1
|
Kubyshkin V, Rubini M. Proline Analogues. Chem Rev 2024; 124:8130-8232. [PMID: 38941181 DOI: 10.1021/acs.chemrev.4c00007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Within the canonical repertoire of the amino acid involved in protein biogenesis, proline plays a unique role as an amino acid presenting a modified backbone rather than a side-chain. Chemical structures that mimic proline but introduce changes into its specific molecular features are defined as proline analogues. This review article summarizes the existing chemical, physicochemical, and biochemical knowledge about this peculiar family of structures. We group proline analogues from the following compounds: substituted prolines, unsaturated and fused structures, ring size homologues, heterocyclic, e.g., pseudoproline, and bridged proline-resembling structures. We overview (1) the occurrence of proline analogues in nature and their chemical synthesis, (2) physicochemical properties including ring conformation and cis/trans amide isomerization, (3) use in commercial drugs such as nirmatrelvir recently approved against COVID-19, (4) peptide and protein synthesis involving proline analogues, (5) specific opportunities created in peptide engineering, and (6) cases of protein engineering with the analogues. The review aims to provide a summary to anyone interested in using proline analogues in systems ranging from specific biochemical setups to complex biological systems.
Collapse
Affiliation(s)
| | - Marina Rubini
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
2
|
Pepe A, Laezza A, Armiento F, Bochicchio B. Chemical Modifications in Hyaluronic Acid-Based Electrospun Scaffolds. Chempluschem 2024; 89:e202300599. [PMID: 38507283 DOI: 10.1002/cplu.202300599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 03/22/2024]
Abstract
Hyaluronic acid (HA) is a natural, non-sulfated glycosaminoglycan (GAG) present in ECM. It is involved in different biological functions with appealing properties in cosmetics and pharmaceutical preparations as well as in tissue engineering. Generally, HA has been electrospun in blends with natural or synthetic polymers to produce fibers having diameters in the order of nano and micro-scale whose pores can host cells able to regenerate damaged tissues. In the last decade, a rich literature on electrospun HA-based materials arose. Chemical modifications were generally introduced in HA scaffolds to favour crosslinking or conjugation with bioactive molecules. Considering the high solubility of HA in water, HA-based electrospun scaffolds are cross-linked to increase the stability in biological fluids. Crosslinking is necessary also to avoid the release of HA from the hybrid scaffold when implanted in-vivo. Furthermore, to endow the HA based scaffolds with new chemical or biological properties, conjugation of bioactive molecules to HA was widely reported. Herein, we review the existing research classifying chemical modifications on HA and HA-based electrospun fibers into three categories: i) in-situ crosslinking of electrospun HA-based scaffolds ii) off-site crosslinking of electrospun HA-based scaffolds; iii) conjugation of biofunctional molecules to HA with focus on peptides.
Collapse
Affiliation(s)
- Antonietta Pepe
- Department of Science, University of Basilicata, Via Ateneo Lucano, 10, 85100, Potenza, Italy
| | - Antonio Laezza
- Department of Science, University of Basilicata, Via Ateneo Lucano, 10, 85100, Potenza, Italy
| | - Francesca Armiento
- Department of Science, University of Basilicata, Via Ateneo Lucano, 10, 85100, Potenza, Italy
| | - Brigida Bochicchio
- Department of Science, University of Basilicata, Via Ateneo Lucano, 10, 85100, Potenza, Italy
| |
Collapse
|
3
|
Lau K, Reichheld S, Xian M, Sharpe SJ, Cerruti M. Directed Assembly of Elastic Fibers via Coacervate Droplet Deposition on Electrospun Templates. Biomacromolecules 2024; 25:3519-3531. [PMID: 38742604 DOI: 10.1021/acs.biomac.4c00180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Elastic fibers provide critical elasticity to the arteries, lungs, and other organs. Elastic fiber assembly is a process where soluble tropoelastin is coacervated into liquid droplets, cross-linked, and deposited onto and into microfibrils. While much progress has been made in understanding the biology of this process, questions remain regarding the timing of interactions during assembly. Furthermore, it is unclear to what extent fibrous templates are needed to guide coacervate droplets into the correct architecture. The organization and shaping of coacervate droplets onto a fiber template have never been previously modeled or employed as a strategy for shaping elastin fiber materials. Using an in vitro system consisting of elastin-like polypeptides (ELPs), genipin cross-linker, electrospun polylactic-co-glycolic acid (PLGA) fibers, and tannic acid surface coatings for fibers, we explored ELP coacervation, cross-linking, and deposition onto fiber templates. We demonstrate that integration of coacervate droplets into a fibrous template is primarily influenced by two factors: (1) the balance of coacervation and cross-linking and (2) the surface energy of the fiber templates. The success of this integration affects the mechanical properties of the final fiber network. Our resulting membrane materials exhibit highly tunable morphologies and a range of elastic moduli (0.8-1.6 MPa) comparable to native elastic fibers.
