1
|
Santra S, Molla MR. Small molecule-based core and shell cross-linked nanoassemblies: from self-assembly and programmed disassembly to biological applications. Chem Commun (Camb) 2024; 60:12101-12117. [PMID: 39301871 DOI: 10.1039/d4cc03515a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Supramolecular assemblies of stimuli-responsive amphiphilic molecules have been of utmost interest in targeted drug delivery applications, owing to their capability of sequestering drug molecules in one set of conditions and releasing them in another. To minimize undesired disassembly and stabilize noncovalently encapsulated drug molecules, the strategy of core or shell cross-linking has become a fascinating approach to constructing cross-linked polymeric or small molecule-based nanoassemblies. In this article, we discuss the design and synthetic strategies for cross-linked nanoassemblies from small molecule-based amphiphiles, with robust stability and enhanced drug encapsulation capability. We highlight their potential biomedical applications, particularly in drug or gene delivery, and cell imaging. This feature article offers a comprehensive overview of the recent developments in the application of small molecule-based covalently cross-linked nanocarriers for materials and biomedical applications, which may inspire the use of these materials as a potential drug delivery system for future chemotherapeutic applications.
Collapse
Affiliation(s)
- Subrata Santra
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata-700009, India.
| | - Mijanur Rahaman Molla
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata-700009, India.
| |
Collapse
|
2
|
Abstract
The recent emergence of nanomedicine has revolutionized the therapeutic landscape and necessitated the creation of more sophisticated drug delivery systems. Polymeric nanoparticles sit at the forefront of numerous promising drug delivery designs, due to their unmatched control over physiochemical properties such as size, shape, architecture, charge, and surface functionality. Furthermore, polymeric nanoparticles have the ability to navigate various biological barriers to precisely target specific sites within the body, encapsulate a diverse range of therapeutic cargo and efficiently release this cargo in response to internal and external stimuli. However, despite these remarkable advantages, the presence of polymeric nanoparticles in wider clinical application is minimal. This review will provide a comprehensive understanding of polymeric nanoparticles as drug delivery vehicles. The biological barriers affecting drug delivery will be outlined first, followed by a comprehensive description of the various nanoparticle designs and preparation methods, beginning with the polymers on which they are based. The review will meticulously explore the current performance of polymeric nanoparticles against a myriad of diseases including cancer, viral and bacterial infections, before finally evaluating the advantages and crucial challenges that will determine their wider clinical potential in the decades to come.
Collapse
Affiliation(s)
- Maximilian
A. Beach
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Umeka Nayanathara
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yanting Gao
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Changhe Zhang
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yijun Xiong
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yufu Wang
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Georgina K. Such
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
3
|
Romanovska A, Schmidt M, Brandt V, Tophoven J, Tiller JC. Controlling the function of bioactive worm micelles by enzyme-cleavable non-covalent inter-assembly cross-linking. J Control Release 2024; 368:15-23. [PMID: 38346504 DOI: 10.1016/j.jconrel.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/23/2024]
Abstract
Drugs that form self-assembled supramolecular structures to be most-active is a promising way of creating new highly specific and active pharmaceuticals. Controlling the activity of bioactive supramolecular structures such as drug-loaded micelles is possible by both core/shell and inter-assembly cross-linking. However, if the flexibility of the assembly is mandatory for the activity cross-linking is not feasible. Thus, such structures cannot be manipulated in their activity. The present study demonstrates a novel concept to control the activity of not drug-releasing, non-cross-linked bioactive superstructures. This is achieved by formation of nanostructured nanoparticles derived by non-covalent inter-assembly cross-linking of the superstructures. This is shown on the example of amphiphilic diblock-copolymers conjugated with the antibiotic ciprofloxacin (CIP). These polymer-antibiotic conjugates form worm micelles, which greatly activate the conjugated antibiotic without releasing it. Non-covalent inter-assembly cross-linking of these CIP-worm-micelles with amphiphilic triblock copolymers terminated with lipase-cleavable esters leads to nanostructured nanoparticles that resemble cross-linked worm micelles and show an up to 135-fold lower activity than the free worm micelles. The activity of the worm-micelles can be fully recovered by cleaving the end groups of the polymeric cross-linker with lipase.
Collapse
Affiliation(s)
- Alina Romanovska
- Biomaterials and Polymer Science, Department of Bio- and Chemical Engineering, TU Dortmund, Emil-Figge-Straße 66, 44227 Dortmund, Germany
| | - Martin Schmidt
- Biomaterials and Polymer Science, Department of Bio- and Chemical Engineering, TU Dortmund, Emil-Figge-Straße 66, 44227 Dortmund, Germany
| | - Volker Brandt
- Biomaterials and Polymer Science, Department of Bio- and Chemical Engineering, TU Dortmund, Emil-Figge-Straße 66, 44227 Dortmund, Germany
| | - Jonas Tophoven
- Biomaterials and Polymer Science, Department of Bio- and Chemical Engineering, TU Dortmund, Emil-Figge-Straße 66, 44227 Dortmund, Germany
| | - Joerg C Tiller
- Biomaterials and Polymer Science, Department of Bio- and Chemical Engineering, TU Dortmund, Emil-Figge-Straße 66, 44227 Dortmund, Germany.
| |
Collapse
|
4
|
Liu J, Zhang Y, Liu C, Jiang Y, Wang Z, Li X. Paclitaxel prodrug-encapsulated polypeptide micelles with redox/pH dual responsiveness for cancer chemotherapy. Int J Pharm 2023; 645:123398. [PMID: 37690658 DOI: 10.1016/j.ijpharm.2023.123398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/30/2023] [Accepted: 09/08/2023] [Indexed: 09/12/2023]
Abstract
Polypeptides are a highly promising carrier for delivering hydrophobic drugs, due to their excellent biocompatibility, non-toxicity, and non-immunogenicity. Herein, a redox and pH dual-responsive poly(ethylene glycol)-SS-b-polypeptide micelles encapsulated with disulfide bridged paclitaxel-pentadecanoic acid prodrug was developed for cancer chemotherapy. First of all, disulfide bridged paclitaxel-pentadecanoic acid prodrug (PTX-SS-COOH) and poly(ethylene glycol)-SS-b-polylysine-b-polyphenylalanine (mPEG-SS-b-PLys-b-PPhe, ESLP) were synthesized and confirmed via NMR, MS, FT-IR or GPC. After that, PTX-SS-COOH (PSH) embedded mPEG-SS-b-PLys-b-PPhe (ESLP/PSH) micelles were prepared by mixing method based on electrostatic interactions and hydrophobic forces. For comparison, mPEG-b-PLys-b-PPhe (ELP) was mixed with PTX-SS-COOH to generate another kind of micelles (ELP/PSH). The characterization of ESLP/PSH micelles through dynamic light scattering (DLS) and transmission electron microscopy (TEM) revealed a spherical structure with a diameter of approximately 170 nm. It is noteworthy that ESLP/PSH micelles displayed a high drug-loading rate of 22.84%, and excellent stability, which can be attributed to the specific interactions between the prodrug and copolymer. Drug release analysis demonstrated that the micelles exhibited a substantial release of PTX in the presence of GSH at pH 5.0, indicating a pH and redox dual responsiveness. In vivo pharmacokinetic study revealed the ESLP/PSH micelles had increased bioavailability and an extended circulation time. Ultimately, antitumor efficacy and systemic toxicity evaluation in 4 T1 tumor-bearing mice confirmed that ESLP/PSH micelles achieved the highest level of tumor growth inhibition (ca. 83%) and the lowest systemic toxicity in comparison with ELP/PSH micelles and commercialized Taxol®. Taken together, the dual responsive micelles represent a promising PTX formulation with potential clinical application in cancer chemotherapy.
Collapse
Affiliation(s)
- Jinyu Liu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Yanhao Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Chao Liu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Yuhao Jiang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Zihao Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Xinsong Li
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China.
| |
Collapse
|
5
|
Tan L, Fan J, Zhou Y, Xiong D, Duan M, Hu D, Wu Z. Preparation of reversible cross-linked amphiphilic polymeric micelles with pH-responsive behavior for smart drug delivery. RSC Adv 2023; 13:28165-28178. [PMID: 37753398 PMCID: PMC10518665 DOI: 10.1039/d3ra05575b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/10/2023] [Indexed: 09/28/2023] Open
Abstract
A new type of reversible cross-linked and pH-responsive polymeric micelle (PM), poly[polyethylene glycol methacrylate-co-2-(acetoacetoxy)ethyl methacrylate]-b-poly [2-(dimethylamino)ethyl methacrylate] [P(PEGMA-co-AEMA)-b-PDMAEMA], was synthesized for targeted delivery of curcumin. After reversible cross-linking of the micellar shell, the PMs with a typical core-shell structure exhibited excellent stability against extensive dilution and good reversibility of pH-responsiveness in solutions with different pH values. P(PEGMA9-co-AEMA6)-b-PDMAEMA10 has the lowest critical micelle concentration (CMC) value (0.0041 mg mL-1), the highest loading capacity (13.86%) and entrapment efficiency (97.03%). A slow sustained drug release at pH 7.4 with 12.36% in 108 h, while a fast release (42.36%) was observed at pH 5.0. Furthermore, a dissipative particle dynamics (DPD) simulation method was employed to investigate the self-assembly process and pH-responsive behavior of PMs. The optimal drug-carrier ratio (2%) and fraction of water (92%) were confirmed by analyzing the drug distribution and morphology of micelles during the self-assembly process of the block copolymer. The simulation results were consistent with experimental results, indicating DPD simulation shows potential to study the structure properties of reversible cross-linked micelles. The present findings provide a new method for the development of SDDS with good structural stability and controlled drug release properties.
