1
|
Di Franco C, Macchia E, Catacchio M, Caputo M, Scandurra C, Sarcina L, Bollella P, Tricase A, Innocenti M, Funari R, Piscitelli M, Scamarcio G, Torsi L. Electric Field Cycling of Physisorbed Antibodies Reduces Biolayer Polarization Dispersion. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412347. [PMID: 39513396 PMCID: PMC11714235 DOI: 10.1002/advs.202412347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Indexed: 11/15/2024]
Abstract
The electric dipoles of proteins in a biolayer determine their dielectric properties through the polarization density P. Hence, its reproducibility is crucial for applications, particularly in bioelectronics. Biolayers encompassing capturing antibodies covalently bound at a biosensing interface are generally preferred for their assumed higher stability. However, surface physisorption is shown to offer advantages like easily scalable fabrication processes and high stability. The present study investigates the effects of electric-field (EF)-cycling of anti-Immunoglobulin M (anti-IgM) biolayers physisorbed on Au. The impact of EF-cycling on the dielectric, optical, and mechanical properties of anti-IgM biolayer is investigated. A reduction of the dispersion (standard deviation over a set of 31 samples) of the measured P values is observed, while the set median stays almost constant. Hence, physisorption combined with EF cycling, results in a biolayer with highly reproducible bioelectronic properties. Additionally, the study provides important insights into the mechanisms of dielectric rearrangement of dipole moments in capturing biolayers after EF-cycling. Notably, EF-cycling acts as an annealing process, driving the proteins in the biolayer into a statistically more probable and stable conformational state. Understanding these phenomena enhances the knowledge of the properties of physisorbed biolayers and can inform design strategies for bioelectronic devices.
Collapse
Affiliation(s)
- Cinzia Di Franco
- Institituto di Fotonica e Nanotecnologia (IFN) , Consiglio Nazionale delle Ricerche (CNR)CNR IFNBari70126Italy
| | - Eleonora Macchia
- Dipartimento di Farmacia‐Scienze del FarmacoUniversità degli Studi di Bari “Aldo Moro”Bari70125Italy
- Centre for Colloid and Surface Science at Università degli Studi di Bari Aldo MoroBari20125Italy
| | - Michele Catacchio
- Dipartimento di Farmacia‐Scienze del FarmacoUniversità degli Studi di Bari “Aldo Moro”Bari70125Italy
| | - Mariapia Caputo
- Dipartimento di Farmacia‐Scienze del FarmacoUniversità degli Studi di Bari “Aldo Moro”Bari70125Italy
| | - Cecilia Scandurra
- Dipartimento di Chimica and Centre for Colloid and Surface ScienceUniversità degli Studi di Bari Aldo MoroBari20125Italy
| | - Lucia Sarcina
- Dipartimento di Chimica and Centre for Colloid and Surface ScienceUniversità degli Studi di Bari Aldo MoroBari20125Italy
| | - Paolo Bollella
- Dipartimento di Chimica and Centre for Colloid and Surface ScienceUniversità degli Studi di Bari Aldo MoroBari20125Italy
| | - Angelo Tricase
- Dipartimento di Farmacia‐Scienze del FarmacoUniversità degli Studi di Bari “Aldo Moro”Bari70125Italy
- Centre for Colloid and Surface Science at Università degli Studi di Bari Aldo MoroBari20125Italy
| | - Massimo Innocenti
- Dipartimento di ChimicaUniversità degli Studi di FirenzeINSTM Consortium ℅ Dip. ChimicaVia della Lastruccia 3–13Sesto FiorentinoI‐50019FlorenceItaly
| | - Riccardo Funari
- Dipartimento Interateneo di FisicaUniversità degli Studi di Bari Aldo MoroBari70125Italy
- Istituto di Intelligenza MeccanicaScuola Superiore Sant'Anna, Via G. Moruzzi, 1Pisa56124Italy
| | - Matteo Piscitelli
- Institituto di Fotonica e Nanotecnologia (IFN) , Consiglio Nazionale delle Ricerche (CNR)CNR IFNBari70126Italy