Collapse
Affiliation(s)
- Kirklann Lau
- Department of Mining and Materials Engineering, McGill University, 3610 University Street, Wong Building 2250, Montreal, Quebec H3A 0C5, Canada
| | - Sean Reichheld
- Molecular Medicine, Hospital for Sick Children, Peter Gilgan Center for Research and Learning, 686 Bay Street, Room 20.9714, Toronto, Ontario M5G 1X8, Canada
| | - Mingqian Xian
- Department of Mining and Materials Engineering, McGill University, 3610 University Street, Wong Building 2250, Montreal, Quebec H3A 0C5, Canada
| | - Simon J Sharpe
- Molecular Medicine, Hospital for Sick Children, Peter Gilgan Center for Research and Learning, 686 Bay Street, Room 20.9714, Toronto, Ontario M5G 1X8, Canada
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Medical Sciences Building, Room 5207, Toronto, Ontario M5S 1A8, Canada
| | - Marta Cerruti
- Department of Mining and Materials Engineering, McGill University, 3610 University Street, Wong Building 2250, Montreal, Quebec H3A 0C5, Canada
| |
Collapse
|
4
|
Hedtke T, Mende M, Steenbock H, Brinckmann J, Menzel M, Hoehenwarter W, Pietzsch M, Groth T, Schmelzer CEH. Fabrication of Insoluble Elastin by Enzyme-Free Cross-Linking. Macromol Biosci 2023; 23:e2300203. [PMID: 37441796 DOI: 10.1002/mabi.202300203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/15/2023]
Abstract
Elastin is an essential extracellular matrix protein that enables tissues and organs such as arteries, lungs, and skin, which undergo continuous deformation, to stretch and recoil. Here, an approach to fabricating artificial elastin with close-to-native molecular and mechanical characteristics is described. Recombinantly produced tropoelastin are polymerized through coacervation and allysine-mediated cross-linking induced by pyrroloquinoline quinone (PQQ). A technique that allows the recovery and repeated use of PQQ for protein cross-linking by covalent attachment to magnetic Sepharose beads is developed. The produced material closely resembles natural elastin in its molecular, biochemical, and mechanical properties, enabled by the occurrence of the cross-linking amino acids desmosine, isodesmosine, and merodesmosine. It possesses elevated resistance against tryptic proteolysis, and its Young's modulus ranging between 1 and 2 MPa is similar to that of natural elastin. The approach described herein enables the engineering of mechanically resilient, elastin-like materials for biomedical applications.
Collapse
Affiliation(s)
- Tobias Hedtke
- Department of Biological and Macromolecular Materials, Fraunhofer Institute for Microstructure of Materials and Systems IMWS, 06120, Halle (Saale), Germany
- Institute of Pharmacy, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg, Halle (Saale), 06120, Halle (Saale), Germany
| | - Mathias Mende
- Institute of Pharmacy, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg, Halle (Saale), 06120, Halle (Saale), Germany
| | - Heiko Steenbock
- Institute of Virology and Cell Biology, University of Lübeck, 23562, Lübeck, Germany
| | - Jürgen Brinckmann
- Institute of Virology and Cell Biology, University of Lübeck, 23562, Lübeck, Germany
- Department of Dermatology, University of Lübeck, 23538, Lübeck, Germany
| | - Matthias Menzel
- Department of Biological and Macromolecular Materials, Fraunhofer Institute for Microstructure of Materials and Systems IMWS, 06120, Halle (Saale), Germany
| | - Wolfgang Hoehenwarter
- Proteome Analytics Research Group, Leibniz Institute for Plant Biochemistry, 06120, Halle (Saale), Germany
| | - Markus Pietzsch
- Institute of Pharmacy, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg, Halle (Saale), 06120, Halle (Saale), Germany
- Institute of Applied Dermatopharmacy at the Martin Luther University Halle-Wittenberg (IADP), 06120, Halle (Saale), Germany
| | - Thomas Groth
- Institute of Pharmacy, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg, Halle (Saale), 06120, Halle (Saale), Germany
- Interdisciplinary Center of Materials Science, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Christian E H Schmelzer
- Department of Biological and Macromolecular Materials, Fraunhofer Institute for Microstructure of Materials and Systems IMWS, 06120, Halle (Saale), Germany
- Institute of Pharmacy, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg, Halle (Saale), 06120, Halle (Saale), Germany
- Institute of Applied Dermatopharmacy at the Martin Luther University Halle-Wittenberg (IADP), 06120, Halle (Saale), Germany
| |
Collapse
|
5
|
Holl M, Rasch ML, Becker L, Keller AL, Schultze-Rhonhof L, Ruoff F, Templin M, Keller S, Neis F, Keßler F, Andress J, Bachmann C, Krämer B, Schenke-Layland K, Brucker SY, Marzi J, Weiss M. Cell Type-Specific Anti-Adhesion Properties of Peritoneal Cell Treatment with Plasma-Activated Media (PAM). Biomedicines 2022; 10:biomedicines10040927. [PMID: 35453677 PMCID: PMC9032174 DOI: 10.3390/biomedicines10040927] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 11/16/2022] Open
Abstract
Postoperative abdominal adhesions are responsible for serious clinical disorders. Administration of plasma-activated media (PAM) to cell type-specific modulated proliferation and protein biosynthesis is a promising therapeutic strategy to prevent pathological cell responses in the context of wound healing disorders. We analyzed PAM as a therapeutic option based on cell type-specific anti-adhesive responses. Primary human peritoneal fibroblasts and mesothelial cells were isolated, characterized and exposed to different PAM dosages. Cell type-specific PAM effects on different cell components were identified by contact- and marker-independent Raman imaging, followed by thorough validation by specific molecular biological methods. The investigation revealed cell type-specific molecular responses after PAM treatment, including significant cell growth retardation in peritoneal fibroblasts due to transient DNA damage, cell cycle arrest and apoptosis. We identified a therapeutic dose window wherein specifically pro-adhesive peritoneal fibroblasts were targeted, whereas peritoneal mesothelial cells retained their anti-adhesive potential of epithelial wound closure. Finally, we demonstrate that PAM treatment of peritoneal fibroblasts reduced the expression and secretion of pro-adhesive cytokines and extracellular matrix proteins. Altogether, we provide insights into biochemical PAM mechanisms which lead to cell type-specific pro-therapeutic cell responses. This may open the door for the prevention of pro-adhesive clinical disorders.