Collapse
Affiliation(s)
- Liu Tan
- School of Chemical Engineering, Xiangtan University Xiangtan 411105 China
- National & Local United Engineering Research Centre for Chemical Process Simulation and Integration, Xiangtan University Xiangtan 411105 China
| | - Jinling Fan
- School of Chemical Engineering, Xiangtan University Xiangtan 411105 China
| | - Yuqing Zhou
- School of Chemical Engineering, Xiangtan University Xiangtan 411105 China
| | - Di Xiong
- School of Mechanical & Automotive Engineering, South China University of Technology Guangzhou 510640 China
| | - Manzhen Duan
- School of Chemical Engineering, Xiangtan University Xiangtan 411105 China
| | - Ding Hu
- School of Chemical Engineering, Xiangtan University Xiangtan 411105 China
- National & Local United Engineering Research Centre for Chemical Process Simulation and Integration, Xiangtan University Xiangtan 411105 China
| | - Zhimin Wu
- School of Chemical Engineering, Xiangtan University Xiangtan 411105 China
- National & Local United Engineering Research Centre for Chemical Process Simulation and Integration, Xiangtan University Xiangtan 411105 China
| |
Collapse
|
6
|
Höppener C, Elter JK, Schacher FH, Deckert V. Inside Block Copolymer Micelles-Tracing Interfacial Influences on Crosslinking Efficiency in Nanoscale Confined Spaces. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206451. [PMID: 36806886 DOI: 10.1002/smll.202206451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/22/2023] [Indexed: 05/18/2023]
Abstract
Recently, several studies have demonstrated the excellent capabilities of tip-enhanced Raman spectroscopyfor in-depth investigations of structural properties of matter with unprecedented resolution and chemical specificity. These capabilities are utilized here to study the internal structure of core-crosslinked micelles, which are formed by self-assembly of the diblock terpolymer poly(ethylene oxide)-block-poly(furfuryl glycidylether-co-tert-butylglycidyl ether). Supplementing force-volume atomic force microscopy experiments address additionally the nanomechanical properties. Particularly, TERS enables investigating the underlying principles influencing the homogeneity and efficiency of the Diels-Alder core-crosslinking process in the confined hydrophobic core. While the central core region is homogenously crosslinked, a breakdown of the crosslinking reaction is observed in the core-corona interfacial region. The results corroborate that a strong crosslinking efficiency is directly correlated to the formation of a mixed zone of the glycidyl ether and PEO corona blocks reaching ≈5 nm into the core region. Concomitantly a strong exclusion of the encapsulated bismaleimide crosslinker from the interfacial region is observed. It is conceivable that a changed structure, chemical composition and altered nanomechanical properties of this interfacial region may also influence the crosslinking efficiency across the entire core region by a modification of the solubility of the crosslinker in the interfacial core-corona region.
Collapse
Affiliation(s)
- Christiane Höppener
- Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Straße 9, D-07745, Jena, Germany
| | - Johanna K Elter
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University, Lessingstraße 8, D-07743, Jena, Germany
| | - Felix H Schacher
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University, Lessingstraße 8, D-07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University, Philosophenweg 7, D-07743, Jena, Germany
| | - Volker Deckert
- Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Straße 9, D-07745, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University, Philosophenweg 7, D-07743, Jena, Germany
| |
Collapse
|
7
|
Yadav S, Ramesh K, Reddy OS, Karthika V, Kumar P, Jo SH, Yoo SII, Park SH, Lim KT. Redox-Responsive Comparison of Diselenide and Disulfide Core-Cross-Linked Micelles for Drug Delivery Application. Pharmaceutics 2023; 15:pharmaceutics15041159. [PMID: 37111644 PMCID: PMC10144204 DOI: 10.3390/pharmaceutics15041159] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 04/09/2023] Open
Abstract
In this study, diselenide (Se–Se) and disulfide (S–S) redox-responsive core-cross-linked (CCL) micelles were synthesized using poly(ethylene oxide)2k-b-poly(furfuryl methacrylate)1.5k (PEO2k-b-PFMA1.5k), and their redox sensitivity was compared. A single electron transfer-living radical polymerization technique was used to prepare PEO2k-b-PFMA1.5k from FMA monomers and PEO2k-Br initiators. An anti-cancer drug, doxorubicin (DOX), was incorporated into PFMA hydrophobic parts of the polymeric micelles, which were then cross-linked with maleimide cross-linkers, 1,6-bis(maleimide) hexane, dithiobis(maleimido) ethane and diselenobis(maleimido) ethane via Diels–Alder reaction. Under physiological conditions, the structural stability of both S–S and Se–Se CCL micelles was maintained; however, treatments with 10 mM GSH induced redox-responsive de-cross-linking of S–S and Se–Se bonds. In contrast, the S–S bond was intact in the presence of 100 mM H2O2, while the Se–Se bond underwent de-crosslinking upon the treatment. DLS studies revealed that the size and PDI of (PEO2k-b-PFMA1.5k-Se)2 micelles varied more significantly in response to changes in the redox environment than (PEO2k-b-PFMA1.5k-S)2 micelles. In vitro release studies showed that the developed micelles had a lower drug release rate at pH 7.4, whereas a higher release was observed at pH 5.0 (tumor environment). The micelles were non-toxic against HEK-293 normal cells, which revealed that they could be safe for use. Nevertheless, DOX-loaded S–S/Se–Se CCL micelles exhibited potent cytotoxicity against BT-20 cancer cells. Based on these results, the (PEO2k-b-PFMA1.5k-Se)2 micelles can be more sensitive drug carriers than (PEO2k-b-PFMA1.5k-S)2 micelles.
Collapse
Affiliation(s)
- Sonyabapu Yadav
- Department of Smart Green Technology Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Kalyan Ramesh
- R&D Center, Devens Lab, SEQENS (CDMO) Pharmaceutical Solutions, Devens, MA 01434, USA
| | - Obireddy Sreekanth Reddy
- Major of Display Semiconductor Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Viswanathan Karthika
- Major of Display Semiconductor Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Parveen Kumar
- Major of Display Semiconductor Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Sung-Han Jo
- Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Seong II Yoo
- Department of Polymer Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Sang-Hyug Park
- Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Kwon Taek Lim
- Department of Smart Green Technology Engineering, Pukyong National University, Busan 48513, Republic of Korea
- Major of Display Semiconductor Engineering, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
8
|
Rational design of poly-L-glutamic acid-palbociclib conjugates for pediatric glioma treatment. J Control Release 2023; 355:385-394. [PMID: 36746338 DOI: 10.1016/j.jconrel.2023.01.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/03/2023] [Accepted: 01/30/2023] [Indexed: 02/08/2023]
Abstract
Brain tumors represent the second most common cause of pediatric cancer death, with malignant gliomas accounting for ∼75% of pediatric deaths. Palbociclib, a selective cyclin-dependent kinase 4/6 (CDK4/6) inhibitor, has shown promise in phase I clinical trials of pediatric patients with progressive/refractory brain tumors using the oral administration route; however, pharmacokinetic limitations and toxicity issues remain. We synthesized a family of well-defined linear and star-shaped polyglutamate (PGA)-palbociclib conjugates using redox-sensitive self-immolative linkers to overcome limitations associated with free palbociclib. Exhaustive characterization of this conjugate family provided evidence for a transition towards the formation of more organized conformational structures upon increased drug loading. We evaluated the activity of conjugates in patient-derived glioblastoma and diffuse intrinsic pontine glioma cells, which display differing reducing environments due to differential glutathione expression levels. We discovered that microenvironmental parameters and the identified conformational changes determined palbociclib release kinetics and therapeutic output; furthermore, we identified a star-shaped PGA-palbociclib conjugate with low drug loading as an optimal therapeutic approach in diffuse intrinsic pontine glioma cells.
Collapse
|
9
|
Mondal B, Padhy A, Maji S, Gupta A, Sen Gupta S. Dual stimuli-responsive cross-linked nanoassemblies from an amphiphilic mannose-6-phosphate based tri-block copolymer for lysosomal membrane permeabilization. Biomater Sci 2023; 11:1810-1827. [PMID: 36655818 DOI: 10.1039/d2bm02110b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Stimuli-responsive cross-linked nanocarriers that can induce lysosomal cell death (LCD) via lysosomal membrane permeabilization (LMP) represent a new class of delivery platforms and have attracted the attention of researchers in the biomedical field. The advantages of such cross-linked nanocarriers are as follows (i) they remain intact during blood circulation; and (ii) they reach the target site via specific receptor-mediated endocytosis leading to the enhancement of therapeutic efficacy and reduction of side effects. Herein, we have synthesized a mannose-6-phosphate (M6P) based amphiphilic ABC type tri-block copolymer having two chains of FDA-approved poly(ε-caprolactone) (PCL) as the hydrophobic block, and poly(S-(o-nitrobenzyl)-L-cysteine) (NBC) acts as the photoresponsive crosslinker block. Two different tri-block copolymers, [(PCL35)2-b-NBC20-b-M6PGP20] and [(PCL35)2-b-NBC15-b-M6PGP20], were synthesized which upon successful self-assembly initially formed spherical uncross-linked "micellar-type" aggregates (UCL-M) and vesicles (UCL-V), respectively. The uncross-linked nanocarriers upon UV treatment for thirty minutes were covalently crosslinked in the middle PNBC block giving rise to the di-sulfide bonds and forming interface cross-linked "micellar-type" aggregates (ICL-M) and vesicles (ICL-V). DLS, TEM, and AFM techniques were used to successfully characterize the morphology of these nanocarriers. The dual stimuli (redox and enzyme) responsiveness of the cross-linked nanocarriers and their trafficking to the lysosome in mammalian cells via receptor-mediated endocytosis was probed using confocal microscopy images. Furthermore, the addition of a chloroquine (CQ, a known lysosomotropic agent) encapsulated cross-linked nanocarrier (CQ@ICL-V) to non-cancerous (HEK-293T) cells and liver (HepG2), and breast cancer cells (MDA-MB-231) was found to initiate lysosomal membrane permeabilization (LMP) followed by lysosomal destabilization which eventually led to lysosomal cell death (LCD). Due to the targeted delivery of CQ to the lysosomes of cancerous cells, almost a 90% smaller amount of CQ was able to achieve similar cell death to CQ alone.
