1
|
Álvarez-Berbel I, Llabrés S, Domènech Ò, Busquets MA, Fernàndez-Busquets X, Arce EM, Gavín R, Del Río JA, Muñoz-Torrero D, Luque FJ, Sabate R, Espargaró A. YAT2150: Overcoming limitations of traditional amyloid dyes in aggregation studies. Bioorg Med Chem 2025; 123:118163. [PMID: 40156937 DOI: 10.1016/j.bmc.2025.118163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/07/2025] [Accepted: 03/17/2025] [Indexed: 04/01/2025]
Abstract
Amyloid fibrils, which are aggregates of misfolded proteins characterized by β-sheet-rich structures, are implicated in several neurodegenerative and systemic pathologies, including Alzheimer's and Parkinson's diseases and type II diabetes mellitus. Traditional amyloid markers, such as Congo Red and Thioflavin T, are widely used for amyloid detection but present limitations, particularly in cellular assays, due to spectral interference and aggregation inhibition. This study investigates YAT2150, a novel fluorescent dye with enhanced amyloid-binding specificity and sensitivity, as a potential alternative to conventional dyes. We evaluated YAT2150's efficacy for detecting amyloid aggregates in both in vitro and in cellula assays. First, we compared its fluorescence intensity and binding specificity to that of Thioflavin T in amyloid fibril assays, demonstrating that YAT2150 exhibits high affinity and selectivity for amyloid structures, with minimal interference from non-aggregated proteins. Furthermore, we explored YAT2150's utility in Escherichia coli as a model system for studying protein aggregation and amyloid formation in a procaryotic cellular context. Our findings indicate that YAT2150 effectively labels amyloid-like inclusion bodies in E. coli, producing a robust fluorescence signal with low background noise. These results suggest that YAT2150 is a promising new tool for amyloid research, offering greater sensitivity compared to traditional dyes, even in complex cellular environments.
Collapse
Affiliation(s)
- Irene Álvarez-Berbel
- Department of Pharmacy and Pharmaceutical Technology and Physical-Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain
| | - Salomé Llabrés
- Department of Pharmacy and Pharmaceutical Technology and Physical-Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain; Institute of Theoretical and Computational Chemistry (IQTCUB), University of Barcelona, Spain
| | - Òscar Domènech
- Department of Pharmacy and Pharmaceutical Technology and Physical-Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN(2) UB), University of Barcelona, Spain
| | - Maria Antònia Busquets
- Department of Pharmacy and Pharmaceutical Technology and Physical-Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain; Institute of Biomedicine (IBUB), University of Barcelona, Spain
| | - Xavier Fernàndez-Busquets
- Institute of Nanoscience and Nanotechnology (IN(2) UB), University of Barcelona, Spain; Barcelona Institute for Global Health (ISGlobal), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain; Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Elsa M Arce
- Laboratory of Medicinal Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain
| | - Rosalina Gavín
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Av. Diagonal, 643, Les Corts, 08028 Barcelona, Spain; Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia, Barcelona, Spain; Institute of Neuroscience, University of Barcelona, Barcelona, Spain; Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED), Barcelona-Madrid, Spain
| | - José Antonio Del Río
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Av. Diagonal, 643, Les Corts, 08028 Barcelona, Spain; Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia, Barcelona, Spain; Institute of Neuroscience, University of Barcelona, Barcelona, Spain; Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED), Barcelona-Madrid, Spain
| | - Diego Muñoz-Torrero
- Institute of Biomedicine (IBUB), University of Barcelona, Spain; Laboratory of Medicinal Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain
| | - F Javier Luque
- Institute of Theoretical and Computational Chemistry (IQTCUB), University of Barcelona, Spain; Institute of Biomedicine (IBUB), University of Barcelona, Spain; Department of Nutrition, Food Sciences, and Gastronomy, Faculty of Pharmacy and Food Sciences, University of Barcelona, Prat de la Riba 171, 08921 Santa Coloma de Gramenet, Spain
| | - Raimon Sabate
- Department of Pharmacy and Pharmaceutical Technology and Physical-Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain; Institute of Biomedicine (IBUB), University of Barcelona, Spain.
| | - Alba Espargaró
- Department of Pharmacy and Pharmaceutical Technology and Physical-Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain; Institute of Biomedicine (IBUB), University of Barcelona, Spain.
| |
Collapse
|
2
|
Bunc M, Hadži S, Graf C, Bončina M, Lah J. Aggregation Time Machine: A Platform for the Prediction and Optimization of Long-Term Antibody Stability Using Short-Term Kinetic Analysis. J Med Chem 2022; 65:2623-2632. [PMID: 35090111 PMCID: PMC8842250 DOI: 10.1021/acs.jmedchem.1c02010] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Monoclonal antibodies
are the fastest growing class of therapeutics.
However, aggregation limits their shelf life and can lead to adverse
immune responses. Assessment and optimization of the long-term antibody
stability are therefore key challenges in the biologic drug development.