Collapse
Affiliation(s)
- Myriam Holl
- Department of Women’s Health Tübingen, Eberhard Karls University Tübingen, 72076 Tübingen, Germany; (M.H.); (M.-L.R.); (L.S.-R.); (F.N.); (F.K.); (J.A.); (C.B.); (B.K.); (S.Y.B.)
- NMI Natural and Medical Sciences Institute, University Tübingen, 72770 Reutlingen, Germany; (A.-L.K.); (F.R.); (M.T.); (S.K.); (K.S.-L.); (J.M.)
| | - Marie-Lena Rasch
- Department of Women’s Health Tübingen, Eberhard Karls University Tübingen, 72076 Tübingen, Germany; (M.H.); (M.-L.R.); (L.S.-R.); (F.N.); (F.K.); (J.A.); (C.B.); (B.K.); (S.Y.B.)
- NMI Natural and Medical Sciences Institute, University Tübingen, 72770 Reutlingen, Germany; (A.-L.K.); (F.R.); (M.T.); (S.K.); (K.S.-L.); (J.M.)
| | - Lucas Becker
- Institute of Biomedical Engineering, Eberhard Karls University Tübingen, 72076 Tübingen, Germany;
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, Eberhard Karls University, 72076 Tübingen, Germany
| | - Anna-Lena Keller
- NMI Natural and Medical Sciences Institute, University Tübingen, 72770 Reutlingen, Germany; (A.-L.K.); (F.R.); (M.T.); (S.K.); (K.S.-L.); (J.M.)
| | - Laura Schultze-Rhonhof
- Department of Women’s Health Tübingen, Eberhard Karls University Tübingen, 72076 Tübingen, Germany; (M.H.); (M.-L.R.); (L.S.-R.); (F.N.); (F.K.); (J.A.); (C.B.); (B.K.); (S.Y.B.)
- NMI Natural and Medical Sciences Institute, University Tübingen, 72770 Reutlingen, Germany; (A.-L.K.); (F.R.); (M.T.); (S.K.); (K.S.-L.); (J.M.)
| | - Felix Ruoff
- NMI Natural and Medical Sciences Institute, University Tübingen, 72770 Reutlingen, Germany; (A.-L.K.); (F.R.); (M.T.); (S.K.); (K.S.-L.); (J.M.)
| | - Markus Templin
- NMI Natural and Medical Sciences Institute, University Tübingen, 72770 Reutlingen, Germany; (A.-L.K.); (F.R.); (M.T.); (S.K.); (K.S.-L.); (J.M.)
| | - Silke Keller
- NMI Natural and Medical Sciences Institute, University Tübingen, 72770 Reutlingen, Germany; (A.-L.K.); (F.R.); (M.T.); (S.K.); (K.S.-L.); (J.M.)
| | - Felix Neis
- Department of Women’s Health Tübingen, Eberhard Karls University Tübingen, 72076 Tübingen, Germany; (M.H.); (M.-L.R.); (L.S.-R.); (F.N.); (F.K.); (J.A.); (C.B.); (B.K.); (S.Y.B.)
| | - Franziska Keßler
- Department of Women’s Health Tübingen, Eberhard Karls University Tübingen, 72076 Tübingen, Germany; (M.H.); (M.-L.R.); (L.S.-R.); (F.N.); (F.K.); (J.A.); (C.B.); (B.K.); (S.Y.B.)
| | - Jürgen Andress
- Department of Women’s Health Tübingen, Eberhard Karls University Tübingen, 72076 Tübingen, Germany; (M.H.); (M.-L.R.); (L.S.-R.); (F.N.); (F.K.); (J.A.); (C.B.); (B.K.); (S.Y.B.)
| | - Cornelia Bachmann
- Department of Women’s Health Tübingen, Eberhard Karls University Tübingen, 72076 Tübingen, Germany; (M.H.); (M.-L.R.); (L.S.-R.); (F.N.); (F.K.); (J.A.); (C.B.); (B.K.); (S.Y.B.)
| | - Bernhard Krämer
- Department of Women’s Health Tübingen, Eberhard Karls University Tübingen, 72076 Tübingen, Germany; (M.H.); (M.-L.R.); (L.S.-R.); (F.N.); (F.K.); (J.A.); (C.B.); (B.K.); (S.Y.B.)
| | - Katja Schenke-Layland
- NMI Natural and Medical Sciences Institute, University Tübingen, 72770 Reutlingen, Germany; (A.-L.K.); (F.R.); (M.T.); (S.K.); (K.S.-L.); (J.M.)