- Dipartimento Interateneo di FisicaUniversità degli Studi di Bari Aldo MoroBari70125Italy
| | - Gaetano Scamarcio
- Dipartimento Interateneo di FisicaUniversità degli Studi di Bari Aldo MoroBari70125Italy
- CNR‐ Istituto Nanoscienze c/o Scuola Normale SuperiorePisa56127Italy
| | - Luisa Torsi
- Dipartimento di Chimica and Centre for Colloid and Surface ScienceUniversità degli Studi di Bari Aldo MoroBari20125Italy
| |
Collapse
|
2
|
Cosme F, Filipe-Ribeiro L, Coixão A, Bezerra M, Nunes FM. Efficiency of Alginic Acid, Sodium Carboxymethylcellulose, and Potassium Polyaspartate as Calcium Tartrate Stabilizers in Wines. Foods 2024; 13:1880. [PMID: 38928821 PMCID: PMC11202715 DOI: 10.3390/foods13121880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
The instability of calcium tartrate (CaT) in wines occurs when the effective concentration of ions surpasses the solubility product, leading to the formation of CaT crystals. Unlike potassium hydrogen tartrate (KHT), temperature has little effect on the rate of CaT precipitation, making cold stabilization ineffective. Additives like metatartaric acid and carboxymethylcellulose (CMC) have been used to mitigate this problem, but metatartaric acid's effectiveness is limited due to hydrolysis. Additionally, potassium polyaspartate (KPA), commonly used as a KHT stabilizer, has been reported to reduce wine stability regarding CaT instability. Therefore, exploring alternative stabilization methods is crucial. Alginic acid, permitted as a processing aid in winemaking, can be an alternative to CMC and metatartaric acid due to its strong negative charge and ability to bind calcium ions. This study aimed to assess alginic acid's efficacy as a CaT stabilizer compared to CMC and investigate the impact of KPA on CaT instability. The results showed that KPA did not increase CaT instability and even improved its stability in some wines. Alginic acid outperformed both CMC and KPA in mitigating CaT instability, possibly due to its higher zeta potential and calcium ion complexation ability. This study is the first to investigate the use of alginic acid for CaT stability in wine.
Collapse
Affiliation(s)
| | | | | | | | - Fernando M. Nunes
- Chemistry Research Centre-Vila Real (CQ-VR), Food and Wine Chemistry Laboratory, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (F.C.); (L.F.-R.); (A.C.); (M.B.)
| |
Collapse
|
3
|
Comas-Serra F, Miró JL, Umaña MM, Minjares-Fuentes R, Femenia A, Mota-Ituarte M, Pedroza-Sandoval A. Role of acemannan and pectic polysaccharides in saline-water stress tolerance of Aloe vera (Aloe barbadensis Miller) plant. Int J Biol Macromol 2024; 268:131601. [PMID: 38626833 DOI: 10.1016/j.ijbiomac.2024.131601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/25/2024] [Accepted: 04/12/2024] [Indexed: 05/02/2024]
Abstract
This study investigates the impact of water and salinity stress on Aloe vera, focusing on the role of Aloe vera polysaccharides in mitigating these stresses. Pectins and acemannan were the most affected polymers. Low soil moisture and high salinity (NaCl 80 mM) increased pectic substances, altering rhamnogalacturonan type I in Aloe vera gel. Aloe vera pectins maintained a consistent 60 % methyl-esterification regardless of conditions. Interestingly, acemannan content rose with salinity, particularly under low moisture, accompanied by 90 to 150 % acetylation increase. These changes improved the functionality of Aloe vera polysaccharides: pectins increased cell wall reinforcement and interactions, while highly acetylated acemannan retained water for sustained plant functions. This study highlights the crucial role of Aloe vera polysaccharides in enhancing plant resilience to water and salinity stress, leading to improved functional properties.
