applied Synthetic Chemistry, Division of Macromolecular Chemistry , TU Wien , Getreidemarkt 9/163 MC , 1060 Vienna , Austria.,Austrian Cluster for Tissue Regeneration , 1200 Vienna , Austria
| | - Claudia Dworak
- Institute of Applied Synthetic Chemistry, Division of Macromolecular Chemistry , TU Wien , Getreidemarkt 9/163 MC , 1060 Vienna , Austria.,Austrian Cluster for Tissue Regeneration , 1200 Vienna , Austria
| | - Helga Bergmeister
- Division of Biomedical Research , Medical University of Vienna , Währinger Gürtel 18-20 , 1090 Vienna , Austria.,Ludwig Boltzmann Institute for Cardiovascular Research , Währinger Gürtel 18-20 , 1090 Vienna , Austria.,Austrian Cluster for Tissue Regeneration , 1200 Vienna , Austria
| | - Magdalena Eilenberg
- Division of Biomedical Research , Medical University of Vienna , Währinger Gürtel 18-20 , 1090 Vienna , Austria.,Department of Surgery , Medical University of Vienna , Währinger Gürtel 18-20 , 1090 Vienna , Austria
| | - Christian Grasl
- Ludwig Boltzmann Institute for Cardiovascular Research , Währinger Gürtel 18-20 , 1090 Vienna , Austria.,Center for Medical Physics and Biomedical Engineering , Medical University of Vienna , Währinger Gürtel 18-20 , 1090 Vienna , Austria
| | - Thomas Koch
- Institute of Materials Science and Technology , TU Wien , Getreidemarkt 9/308 , 1060 Vienna , Austria
| | - Heinrich Schima
- Ludwig Boltzmann Institute for Cardiovascular Research , Währinger Gürtel 18-20 , 1090 Vienna , Austria.,Center for Medical Physics and Biomedical Engineering , Medical University of Vienna , Währinger Gürtel 18-20 , 1090 Vienna , Austria
| | - Robert Liska
- Institute of Applied Synthetic Chemistry, Division of Macromolecular Chemistry , TU Wien , Getreidemarkt 9/163 MC , 1060 Vienna , Austria.,Austrian Cluster for Tissue Regeneration , 1200 Vienna , Austria
| | - Stefan Baudis
- Institute of Applied Synthetic Chemistry, Division of Macromolecular Chemistry , TU Wien , Getreidemarkt 9/163 MC , 1060 Vienna , Austria.,Austrian Cluster for Tissue Regeneration , 1200 Vienna , Austria
| |
Collapse
|
38
|
Báez JE, Shea KJ, Dennison PR, Obregón-Herrera A, Bonilla-Cruz J. Monodisperse oligo(δ-valerolactones) and oligo(ε-caprolactones) with docosyl (C22) end-groups. Polym Chem 2020. [DOI: 10.1039/d0py00576b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Two different families of monodisperse oligoesters with α-hydroxyl-ω-docosyl (C22) terminal groups [oligo(δ-valerolactone) and oligo(ϵ-caprolactone)] were isolated by flash column chromatography (FCC).