- Institute of Biomedical Engineering, Eberhard Karls University Tübingen, 72076 Tübingen, Germany;
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, Eberhard Karls University, 72076 Tübingen, Germany
- Department of Medicine/Cardiology, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Sara Y. Brucker
- Department of Women’s Health Tübingen, Eberhard Karls University Tübingen, 72076 Tübingen, Germany; (M.H.); (M.-L.R.); (L.S.-R.); (F.N.); (F.K.); (J.A.); (C.B.); (B.K.); (S.Y.B.)
| | - Julia Marzi
- NMI Natural and Medical Sciences Institute, University Tübingen, 72770 Reutlingen, Germany; (A.-L.K.); (F.R.); (M.T.); (S.K.); (K.S.-L.); (J.M.)
- Institute of Biomedical Engineering, Eberhard Karls University Tübingen, 72076 Tübingen, Germany;
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, Eberhard Karls University, 72076 Tübingen, Germany
| | - Martin Weiss
- Department of Women’s Health Tübingen, Eberhard Karls University Tübingen, 72076 Tübingen, Germany; (M.H.); (M.-L.R.); (L.S.-R.); (F.N.); (F.K.); (J.A.); (C.B.); (B.K.); (S.Y.B.)
- NMI Natural and Medical Sciences Institute, University Tübingen, 72770 Reutlingen, Germany; (A.-L.K.); (F.R.); (M.T.); (S.K.); (K.S.-L.); (J.M.)
- Correspondence:
| |
Collapse
|
6
|
Xiao Y, Cheng Y, He P, Wu X, Li Z. New insights into external layers of cyanobacteria and microalgae based on multiscale analysis of AFM force-distance curves. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 774:145680. [PMID: 33607435 DOI: 10.1016/j.scitotenv.2021.145680] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/23/2021] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
External layers, the outermost structures around cells, perform essential eco-physiological functions to support cyanobacteria and microalgae in aquatic environments. These layers have been recognized as adaptations to turbulence, a ubiquitous and inherent physical process occurring in the environments of most cyanobacteria and microalgae. However, the underlying biophysical mechanism of these layers is still poorly understood. Force measurements were performed directly on the external layers of eight living cyanobacterial and green algal strains in situ using atomic force microscopy (AFM). We developed a wavelet analysis method based on a multiscale decomposition of derivative force-distance curves to quantify the elastic responses of various external layers upon mechanical deformation. Such analysis has the advantages of detecting singularities and distinguishing the biomechanical contributions of each external layer. The elastic modulus of the same type of external layer follows the same statistical distribution. However, the elastic response among different types of external layers is challenged by our method, indicating the heterogeneity of the mechanical properties of inner and outer layers in multilayer strains. This discrepancy was due to the thickness and texture of each external layer, especially the chemical presence of ribose, hydroxyproline and glutamic acid. This study highlights a new way to elucidate more precise information about external layers and provides a biophysical mechanistic explanation for the functioning of the various external layers to protect cyanobacterial and microalgal cells in a turbulent environment.
Collapse
Affiliation(s)
- Yan Xiao
- CAS Key Laboratory of Reservoir Water Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Yuran Cheng
- CAS Key Laboratory of Reservoir Water Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Pan He
- CAS Key Laboratory of Reservoir Water Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Xinghua Wu
- China Three Gorges Corporation, Beijing 100038, China
| | - Zhe Li
- CAS Key Laboratory of Reservoir Water Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China.
| |
Collapse
|
7
|
Schmelzer CEH, Duca L. Elastic fibers: formation, function, and fate during aging and disease. FEBS J 2021; 289:3704-3730. [PMID: 33896108 DOI: 10.1111/febs.15899] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/16/2021] [Accepted: 03/22/2021] [Indexed: 01/09/2023]
Abstract
Elastic fibers are extracellular components of higher vertebrates and confer elasticity and resilience to numerous tissues and organs such as large blood vessels, lungs, and skin. Their formation and maturation take place in a complex multistage process called elastogenesis. It requires interactions between very different proteins but also other molecules and leads to the deposition and crosslinking of elastin's precursor on a scaffold of fibrillin-rich microfibrils. Mature fibers are exceptionally resistant to most influences and, under healthy conditions, retain their biomechanical function over the life of the organism. However, due to their longevity, they accumulate damages during aging. These are caused by proteolytic degradation, formation of advanced glycation end products, calcification, oxidative damage, aspartic acid racemization, lipid accumulation, carbamylation, and mechanical fatigue. The resulting changes can lead to diminution or complete loss of elastic fiber function and ultimately affect morbidity and mortality. Particularly, the production of elastokines has been clearly shown to influence several life-threatening diseases. Moreover, the structure, distribution, and abundance of elastic fibers are directly or indirectly influenced by a variety of inherited pathological conditions, which mainly affect organs and tissues such as skin, lungs, or the cardiovascular system. A distinction can be made between microfibril-related inherited diseases that are the result of mutations in diverse microfibril genes and indirectly affect elastogenesis, and elastinopathies that are linked to changes in the elastin gene. This review gives an overview on the formation, structure, and function of elastic fibers and their fate over the human lifespan in health and disease.