Collapse
Affiliation(s)
- Basudeb Mondal
- Indian Institute of Science Education and Research Kolkata, Department of Chemical Sciences, Mohanpur Campus, Nadia-741246, India.
| | - Abinash Padhy
- Indian Institute of Science Education and Research Kolkata, Department of Chemical Sciences, Mohanpur Campus, Nadia-741246, India.
| | - Saptarshi Maji
- Indian Institute of Science Education and Research Kolkata, Department of Biological Sciences, Mohanpur Campus, Nadia-741246, India
| | - Arnab Gupta
- Indian Institute of Science Education and Research Kolkata, Department of Biological Sciences, Mohanpur Campus, Nadia-741246, India
| | - Sayam Sen Gupta
- Indian Institute of Science Education and Research Kolkata, Department of Chemical Sciences, Mohanpur Campus, Nadia-741246, India.
| |
Collapse
|
10
|
Affiliation(s)
- Martina H. Stenzel
- Centre for Advanced Macromolecular Design, School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
11
|
Ramesh K, Yadav S, Mishra AK, Jo S, Park S, Oh C, Lim KT. Interface‐cross
‐linked micelles of poly(D,L‐lactide)‐
b
‐poly(furfuryl methacrylate)‐
b
‐poly(N‐acryloylmorpholine) for near‐infrared‐triggered drug delivery application. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Kalyan Ramesh
- Department of Display Engineering Pukyong National University Busan South Korea
- Department of Chemistry University of Massachusetts Lowell Lowell Massachusetts USA
| | - Sonyabapu Yadav
- Department of Display Engineering Pukyong National University Busan South Korea
| | - Avnish Kumar Mishra
- School of Materials Science and Engineering Gwangju Institute of Science and Technology (GIST) Gwangju South Korea
| | - Sung‐Han Jo
- Department of Biomedical Engineering Pukyong National University Busan South Korea
| | - Sang‐Hyug Park
- Department of Biomedical Engineering Pukyong National University Busan South Korea
| | - Chul‐Woong Oh
- Department of Marine Biology Pukyong National University Busan South Korea
| | - Kwon Taek Lim
- Department of Display Engineering Pukyong National University Busan South Korea
| |
Collapse
|
12
|
Toscanini MA, Limeres MJ, Garrido AV, Cagel M, Bernabeu E, Moretton MA, Chiappetta DA, Cuestas ML. Polymeric micelles and nanomedicines: Shaping the future of next generation therapeutic strategies for infectious diseases. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102927] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
13
|
Kim KN, Oh KS, Shim J, Schlaepfer IR, Karam SD, Lee JJ. Light-Responsive Polymeric Micellar Nanoparticles with Enhanced Formulation Stability. Polymers (Basel) 2021; 13:polym13030377. [PMID: 33530388 PMCID: PMC7866127 DOI: 10.3390/polym13030377] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/17/2021] [Accepted: 01/22/2021] [Indexed: 01/26/2023] Open
Abstract
Light-sensitive polymeric micelles have recently emerged as promising drug delivery systems for spatiotemporally controlled release of payload at target sites. Here, we developed diazonaphthoquinone (DNQ)-conjugated micellar nanoparticles that showed a change in polarity of the micellar core from hydrophobic to hydrophilic under UV light, releasing the encapsulated anti-cancer drug, doxetaxel (DTX). The micelles exhibited a low critical micelle concentration and high stability in the presence of bovine serum albumin (BSA) solution due to the hydrophobic and π–π stacking interactions in the micellar core. Cell studies showed enhanced cytotoxicity of DTX-loaded micellar nanoparticles upon irradiation. The enhanced stability would increase the circulation time of the micellar nanoparticles in blood, and enhance the therapeutic effectiveness for cancer therapy.
Collapse
Affiliation(s)
- Kyoung Nan Kim
- Department of Chemistry, University of Colorado Denver, Denver, CO 80204, USA;
| | | | - Jiwook Shim
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA;
| | - Isabel R. Schlaepfer
- Division of Medical Oncology, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA;
| | - Sana D. Karam
- Department of Radiation Oncology, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA;
| | - Jung-Jae Lee
- Department of Chemistry, University of Colorado Denver, Denver, CO 80204, USA;
- Department of Bioengineering, University of Colorado Denver, Denver, CO 80204, USA
- Correspondence: ; Tel.: +303-315-7671
| |
Collapse
|
14
|
Husni P, Shin Y, Kim JC, Kang K, Lee ES, Youn YS, Rusdiana T, Oh KT. Photo-Based Nanomedicines Using Polymeric Systems in the Field of Cancer Imaging and Therapy. Biomedicines 2020; 8:E618. [PMID: 33339198 PMCID: PMC7765596 DOI: 10.3390/biomedicines8120618] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 12/14/2022] Open
Abstract
The use of photo-based nanomedicine in imaging and therapy has grown rapidly. The property of light in converting its energy into different forms has been exploited in the fields of optical imaging (OI) and phototherapy (PT) for diagnostic and therapeutic applications. The development of nanotechnology offers numerous advantages to overcome the challenges of OI and PT. Accordingly, in this review, we shed light on common photosensitive agents (PSAs) used in OI and PT; these include fluorescent and bioluminescent PSAs for OI or PT agents for photodynamic therapy (PDT) and photothermal therapy (PTT). We also describe photo-based nanotechnology systems that can be used in photo-based diagnostics and therapies by using various polymeric systems.
Collapse
Affiliation(s)
- Patihul Husni
- Department of Global Innovative Drugs, College of Pharmacy, Chung-Ang University, 221 Heukseok dong, Dongjak-gu, Seoul 06974, Korea; (P.H.); (Y.S.); (J.C.K.); (K.K.)
| | - Yuseon Shin
- Department of Global Innovative Drugs, College of Pharmacy, Chung-Ang University, 221 Heukseok dong, Dongjak-gu, Seoul 06974, Korea; (P.H.); (Y.S.); (J.C.K.); (K.K.)
| | - Jae Chang Kim
- Department of Global Innovative Drugs, College of Pharmacy, Chung-Ang University, 221 Heukseok dong, Dongjak-gu, Seoul 06974, Korea; (P.H.); (Y.S.); (J.C.K.); (K.K.)
| | - Kioh Kang
- Department of Global Innovative Drugs, College of Pharmacy, Chung-Ang University, 221 Heukseok dong, Dongjak-gu, Seoul 06974, Korea; (P.H.); (Y.S.); (J.C.K.); (K.K.)
| | - Eun Seong Lee
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si 14662, Gyeonggi-do, Korea;
| | - Yu Seok Youn
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Gyeonggi-do, Korea;
| | - Taofik Rusdiana
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor 45363, Indonesia;
| | - Kyung Taek Oh
- Department of Global Innovative Drugs, College of Pharmacy, Chung-Ang University, 221 Heukseok dong, Dongjak-gu, Seoul 06974, Korea; (P.H.); (Y.S.); (J.C.K.); (K.K.)
| |
Collapse
|
15
|
Yang R, Zheng Y, Shuai X, Fan F, He X, Ding M, Li J, Tan H, Fu Q. Crosslinking Induced Reassembly of Multiblock Polymers: Addressing the Dilemma of Stability and Responsivity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1902701. [PMID: 32328415 PMCID: PMC7175344 DOI: 10.1002/advs.201902701] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 01/07/2020] [Accepted: 02/13/2020] [Indexed: 05/26/2023]
Abstract
Physical or chemical crosslinking of polymeric micelles has emerged as a straightforward approach to overcome the intrinsic instability of assemblies. However, the crosslinking process may compromise the responsivity of nanosystems and result in inefficient release of payloads. To address this dilemma, a crosslinking induced reassembly (CIRA) strategy is reported here to simultaneously increase the kinetic and thermodynamic stability and redox-responsivity of polymeric micelles. It is found that the click crosslinking of a model multiblock polyurethane at the micellar interface induces microphase separation between the soft and hard segments. The aggregation of hard domains gathers liable disulfide linkages around the interlayer of micelles, which could facilitate the attack of reducing agents and act as an intelligent on-off switch for high stability and triggered release. As a result, the CIRA approach enables an enhanced tumor targeting, improved biodistribution and excellent therapeutic efficacy in vivo. This work provides a facile and versatile platform for controlled delivery applications.
Collapse
Affiliation(s)
- Rui Yang
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Yi Zheng
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Xiaoyu Shuai
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Fan Fan
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Xueling He
- Laboratory Animal Center of Sichuan UniversityChengdu610041China
| | - Mingming Ding
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Jianshu Li
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Hong Tan
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Qiang Fu
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| |
Collapse
|
16
|
Raveendran R, Chen F, Kent B, Stenzel MH. Estrone-Decorated Polyion Complex Micelles for Targeted Melittin Delivery to Hormone-Responsive Breast Cancer Cells. Biomacromolecules 2020; 21:1222-1233. [DOI: 10.1021/acs.biomac.9b01681] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Radhika Raveendran
- Centre for Advanced Macromolecular Design (CAMD), School of Chemistry, University of New South Wales, Sydney NSW, Australia
| | - Fan Chen
- Centre for Advanced Macromolecular Design (CAMD), School of Chemistry, University of New South Wales, Sydney NSW, Australia
| | - Ben Kent
- Centre for Advanced Macromolecular Design (CAMD), School of Chemistry, University of New South Wales, Sydney NSW, Australia
| | - Martina H. Stenzel
- Centre for Advanced Macromolecular Design (CAMD), School of Chemistry, University of New South Wales, Sydney NSW, Australia
| |
Collapse
|
17
|
Costamagna F, Hillaireau H, Vergnaud J, Clarisse D, Jamgotchian L, Loreau O, Denis S, Gravel E, Doris E, Fattal E. Nanotoxicology at the particle/micelle frontier: influence of core-polymerization on the intracellular distribution, cytotoxicity and genotoxicity of polydiacetylene micelles. NANOSCALE 2020; 12:2452-2463. [PMID: 31915784 DOI: 10.1039/c9nr08714a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The understanding of the cellular uptake and the intracellular fate of nanoparticles and their subsequent influence on cell viability is challenging as far as micelles are concerned. Such systems are dynamic by nature, existing as unimers under their critical micelle concentration (CMC), and as micelles in equilibrium with unimers above the CMC, making canonical dose-response relationships difficult to establish. The purpose of this study was to investigate the in vitro cytotoxicity and uptake of two micellar sytems that are relevant for drug delivery. The two micelles incorporate a poly(ethylene glycol) coating and a pentacosadiynoic core which is either polymerized (pDA-PEG micelles) or non-polymerized (DA-PEG micelles), with the aim of evaluating the influence of the micelles status ("particle-like" or "dynamic", respectively) on their toxicological profile. Intracellular distribution and cytotoxicity of polymerized and non-polymerized micelles were investigated on RAW 264.7 macrophages in order to compare any different interactions with cells. Non-polymerized micelles showed significantly higher cytotoxicity than polymerized micelles, especially in terms of cell permeabilization, correlated to a higher accumulation in cell membranes. Other potential toxicity endpoints of polymerized micelles were then thoroughly studied in order to assess possible responses resulting from their endocytosis. No specific mechanisms of cytotoxicity were observed, neither in terms of apoptosis induction, cell membrane damage, release of inflammatory mediators nor genotoxicity. These data indicate that non-polymerized micelles accumulate in the cell membrane and induce cell membrane permeabilization, resulting in significant toxicity, whereas polymerized, stable micelles are internalized by cells but exert no or very low toxicity.