Here, we present a platform based on the analysis of temperature-dependent
aggregation data that can dramatically shorten the assessment of the
long-term aggregation stability and thus accelerate the optimization
of antibody formulations. For a set of antibodies used in the therapeutic
areas from oncology to rheumatology and osteoporosis, we obtain an
accurate prediction of aggregate fractions for up to three years using
the data obtained on a much shorter time scale. Significantly, the
strategy combining kinetic and thermodynamic analysis not only contributes
to a better understanding of the molecular mechanisms of antibody
aggregation but has already proven to be very effective in the development
and production of biological therapeutics.
Collapse
Affiliation(s)
- Marko Bunc
- Technical Research and Development, Global Drug Development, Novartis, Lek d.d., 1234 Mengeš, Slovenia.,Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - San Hadži
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Christian Graf
- Technical Research and Development, Global Drug Development, Novartis, Hexal AG, 82041 Oberhaching, Germany
| | - Matjaž Bončina
- Technical Research and Development, Global Drug Development, Novartis, Lek d.d., 1234 Mengeš, Slovenia
| | - Jurij Lah
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
3
|
Kowalczyk J, Grapsi E, Espargaró A, Caballero AB, Juárez-Jiménez J, Busquets MA, Gamez P, Sabate R, Estelrich J. Dual Effect of Prussian Blue Nanoparticles on Aβ40 Aggregation: β-Sheet Fibril Reduction and Copper Dyshomeostasis Regulation. Biomacromolecules 2021; 22:430-440. [PMID: 33416315 DOI: 10.1021/acs.biomac.0c01290] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Alzheimer's disease (AD), affecting almost 50 million individuals worldwide, is currently the first cause of dementia. Despite the tremendous research efforts in the last decade, only four supportive or palliative drugs, namely, acetylcholinesterase (AChE) inhibitors donepezil, galantamine, and rivastigmine and the glutamate NMDA receptor antagonist memantine, are currently available. New therapeutic strategies are becoming prominent, such as the direct inhibition of amyloid formation or the regulation of metal homeostasis. In the present report, the potential use of Prussian blue (PB), a drug that is in the World Health Organization Model List of Essential Medicines, in AD treatment is demonstrated. Both in vitro and in cellulo studies indeed suggest that PB nanoparticles (PBNPs) are capable of reducing the formation of typical amyloid-β fibers (detected by thioflavin T fluorescence) and restoring the usual amyloid fibrillation pathway via chelation/sequestration of copper, which is found in high concentrations in senile plaques.
Collapse
Affiliation(s)
- Joanna Kowalczyk
- Department of Pharmacy and Pharmaceutical Technology and Physical-Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Avda. Joan XXIII, 27-31 Barcelona, Catalonia, Spain
| | - Ettore Grapsi
- Department of Pharmacy and Pharmaceutical Technology and Physical-Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Avda. Joan XXIII, 27-31 Barcelona, Catalonia, Spain
| | - Alba Espargaró
- Department of Pharmacy and Pharmaceutical Technology and Physical-Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Avda. Joan XXIII, 27-31 Barcelona, Catalonia, Spain.,Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Martí i Franquès, 1-11, 08028 Barcelona, Catalonia, Spain
| | - Ana B Caballero
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Martí i Franquès, 1-11, 08028 Barcelona, Catalonia, Spain.,NanoBIC, Department of Inorganic and Organic Chemistry, Faculty of Chemistry, University of Barcelona, Martí i Franquès, 1-11, 08028 Barcelona, Catalonia, Spain
| | - Jordi Juárez-Jiménez
- Department of Pharmacy and Pharmaceutical Technology and Physical-Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Avda. Joan XXIII, 27-31 Barcelona, Catalonia, Spain
| | - Maria A Busquets
- Department of Pharmacy and Pharmaceutical Technology and Physical-Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Avda. Joan XXIII, 27-31 Barcelona, Catalonia, Spain.,Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Martí i Franquès, 1-11, 08028 Barcelona, Catalonia, Spain
| | - Patrick Gamez
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Martí i Franquès, 1-11, 08028 Barcelona, Catalonia, Spain.,NanoBIC, Department of Inorganic and Organic Chemistry, Faculty of Chemistry, University of Barcelona, Martí i Franquès, 1-11, 08028 Barcelona, Catalonia, Spain.,Catalan Institution for Research and Advanced Studies, Passeig Lluís Companys 23, 08010 Barcelona, Catalonia, Spain
| | - Raimon Sabate
- Department of Pharmacy and Pharmaceutical Technology and Physical-Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Avda. Joan XXIII, 27-31 Barcelona, Catalonia, Spain.,Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Martí i Franquès, 1-11, 08028 Barcelona, Catalonia, Spain
| | - Joan Estelrich
- Department of Pharmacy and Pharmaceutical Technology and Physical-Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Avda. Joan XXIII, 27-31 Barcelona, Catalonia, Spain.,Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Martí i Franquès, 1-11, 08028 Barcelona, Catalonia, Spain
| |
Collapse
|
4
|
Bandyopadhyay A, Bose I, Chattopadhyay K. Osmolytes ameliorate the effects of stress in the absence of the heat shock protein Hsp104 in Saccharomyces cerevisiae. PLoS One 2019; 14:e0222723. [PMID: 31536559 PMCID: PMC6752772 DOI: 10.1371/journal.pone.0222723] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 09/05/2019] [Indexed: 12/24/2022] Open
Abstract
Aggregation of the prion protein has strong implications in the human prion disease. Sup35p is a yeast prion, and has been used as a model protein to study the disease mechanism. We have studied the pattern of Sup35p aggregation inside live yeast cells under stress, by using confocal microscopy, fluorescence activated cell sorting and western blotting. Heat shock proteins are a family of proteins that are produced by yeast cells in response to exposure to stressful conditions. Many of the proteins behave as chaperones to combat stress-induced protein misfolding and aggregation. In spite of this, yeast also produce small molecules called osmolytes during stress. In our work, we tried to find the reason as to why yeast produce osmolytes and showed that the osmolytes are paramount to ameliorate the long-term effects of lethal stress in Saccharomyces cerevisiae, either in the presence or absence of Hsp104p.