Collapse
Affiliation(s)
- Christian E H Schmelzer
- Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Halle (Saale), Germany.,Institute of Pharmacy, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Laurent Duca
- UMR CNRS 7369 MEDyC, SFR CAP-Sante, Université de Reims Champagne-Ardenne, France
| |
Collapse
|
8
|
Yang J, Le Y, Wei T, Wang K, Yang K, Xiao W, Hong T, Wei R. Non-targeted metabolomic analysis predicts the therapeutic effects of exenatide on endothelial injury in patients with type 2 diabetes. J Diabetes Complications 2021; 35:107797. [PMID: 33293208 DOI: 10.1016/j.jdiacomp.2020.107797] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 10/15/2020] [Accepted: 11/04/2020] [Indexed: 12/24/2022]
Abstract
AIMS We aimed to investigate whether treatment with exenatide could ameliorate endothelial injury in patients with type 2 diabetes mellitus (T2DM), and to identify biomarkers for predicting amelioration of the endothelial injury induced by the treatment. METHODS Ninety-three patients with T2DM were recruited and treated with exenatide for 16 weeks. Enzyme-linked immunosorbent assays were performed at baseline and after the treatment to measure serum levels of endothelial injury markers, including soluble thrombomodulin (sTM). Patients were categorized as responders (n = 47) or non-responders (n = 46) based on median changes in their sTM levels. Serum levels of metabolites at baseline were measured with non-targeted liquid chromatography-mass spectrometry. The results obtained were evaluated with multivariate analysis. RESULTS Treatment with exenatide for 16 weeks resulted in reduced body weight and improved levels of fasting plasma glucose, 2-hour postprandial plasma glucose, and HbA1c in patients with T2DM (all P < 0.05). Compared with baseline, serum levels of endothelial injury markers including sTM were significantly lowered after the treatment. Metabolites presented at significantly different levels in responders versus non-responders were considered as biomarkers for a therapeutic response of sTM to the exenatide treatment. Among those identified, 4-hydroxyproline and 12-oxo-9(Z)-dodecenoic acid were found to correlate most closely with the exenatide-induced endothelial protection response. The specificity and sensitivity of the multi-metabolite signature model contained higher 4-hydroxyproline and lower 12-oxo-9(Z)-dodecenoic acid were 53.3% and 92.3%, respectively, and the area under receiver operating characteristic curve was 69.2% (P < 0.001). CONCLUSIONS Treatment with exenatide for 16 weeks ameliorates endothelial injury in patients with T2DM. Endothelial protection benefit from exenatide treatment was effectively predicted by the specific metabolomic combination of higher 4-hydroxyproline and lower 12-oxo-9(Z)-dodecenoic acid.
Collapse
Affiliation(s)
- Jin Yang
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, China
| | - Yunyi Le
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, China
| | - Tianjiao Wei
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, China
| | - Kangli Wang
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, China
| | - Kun Yang
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, China
| | - Wenhua Xiao
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, China
| | - Tianpei Hong
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, China.
| | - Rui Wei
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
9
|
Miekus N, Luise C, Sippl W, Baczek T, Schmelzer CEH, Heinz A. MMP-14 degrades tropoelastin and elastin. Biochimie 2019; 165:32-39. [PMID: 31278967 DOI: 10.1016/j.biochi.2019.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/01/2019] [Indexed: 12/14/2022]
Abstract
Matrix metalloproteinases are a class of enzymes, which degrade extracellular matrix components such as collagens, elastin, laminin or fibronectin. So far, four matrix metalloproteinases have been shown to degrade elastin and its precursor tropoelastin, namely matrix metalloproteinase-2, -7, -9 and -12. This study focuses on investigating the elastinolytic capability of membrane-type 1 matrix metalloproteinase, also known as matrix metalloproteinase-14. We digested recombinant human tropoelastin and human skin elastin with matrix metalloproteinase-14 and analyzed the peptide mixtures using complementary mass spectrometric techniques and bioinformatics tools. The results and additional molecular docking studies show that matrix metalloproteinase-14 cleaves tropoelastin as well as elastin. While tropoelastin was well degraded, fewer cleavages occurred in the highly cross-linked mature elastin. The study also provides insights into the cleavage preferences of the enzyme. Similar to cleavage preferences of matrix metalloproteinases-2, -7, -9 and -12, matrix metalloproteinase-14 prefers small and medium-sized hydrophobic residues including Gly, Ala, Leu and Val at cleavage site P1'. Pro, Gly and Ala were preferably found at P1-P4 and P2'-P4' in both tropoelastin and elastin. Cleavage of mature skin elastin by matrix metalloproteinase-14 released a variety of bioactive elastin peptides, which indicates that the enzyme may play a role in the development and progression of cardiovascular diseases that go along with elastin breakdown.