Collapse
Affiliation(s)
- Federica Costamagna
- Institut Galien Paris-Sud, Univ. Paris-Sud, Cnrs, Université Paris-Saclay, Chatenay-Malabry, France.
| | - Hervé Hillaireau
- Institut Galien Paris-Sud, Univ. Paris-Sud, Cnrs, Université Paris-Saclay, Chatenay-Malabry, France.
| | - Juliette Vergnaud
- Institut Galien Paris-Sud, Univ. Paris-Sud, Cnrs, Université Paris-Saclay, Chatenay-Malabry, France.
| | - Damien Clarisse
- Service de Chimie Bioorganique et de Marquage (SCBM), CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France.
| | - Lucie Jamgotchian
- Service de Chimie Bioorganique et de Marquage (SCBM), CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France.
| | - Olivier Loreau
- Service de Chimie Bioorganique et de Marquage (SCBM), CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France.
| | - Stéphanie Denis
- Institut Galien Paris-Sud, Univ. Paris-Sud, Cnrs, Université Paris-Saclay, Chatenay-Malabry, France.
| | - Edmond Gravel
- Service de Chimie Bioorganique et de Marquage (SCBM), CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France.
| | - Eric Doris
- Service de Chimie Bioorganique et de Marquage (SCBM), CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France.
| | - Elias Fattal
- Institut Galien Paris-Sud, Univ. Paris-Sud, Cnrs, Université Paris-Saclay, Chatenay-Malabry, France.
| |
Collapse
|
18
|
Tanaka J, Evans A, Gurnani P, Kerr A, Wilson P. Functionalisation and stabilisation of polymeric arsenical nanoparticles prepared by sequential reductive and radical cross-linking. Polym Chem 2020. [DOI: 10.1039/d0py00229a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Functional and stable polymeric arsenical nanoparticles can be prepared by sequential reductive coupling and ring-collapse radical alternating copolymerisation (RCRAC).
Collapse
Affiliation(s)
- Joji Tanaka
- University of Warwick
- Department of Chemistry
- Coventry
- UK
| | | | | | - Andrew Kerr
- University of Warwick
- Department of Chemistry
- Coventry
- UK
| | - Paul Wilson
- University of Warwick
- Department of Chemistry
- Coventry
- UK
| |
Collapse
|
19
|
Namivandi-Zangeneh R, Yang Y, Xu S, Wong EHH, Boyer C. Antibiofilm Platform based on the Combination of Antimicrobial Polymers and Essential Oils. Biomacromolecules 2019; 21:262-272. [PMID: 31657209 DOI: 10.1021/acs.biomac.9b01278] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The development of potent strategies to counter microbial biofilm is an urgent priority in healthcare. The majority of bacterial infections in humans are biofilm related, however, effective treatments are still lacking especially for combating multidrug-resistant (MDR) strains. Herein, we report an effective antibiofilm platform based on the use of synthetic antimicrobial polymers in combination with essential oils, where the antimicrobial polymers play a secondary role as delivery vehicle for essential oils. Two ternary antimicrobial polymers consisting of cationic primary amines, low-fouling oligo(ethylene glycol) and hydrophobic ethylhexyl groups were synthesized in the form of random and block copolymers, and mixed with either carvacrol or eugenol. Coadministration of these compounds improved the efficacy against Pseudomonas aeruginosa biofilms compared to the individual compounds. We observed about a 60-75% and 70-85% biofilm inhibition effect for all tested combinations against wild-type P. aeruginosa PAO1 and MDR strain PA37, respectively, upon 6.5 h of incubation time. While both random and block copolymers demonstrated similar biofilm inhibition potencies in combination with essential oils, only the block copolymer acted synergistically with essential oils in killing biofilm. Treatment of PAO1 biofilm for 20 min with the block copolymer-oil combinations resulted in the killing of >99.99% of biofilm bacteria. This synergistic bactericidal activity is attributed to the targeted delivery of essential oils to the biofilm, driven by the electrostatic interaction between positively charged delivery vehicles, in the form of polymeric micelles, and negatively charged bacteria. This study thus highlights the advantage of combining essential oils and antimicrobial polymers as an effective avenue for antibacterial applications.
Collapse
Affiliation(s)
- Rashin Namivandi-Zangeneh
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering , UNSW Australia , Sydney , NSW 2052 , Australia
| | - Yiling Yang
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering , UNSW Australia , Sydney , NSW 2052 , Australia
| | - Sihao Xu
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering , UNSW Australia , Sydney , NSW 2052 , Australia
| | - Edgar H H Wong
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering , UNSW Australia , Sydney , NSW 2052 , Australia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering , UNSW Australia , Sydney , NSW 2052 , Australia
| |
Collapse
|
20
|
Brisson ERL, Griffith JC, Bhaskaran A, Franks GV, Connal LA. Temperature‐induced self‐assembly and metal‐ion stabilization of histidine functional block copolymers. ACTA ACUST UNITED AC 2019. [DOI: 10.1002/pola.29351] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Emma R. L. Brisson
- Department of Chemical Engineering and Particulate Fluids Processing CentreThe University of Melbourne Parkville Victoria 3010 Australia
| | - James C. Griffith
- Materials Characterisation and Fabrication PlatformThe University of Melbourne Parkville Victoria 3010 Australia
| | - Ayana Bhaskaran
- Research School of ChemistryAustralian National University Canberra Australian Capital Territory 2601 Australia
| | - George V. Franks
- Department of Chemical Engineering and Particulate Fluids Processing CentreThe University of Melbourne Parkville Victoria 3010 Australia
| | - Luke A. Connal
- Department of Chemical Engineering and Particulate Fluids Processing CentreThe University of Melbourne Parkville Victoria 3010 Australia
- Research School of ChemistryAustralian National University Canberra Australian Capital Territory 2601 Australia
| |
Collapse
|
21
|
Noy JM, Lu H, Hogg PJ, Yang JL, Stenzel M. Direct Polymerization of the Arsenic Drug PENAO to Obtain Nanoparticles with High Thiol-Reactivity and Anti-Cancer Efficiency. Bioconjug Chem 2018; 29:546-558. [DOI: 10.1021/acs.bioconjchem.8b00032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
| | | | - Philip J. Hogg
- The
Centenary Institute and National Health and Medical Research Council
Clinical Trials Centre, University of Sydney, Sydney, NSW 2006, Australia
| | | | | |
Collapse
|
22
|
Zhao J, Lu H, Yao Y, Ganda S, Stenzel MH. Length vs. stiffness: which plays a dominant role in the cellular uptake of fructose-based rod-like micelles by breast cancer cells in 2D and 3D cell culture models? J Mater Chem B 2018; 6:4223-4231. [DOI: 10.1039/c8tb00706c] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Internalization of rod-like micelles by breast cancer cells is significantly affected by the stiffness of nano-rods.
Collapse
Affiliation(s)
- Jiacheng Zhao
- Centre for Advanced Macromolecular Design
- The University of New South Wales
- Sydney
- Australia
- School of Chemistry
| | - Hongxu Lu
- Centre for Advanced Macromolecular Design
- The University of New South Wales
- Sydney
- Australia
- School of Chemistry
| | - Yin Yao
- Electron Microscope Unit
- The University of New South Wales
- Sydney
- Australia
| | - Sylvia Ganda
- Centre for Advanced Macromolecular Design
- The University of New South Wales
- Sydney
- Australia
- School of Chemistry
| | - Martina H. Stenzel
- Centre for Advanced Macromolecular Design
- The University of New South Wales
- Sydney
- Australia
- School of Chemistry
| |
Collapse
|
23
|
Lu H, Noorani L, Jiang Y, Du AW, Stenzel MH. Penetration and drug delivery of albumin nanoparticles into pancreatic multicellular tumor spheroids. J Mater Chem B 2017; 5:9591-9599. [PMID: 32264572 DOI: 10.1039/c7tb02902k] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Albumin-based nanoparticles have been exploited as a useful carrier for the efficient delivery of anti-cancer drugs. In this study, albendazole was encapsulated into bovine serum albumin (BSA)-polycaprolactone (PCL) conjugates and the formed nanoparticles with a size about 100 nm were used to treat pancreatic carcinoma cells. In addition, two more types of albendazole-loaded BSA nanoparticles, 10 nm and 200 nm ones, were prepared using a desolvation method. The albendazole-loaded BSA nanoparticles were evaluated with both 2D cultured AsPC-1 cells and 3D multicellular tumor spheroids (MCTS). Their anti-tumor effects were also compared. BSA-PCL nanoparticles and 200 nm BSA nanoparticles showed noticeable cytotoxicity to 2D cultured AsPC-1 cells when compared to the free drug. The penetration of BSA-PCL nanoparticles and 200 nm BSA nanoparticles, especially the BSA-PCL nanoparticles, enabled effective delivery of albendazole into pancreatic MCTS. BSA-PCL nanoparticles also showed a better inhibition effect on the growth of pancreatic MCTS than the 200 nm counterpart. Although 10 nm BSA nanoparticles inhibited the growth of MCTS, the inhibitory effect was even less than that of free albendazole. In addition, it is also found that SPARC protein facilitates the penetration and drug delivery of albumin nanoparticle since treatment using anti-SPARC antibody decreased the efficacy of drug loaded BSA nanoparticles.