Collapse
Affiliation(s)
- Arnab Bandyopadhyay
- Structural Biology & Bio-Informatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Indrani Bose
- Department of Biology, Western Carolina University, Cullowhee, North Carolina, United States of America
- * E-mail: (KC); (IB)
| | - Krishnananda Chattopadhyay
- Structural Biology & Bio-Informatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- * E-mail: (KC); (IB)
| |
Collapse
|
5
|
Caballero AB, Espargaró A, Pont C, Busquets MA, Estelrich J, Muñoz-Torrero D, Gamez P, Sabate R. Bacterial Inclusion Bodies for Anti-Amyloid Drug Discovery: Current and Future Screening Methods. Curr Protein Pept Sci 2019; 20:563-576. [PMID: 30924417 DOI: 10.2174/1389203720666190329120007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 03/20/2019] [Accepted: 03/22/2019] [Indexed: 11/22/2022]
Abstract
Amyloid aggregation is linked to an increasing number of human disorders from nonneurological pathologies such as type-2 diabetes to neurodegenerative ones such as Alzheimer or Parkinson's diseases. Thirty-six human proteins have shown the capacity to aggregate into pathological amyloid structures. To date, it is widely accepted that amyloid folding/aggregation is a universal process present in eukaryotic and prokaryotic cells. In the last decade, several studies have unequivocally demonstrated that bacterial inclusion bodies - insoluble protein aggregates usually formed during heterologous protein overexpression in bacteria - are mainly composed of overexpressed proteins in amyloid conformation. This fact shows that amyloid-prone proteins display a similar aggregation propensity in humans and bacteria, opening the possibility to use bacteria as simple models to study amyloid aggregation process and the potential effect of both anti-amyloid drugs and pro-aggregative compounds. Under these considerations, several in vitro and in cellulo methods, which exploit the amyloid properties of bacterial inclusion bodies, have been proposed in the last few years. Since these new methods are fast, simple, inexpensive, highly reproducible, and tunable, they have aroused great interest as preliminary screening tools in the search for anti-amyloid (beta-blocker) drugs for conformational diseases. The aim of this mini-review is to compile recently developed methods aimed at tracking amyloid aggregation in bacteria, discussing their advantages and limitations, and the future potential applications of inclusion bodies in anti-amyloid drug discovery.