Collapse
Affiliation(s)
- Natalia Miekus
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany; Department of Pharmaceutical Chemistry, Medical University of Gdańsk, Gdańsk, Poland; Department of Animal and Human Physiology, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Chiara Luise
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Wolfgang Sippl
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Tomasz Baczek
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, Gdańsk, Poland
| | - Christian E H Schmelzer
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany; Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Halle (Saale), Germany
| | - Andrea Heinz
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany; Department of Pharmacy, LEO Foundation Center for Cutaneous Drug Delivery, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
10
|
Hedtke T, Schräder CU, Heinz A, Hoehenwarter W, Brinckmann J, Groth T, Schmelzer CEH. A comprehensive map of human elastin cross-linking during elastogenesis. FEBS J 2019; 286:3594-3610. [PMID: 31102572 DOI: 10.1111/febs.14929] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 04/09/2019] [Accepted: 05/15/2019] [Indexed: 01/05/2023]
Abstract
Elastin is an essential structural protein in the extracellular matrix of vertebrates. It is the core component of elastic fibers, which enable connective tissues such as those of the skin, lungs or blood vessels to stretch and recoil. This function is provided by elastin's exceptional properties, which mainly derive from a unique covalent cross-linking between hydrophilic lysine-rich motifs of units of the monomeric precursor tropoelastin. To date, elastin's cross-linking is poorly investigated. Here, we purified elastin from human tissue and cleaved it into soluble peptides using proteases with different specificities. We then analyzed elastin's molecular structure by identifying unmodified residues, post-translational modifications and cross-linked peptides by high-resolution mass spectrometry and amino acid analysis. The data revealed the presence of multiple isoforms in parallel and a complex and heterogeneous molecular interconnection. We discovered that the same lysine residues in different monomers were simultaneously involved in various cross-link types or remained unmodified. Furthermore, both types of cross-linking domains, Lys-Pro and Lys-Ala domains, participate not only in bifunctional inter- but also in intra-domain cross-links. We elucidated the sequences of several desmosine-containing peptides and the contribution of distinct domains such as 6, 14 and 25. In contrast to earlier assumptions proposing that desmosine cross-links are formed solely between two domains, we elucidated the structure of a peptide that proves a desmosine formation with participation of three Lys-Ala domains. In summary, these results provide new and detailed insights into the cross-linking process, which takes place within and between human tropoelastin units in a stochastic manner.
Collapse
Affiliation(s)
- Tobias Hedtke
- Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Halle (Saale), Germany.,Biomedical Materials Group, Institute of Pharmacy, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg, Germany
| | - Christoph U Schräder
- Institute of Pharmacy, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg, Germany
| | - Andrea Heinz
- Institute of Pharmacy, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg, Germany.,Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - Wolfgang Hoehenwarter
- Proteome Analytics Research Group, Leibniz Institute for Plant Biochemistry, Halle (Saale), Germany
| | - Jürgen Brinckmann
- Institute of Virology and Cell Biology & Department of Dermatology, University of Lübeck, Germany
| | - Thomas Groth
- Biomedical Materials Group, Institute of Pharmacy, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg, Germany
| | - Christian E H Schmelzer
- Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Halle (Saale), Germany.,Institute of Pharmacy, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg, Germany.,Institute of Applied Dermatopharmacy at the Martin Luther University Halle-Wittenberg (IADP), Germany
| |
Collapse
|
11
|
Muiznieks LD, Sharpe S, Pomès R, Keeley FW. Role of Liquid–Liquid Phase Separation in Assembly of Elastin and Other Extracellular Matrix Proteins. J Mol Biol 2018; 430:4741-4753. [DOI: 10.1016/j.jmb.2018.06.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/29/2018] [Accepted: 06/01/2018] [Indexed: 10/14/2022]
|
12
|
Schräder CU, Heinz A, Majovsky P, Karaman Mayack B, Brinckmann J, Sippl W, Schmelzer CEH. Elastin is heterogeneously cross-linked. J Biol Chem 2018; 293:15107-15119. [PMID: 30108173 DOI: 10.1074/jbc.ra118.004322] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/12/2018] [Indexed: 01/30/2023] Open
Abstract
Elastin is an essential vertebrate protein responsible for the elasticity of force-bearing tissues such as those of the lungs, blood vessels, and skin. One of the key features required for the exceptional properties of this durable biopolymer is the extensive covalent cross-linking between domains of its monomer molecule tropoelastin. To date, elastin's exact molecular assembly and mechanical properties are poorly understood. Here, using bovine elastin, we investigated the different types of cross-links in mature elastin to gain insight into its structure. We purified and proteolytically cleaved elastin from a single tissue sample into soluble cross-linked and noncross-linked peptides that we studied by high-resolution MS. This analysis enabled the elucidation of cross-links and other elastin modifications. We found that the lysine residues within the tropoelastin sequence were simultaneously unmodified and involved in various types of cross-links with different other domains. The Lys-Pro domains were almost exclusively linked via lysinonorleucine, whereas Lys-Ala domains were found to be cross-linked via lysinonorleucine, allysine aldol, and desmosine. Unexpectedly, we identified a high number of intramolecular cross-links between lysine residues in close proximity. In summary, we show on the molecular level that elastin formation involves random cross-linking of tropoelastin monomers resulting in an unordered network, an unexpected finding compared with previous assumptions of an overall beaded structure.