Collapse
Affiliation(s)
- Hongxu Lu
- Centre for Advanced Macromolecular Design, School of Chemistry, University of New South Wales, Kensington, Sydney, New South Wales 2052, Australia.
| | | | | | | | | |
Collapse
|
24
|
Kozlovskaya V, Liu F, Xue B, Ahmad F, Alford A, Saeed M, Kharlampieva E. Polyphenolic Polymersomes of Temperature-Sensitive Poly(N-vinylcaprolactam)-block-Poly(N-vinylpyrrolidone) for Anticancer Therapy. Biomacromolecules 2017; 18:2552-2563. [PMID: 28700211 DOI: 10.1021/acs.biomac.7b00687] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We report a versatile synthesis for polyphenolic polymersomes of controlled submicron (<500 nm) size for intracellular delivery of high and low molecular weight compounds. The nanoparticles are synthesized by stabilizing the vesicular morphology of thermally responsive poly(N-vinylcaprolactam)n-b-poly(N-vinylpyrrolidone)m (PVCLn-PVPONm) diblock copolymers with tannic acid (TA), a hydrolyzable polyphenol, via hydrogen bonding at a temperature above the copolymer's lower critical solution temperature (LCST). The PVCL179-PVPONm diblock copolymers are produced by controlled reversible addition-fragmentation chain transfer (RAFT) polymerization of PVPON using PVCL as a macro-chain transfer agent. The size of the TA-locked (PVCL179-PVPONm) polymersomes at room temperature and upon temperature variations are controlled by the PVPON chain length and TA:PVPON molar unit ratio. The particle diameter decreases from 1000 to 950, 770, and 250 nm with increasing PVPON chain length (m = 107, 166, 205, 234), and it further decreases to 710, 460, 290, and 190 nm, respectively, upon hydrogen bonding with TA at 50 °C. Lowering the solution temperature to 25 °C results in a slight size increase for vesicles with longer PVPON. We also show that TA-locked polymersomes can encapsulate and store the anticancer drug doxorubicin (DOX) and higher molecular weight fluorescein isothiocyanate (FITC)-dextran in a physiologically relevant pH and temperature range. Encapsulated DOX is released in the nuclei of human alveolar adenocarcinoma tumor cells after 6 h incubation via biodegradation of the TA shell with the cytotoxicity of DOX-loaded polymersomes being concentration-dependent. Our approach offers biocompatible and intracellular degradable nanovesicles of controllable size for delivery of a variety of encapsulated materials. Considering the particle monodispersity, high loading capacity, and a facile two-step aqueous assembly based on the reversible temperature-responsiveness of PVCL, these polymeric vesicles have significant potential as novel drug nanocarriers and provide a new perspective for fundamental studies on thermo-triggered polymer assemblies in solutions.
Collapse
Affiliation(s)
- Veronika Kozlovskaya
- Department of Chemistry, University of Alabama at Birmingham , Birmingham, Alabama 35294, United States
| | - Fei Liu
- Department of Chemistry, University of Alabama at Birmingham , Birmingham, Alabama 35294, United States
| | - Bing Xue
- Department of Chemistry, University of Alabama at Birmingham , Birmingham, Alabama 35294, United States
| | - Fahim Ahmad
- Department of Infectious Disease, Drug Discovery Division, Southern Research , Birmingham, Alabama 35205, United States
| | - Aaron Alford
- Department of Chemistry, University of Alabama at Birmingham , Birmingham, Alabama 35294, United States
| | - Mohammad Saeed
- Department of Infectious Disease, Drug Discovery Division, Southern Research , Birmingham, Alabama 35205, United States
| | - Eugenia Kharlampieva
- Department of Chemistry, University of Alabama at Birmingham , Birmingham, Alabama 35294, United States.,Center for Nanoscale Materials and Biointegration, University of Alabama at Birmingham , Birmingham, Alabama 35294, United States
| |
Collapse
|
25
|
Xiong D, Yao N, Gu H, Wang J, Zhang L. Stimuli-responsive shell cross-linked micelles from amphiphilic four-arm star copolymers as potential nanocarriers for “pH/redox-triggered” anticancer drug release. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.03.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
26
|
Klimkevicius V, Makuska R. Successive RAFT polymerization of poly(ethylene oxide) methyl ether methacrylates with different length of PEO chains giving diblock brush copolymers. Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2016.11.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Moraes J, Peltier R, Gody G, Blum M, Recalcati S, Klok HA, Perrier S. Influence of Block versus Random Monomer Distribution on the Cellular Uptake of Hydrophilic Copolymers. ACS Macro Lett 2016; 5:1416-1420. [PMID: 35651220 DOI: 10.1021/acsmacrolett.6b00652] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The use of polymers has revolutionized the field of drug delivery in the past two decades. Properties such as polymer size, charge, hydrophilicity, or branching have all been shown to play an important role in the cellular internalization of polymeric systems. In contrast, the fundamental impact of monomer distribution on the resulting biological properties of copolymers remains poorly studied and is always only investigated for biologically active self-assembling polymeric systems. Here, we explore the fundamental influence of monomer distribution on the cellular uptake of nonaggregating and biologically passive copolymers. Reversible addition-fragmentation chain-transfer (RAFT) polymerization was used to prepare precisely defined copolymers of three hydrophilic acrylamide monomers. The cellular internalization of block copolymers was compared with the uptake of a random copolymer where monomers are statistically distributed along the chain. The results demonstrate that monomer distribution in itself has a negligible impact on copolymer uptake.
Collapse
Affiliation(s)
- John Moraes
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux et Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| | - Raoul Peltier
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux et Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| | - Guillaume Gody
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux et Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| | - Muriel Blum
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux et Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| | - Sebastien Recalcati
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux et Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| | - Harm-Anton Klok
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux et Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| | - Sébastien Perrier
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux et Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| |
Collapse
|
28
|
Till U, Gibot L, Mingotaud AF, Ehrhart J, Wasungu L, Mingotaud C, Souchard JP, Poinso A, Rols MP, Violleau F, Vicendo P. Drug Release by Direct Jump from Poly(ethylene-glycol-b-ε-caprolactone) Nano-Vector to Cell Membrane. Molecules 2016; 21:E1643. [PMID: 27916905 PMCID: PMC6273951 DOI: 10.3390/molecules21121643] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 11/15/2016] [Accepted: 11/18/2016] [Indexed: 01/07/2023] Open
Abstract
Drug delivery by nanovectors involves numerous processes, one of the most important being its release from the carrier. This point still remains unclear. The current work focuses on this point using poly(ethyleneglycol-b-ε-caprolactone) micelles containing either pheophorbide-a (Pheo-a) as a fluorescent probe and a phototoxic agent or fluorescent copolymers. This study showed that the cellular uptake and the phototoxicity of loaded Pheo-a are ten times higher than those of the free drug and revealed a very low cellular penetration of the fluorescence-labeled micelles. Neither loaded nor free Pheo-a displayed the same cellular localization as the labeled micelles. These results imply that the drug entered the cells without its carrier and probably without a disruption, as suggested by their stability in cell culture medium. These data allowed us to propose that Pheo-a directly migrates from the micelle to the cell without disruption of the vector. This mechanism will be discussed.
Collapse
Affiliation(s)
- Ugo Till
- Université de Toulouse, UPS/CNRS, IMRCP, 118 Rte de Narbonne, 31062 Toulouse, France.
| | - Laure Gibot
- Université de Toulouse, Equipe de Biophysique Cellulaire, IPBS-CNRS UMR5089 205, Route de Narbonne BP 64182, 31077 Toulouse, France.
| | | | - Jérôme Ehrhart
- Université de Toulouse, UPS/CNRS, IMRCP, 118 Rte de Narbonne, 31062 Toulouse, France.
| | - Luc Wasungu
- Université de Toulouse, Equipe de Biophysique Cellulaire, IPBS-CNRS UMR5089 205, Route de Narbonne BP 64182, 31077 Toulouse, France.
| | - Christophe Mingotaud
- Université de Toulouse, UPS/CNRS, IMRCP, 118 Rte de Narbonne, 31062 Toulouse, France.
| | - Jean-Pierre Souchard
- Université de Toulouse, UPS/CNRS, IMRCP, 118 Rte de Narbonne, 31062 Toulouse, France.
| | - Alix Poinso
- Université de Toulouse, UPS/CNRS, IMRCP, 118 Rte de Narbonne, 31062 Toulouse, France.
| | - Marie-Pierre Rols
- Université de Toulouse, Equipe de Biophysique Cellulaire, IPBS-CNRS UMR5089 205, Route de Narbonne BP 64182, 31077 Toulouse, France.
| | - Frédéric Violleau
- Université de Toulouse, Laboratoire de Chimie Agro-industrielle (LCA), INRA, INPT, INP-EI PURPAN, 31076 Toulouse, France.
| | - Patricia Vicendo
- Université de Toulouse, UPS/CNRS, IMRCP, 118 Rte de Narbonne, 31062 Toulouse, France.