Collapse
Affiliation(s)
- Francesca Comas-Serra
- Department of Chemistry, University of the Balearic Islands. Ctra. Valldemossa km 7.5, Palma de Mallorca C.P. 07122, Spain
| | - José Luis Miró
- Department of Chemistry, University of the Balearic Islands. Ctra. Valldemossa km 7.5, Palma de Mallorca C.P. 07122, Spain
| | - Mónica M Umaña
- Department of Chemistry, University of the Balearic Islands. Ctra. Valldemossa km 7.5, Palma de Mallorca C.P. 07122, Spain
| | - Rafael Minjares-Fuentes
- Department of Chemistry, University of the Balearic Islands. Ctra. Valldemossa km 7.5, Palma de Mallorca C.P. 07122, Spain; Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Av. Artículo 123 s/n, Fracc. Filadelfia, Gómez Palacio, Durango, C.P. 35010, México.
| | - Antoni Femenia
- Department of Chemistry, University of the Balearic Islands. Ctra. Valldemossa km 7.5, Palma de Mallorca C.P. 07122, Spain
| | - María Mota-Ituarte
- Unidad Regional Universitaria de Zonas Áridas, Universidad Autónoma Chapingo, Carretera Gómez Palacio-Chihuahua km 38, Bermejillo, Durango C.P. 35230, México
| | - Aurelio Pedroza-Sandoval
- Unidad Regional Universitaria de Zonas Áridas, Universidad Autónoma Chapingo, Carretera Gómez Palacio-Chihuahua km 38, Bermejillo, Durango C.P. 35230, México
| |
Collapse
|
4
|
Chelu M, Popa M, Ozon EA, Pandele Cusu J, Anastasescu M, Surdu VA, Calderon Moreno J, Musuc AM. High-Content Aloe vera Based Hydrogels: Physicochemical and Pharmaceutical Properties. Polymers (Basel) 2023; 15:polym15051312. [PMID: 36904552 PMCID: PMC10007233 DOI: 10.3390/polym15051312] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
The present research focuses on the physicochemical and pharmacotechnical properties of new hydrogels obtained using allantoin, xanthan gum, salicylic acid and different concentrations of Aloe vera (5, 10, 20% w/v in solution; 38, 56, 71 wt% in dry gels). The thermal behavior of Aloe vera composite hydrogels was studied using DSC and TG/DTG analyses. The chemical structure was investigated using different characterization methods (XRD, FTIR and Raman spectroscopies) and the morphology of the hydrogels was studied SEM and AFM microscopy. Pharmacotechnical evaluation on tensile strength and elongation, moisture content, swelling and spreadability was also completed. Physical evaluation confirmed that the appearance of the prepared Aloe vera based hydrogels was homogeneous and the color varied from pale beige to deep opaque beige with increasing Aloe vera concentration. All other evaluation parameters, e.g., pH, viscosity, spreadability and consistency were found to be adequate in all hydrogel formulations. SEM and AFM images show that the structure of the hydrogels condensed into homogeneous polymeric solids with the addition of Aloe vera, in accordance with the decrease in peak intensities observed via XRD analysis. These results suggest interactions between the hydrogel matrix and Aloe vera as observed via FTIR and TG/DTG and DSC analyses. Considering that Aloe vera content higher than 10% (w/v) did not stimulate further interactions, this formulation (FA-10) can be used for further biomedical applications.