Collapse
Affiliation(s)
- Christoph U Schräder
- From the Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale) 06120, Germany
| | - Andrea Heinz
- From the Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale) 06120, Germany.,the Department of Pharmacy, University of Copenhagen, Copenhagen 2100, Denmark
| | - Petra Majovsky
- the Proteome Analytics Research Group, Leibniz Institute for Plant Biochemistry, Halle (Saale) 06120, Germany
| | - Berin Karaman Mayack
- From the Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale) 06120, Germany
| | - Jürgen Brinckmann
- the Institute of Virology and Cell Biology, Department of Dermatology, University of Lübeck, Lübeck 23538, Germany, and
| | - Wolfgang Sippl
- From the Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale) 06120, Germany
| | - Christian E H Schmelzer
- From the Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale) 06120, Germany, .,the Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Halle (Saale) 06120, Germany
| |
Collapse
|
13
|
Smith P, Steinke N, Turner JF, McLain SE, Lorenz CD. On the hydration structure of the pro-drug GPG-NH2 and its derivatives. Chem Phys Lett 2018. [DOI: 10.1016/j.cplett.2018.05.068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Yang RQ, Mao H, Huang LY, Su PZ, Lu M. Effects of hydrotalcite combined with esomeprazole on gastric ulcer healing quality: A clinical observation study. World J Gastroenterol 2017; 23:1268-1277. [PMID: 28275307 PMCID: PMC5323452 DOI: 10.3748/wjg.v23.i7.1268] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 08/26/2016] [Accepted: 09/14/2016] [Indexed: 02/06/2023] Open
Abstract
AIM To evaluate the effects of hydrotalcite combined with esomeprazole on gastric ulcer healing quality. METHODS Forty-eight patients diagnosed with gastric ulcer between June 2014 and February 2016 were randomly allocated to the combination therapy group or monotherapy group. The former received hydrotalcite combined with esomeprazole, and the latter received esomeprazole alone, for 8 wk. Twenty-four healthy volunteers were recruited and acted as the healthy control group. Endoscopic ulcer healing was observed using white light endoscopy and narrow band imaging magnifying endoscopy. The composition of collagen fibers, amount of collagen deposition, expression of factor VIII and TGF-β1, and hydroxyproline content were analyzed by Masson staining, immunohistochemistry, immunofluorescent imaging and ELISA. RESULTS Following treatment, changes in the gastric microvascular network were statistically different between the combination therapy group and the monotherapy group (P < 0.05). There were significant differences (P < 0.05) in collagen deposition, expression level of Factor VIII and TGF-β1, and hydroxyproline content in the two treatment groups compared with the healthy control group. These parameters in the combination therapy group were significantly higher than in the monotherapy group (P < 0.05). The ratio of collagen I to collagen III was statistically different among the three groups, and was significantly higher in the combination therapy group than in the monotherapy group (P < 0.05). CONCLUSION Hydrotalcite combined with esomeprazole is superior to esomeprazole alone in improving gastric ulcer healing quality in terms of improving microvascular morphology, degree of structure maturity and function of regenerated mucosa.
Collapse
|
15
|
Schmelzer CE, Nagel MB, Dziomba S, Merkher Y, Sivan SS, Heinz A. Prolyl hydroxylation in elastin is not random. Biochim Biophys Acta Gen Subj 2016; 1860:2169-77. [DOI: 10.1016/j.bbagen.2016.05.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 04/14/2016] [Accepted: 05/10/2016] [Indexed: 12/30/2022]
|
16
|
Heinz A, Huertas ACM, Schräder CU, Pankau R, Gosch A, Schmelzer CEH. Elastins from patients with Williams-Beuren syndrome and healthy individuals differ on the molecular level. Am J Med Genet A 2016; 170:1832-42. [DOI: 10.1002/ajmg.a.37638] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 03/10/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Andrea Heinz
- Faculty of Natural Sciences I, Institute of Pharmacy; Martin Luther University Halle-Wittenberg; Halle (Saale) Germany
| | - Angela C. Mora Huertas
- Faculty of Natural Sciences I, Institute of Pharmacy; Martin Luther University Halle-Wittenberg; Halle (Saale) Germany
| | - Christoph U. Schräder
- Faculty of Natural Sciences I, Institute of Pharmacy; Martin Luther University Halle-Wittenberg; Halle (Saale) Germany
| | - Rainer Pankau
- Finkelstein-Klinik für Kinder-und Jugendmedizin; Heidekreis-Klinikum; Walsrode Germany
| | - Angela Gosch
- Fakultät für angewandte Sozialwissenschaften FK 11; Hochschule München; München Germany
| | - Christian E. H. Schmelzer
- Faculty of Natural Sciences I, Institute of Pharmacy; Martin Luther University Halle-Wittenberg; Halle (Saale) Germany
| |
Collapse
|
17
|
Otvos L, Kovalszky I, Olah J, Coroniti R, Knappe D, Nollmann FI, Hoffmann R, Wade JD, Lovas S, Surmacz E. Optimization of adiponectin-derived peptides for inhibition of cancer cell growth and signaling. Biopolymers 2015; 104:156-66. [DOI: 10.1002/bip.22627] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 01/27/2015] [Accepted: 02/09/2015] [Indexed: 12/16/2022]