Collapse
Affiliation(s)
- José E. Báez
- Department of Chemistry
- Division of Natural and Exact Sciences
- University of Guanajuato (UG)
- Guanajuato
- Gto. Mexico
| | - Kenneth J. Shea
- Department of Chemistry
- University of California
- Irvine
- Irvine
- 92697-2025
| | | | - Armando Obregón-Herrera
- Department of Biology
- Division of Natural and Exact Sciences
- University of Guanajuato (UG)
- Guanajuato
- Gto. Mexico
| | - José Bonilla-Cruz
- Centro de Investigación en Materiales Avanzados S.C. (CIMAV-Unidad Monterrey)
- Apodaca
- 66628 Mexico
| |
Collapse
|
39
|
Takojima K, Saito T, Vevert C, Ladelta V, Bilalis P, Watanabe J, Hatanaka S, Konno T, Yamamoto T, Tajima K, Hadjichristidis N, Isono T, Satoh T. Facile synthesis of poly(trimethylene carbonate) by alkali metal carboxylate-catalyzed ring-opening polymerization. Polym J 2019. [DOI: 10.1038/s41428-019-0264-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
40
|
Designing a castor oil-based polyurethane as bioadhesive. Colloids Surf B Biointerfaces 2019; 181:740-748. [PMID: 31229801 DOI: 10.1016/j.colsurfb.2019.06.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 02/08/2023]
Abstract
Based on the stealth behavior of castor oil and poly(ethylene glycol), we selected a polyurethane system to obtain an ideal surgical adhesive. The polyurethane adhesives with varying concentrations of castor oil were investigated by Fourier transform infrared spectrometer, differential scanning calorimetry, scanning electron microscopy, goniometer, and universal testing machine. Curing results show that a 7-min to 25-min room temperature curing can be achieved, providing one possibility of shortening the surgery time. In vitro biodegradation test demonstrates that a certain proportion of the polyurethane film will be hydrolyzed in a foregone manner after a period of time (7 weeks). The adhesion strengths of these adhesives show a strong bonding between pieces of tissue, which makes them qualified for application in a moist environment.
Collapse
|
41
|
Jaganathan SK, Mani MP, Supriyanto E. Blood compatibility assessments of electrospun polyurethane nanocomposites blended with megni oil for tissue engineering applications. AN ACAD BRAS CIENC 2019; 91:e20190018. [PMID: 31241710 DOI: 10.1590/0001-3765201920190018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/08/2019] [Indexed: 11/22/2022] Open
Abstract
Tissue engineering holds as a prominent technique to repair or replace the damaged human parts to recreate its native function. In this research, a novel scaffold based on polyurethane (PU) comprising megni oil was electrospun for tissue engineering applications. The obtained polyurethane blended with megni oil nanofibers were characterized by scanning electron microscopy (SEM), fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), contact angle measurement and atomic force microscopy (AFM). Furthermore, the blood compatibility of the fabricated nanocomposites evaluated through activated prothrombin time (APTT), partial thromboplastin time (PT) and hemolysis assay to determine the anticoagulant nature. The morphological results showed that the fabricated nanocomposites showed reduced fiber size (789 ± 143.106 nm) than the pristine control (890 ± 116.91 nm). The interaction between PU and megni oil was identified by the hydrogen bond formation evident in the FTIR. The incorporation of megni oil in the PU decreased the wettability behavior (113.3° ± 1.528) and improved the surface roughness (646 nm). Preliminary evaluation of blood compatibility assessments was carried out using APTT, PT and hemolysis assay revealed the enhanced antithrombogenicity nature of the fabricated nanocomposites than the PU. Hence, we conclude that the fabricated new nanocomposite membrane with desirable characteristics which might find potential application in the tissue engineering applications.
Collapse
Affiliation(s)
- Saravana Kumar Jaganathan
- Department for Management of Science and Technology Development, Ton Duc Thang University,Ho Chi Minh City, Vietnam.,Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam.,IJNUTM Cardiovascular Engineering Center, School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81310, Malaysia
| | - Mohan P Mani
- School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81310, Malaysia
| | - Eko Supriyanto
- IJNUTM Cardiovascular Engineering Center, School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81310, Malaysia
| |
Collapse
|
42
|
D'Amore A, Luketich SK, Hoff R, Ye SH, Wagner WR. Blending Polymer Labile Elements at Differing Scales to Affect Degradation Profiles in Heart Valve Scaffolds. Biomacromolecules 2019; 20:2494-2505. [PMID: 31083976 DOI: 10.1021/acs.biomac.9b00189] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
After more than 22 years of research challenges and innovation, the heart valve tissue engineering paradigm still attracts attention as an approach to overcome limitations which exist with clinically utilized mechanical or bioprosthetic heart valves. Despite encouraging results, delayed translation can be attributed to limited knowledge on the concurrent mechanisms of biomaterial degradation in vivo, host inflammatory response, cell recruitment, and de novo tissue elaboration. This study aimed to reduce this gap by evaluating three alternative levels at which lability could be incorporated into candidate polyurethane materials electroprocessed into a valve scaffold. Specifically, polyester and polycarbonate labile soft segment diols were reacted into thermoplastic elastomeric polyurethane ureas that formed scaffolds where (1) a single polyurethane containing both of the two diols in the polymer backbone was synthesized and processed, (2) two polyurethanes were physically blended, one with exclusively polycarbonate and one with exclusively polyester diols, followed by processing of the blend, and (3) the two polyurethane types were concurrently processed to form individual fiber populations in a valve scaffold. The resulting valve scaffolds were characterized in terms of their mechanics before and after exposure to varying periods of pulsatile flow in an enzymatic (lipase) buffer solution. The results showed that valve scaffolds made from the first type of polymer and processing combination experienced more extensive degradation. This approach, although demonstrated with polyurethane scaffolds, can generally be translated to investigate biomaterial approaches where labile elements are introduced at different structural levels to alter degradation properties while largely preserving the overall chemical composition and initial mechanical behavior.