Collapse
Affiliation(s)
- Mariana Chelu
- “Ilie Murgulescu” Institute of Physical Chemistry, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Monica Popa
- “Ilie Murgulescu” Institute of Physical Chemistry, 202 Spl. Independentei, 060021 Bucharest, Romania
- Correspondence: (M.P.); (J.C.M.); (A.M.M.)
| | - Emma Adriana Ozon
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania
| | - Jeanina Pandele Cusu
- “Ilie Murgulescu” Institute of Physical Chemistry, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Mihai Anastasescu
- “Ilie Murgulescu” Institute of Physical Chemistry, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Vasile Adrian Surdu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Jose Calderon Moreno
- “Ilie Murgulescu” Institute of Physical Chemistry, 202 Spl. Independentei, 060021 Bucharest, Romania
- Correspondence: (M.P.); (J.C.M.); (A.M.M.)
| | - Adina Magdalena Musuc
- “Ilie Murgulescu” Institute of Physical Chemistry, 202 Spl. Independentei, 060021 Bucharest, Romania
- Correspondence: (M.P.); (J.C.M.); (A.M.M.)
| |
Collapse
|
5
|
A New Functional Food Ingredient Obtained from Aloe ferox by Spray Drying. Foods 2023; 12:foods12040850. [PMID: 36832926 PMCID: PMC9956236 DOI: 10.3390/foods12040850] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
Aloe mucilages of Aloe ferox (A. ferox) and Aloe vera (A. vera) were spray-dried (SD) at 150, 160 and 170 °C. Polysaccharide composition, total phenolic compounds (TPC), antioxidant capacity and functional properties (FP) were determined. A. ferox polysaccharides were comprised mainly of mannose, accounting for >70% of SD aloe mucilages; similar results were observed for A. vera. Further, an acetylated mannan with a degree of acetylation >90% was detected in A. ferox by 1H NMR and FTIR. SD increased the TPC as well as the antioxidant capacity of A. ferox measured by both ABTS and DPPH methods, in particular by ~30%, ~28% and ~35%, respectively, whereas in A. vera, the antioxidant capacity measured by ABTS was reduced (>20%) as a consequence of SD. Further, FP, such as swelling, increased around 25% when A. ferox was spray-dried at 160 °C, while water retention and fat adsorption capacities exhibited lower values when the drying temperature increased. The occurrence of an acetylated mannan with a high degree of acetylation, together with the enhanced antioxidant capacity, suggests that SD A. ferox could be a valuable alternative raw material for the development of new functional food ingredients based on Aloe plants.
Collapse
|
6
|
Ren H, Li Z, Gao R, Zhao T, Luo D, Yu Z, Zhang S, Qi C, Wang Y, Qiao H, Cui Y, Gan L, Wang P, Wang J. Structural Characteristics of Rehmannia glutinosa Polysaccharides Treated Using Different Decolorization Processes and Their Antioxidant Effects in Intestinal Epithelial Cells. Foods 2022; 11:foods11213449. [PMID: 36360063 PMCID: PMC9657679 DOI: 10.3390/foods11213449] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/17/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
Polysaccharide decolorization is a key determinant of polysaccharide structure. In this study, two purified Rehmannia glutinosa polysaccharides, RGP−1−A and RGP−2−A, were obtained after decolorization using the AB-8 macroporous resin and H2O2, respectively. RGP−1−A (molecular weight (Mw) = 18,964 Da) and RGP−2−A (Mw = 3305 Da) were acidic and neutral heteropolysaccharides, respectively, and were both polycrystalline in structure. FTIR analysis revealed that RGP−1−A was a sulfate polysaccharide, while RGP−2−A had no sulfate group. Experiments on IPEC-1 cells showed that RGPs alleviated oxidative stress by regulating the Nrf2/Keap1 pathway. These findings were confirmed by the upregulation of Nrf2, NQO1, and HO-1; the subsequent increase in the levels of antioxidant indicators (SOD, LDH, CAT, and MDA); and the restoration of mitochondrial membrane potential. Overall, the antioxidant capacity of RGP−1−A was significantly higher than that of RGP−2−A. These results suggest that RGPs may be a potential natural antioxidant and could be developed into functional foods.