Collapse
Affiliation(s)
- Ana B Caballero
- Department of Inorganic and Organic Chemistry, Faculty of Chemistry, University of Barcelona, E-08028 Barcelona, Spain.,Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, E-08028 Barcelona, Spain
| | - Alba Espargaró
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, E-08028 Barcelona, Spain.,Department of Pharmacy and Pharmaceutical Technology and Physical-Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, E-08028 Barcelona, Spain
| | - Caterina Pont
- Laboratory of Pharmaceutical Chemistry (CSIC Associated Unit), Faculty of Pharmacy and Food Sciences, University of Barcelona, E-08028 Barcelona, Spain.,Institute of Biomedicine (IBUB), University of Barcelona, E-08028 Barcelona, Spain
| | - Maria Antònia Busquets
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, E-08028 Barcelona, Spain.,Department of Pharmacy and Pharmaceutical Technology and Physical-Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, E-08028 Barcelona, Spain
| | - Joan Estelrich
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, E-08028 Barcelona, Spain.,Department of Pharmacy and Pharmaceutical Technology and Physical-Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, E-08028 Barcelona, Spain
| | - Diego Muñoz-Torrero
- Laboratory of Pharmaceutical Chemistry (CSIC Associated Unit), Faculty of Pharmacy and Food Sciences, University of Barcelona, E-08028 Barcelona, Spain.,Institute of Biomedicine (IBUB), University of Barcelona, E-08028 Barcelona, Spain
| | - Patrick Gamez
- Department of Inorganic and Organic Chemistry, Faculty of Chemistry, University of Barcelona, E-08028 Barcelona, Spain.,Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, E-08028 Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain
| | - Raimon Sabate
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, E-08028 Barcelona, Spain.,Department of Pharmacy and Pharmaceutical Technology and Physical-Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, E-08028 Barcelona, Spain
| |
Collapse
|
6
|
Characterization of Amyloid Cores in Prion Domains. Sci Rep 2016; 6:34274. [PMID: 27686217 PMCID: PMC5043269 DOI: 10.1038/srep34274] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 09/09/2016] [Indexed: 11/09/2022] Open
Abstract
Amyloids consist of repetitions of a specific polypeptide chain in a regular cross-β-sheet conformation. Amyloid propensity is largely determined by the protein sequence, the aggregation process being nucleated by specific and short segments. Prions are special amyloids that become self-perpetuating after aggregation. Prions are responsible for neuropathology in mammals, but they can also be functional, as in yeast prions. The conversion of these last proteins to the prion state is driven by prion forming domains (PFDs), which are generally large, intrinsically disordered, enriched in glutamines/asparagines and depleted in hydrophobic residues. The self-assembly of PFDs has been thought to rely mostly on their particular amino acid composition, rather than on their sequence. Instead, we have recently proposed that specific amyloid-prone sequences within PFDs might be key to their prion behaviour. Here, we demonstrate experimentally the existence of these amyloid stretches inside the PFDs of the canonical Sup35, Swi1, Mot3 and Ure2 prions. These sequences self-assemble efficiently into highly ordered amyloid fibrils, that are functionally competent, being able to promote the PFD amyloid conversion in vitro and in vivo. Computational analyses indicate that these kind of amyloid stretches may act as typical nucleating signals in a number of different prion domains.
Collapse
|
7
|
Pallarès I, Ventura S. Understanding and predicting protein misfolding and aggregation: Insights from proteomics. Proteomics 2016; 16:2570-2581. [PMID: 27479752 DOI: 10.1002/pmic.201500529] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 07/08/2016] [Accepted: 07/25/2016] [Indexed: 11/09/2022]
Abstract
Protein misfolding and aggregation are being found to be associated with an increasing number of human diseases and premature aging, either because they promote a loss of protein function or, more frequently, because the aggregated species gain a toxic activity. Despite potentially harmful, aggregation seems to be a generic property of polypeptide chains and aggregation-prone protein sequences seem to be ubiquitous, which, counterintuitively, suggests that they serve evolutionary conserved functions. The in vitro study of individual aggregation reactions of a large number of proteins has provided important insights on the structural and sequential determinants of this process. However, it is clear that understanding the role played by protein aggregation and its regulation in health and disease at the cellular, developmental, and evolutionary levels require more global approaches. The use of model organisms and their proteomic analysis hold the power to provide answers to such issues. In the present review, we address how, initially, computational large-scale analysis and, more recently, experimental proteomics are helping us to rationalize how, why and when proteins aggregate, as well as to decipher the strategies organisms have developed to control proteins aggregation propensities.
Collapse
Affiliation(s)
- Irantzu Pallarès
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Spain.,Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Salvador Ventura
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Spain. .,Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Spain.
| |
Collapse
|
8
|
Navarro S, Marinelli P, Diaz-Caballero M, Ventura S. The prion-like RNA-processing protein HNRPDL forms inherently toxic amyloid-like inclusion bodies in bacteria. Microb Cell Fact 2015; 14:102. [PMID: 26160665 PMCID: PMC4498515 DOI: 10.1186/s12934-015-0284-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 06/16/2015] [Indexed: 01/09/2023] Open
Abstract
Background The formation of protein inclusions is connected to the onset of many human diseases. Human RNA binding proteins containing intrinsically disordered regions with an amino acid composition resembling those of yeast prion domains, like TDP-43 or FUS, are being found to aggregate in different neurodegenerative disorders. The structure of the intracellular inclusions formed by these proteins is still unclear and whether these deposits have an amyloid nature or not is a matter of debate. Recently, the aggregation of TDP-43 has been modelled in bacteria, showing that TDP-43 inclusion bodies (IBs) are amorphous but intrinsically neurotoxic. This observation raises the question of whether it is indeed the lack of an ordered structure in these human prion-like protein aggregates the underlying cause of their toxicity in different pathological states. Results Here we characterize the IBs formed by the human prion-like RNA-processing protein HNRPDL. HNRPDL is linked to the development of limb-girdle muscular dystrophy 1G and shares domain architecture with TDP-43. We show that HNRPDL IBs display characteristic amyloid hallmarks, since these aggregates bind to amyloid dyes in vitro and inside the cell, they are enriched in intermolecular β-sheet conformation and contain inner amyloid-like fibrillar structure. In addition, despite their ordered structure, HNRPDL IBs are highly neurotoxic. Conclusions Our results suggest that at least some of the disorders caused by the aggregation of human prion-like proteins would rely on the formation of classical amyloid assemblies rather than being caused by amorphous aggregates. They also illustrate the power of microbial cell factories to model amyloid aggregation. Electronic supplementary material The online version of this article (doi:10.1186/s12934-015-0284-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Susanna Navarro
- Institut de Biotecnologia i Biomedicina, Departament de Bioquimica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain.