Collapse
|
43
|
Xiao K, Wang Z, Wu Y, Lin W, He Y, Zhan J, Luo F, Li Z, Li J, Tan H, Fu Q. Biodegradable, anti-adhesive and tough polyurethane hydrogels crosslinked by triol crosslinkers. J Biomed Mater Res A 2019; 107:2205-2221. [PMID: 31116494 DOI: 10.1002/jbm.a.36730] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/11/2019] [Accepted: 05/20/2019] [Indexed: 12/16/2022]
Abstract
The mechanical and biodegradable properties of hydrogels are two essential properties for practical biomaterial applications. In this work, a series of biodegradable polyurethane (PU) hydrogels were successfully synthesized using two kinds of triol crosslinkers with different chain structures. One crosslinker is normal glycerol (GC) with short chain length, and the other is biodegradable poly (ε-caprolactone)-triol (CAPA) with long chain length. All PU hydrogels showed considerable water uptake around ~60%, excellent strength (above 3 MPa), advisable modulus (0.9~1.7 MPa), high elasticity (above 700%), as well as good biodegradability and biocompatibility. Hydrogen bonds served as reversible sacrificial bonds in the PU hydrogels endow them good toughness with partial hysteresis during deformation. The biodegradable long chain crosslinker CAPA can certainly accelerate the degradation of PU hydrogels compared with the GC crosslinked hydrogels. The degradation of these hydrogels was a process of continuous erosion from the surface to interior, which contributes to the high remain of mechanical properties after 30 days-degradation. Besides, the hydrogels also show excellent antifouling ability of protein and anti-adhesion of cells. Therefore, these hydrogels suggest great potential used as biological anti-adhesive membranes or catheters.
Collapse
Affiliation(s)
- Kecen Xiao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Zhuoya Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Yujie Wu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Weiwei Lin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Yuanyuan He
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Jianghao Zhan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Feng Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Zhen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Jiehua Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Hong Tan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Qiang Fu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| |
Collapse
|
44
|
Chemistry for Audio Heritage Preservation: A Review of Analytical Techniques for Audio Magnetic Tapes. HERITAGE 2019. [DOI: 10.3390/heritage2020097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Vast and important cultural resources are entrusted to magnetic tape around the world, but they are susceptible to degradation, which may lead to severe replay problems. Audio magnetic tapes are complex and multicomponent devices containing organic compounds and metal systems, which can be potential catalysts for many degradative reactions in the presence of water, light, or heating. The aim of this review is to collect the literature concerning the analytical determinations and instrumental approaches that can achieve the chemical identification of the components in the tape and the degradation state. Thus, a combination of destructive (such as acetone extraction) and non-destructive techniques (such as ATR FTIR spectroscopy) have been proposed, together with SEM, ESEM, XRD and TGA analyses to assess the chemical and physical characterization of the tape with the purpose to individualize restoration treatments and optimize conditions for preservation. The impact of the studies reviewed in this paper may go beyond audio, being potentially relevant to video, data, instrumentation, and logging tapes.