Collapse
|
7
|
Liang T, Hu J, Song H, Xiong L, Li Y, Zhou Y, Mao L, Tian J, Yan H, Gong E, Fei J, Sun Y, Zhang H, Wang X. Comparative study on physicochemical characteristics, α-glucosidase inhibitory effect, and hypoglycemic activity of pectins from normal and Huanglongbing-infected navel orange peels. J Food Biochem 2022; 46:e14280. [PMID: 35746862 DOI: 10.1111/jfbc.14280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 05/05/2022] [Accepted: 05/31/2022] [Indexed: 10/17/2022]
Abstract
This study aimed at comparing the physicochemical characteristics, α-glucosidase inhibitory effect, and hypoglycemic activity of pectins (N-NOP and H-NOP) from peels of normal and Huanglongbing (HLB)-infected Navel oranges. Results indicated the pectins were high methoxy pectins mainly composed of homogalacturonan and rhamnogalacturonan-I. The pectins exhibited similar functional groups, surface morphology, and particle size, and had no triple-helical conformation in solution. They exerted fat and glucose absorption capacities and were mixed-type noncompetitive α-glucosidase inhibitors with IC50 values of 1.182 and 2.524 mg/ml, respectively. Both N-NOP and H-NOP showed hypoglycemic activity in alloxan-induced diabetic mice. Administration of them could promote the synthesis of hepatic glycogen and/or serum insulin to lower blood glucose levels and enhance antioxidant status to alleviate oxidative stress injury in diabetic mice. Moreover, N-NOP had higher yield, molecular weight, ζ-potential, oil holding capacity, α-glucosidase inhibitory effect and in vivo hypoglycemic activity, whereas H-NOP possessed higher uronic acid, degree of esterification, thermal stability, water holding capacity, swelling capacity, and fat absorption capacity. It could be concluded that some similarities and differences existed between N-NOP and H-NOP in physicochemical characteristics, functional properties, α-glucosidase inhibitory effects, and hypoglycemic activity. This study provides references for the basic research and application of pectins from peels of normal and HLB-infected Navel oranges. PRACTICAL APPLICATIONS: Pectin has been widely used in the food and pharmaceutical industries for several decades due to its health benefit, gelling, thickening, and emulsification performances. Diabetes mellitus is a worldwide concern in recent years. Pectins (N-NOP and H-NOP) from peels of normal and Huanglongbing (HLB)-infected Navel oranges possessed in vitro and in vivo hypoglycemic activities, indicating they were potential anti-antidiabetic substitutes of chemical drugs. Moreover, comparative understanding on the physicochemical characteristic, α-glucosidase inhibitory effect and hypoglycemic activity of pectins from peels of normal and Huanglongbing-infected Navel oranges was conducive to the recycling and utilization of Navel orange peels. Recently, the biological activity of pectin from peels of normal Navel oranges has been rarely reported, and the information on pectin from peels of Huanglongbing-infected Navel orange is rare. This study provides references for the basic research and application of pectins from peels of normal and HLB-infected Navel oranges.
Collapse
Affiliation(s)
- Tian Liang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Jiawei Hu
- Scientific Research Center, Gannan Medical University, Ganzhou, China
| | - He Song
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Lili Xiong
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Yanping Li
- Scientific Research Center, Gannan Medical University, Ganzhou, China
| | - Yang Zhou
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Lifang Mao
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Jiamin Tian
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Huan Yan
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Ersheng Gong
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Jiawen Fei
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Yuan Sun
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Hanyue Zhang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Xiaoyin Wang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| |
Collapse
|
8
|
Bhagya Raj GVS, Hulle NRS, Dash KK. Rheological characteristics of reconstituted freeze dried dragon fruit pulp powder: Effect of concentration and temperature. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- G. V. S. Bhagya Raj
- Department of Food Engineering and Technology Tezpur University Tezpur, Assam 784028 India
| | - Nishant R. Swami Hulle
- Department of Food Engineering and Technology Tezpur University Tezpur, Assam 784028 India
| | - Kshirod K. Dash
- Department of Food Engineering and Technology Tezpur University Tezpur, Assam 784028 India