| | - Patrizia Marinelli
- Institut de Biotecnologia i Biomedicina, Departament de Bioquimica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain.
| | - Marta Diaz-Caballero
- Institut de Biotecnologia i Biomedicina, Departament de Bioquimica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain.
| | - Salvador Ventura
- Institut de Biotecnologia i Biomedicina, Departament de Bioquimica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain.
| |
Collapse
|
9
|
Daskalov A, Habenstein B, Martinez D, Debets AJM, Sabaté R, Loquet A, Saupe SJ. Signal transduction by a fungal NOD-like receptor based on propagation of a prion amyloid fold. PLoS Biol 2015; 13:e1002059. [PMID: 25671553 PMCID: PMC4344463 DOI: 10.1371/journal.pbio.1002059] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 12/29/2014] [Indexed: 01/09/2023] Open
Abstract
In the fungus Podospora anserina, the [Het-s] prion induces programmed cell death by activating the HET-S pore-forming protein. The HET-s β-solenoid prion fold serves as a template for converting the HET-S prion-forming domain into the same fold. This conversion, in turn, activates the HET-S pore-forming domain. The gene immediately adjacent to het-S encodes NWD2, a Nod-like receptor (NLR) with an N-terminal motif similar to the elementary repeat unit of the β-solenoid fold. NLRs are immune receptors controlling cell death and host defense processes in animals, plants and fungi. We have proposed that, analogously to [Het-s], NWD2 can activate the HET-S pore-forming protein by converting its prion-forming region into the β-solenoid fold. Here, we analyze the ability of NWD2 to induce formation of the β-solenoid prion fold. We show that artificial NWD2 variants induce formation of the [Het-s] prion, specifically in presence of their cognate ligands. The N-terminal motif is responsible for this prion induction, and mutations predicted to affect the β-solenoid fold abolish templating activity. In vitro, the N-terminal motif assembles into infectious prion amyloids that display a structure resembling the β-solenoid fold. In vivo, the assembled form of the NWD2 N-terminal region activates the HET-S pore-forming protein. This study documenting the role of the β-solenoid fold in fungal NLR function further highlights the general importance of amyloid and prion-like signaling in immunity-related cell fate pathways. The fungus Podospora anserina uses a prion amyloid fold as a signal transduction device between a Nod-like receptor and a downstream cell death execution protein. Although amyloids are best known as protein aggregates that are responsible for fatal neurodegenerative diseases, amyloid structures can also fulfill functional roles in cells. In particular, the controlled formation of amyloid structures appears to be involved in different signaling processes in the context of programmed cell death and host defense. The [Het-s] prion of the filamentous fungus Podospora anserina is a model system in which the 3-D structure of the prion form has been solved. The [Het-s] prion works as an activation switch for a second protein termed HET-S. HET-S is a pore-forming protein that is activated when the [Het-s] prion causes its C-terminal domain to adopt an amyloid-like fold. The protein encoded by the gene adjacent to het-S is a Nod-like receptor (NLR) called NWD2. NLRs are immune receptors that control host defense and cell death processes in plants, animals, and fungi. We show that NWD2 can template the formation of the [Het-s] prion fold in a ligand-controlled manner. NWD2 has an N-terminal motif homologous to the HET-S/s prion-forming region; we find that this region is both necessary and sufficient for its prion-inducing activity, and our functional and structural approaches reveal that the N-terminal region of NWD2 adopts a fold closely related to that of the HET-S/s prion. This study illustrates how the controlled formation of a prion amyloid fold can be used in a signaling process whereby a Nod-like receptor protein activates a downstream cell death execution domain.