| |
Collapse
|
29
|
Zaquen N, Lu H, Chang T, Mamdooh R, Lutsen L, Vanderzande D, Stenzel M, Junkers T. Profluorescent PPV-Based Micellar System as a Versatile Probe for Bioimaging and Drug Delivery. Biomacromolecules 2016; 17:4086-4094. [DOI: 10.1021/acs.biomac.6b01653] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Neomy Zaquen
- Institute for Materials Research, Hasselt University, Martelarenlaan 42, 3500 Hasselt, Belgium
| | - Hongxu Lu
- Center for Advanced Macromolecular Design (CAMD), School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Teddy Chang
- Center for Advanced Macromolecular Design (CAMD), School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Russel Mamdooh
- Center for Advanced Macromolecular Design (CAMD), School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Laurence Lutsen
- Imec Associated Lab IMOMEC, Wetenschapspark 1, 3590 Diepenbeek, Belgium
| | - Dirk Vanderzande
- Institute for Materials Research, Hasselt University, Martelarenlaan 42, 3500 Hasselt, Belgium
- Imec Associated Lab IMOMEC, Wetenschapspark 1, 3590 Diepenbeek, Belgium
| | - Martina Stenzel
- Center for Advanced Macromolecular Design (CAMD), School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Tanja Junkers
- Institute for Materials Research, Hasselt University, Martelarenlaan 42, 3500 Hasselt, Belgium
- Imec Associated Lab IMOMEC, Wetenschapspark 1, 3590 Diepenbeek, Belgium
| |
Collapse
|
30
|
Du AW, Lu H, Stenzel M. Stabilization of Paclitaxel-Conjugated Micelles by Cross-Linking with Cystamine Compromises the Antitumor Effects against Two- and Three-Dimensional Tumor Cellular Models. Mol Pharm 2016; 13:3648-3656. [DOI: 10.1021/acs.molpharmaceut.6b00410] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alice Wei Du
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical
Engineering, and ‡School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Hongxu Lu
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical
Engineering, and ‡School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Martina Stenzel
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical
Engineering, and ‡School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
31
|
Rudolph T, Schacher FH. Selective crosslinking or addressing of individual domains within block copolymer nanostructures. Eur Polym J 2016. [DOI: 10.1016/j.eurpolymj.2016.03.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
32
|
Chang T, Gosain P, Stenzel MH, Lord MS. Drug-loading of poly(ethylene glycol methyl ether methacrylate) (PEGMEMA)-based micelles and mechanisms of uptake in colon carcinoma cells. Colloids Surf B Biointerfaces 2016; 144:257-264. [PMID: 27100852 DOI: 10.1016/j.colsurfb.2016.04.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 03/11/2016] [Accepted: 04/08/2016] [Indexed: 11/25/2022]
Abstract
In this study polymeric micelles formed from poly(poly(ethylene glycol) methyl ether methacrylate)-block-poly(methyl methacrylate) (P(PEGMEMA75)-b-PMMA80) block copolymer of approximately 25nm in diameter were used to encapsulate the model drug, Nile Red, with a loading efficiency of 0.08wt% and a chemotherapeutic drug, doxorubicin (DOX), with an efficiency of 2.75wt%. The release of DOX from the micelles was sufficient to be cytotoxic to human colon carcinoma cells, WiDr, while Nile Red and the unloaded micelles were found not to be cytotoxic when exposed to the cells at polymer concentrations up to 200μg/mL. Nile Red loaded micelles were used to analyze uptake of the micelles into the cells which were rapidly internalized within minutes of exposure. The three major endocytotic pathways were involved in the internalization of micelles; however other passive mechanisms were also at play as the addition of inhibitors to all three pathways did not completely inhibit the uptake of these nanoparticles. These data demonstrate the potential of the P(PEGMEMA)75-b-PMMA80 block copolymer micelles to be rapidly internalized by carcinoma cells and deliver low doses of drugs intracellularly for controlled drug release.
Collapse
Affiliation(s)
- Teddy Chang
- Graduate School of Biomedical Engineering. University of New South Wales, Sydney, NSW 2052, Australia
| | - Pallavi Gosain
- Graduate School of Biomedical Engineering. University of New South Wales, Sydney, NSW 2052, Australia
| | - Martina H Stenzel
- Centre for Advanced Macromolecular Design, School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Megan S Lord
- Graduate School of Biomedical Engineering. University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
33
|
Chang T, Trench D, Putnam J, Stenzel MH, Lord MS. Curcumin-Loading-Dependent Stability of PEGMEMA-Based Micelles Affects Endocytosis and Exocytosis in Colon Carcinoma Cells. Mol Pharm 2016; 13:924-32. [PMID: 26755445 DOI: 10.1021/acs.molpharmaceut.5b00820] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Polymeric micelles were formed from poly(poly(ethylene glycol) methyl ether methacrylate)-block-poly(styrene) (P(PEGMEMA)-b-PS) block copolymer of two different chain lengths. The micelles formed were approximately 16 and 46 nm in diameter and used to encapsulate curcumin. Upon loading of the curcumin into the micelles, their size increased to approximately 34 and 80 nm in diameter, respectively, with a loading efficiency of 58%. The unloaded micelles were not cytotoxic to human colon carcinoma cells, whereas only the smaller loaded micelles were cytotoxic after 72 h of exposure. The micelles were rapidly internalized by the cells within minutes of exposure, with the loaded micelles internalized to a greater extent owing to their enhanced stability compared to that of the unloaded micelles. The larger micelles were more rapidly internalized and exocytosed than the smaller micelles, demonstrating the effect of micelle size and drug loading on drug delivery and cytotoxicity.
Collapse
Affiliation(s)
- Teddy Chang
- Graduate School of Biomedical Engineering and ‡Centre for Advanced Macromolecular Design, School of Chemistry, University of New South Wales , Sydney, NSW 2052, Australia
| | - David Trench
- Graduate School of Biomedical Engineering and ‡Centre for Advanced Macromolecular Design, School of Chemistry, University of New South Wales , Sydney, NSW 2052, Australia
| | - Joshua Putnam
- Graduate School of Biomedical Engineering and ‡Centre for Advanced Macromolecular Design, School of Chemistry, University of New South Wales , Sydney, NSW 2052, Australia
| | - Martina H Stenzel
- Graduate School of Biomedical Engineering and ‡Centre for Advanced Macromolecular Design, School of Chemistry, University of New South Wales , Sydney, NSW 2052, Australia
| | - Megan S Lord
- Graduate School of Biomedical Engineering and ‡Centre for Advanced Macromolecular Design, School of Chemistry, University of New South Wales , Sydney, NSW 2052, Australia
| |
Collapse
|
34
|
Callari M, Thomas DS, Stenzel MH. The dual-role of Pt(iv) complexes as active drug and crosslinker for micelles based on β-cyclodextrin grafted polymer. J Mater Chem B 2016; 4:2114-2123. [DOI: 10.1039/c5tb02429c] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Amphiphilic block copolymer based on poly(ethylene glycol) methyl ether methacrylate (POEGMEMA) and a block with pendant cyclodextrin units were self-assembled into micelles in the presence of the hydrophobic bile acid-based Pt(IV) drug, which also acted as crosslinker.
Collapse
Affiliation(s)
- Manuela Callari
- Centre for Advanced Macromolecular Design
- School of Chemistry
- University of New South Wales
- Sydney
- Australia
| | - Donald S. Thomas
- Mark Wainwright Analytical Centre
- University of New South Wales
- Sydney
- Australia
| | - Martina H. Stenzel
- Centre for Advanced Macromolecular Design
- School of Chemistry
- University of New South Wales
- Sydney
- Australia
| |
Collapse
|
35
|
Nasr FH, Khoee S. Design, characterization and in vitro evaluation of novel shell crosslinked poly(butylene adipate)-co-N-succinyl chitosan nanogels containing loteprednol etabonate: A new system for therapeutic effect enhancement via controlled drug delivery. Eur J Med Chem 2015; 102:132-42. [PMID: 26263245 DOI: 10.1016/j.ejmech.2015.07.045] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Revised: 07/24/2015] [Accepted: 07/25/2015] [Indexed: 01/27/2023]
Abstract
This study reports on the development of a novel mucoadhesive and biocompatible shell-crosslinked nanogel system based on poly(butylene adipate) (PBA) and N-succinyl chitosan (S-Cs) by coupling reaction with a new formulation method. For this purpose, two different molecular weights of dendrimerized PBA with amine terminated functional groups were synthesized separately and characterized well by FT-IR, (1)HNMR and GPC. The PBA nanoparticles containing loteprednol etabonate (LPE) prepared by O/W emulsion technique were reacted immediately with modified carboxylated chitosan via carbodiimide chemistry. TEM photographs of the nanoparticles and crosslinked nanoparticles displayed a spherical morphology closely corresponding to the results obtained by DLS. On The other hand, biodegradability, biocompatibility and bioadhesiveness of the prepared nanoparticles were also studied. It is concluded that the core-shell structured nanogels can be used as novel ocular drug delivery systems with appropriate loading capacity for slightly water soluble LPE as an anti-inflammatory drug.
Collapse
Affiliation(s)
- Farzaneh Hashemi Nasr
- Polymer Laboratory, Chemistry Department, School of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran
| | - Sepideh Khoee
- Polymer Laboratory, Chemistry Department, School of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran.
| |
Collapse
|
36
|
Zhao J, Babiuch K, Lu H, Dag A, Gottschaldt M, Stenzel MH. Fructose-coated nanoparticles: a promising drug nanocarrier for triple-negative breast cancer therapy. Chem Commun (Camb) 2015; 50:15928-31. [PMID: 25382088 DOI: 10.1039/c4cc06651k] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fructose transporter GLUT5 is overexpressed in breast cancer cell lines, but not in healthy tissue. Micelles based on fructose, which were found to be low fouling, showed a high uptake by breast cancer cells (MCF-7 and MDA-MB-231 cells), but only negligible uptake by macrophages.
Collapse
Affiliation(s)
- Jiacheng Zhao
- Centre for Advanced Macromolecular Design, School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia.
| | | | | | | | | | | |
Collapse
|
37
|
Utama RH, Jiang Y, Zetterlund PB, Stenzel MH. Biocompatible Glycopolymer Nanocapsules via Inverse Miniemulsion Periphery RAFT Polymerization for the Delivery of Gemcitabine. Biomacromolecules 2015; 16:2144-56. [PMID: 26027950 DOI: 10.1021/acs.biomac.5b00545] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Encapsulation of hydrophilic cancer drugs in polymeric nanocapsules was achieved in a one-pot process via the inverse miniemulsion periphery RAFT polymerization (IMEPP) approach. The chosen guest molecule was gemcitabine hydrochloride, which is used as the first-line treatment of pancreatic cancer. The resulting nanocapsules were confirmed to be ∼200 nm, with excellent encapsulation (∼96%) and loading (∼12%) efficiency. Postpolymerization reaction was successfully conducted to create glyocopolymer nanocapsules without any impact on the loads as well as the nanocapsules size or morphology. The loaded nanocapsules were specifically designed to be responsive in a reductive environment. This was confirmed by the successful disintegration of the nanocapsules in the presence of glutathione. The gemcitabine-loaded nanocapsules were tested in vitro against pancreatic cancer cells (AsPC-1), with the results showing an enhancement in the cytotoxicity by two fold due to selective accumulation and release of the nanocapsules within the cells. The results demonstrated the versatility of IMEPP as a tool to synthesize functionalized, loaded-polymeric nanocapsules suitable for drug-delivery application.