Collapse
|
45
|
Li G, Li P, Chen Q, Mani MP, Jaganathan SK. Enhanced mechanical, thermal and biocompatible nature of dual component electrospun nanocomposite for bone tissue engineering. PeerJ 2019; 7:e6986. [PMID: 31179183 PMCID: PMC6542347 DOI: 10.7717/peerj.6986] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 04/19/2019] [Indexed: 01/18/2023] Open
Abstract
Traditionally, in the Asian continent, oils are a widely accepted choice for alleviating bone-related disorders. The design of scaffolds resembling the extracellular matrix (ECM) is of great significance in bone tissue engineering. In this study, a multicomponent polyurethane (PU), canola oil (CO) and neem oil (NO) scaffold was developed using the electrospinning technique. The fabricated nanofibers were subjected to various physicochemical and biological testing to validate its suitability for bone tissue engineering. Morphological analysis of the multicomponent scaffold showed a reduction in fiber diameter (PU/CO-853 ± 141.27 nm and PU/CO/NO-633 ± 137.54 nm) compared to PU (890 ± 116.911 nm). The existence of CO and NO in PU matrix was confirmed by an infrared spectrum (IR) with the formation of hydrogen bond. PU/CO displayed a mean contact angle of 108.7° ± 0.58 while the PU/CO/NO exhibited hydrophilic nature with an angle of 62.33° ± 2.52. The developed multicomponent also exhibited higher thermal stability and increased mechanical strength compared to the pristine PU. Atomic force microscopy (AFM) analysis depicted lower surface roughness for the nanocomposites (PU/CO-389 nm and PU/CO/NO-323 nm) than the pristine PU (576 nm). Blood compatibility investigation displayed the anticoagulant nature of the composites. Cytocompatibility studies revealed the non-toxic nature of the developed composites with human fibroblast cells (HDF) cells. The newly developed porous PU nanocomposite scaffold comprising CO and NO may serve as a potential candidate for bone tissue engineering.
Collapse
Affiliation(s)
- Guanbao Li
- Department of Minimally Invasive Spine Surgery, Yulin City Orthopaedic Hospital of Traditional Chinese Medicine and Western Medicine, Yulin City, Guangxi, China
| | - Pinquan Li
- Department of Minimally Invasive Spine Surgery, Yulin City Orthopaedic Hospital of Traditional Chinese Medicine and Western Medicine, Yulin City, Guangxi, China
| | - Qiuan Chen
- Department of Minimally Invasive Spine Surgery, Yulin City Orthopaedic Hospital of Traditional Chinese Medicine and Western Medicine, Yulin City, Guangxi, China
| | - Mohan Prasath Mani
- School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, Malaysia
| | - Saravana Kumar Jaganathan
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam.,Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam.,IJNUTM Cardiovascular Engineering Center, School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, Malaysia
| |
Collapse
|
46
|
Jaganathan SK, Mani MP, Prabhakaran P, Supriyanto E, Ismail AF. Production, blood compatibility and cytotoxicity evaluation of a single stage non-woven multicomponent electrospun scaffold mixed with sesame oil, honey and propolis for skin tissue engineering. INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION 2019. [DOI: 10.1080/1023666x.2019.1602919] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Saravana Kumar Jaganathan
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- IJN-UTM Cardiovascular Engineering Centre, School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81300, Malaysia
| | - Mohan Prasath Mani
- School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81310, Malaysia
| | - Praseetha Prabhakaran
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Malaysia
| | - Eko Supriyanto
- IJN-UTM Cardiovascular Engineering Centre, School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81300, Malaysia
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81310, Malaysia
| |
Collapse
|
47
|
Mori da Cunha MGMC, Hympanova L, Rynkevic R, Mes T, Bosman AW, Deprest J. Biomechanical Behaviour and Biocompatibility of Ureidopyrimidinone-Polycarbonate Electrospun and Polypropylene Meshes in a Hernia Repair in Rabbits. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E1174. [PMID: 30974868 PMCID: PMC6480159 DOI: 10.3390/ma12071174] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/04/2019] [Accepted: 04/09/2019] [Indexed: 12/29/2022]