Collapse
Affiliation(s)
- Asen Daskalov
- Non-self recognition in Fungi, Institut de Biochimie et de Génétique Cellulaire, UMR 5095, CNRS—Université de Bordeaux, Bordeaux, France
| | - Birgit Habenstein
- Institute of Chemistry & Biology of Membranes & Nanoobjects, CNRS, CBMN, UMR 5248, Pessac, France
| | - Denis Martinez
- Institute of Chemistry & Biology of Membranes & Nanoobjects, CNRS, CBMN, UMR 5248, Pessac, France
| | - Alfons J. M. Debets
- Laboratory of Genetics, Wageningen University, Droevendaalsesteeg, Wageningen, The Netherlands
| | - Raimon Sabaté
- Institut de Nanociència i nanotecnologia, Departament Fisicoquímica, Universitat de Barcelona, Joan XXIII s/n, Barcelona, Spain
| | - Antoine Loquet
- Institute of Chemistry & Biology of Membranes & Nanoobjects, CNRS, CBMN, UMR 5248, Pessac, France
| | - Sven J. Saupe
- Non-self recognition in Fungi, Institut de Biochimie et de Génétique Cellulaire, UMR 5095, CNRS—Université de Bordeaux, Bordeaux, France
- * E-mail:
| |
Collapse
|
10
|
Garcia-Pardo J, Graña-Montes R, Fernandez-Mendez M, Ruyra A, Roher N, Aviles FX, Lorenzo J, Ventura S. Amyloid formation by human carboxypeptidase D transthyretin-like domain under physiological conditions. J Biol Chem 2014; 289:33783-96. [PMID: 25294878 DOI: 10.1074/jbc.m114.594804] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein aggregation is linked to a growing list of diseases, but it is also an intrinsic property of polypeptides, because the formation of functional globular proteins comes at the expense of an inherent aggregation propensity. Certain proteins can access aggregation-prone states from native-like conformations without the need to cross the energy barrier for unfolding. This is the case of transthyretin (TTR), a homotetrameric protein whose dissociation into its monomers initiates the aggregation cascade. Domains with structural homology to TTR exist in a number of proteins, including the M14B subfamily carboxypeptidases. We show here that the monomeric transthyretin-like domain of human carboxypeptidase D aggregates under close to physiological conditions into amyloid structures, with the population of folded but aggregation-prone states being controlled by the conformational stability of the domain. We thus confirm that the TTR fold keeps a generic residual aggregation propensity upon folding, resulting from the presence of preformed amyloidogenic β-strands in the native state. These structural elements should serve for functional/structural purposes, because they have not been purged out by evolution, but at the same time they put proteins like carboxypeptidase D at risk of aggregation in biological environments and thus can potentially lead to deposition diseases.
Collapse
Affiliation(s)
- Javier Garcia-Pardo
- From the Institut de Biotecnologia i Biomedicina, Departaments de Bioquimica i Biologia Molecular and
| | - Ricardo Graña-Montes
- From the Institut de Biotecnologia i Biomedicina, Departaments de Bioquimica i Biologia Molecular and
| | - Marc Fernandez-Mendez
- From the Institut de Biotecnologia i Biomedicina, Departaments de Bioquimica i Biologia Molecular and
| | - Angels Ruyra
- From the Institut de Biotecnologia i Biomedicina
| | - Nerea Roher
- From the Institut de Biotecnologia i Biomedicina, Biologia Cel·lular, Immunologia i Fisiologia Animal, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Francesc X Aviles
- From the Institut de Biotecnologia i Biomedicina, Departaments de Bioquimica i Biologia Molecular and
| | - Julia Lorenzo
- From the Institut de Biotecnologia i Biomedicina, Departaments de Bioquimica i Biologia Molecular and
| | - Salvador Ventura
- From the Institut de Biotecnologia i Biomedicina, Departaments de Bioquimica i Biologia Molecular and
| |
Collapse
|
11
|
Navarro S, Ventura S. Fluorescent dye ProteoStat to detect and discriminate intracellular amyloid-like aggregates in Escherichia coli. Biotechnol J 2014; 9:1259-66. [PMID: 25112199 DOI: 10.1002/biot.201400291] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 07/24/2014] [Accepted: 08/11/2014] [Indexed: 12/22/2022]
Abstract
The formation of amyloid aggregates is linked to the onset of an increasing number of human disorders. Thus, there is an increasing need for methodologies able to provide insights into protein deposition and its modulation. Many approaches exist to study amyloids in vitro, but the techniques available for the study of amyloid aggregation in cells are still limited and non-specific. In this study we developed a methodology for the detection of amyloid-like aggregates inside cells that discriminates these ordered assemblies from other intracellular aggregates. We chose bacteria as model system, since the inclusion bodies formed by amyloid proteins in the cytosol of bacteria resemble toxic amyloids both structurally and functionally. Using confocal microscopy, fluorescence spectroscopy, and flow cytometry, we show that the recently developed red fluorescent dye ProteoStat can detect the presence of intracellular amyloid-like deposits in living bacterial cells with high specificity, even when the target proteins are expressed at low levels. This methodology allows quantitation of the intracellular amyloid content, shows the potential to replace in vitro screenings in the search for therapeutic anti-amyloidogenic compounds, and might be useful for identifying conditions that prevent the aggregation of therapeutic recombinant proteins.