Affiliation(s)
- Laszlo Otvos
- Department of Biology; Temple University; Philadelphia PA 19122
| | - Ilona Kovalszky
- 1st Department of Pathology and Experimental Cancer Research; Semmelweis University; Budapest 1085 Hungary
| | - Julia Olah
- 1st Department of Pathology and Experimental Cancer Research; Semmelweis University; Budapest 1085 Hungary
| | - Roberta Coroniti
- Sbarro Institute for Cancer Research and Molecular Medicine; Temple University; Philadelphia PA 19122
| | - Daniel Knappe
- Institute of Bioanalytical Chemistry; Leipzig University; Leipzig 04103 Germany
| | | | - Ralf Hoffmann
- Institute of Bioanalytical Chemistry; Leipzig University; Leipzig 04103 Germany
| | - John D. Wade
- Florey Neurosciences Institutes; University of Melbourne; Victoria 3010 Australia
- School of Chemistry; University of Melbourne; Victoria 3010 Australia
| | - Sandor Lovas
- Department of Biomedical Sciences; Creighton University; Omaha NE 68178
| | - Eva Surmacz
- Sbarro Institute for Cancer Research and Molecular Medicine; Temple University; Philadelphia PA 19122
| |
Collapse
|
18
|
Scelsi A, Bochicchio B, Smith A, Saiani A, Pepe A. Nanospheres from the self-assembly of an elastin-inspired triblock peptide. RSC Adv 2015. [DOI: 10.1039/c5ra21182d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The self-assembly of an elastin-inspired triblock peptide into nanospheres highlights the important role of conformational flexibility and π–π stacking.
Collapse
Affiliation(s)
- A. Scelsi
- Department of Science
- University of Basilicata
- 85100 Potenza
- Italy
- School of Materials and Manchester Institute of Biotechnology
| | - B. Bochicchio
- Department of Science
- University of Basilicata
- 85100 Potenza
- Italy
| | - A. Smith
- School of Materials and Manchester Institute of Biotechnology
- The University of Manchester
- Manchester
- UK
| | - A. Saiani
- School of Materials and Manchester Institute of Biotechnology
- The University of Manchester
- Manchester
- UK
| | - A. Pepe
- Department of Science
- University of Basilicata
- 85100 Potenza
- Italy
| |
Collapse
|
19
|
Heinz A, Schräder CU, Baud S, Keeley FW, Mithieux SM, Weiss AS, Neubert RHH, Schmelzer CEH. Molecular-level characterization of elastin-like constructs and human aortic elastin. Matrix Biol 2014; 38:12-21. [PMID: 25068896 DOI: 10.1016/j.matbio.2014.07.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 07/17/2014] [Accepted: 07/18/2014] [Indexed: 01/09/2023]
Abstract
This study aimed to characterize the structures of two elastin-like constructs, one composed of a cross-linked elastin-like polypeptide and the other one of cross-linked tropoelastin, and native aortic elastin. The structures of the insoluble materials and human aortic elastin were investigated using scanning electron microscopy. Additionally, all samples were digested with enzymes of different specificities, and the resultant peptide mixtures were characterized by ESI mass spectrometry and MALDI mass spectrometry. The MS(2) data was used to sequence linear peptides, and cross-linked species were analyzed with the recently developed software PolyLinX. This enabled the identification of two intramolecularly cross-linked peptides containing allysine aldols in the two constructs. The presence of the tetrafunctional cross-link desmosine was shown for all analyzed materials and its quantification revealed that the cross-linking degree of the two in vitro cross-linked materials was significantly lower than that of native elastin. Molecular dynamics simulations were performed, based on molecular species identified in the samples, to follow the formation of elastin cross-links. The results provide evidence for the significance of the GVGTP hinge region of domain 23 for the formation of elastin cross-links. Overall, this work provides important insight into structural similarities and differences between elastin-like constructs and native elastin. Furthermore, it represents a step toward the elucidation of the complex cross-linking pattern of mature elastin.
Collapse
Affiliation(s)
- Andrea Heinz
- Institute of Pharmacy, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.
| | - Christoph U Schräder
- Institute of Pharmacy, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Stéphanie Baud
- Laboratoire SiRMa, FRE CNRS/URCA 3481, Université de Reims Champagne-Ardenne, Reims, France; Plateforme de Modélisation Moléculaire Multi-échelle, UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Reims, France
| | - Fred W Keeley
- Molecular Structure and Function, Hospital for Sick Children, Toronto, Canada
| | | | - Anthony S Weiss
- School of Molecular Bioscience, University of Sydney, Sydney, Australia; Bosch Institute, University of Sydney, Sydney, Australia; Charles Perkins Centre, University of Sydney, Sydney, Australia
| | - Reinhard H H Neubert
- Institute of Pharmacy, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Christian E H Schmelzer
- Institute of Pharmacy, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|