Abstract
Although mesh use has significantly improved the outcomes of hernia and pelvic organ prolapse repair, long-term recurrence rates remain unacceptably high. We aim to determine the in vivo degradation and functional outcome of reconstructed abdominal wall defects, using slowly degradable electrospun ureidopyrimidinone moieties incorporated into a polycarbonate backbone (UPy-PC) implant compared to an ultra-lightweight polypropylene (PP) textile mesh with high pore stability. Twenty four New-Zealand rabbits were implanted with UPy-PC or PP to either reinforce a primary fascial defect repair or to cover (referred to as gap bridging) a full-thickness abdominal wall defect. Explants were harvested at 30, 90 and 180 days. The primary outcome measure was uniaxial tensiometry. Secondary outcomes were the recurrence of herniation, morphometry for musculofascial tissue characteristics, inflammatory response and neovascularization. PP explants compromised physiological abdominal wall compliance from 90 days onwards and UPy-PC from 180 days. UPy-PC meshes induced a more vigorous inflammatory response than PP at all time points. We observed progressively more signs of muscle atrophy and intramuscular fatty infiltration in the entire explant area for both mesh types. UPy-PC implants are replaced by a connective tissue stiff enough to prevent abdominal wall herniation in two-thirds of the gap-bridged full-thickness abdominal wall defects. However, in one-third there was sub-clinical herniation. The novel electrospun material did slightly better than the textile PP yet outcomes were still suboptimal. Further research should investigate what drives muscular atrophy, and whether novel polymers would eventually generate a physiological neotissue and can prevent failure and/or avoid collateral damage.
Collapse
Affiliation(s)
| | - Lucie Hympanova
- (A.W.B.).
- Department of Development and Regeneration, Woman and Child, Group Biomedical Sciences, KU Leuven, 3000 Leuven, Belgium.
- Institute for the Care of Mother and Child, Third Faculty of Medicine, Charles University, 14700 Prague, Czech Republic.
| | - Rita Rynkevic
- (A.W.B.).
- Department of Development and Regeneration, Woman and Child, Group Biomedical Sciences, KU Leuven, 3000 Leuven, Belgium.
- INEGI, Faculdade de Engenharia da Universidade do Porto, Universidade do Porto, 4099-002 Porto, Portugal.
| | - Tristan Mes
- SupraPolix BV, 5611 Eindhoven, The Netherlands.
| | | | - Jan Deprest
- (A.W.B.).
- Department of Development and Regeneration, Woman and Child, Group Biomedical Sciences, KU Leuven, 3000 Leuven, Belgium.
- Pelvic Floor Unit, University Hospitals KU Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
48
|
Xiao S, Sue HJ. Effect of molecular weight on scratch and abrasive wear behaviors of thermoplastic polyurethane elastomers. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.02.059] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
49
|
Xie F, Zhang T, Bryant P, Kurusingal V, Colwell JM, Laycock B. Degradation and stabilization of polyurethane elastomers. Prog Polym Sci 2019. [DOI: 10.1016/j.progpolymsci.2018.12.003] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
50
|
Xie Q, Pan J, Ma C, Zhang G. Dynamic surface antifouling: mechanism and systems. SOFT MATTER 2019; 15:1087-1107. [PMID: 30444519 DOI: 10.1039/c8sm01853g] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Marine biofouling is a global problem today. High efficiency and eco-friendly antifouling systems are in pressing need. In recent years, we have proposed the concept of dynamic surface antifouling (DSA). That is, a continuously changing surface can effectively prevent marine fouling organisms from landing and adhesion. Based on this strategy, we developed coatings with dynamic surfaces by using degradable polymers including polyester-polyurethane, modified polyester and poly(ester-co-acrylate). They exhibit tunable renewability, and excellent antifouling and mechanical performance. Moreover, the polymers can serve as carrier and controlled release systems of antifoulants so that they have long service life. This paper reviews the progress and trends in marine anti-biofouling, and presents the mechanism and systems of DSA.
Collapse
Affiliation(s)
- Qingyi Xie
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China.
| | | | | | | |
Collapse
|