Collapse
Affiliation(s)
- Susanna Navarro
- Institut de Biotecnologia i Biomedicina and Departament de Bioquimica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain.
| | | |
Collapse
|
12
|
Berhanu WM, Hansmann UHE. Stability of amyloid oligomers. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2014; 96:113-41. [PMID: 25443956 DOI: 10.1016/bs.apcsb.2014.06.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Molecular simulations are now commonly used to complement experimental techniques in investigating amyloids and their role in human diseases. In this chapter, we will summarize techniques and approaches often used in amyloid simulations and will present recent success stories. Our examples will be focused on lessons learned from molecular dynamics simulations in aqueous environments that start from preformed aggregates. These studies explore the limitations that arise from the choice of force field, the role of mutations in the growth of amyloid aggregates, segmental polymorphism, and the importance of cross-seeding. Furthermore, they give evidence for potential toxicity mechanisms. We finally discuss the role of molecular simulations in the search for aggregation inhibitors.
Collapse
Affiliation(s)
- Workalemahu M Berhanu
- Department of Chemistry & Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
| | - Ulrich H E Hansmann
- Department of Chemistry & Biochemistry, University of Oklahoma, Norman, Oklahoma, USA.
| |
Collapse
|
13
|
Mu Y, Yu M. Effects of hydrophobic interaction strength on the self-assembled structures of model peptides. SOFT MATTER 2014; 10:4956-4965. [PMID: 24888420 DOI: 10.1039/c4sm00378k] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Stable and ordered self-assembled peptide nanostructures are formed as a result of cooperative effects of various relatively weak intermolecular interactions. We systematically studied the influence of hydrophobic interaction strength and temperature on the self-assembly of peptides with a coarse-grained model by Monte Carlo simulations. The simulation results show a rich phase behavior of peptide self-assembly, indicating that the formation and morphology of peptide assemblies may be tuned by varying the temperature and the strength of hydrophobic interactions. There exist optimal combinations of temperature and hydrophobic interaction strength where ordered fibrillar nanostructures are readily formed. Our simulation results not only facilitate the understanding of the self-assembly behavior of peptides at the molecular level, but also provide useful insights into the development of fabrication strategies for high-quality peptide fibrils.
Collapse
Affiliation(s)
- Yan Mu
- College of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong, China.
| | | |
Collapse
|
14
|
Relationship between the initial rate of protein aggregation and the lag period for amorphous aggregation. Int J Biol Macromol 2014; 68:144-50. [PMID: 24794200 DOI: 10.1016/j.ijbiomac.2014.04.046] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 04/22/2014] [Accepted: 04/22/2014] [Indexed: 01/21/2023]
Abstract
Lag period is an inherent characteristic of the kinetic curves registered for protein aggregation. The appearance of a lag period is connected with the nucleation stage and the stages of the formation of folding or unfolding intermediates prone to aggregation (for example, the stage of protein unfolding under stress conditions). Discovering the kinetic regularities essential for elucidation of the protein aggregation mechanism comprises deducing the relationship between the lag period and aggregation rate. Fändrich proposed the following equation connecting the duration of the lag phase (tlag) and the aggregate growth rate (kg) in the amyloid fibrillation: kg=const/tlag. To establish the relationship between the initial rate of protein aggregation (v) and the lag period (t0) in the case of amorphous aggregation, the kinetics of dithithreitol-induced aggregation of holo-α-lactalbumin from bovine milk was studied (0.1M Na-phosphate buffer, pH 6.8; 37°C). The order of aggregation with respect to protein (n) was calculated from the dependence of the initial rate of protein aggregation on the α-lactalbumin concentration (n=5.3). The following equation connecting v and t0 has been proposed: v(1/n)=const/(t0-t0,lim), where t0,lim is the limiting value of t0 at high concentrations of the protein.
Collapse
|
15
|
Graña-Montes R, Marinelli P, Reverter D, Ventura S. N-terminal protein tails act as aggregation protective entropic bristles: the SUMO case. Biomacromolecules 2014; 15:1194-203. [PMID: 24564702 DOI: 10.1021/bm401776z] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The formation of β-sheet enriched amyloid fibrils constitutes the hallmark of many diseases but is also an intrinsic property of polypeptide chains in general, because the formation of compact globular proteins comes at the expense of an inherent sequential aggregation propensity. In this context, identification of strategies that enable proteins to remain functional and soluble in the cell has become a central issue in chemical biology. We show here, using human SUMO proteins as a model system, that the recurrent presence of disordered tails flanking globular domains might constitute yet another of these protective strategies. These short, disordered, and highly soluble protein segments would act as intramolecular entropic bristles, reducing the overall protein intrinsic aggregation propensity and favoring thus the attainment and maintenance of functional conformations.