Collapse
Affiliation(s)
- Robert H Utama
- ‡Centre for Advanced Macromolecular Design (CAMD), School of Chemistry, University of New South Wales, Sydney 2052, Australia
| | - Yanyan Jiang
- †Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia.,‡Centre for Advanced Macromolecular Design (CAMD), School of Chemistry, University of New South Wales, Sydney 2052, Australia
| | - Per B Zetterlund
- †Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Martina H Stenzel
- †Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia.,‡Centre for Advanced Macromolecular Design (CAMD), School of Chemistry, University of New South Wales, Sydney 2052, Australia
| |
Collapse
|
38
|
Khine YY, Jiang Y, Dag A, Lu H, Stenzel MH. Dual-Responsive pH and Temperature Sensitive Nanoparticles Based on Methacrylic Acid and Di(ethylene glycol) Methyl Ether Methacrylate for the Triggered Release of Drugs. Macromol Biosci 2015; 15:1091-104. [DOI: 10.1002/mabi.201500057] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 04/12/2015] [Indexed: 02/03/2023]
Affiliation(s)
- Yee Yee Khine
- Centre for Advanced Macromolecular Design (CAMD); School of Chemistry; University of New South Wales; Sydney NSW 2052 Australia
| | - Yanyan Jiang
- Centre for Advanced Macromolecular Design (CAMD); School of Chemistry; University of New South Wales; Sydney NSW 2052 Australia
| | - Aydan Dag
- Centre for Advanced Macromolecular Design (CAMD); School of Chemistry; University of New South Wales; Sydney NSW 2052 Australia
- Department of Pharmaceutical Chemistry; Faculty of Pharmacy; BezmialemVakif University; 34093 Fatih Istanbul Turkey
| | - Hongxu Lu
- Centre for Advanced Macromolecular Design (CAMD); School of Chemistry; University of New South Wales; Sydney NSW 2052 Australia
| | - Martina H. Stenzel
- Centre for Advanced Macromolecular Design (CAMD); School of Chemistry; University of New South Wales; Sydney NSW 2052 Australia
| |
Collapse
|
39
|
Du AW, Lu H, Stenzel MH. Core-Cross-Linking Accelerates Antitumor Activities of Paclitaxel-Conjugate Micelles to Prostate Multicellular Tumor Spheroids: A Comparison of 2D and 3D Models. Biomacromolecules 2015; 16:1470-9. [PMID: 25857405 DOI: 10.1021/acs.biomac.5b00282] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The 2D monolayer cell culture model is often the first step in the prediction of the success or failure of a nanoparticle-based drug delivery system. However, there is often poor translation between the 2D monolayer in vitro results and the nanoparticle-drug performance in vivo. One possible way of bridging this gap is the use of multicellular tumor spheroids (MCTSs) as an intermediate in vitro model due to its 3D structure. This paper aims to quantify and compare the results obtained from traditional 2D monolayer cell cultures and 3D MCTS by studying the cytotoxic effects of free paclitaxel (PTX) and paclitaxel, which has been conjugated to a poly(ethylene glycol methyl ether acrylate)-b-poly(carboxyethyl acrylate) (POEGMEA-b-PCEA-PTX) block copolymer and self-assembled to give a micellar delivery system. The core of the micelle was cross-linked with a diamino nondegradable cross-linker to compare the effects of micelle stability on the results. Although the 2D prostate tumor cell culture results indicated that all micellar variants (IC50: 193-271 nM) were significantly less toxic than free paclitaxel (IC50: 15.2 nM), the micelles showed faster and higher cytotoxicity than free PTX in the 3D prostate MCTS. The cross-linking of micelles even showed accelerated antitumor activities to the MCTS compared with un-cross-linked micelles. The results indicate that DAO-cross-linked POEGMEA-b-PCEA-PTX conjugate micelles will be a useful nanodrug carrier for prostate cancer therapy. MCTS offers a very promising method of incorporating 3D structures into in vitro testing.
Collapse
Affiliation(s)
- Alice W Du
- †School of Chemical Engineering and ‡School of Chemistry, Centre for Advanced Macromolecular Design (CAMD), University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Hongxu Lu
- †School of Chemical Engineering and ‡School of Chemistry, Centre for Advanced Macromolecular Design (CAMD), University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Martina H Stenzel
- †School of Chemical Engineering and ‡School of Chemistry, Centre for Advanced Macromolecular Design (CAMD), University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
40
|
Utama RH, Dulle M, Förster S, Stenzel MH, Zetterlund PB. SAXS Analysis of Shell Formation During Nanocapsule Synthesis via Inverse Miniemulsion Periphery RAFT Polymerization. Macromol Rapid Commun 2015; 36:1267-71. [DOI: 10.1002/marc.201500096] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 03/18/2015] [Indexed: 11/09/2022]
Affiliation(s)
- Robert H. Utama
- Centre for Advanced Macromolecular Design; School of Chemical Engineering The University of New South Wales; Sydney NSW 2052 Australia
| | - Martin Dulle
- Physikalische Chemie I; Universität Bayreuth; 95447 Bayreuth Germany
| | - Stephan Förster
- Physikalische Chemie I; Universität Bayreuth; 95447 Bayreuth Germany
| | - Martina H. Stenzel
- Centre for Advanced Macromolecular Design School of Chemistry; The University of New South Wales; Sydney NSW 2052 Australia
| | - Per B. Zetterlund
- Centre for Advanced Macromolecular Design; School of Chemical Engineering The University of New South Wales; Sydney NSW 2052 Australia
| |
Collapse
|
41
|
Hu J, Liu S. Supramolecular Assembly-Assisted Synthesis of Responsive Polymeric Materials with Controlled Chain Topologies. MACROMOL CHEM PHYS 2015. [DOI: 10.1002/macp.201400578] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Jinming Hu
- CAS Key Laboratory of Soft Matter Chemistry; University of Science and Technology of China; Hefei Anhui 230026 China
- Department of Polymer Science and Engineering; University of Science and Technology of China; Hefei Anhui 230026 China
| | - Shiyong Liu
- CAS Key Laboratory of Soft Matter Chemistry; University of Science and Technology of China; Hefei Anhui 230026 China
- Department of Polymer Science and Engineering; University of Science and Technology of China; Hefei Anhui 230026 China
- Hefei National Laboratory for Physical Sciences at the Microscale; University of Science and Technology of China; Hefei Anhui 230026 China
- Collaborative Innovation Center of Chemistry for Energy Materials; University of Science and Technology of China; Hefei Anhui 230026 China
| |
Collapse
|
42
|
Pearson S, Lu H, Stenzel MH. Glycopolymer Self-Assemblies with Gold(I) Complexed to the Core as a Delivery System for Auranofin. Macromolecules 2015. [DOI: 10.1021/ma502263x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Samuel Pearson
- Centre for Advanced Macromolecular
Design, School of Chemistry, The University of New South Wales, UNSW, Sydney, NSW 2052, Australia
| | - Hongxu Lu
- Centre for Advanced Macromolecular
Design, School of Chemistry, The University of New South Wales, UNSW, Sydney, NSW 2052, Australia
| | - Martina H. Stenzel
- Centre for Advanced Macromolecular
Design, School of Chemistry, The University of New South Wales, UNSW, Sydney, NSW 2052, Australia
| |
Collapse
|
43
|
Eliezar J, Scarano W, Boase NRB, Thurecht KJ, Stenzel MH. In vivo evaluation of folate decorated cross-linked micelles for the delivery of platinum anticancer drugs. Biomacromolecules 2015; 16:515-23. [PMID: 25543837 DOI: 10.1021/bm501558d] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The biodistribution of micelles with and without folic acid targeting ligands were studied using a block copolymer consisting of acrylic acid (AA) and polyethylene glycol methyl ether acrylate (PEGMEA) blocks. The polymers were prepared using RAFT polymerization in the presence of a folic acid functionalized RAFT agent. Oxoplatin was conjugated onto the acrylic acid block to form amphiphilic polymers which, when diluted in water, formed stable micelles. In order to probe the in vivo stability, a selection of micelles were cross-linked using 1,8-diamino octane. The sizes of the micelles used in this study range between 75 and 200 nm, with both spherical and worm-like conformation. The effects of cross-linking, folate conjugation and different conformation on the biodistribution were studied in female nude mice (BALB/c) following intravenous injection into the tail vein. Using optical imaging to monitor the fluorophore-labeled polymer, the in vivo biodistribution of the micelles was monitored over a 48 h time-course after which the organs were removed and evaluated ex vivo. These experiments showed that both cross-linking and conjugation with folic acid led to increased fluorescence intensities in the organs, especially in the liver and kidneys, while micelles that are not conjugated with folate and not cross-linked are cleared rapidly from the body. Higher accumulation in the spleen, liver, and kidneys was also observed for micelles with worm-like shapes compared to the spherical micelles. While the various factors of cross-linking, micelle shape, and conjugation with folic acid all contribute separately to prolong the circulation time of the micelle, optimization of these parameters for drug delivery devices could potentially overcome adverse effects such as liver and kidney toxicity.
Collapse
Affiliation(s)
- Jeaniffer Eliezar
- Centre for Advanced Macromolecular Design (CAMD), School of Chemistry, University of New South Wales , Sydney, NSW 2052, Australia
| | | | | | | | | |
Collapse
|
44
|
Lu H, Utama RH, Kitiyotsawat U, Babiuch K, Jiang Y, Stenzel MH. Enhanced transcellular penetration and drug delivery by crosslinked polymeric micelles into pancreatic multicellular tumor spheroids. Biomater Sci 2015. [DOI: 10.1039/c4bm00323c] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The penetration of HPMA-based micelles into multicellular tumor spheroids depends on transcellular transport from peripheral to inner cells. Stabilisation by crosslinking facilitated the penetration.