Collapse
Affiliation(s)
- Ricardo Graña-Montes
- Institut de Biotecnologia i Biomedicina and Departament de Bioquimica i Biologia Molecular, Universitat Autònoma de Barcelona , 08193 Bellaterra, Barcelona, Spain
| | | | | | | |
Collapse
|
16
|
Vázquez JA. Modeling of chemical inhibition from amyloid protein aggregation kinetics. BMC Pharmacol Toxicol 2014; 15:9. [PMID: 24572069 PMCID: PMC3939820 DOI: 10.1186/2050-6511-15-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 02/14/2014] [Indexed: 01/01/2023] Open
Abstract
Backgrounds The process of amyloid proteins aggregation causes several human neuropathologies. In some cases, e.g. fibrillar deposits of insulin, the problems are generated in the processes of production and purification of protein and in the pump devices or injectable preparations for diabetics. Experimental kinetics and adequate modelling of chemical inhibition from amyloid aggregation are of practical importance in order to study the viable processing, formulation and storage as well as to predict and optimize the best conditions to reduce the effect of protein nucleation. Results In this manuscript, experimental data of insulin, Aβ42 amyloid protein and apomyoglobin fibrillation from recent bibliography were selected to evaluate the capability of a bivariate sigmoid equation to model them. The mathematical functions (logistic combined with Weibull equation) were used in reparameterized form and the effect of inhibitor concentrations on kinetic parameters from logistic equation were perfectly defined and explained. The surfaces of data were accurately described by proposed model and the presented analysis characterized the inhibitory influence on the protein aggregation by several chemicals. Discrimination between true and apparent inhibitors was also confirmed by the bivariate equation. EGCG for insulin (working at pH = 7.4/T = 37°C) and taiwaniaflavone for Aβ42 were the compounds studied that shown the greatest inhibition capacity. Conclusions An accurate, simple and effective model to investigate the inhibition of chemicals on amyloid protein aggregation has been developed. The equation could be useful for the clear quantification of inhibitor potential of chemicals and rigorous comparison among them.
Collapse
Affiliation(s)
- José Antonio Vázquez
- Grupo de Reciclado e Valorización de Residuos (REVAL), Instituto de Investigacións Mariñas (IIM-CSIC), C/ Eduardo Cabello 6, CP36208 Vigo, Spain.
| |
Collapse
|
17
|
Ramón A, Señorale-Pose M, Marín M. Inclusion bodies: not that bad…. Front Microbiol 2014; 5:56. [PMID: 24592259 PMCID: PMC3924032 DOI: 10.3389/fmicb.2014.00056] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Accepted: 01/28/2014] [Indexed: 12/03/2022] Open
Abstract
The formation of inclusion bodies (IBs) constitute a frequent event during the production of heterologous proteins in bacterial hosts. Although the mechanisms leading to their formation are not completely understood, empirical data have been exploited trying to predict the aggregation propensity of specific proteins while a great number of strategies have been developed to avoid the generation of IBs. However, in many cases, the formation of such aggregates can be considered an advantage for basic research as for protein production. In this review, we focus on this positive side of IBs formation in bacteria. We present a compilation on recent advances on the understanding of IBs formation and their utilization as a model to understand protein aggregation and to explore strategies to control this process. We include recent information about their composition and structure, their use as an attractive approach to produce low cost proteins and other promising applications in Biomedicine.
Collapse
Affiliation(s)
- Ana Ramón
- Sección Bioquímica, Facultad de Ciencias, Universidad de la República Montevideo, Uruguay
| | - Mario Señorale-Pose
- Sección Bioquímica, Facultad de Ciencias, Universidad de la República Montevideo, Uruguay
| | - Mónica Marín
- Sección Bioquímica, Facultad de Ciencias, Universidad de la República Montevideo, Uruguay
| |
Collapse
|
18
|
Espargaró A, Villar-Piqué A, Sabaté R, Ventura S. Yeast prions form infectious amyloid inclusion bodies in bacteria. Microb Cell Fact 2012; 11:89. [PMID: 22731490 PMCID: PMC3520751 DOI: 10.1186/1475-2859-11-89] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2012] [Accepted: 05/27/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Prions were first identified as infectious proteins associated with fatal brain diseases in mammals. However, fungal prions behave as epigenetic regulators that can alter a range of cellular processes. These proteins propagate as self-perpetuating amyloid aggregates being an example of structural inheritance. The best-characterized examples are the Sup35 and Ure2 yeast proteins, corresponding to [PSI+] and [URE3] phenotypes, respectively. RESULTS Here we show that both the prion domain of Sup35 (Sup35-NM) and the Ure2 protein (Ure2p) form inclusion bodies (IBs) displaying amyloid-like properties when expressed in bacteria. These intracellular aggregates template the conformational change and promote the aggregation of homologous, but not heterologous, soluble prionogenic molecules. Moreover, in the case of Sup35-NM, purified IBs are able to induce different [PSI+] phenotypes in yeast, indicating that at least a fraction of the protein embedded in these deposits adopts an infectious prion fold. CONCLUSIONS An important feature of prion inheritance is the existence of strains, which are phenotypic variants encoded by different conformations of the same polypeptide. We show here that the proportion of infected yeast cells displaying strong and weak [PSI+] phenotypes depends on the conditions under which the prionogenic aggregates are formed in E. coli, suggesting that bacterial systems might become useful tools to generate prion strain diversity.
Collapse
Affiliation(s)
- Alba Espargaró
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | | | | | |
Collapse
|