Collapse
Affiliation(s)
- Hongxu Lu
- Centre for Advanced Macromolecular Design
- School of Chemistry
- University of New South Wales
- Sydney
- Australia
| | - Robert H. Utama
- School of Chemical Engineering
- University of New South Wales
- Sydney
- Australia
| | | | - Krzysztof Babiuch
- Centre for Advanced Macromolecular Design
- School of Chemistry
- University of New South Wales
- Sydney
- Australia
| | - Yanyan Jiang
- School of Chemical Engineering
- University of New South Wales
- Sydney
- Australia
| | - Martina H. Stenzel
- Centre for Advanced Macromolecular Design
- School of Chemistry
- University of New South Wales
- Sydney
- Australia
| |
Collapse
|
45
|
Deng H, Zhang Y, Wang X, Cao Y, Liu J, Liu J, Deng L, Dong A. Balancing the stability and drug release of polymer micelles by the coordination of dual-sensitive cleavable bonds in cross-linked core. Acta Biomater 2015; 11:126-36. [PMID: 25288518 DOI: 10.1016/j.actbio.2014.09.047] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 09/03/2014] [Accepted: 09/25/2014] [Indexed: 11/15/2022]
Abstract
The optimal structure design of nanocarriers to inhibit premature release of anticancer drugs from nanocarriers during blood circulation and improve drug release inside tumor cells is still a significant issue for polymer micelles applied to antitumor drug delivery. Herein, in order to balance the contradiction between polymer micellar stability and drug release, dual-sensitive cleavable cross-linkages of benzoic imine conjugated disulfide bonds were introduced into the core of the amphiphilic copolymer micelles to form core-cross-linked micelles. First, biodegradable poly(ethylene glycol)-b-(polycaprolactone-g-poly(methacrylic acid-p-hydroxy benzaldehyde-cystamine)), i.e. mPEG-b-(PCL-g-P(MAA-Hy-Cys)) (PECMHC) copolymers were synthesized and assembled into PECMHC micelles (PECMHC Ms). Then, simply by introducing H2O2 to the PECMHC Ms dispersions to oxidate the thiol groups of cystamine moieties in the core, core-cross-linked PECMHC micelles (cc-PECMHC Ms) ∼100 nm in size were readily obtained in water. In vitro studies of doxorubicin (DOX)-loaded cc-PECMHC Ms show that the cross-linked core impeded the drug release in the physical conditions, owing to the high stability of the micelles against both extensive dilution and salt concentration, while it greatly accelerated DOX release in mildly acidic (pH ∼5.0-6.0) medium with glutathione, owing to the coordination of the pH-sensitive cleaving of benzoic imine bonds and the reduction-sensitive cleaving of disulfide bonds. The in vivo tissue distribution and tumor accumulation of the DOX-loaded cc-PECMHC Ms were monitored via fluorescence images of DOX. DOX-loaded cc-PECMHC Ms exhibited enhanced tumor accumulation because of their high stability in blood circulation and less DOX premature release. Therefore, the cc-PECMHC Ms with dual-sensitive cleavable bonds in the cross-linked core were of excellent biocompatibility, high extracellular stability and had intelligent intracellular drug release properties, indicating promise as candidates for anticancer drug delivery.
Collapse
Affiliation(s)
- Hongzhang Deng
- Department of Polymer Science and Technology and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Yumin Zhang
- Tianjin Key Laboratory of Radiation Molecular and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| | - Xue Wang
- Department of Polymer Science and Technology and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yan Cao
- Department of Polymer Science and Technology and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Jinjian Liu
- Tianjin Key Laboratory of Radiation Molecular and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| | - Jianfeng Liu
- Tianjin Key Laboratory of Radiation Molecular and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China.
| | - Liandong Deng
- Department of Polymer Science and Technology and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Anjie Dong
- Department of Polymer Science and Technology and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| |
Collapse
|
46
|
He H, Ren Y, Dou Y, Ding T, Fang X, Xu Y, Xu H, Zhang W, Xie Z. Photo-cross-linked poly(ether amine) micelles for controlled drug release. RSC Adv 2015. [DOI: 10.1039/c5ra22679a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
In order to improve the stability of micelles and decrease the burst release of loaded drugs, photo-cross-linked micelles were prepared via photodimerization of the coumarin moiety on amphiphilic poly(ether amine) (PEAC).
Collapse
Affiliation(s)
- Haozhe He
- College of Chemistry and Chemical Engineering
- Henan Universi
- Kaifeng
- P. R. China
| | - Yanrong Ren
- College of Chemistry and Chemical Engineering
- Henan Universi
- Kaifeng
- P. R. China
| | - Yuge Dou
- College of Chemistry and Chemical Engineering
- Henan Universi
- Kaifeng
- P. R. China
| | - Tao Ding
- College of Chemistry and Chemical Engineering
- Henan Universi
- Kaifeng
- P. R. China
| | - Xiaomin Fang
- College of Chemistry and Chemical Engineering
- Henan Universi
- Kaifeng
- P. R. China
| | - Yuanqing Xu
- College of Chemistry and Chemical Engineering
- Henan Universi
- Kaifeng
- P. R. China
| | - Hao Xu
- College of Chemistry and Chemical Engineering
- Henan Universi
- Kaifeng
- P. R. China
| | - Wenkai Zhang
- College of Chemistry and Chemical Engineering
- Henan Universi
- Kaifeng
- P. R. China
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry
- Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- P. R. China
| |
Collapse
|
47
|
Ke X, Ng VWL, Ono RJ, Chan JM, Krishnamurthy S, Wang Y, Hedrick JL, Yang YY. Role of non-covalent and covalent interactions in cargo loading capacity and stability of polymeric micelles. J Control Release 2014; 193:9-26. [DOI: 10.1016/j.jconrel.2014.06.061] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 06/10/2014] [Accepted: 06/24/2014] [Indexed: 10/25/2022]
|
48
|
Li Y, Niu Y, Hu D, Song Y, He J, Liu X, Xia X, Lu Y, Xu W. Preparation of Light-Responsive Polyester Micelles via Ring-Opening Polymerization ofO-Carboxyanhydride and Azide-Alkyne Click Chemistry. MACROMOL CHEM PHYS 2014. [DOI: 10.1002/macp.201400406] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yefei Li
- Institute of Polymer Science and Engineering; College of Chemistry & Chemical Engineering; Hunan University; Changsha 410082 China
| | - Yile Niu
- Institute of Polymer Science and Engineering; College of Chemistry & Chemical Engineering; Hunan University; Changsha 410082 China
| | - Ding Hu
- Institute of Polymer Science and Engineering; College of Chemistry & Chemical Engineering; Hunan University; Changsha 410082 China
| | - Yawei Song
- Institute of Polymer Science and Engineering; College of Chemistry & Chemical Engineering; Hunan University; Changsha 410082 China
| | - Jingwen He
- Institute of Polymer Science and Engineering; College of Chemistry & Chemical Engineering; Hunan University; Changsha 410082 China
| | - Xiangyu Liu
- Institute of Polymer Science and Engineering; College of Chemistry & Chemical Engineering; Hunan University; Changsha 410082 China
| | - Xinnian Xia
- Institute of Polymer Science and Engineering; College of Chemistry & Chemical Engineering; Hunan University; Changsha 410082 China
| | - Yanbing Lu
- Institute of Polymer Science and Engineering; College of Chemistry & Chemical Engineering; Hunan University; Changsha 410082 China
| | - Weijian Xu
- Institute of Polymer Science and Engineering; College of Chemistry & Chemical Engineering; Hunan University; Changsha 410082 China
| |
Collapse
|
49
|
Scarano W, de Souza P, Stenzel MH. Dual-drug delivery of curcumin and platinum drugs in polymeric micelles enhances the synergistic effects: a double act for the treatment of multidrug-resistant cancer. Biomater Sci 2014. [PMID: 26214199 DOI: 10.1039/c4bm00272e] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Combinational chemotherapy is often used to prevent drug induced resistance in cancer. The aim of this work is to test whether the co-delivery of drugs within one nanoparticle can result in increased synergistic effects of both drugs. Therefore, a micelle system with two different compartments, one for the drug curcumin and one for the conjugation of platinum drugs was designed. A triblock copolymer, based on the biodegradable polycaprolactone PCL, a PEG based shell and an amine bearing polymer as the interphase for the conjugation of platinum drugs was prepared by combination of ring-opening polymerization and RAFT polymerization. Curcumin was incorporated into the self-assembled onion-type micelle by physical encapsulation into the PCL core with an entrapment capacity of 6 wt%. The platinum(iv) drug oxoplatin was reacted with succinic anhydride to yield Pt(NH3)2Cl2[(COOH)2], which acted as the drug and as a crosslinker for the stabilisation of micelles. The size of the dual drug micelles was measured to be 38 nm by DLS, which was confirmed by TEM. The toxicity of the dual drug delivery system was tested against the A2780 human ovarian cancer cell line and compared with the IC50 value of micelles that deliver either curcumin or the platinum drug alone. The results were analysed using the CalcuSyn software. While curcumin and the platinum drug together without a carrier already showed synergy with a combination index ranging from 0.4 to 0.8, the combined delivery in one nanoparticle did enhance the synergistic effects resulting in a combination index of approximately 0.2-0.35. For comparison, a mixture of two nanoparticles, one with curcumin and the other with the platinum drug, was tested revealing a less noticeable synergistic effect compared to the co-delivery of both drugs in one drug carrier.
Collapse
Affiliation(s)
- Wei Scarano
- Centre for Advanced Macromolecular Design (CAMD), School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia.
| | | | | |
Collapse
|
50
|
Callari M, Aldrich-Wright JR, de Souza PL, Stenzel MH. Polymers with platinum drugs and other macromolecular metal complexes for cancer treatment. Prog Polym Sci 2014. [DOI: 10.1016/j.progpolymsci.2014.05.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|