- Department of Food Processing Technology Ghani Khan Choudhury Institute of Engineering and Technology (GKCIET) Malda, West Bengal, 732141 India
| |
Collapse
|
9
|
Characterization of curcumin-loaded lecithin-chitosan bioactive nanoparticles. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
10
|
Li R, Wu M, Guo Y, Zhang H. Comprehensive physical visualisation of the chain conformation and solution property of carboxymethylated konjac glucomannan: Comparison of charged and uncharged polyelectrolytes. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
11
|
Tao Y, Ma J, Huang C, Lai C, Ling Z, Yong Q. Effects of the Hofmeister anion series salts on the rheological properties of Sesbania cannabina galactomannan. Int J Biol Macromol 2021; 188:350-358. [PMID: 34389383 DOI: 10.1016/j.ijbiomac.2021.08.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/19/2021] [Accepted: 08/04/2021] [Indexed: 11/16/2022]
Abstract
Sesbania cannabina galactomannan (2%) solutions added with strongly hydrated ions (Na2CO3, NaH2PO4, NaCl) and weakly hydrated ions (NaNO3) at different ionic strengths were rheologically characterized. The four selected salts dramatically decreased the intrinsic viscosity of galactomannan solution in the following order of effectiveness: Na2CO3 < NaH2PO4 < NaCl < NaNO3. This conforms effectively to the Hofmeister anion series. Moreover, salt addition increased the viscosity of galactomannan solution when the ionic strength was 1 mmol/kg, which related to an increased occurrence of intermolecular interactions. As increasing ionic strength, galactomannan chains may tend to contract or expand due to the presence of strongly or weakly hydrated ions, thereby decreasing the viscosity. These phenomena were demonstrated by zeta potential measurement and again observed in dynamic viscoelasticity measurement. Overall, this property can be used to manipulate the rheological properties of galactomannan in food gums to obtain gums of high quality for enhancing consumer goods.
Collapse
Affiliation(s)
- Yuheng Tao
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Key Laboratory of Forestry Genetics & Biotechnology of the Ministry of Education, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Junmei Ma
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Caoxing Huang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Key Laboratory of Forestry Genetics & Biotechnology of the Ministry of Education, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Chenhuan Lai
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Key Laboratory of Forestry Genetics & Biotechnology of the Ministry of Education, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Zhe Ling
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Qiang Yong
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Key Laboratory of Forestry Genetics & Biotechnology of the Ministry of Education, Nanjing Forestry University, Nanjing 210037, People's Republic of China.
| |
Collapse
|
12
|
Marková P, Uchman M. Synthesis and self-assembly of polyzwitterionic phenylboronic acid-containing double hydrophilic block copolymers. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
13
|
Real-Scale Integral Valorization of Waste Orange Peel via Hydrodynamic Cavitation. Processes (Basel) 2019. [DOI: 10.3390/pr7090581] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Waste orange peel represents a heavy burden for the orange juice industry, estimated in several million tons per year worldwide; nevertheless, this by-product is endowed with valuable bioactive compounds, such as pectin, polyphenols, and terpenes. The potential value of the waste orange peel has stimulated the search for extraction processes, alternative or complementary to landfilling or to the integral energy conversion. This study introduces controlled hydrodynamic cavitation as a new route to the integral valorization of this by-product, based on simple equipment, speed, effectiveness and efficiency, scalability, and compliance with green extraction principles. Waste orange peel, in batches of several kg, was processed in more than 100 L of water, without any other raw materials, in a device comprising a Venturi-shaped cavitation reactor. The extractions of pectin (with a remarkably low degree of esterification), polyphenols (flavanones and hydroxycinnamic acid derivatives), and terpenes (mainly d-limonene) were effective and efficient (high yields within a few min of process time). The biomethane generation potential of the process residues was determined. The achieved results proved the viability of the proposed route to the integral valorization of waste orange peel, though wide margins exist for further improvements.
Collapse
|
14
|
Alvarado-Morales G, Minjares-Fuentes R, Contreras-Esquivel JC, Montañez J, Meza-Velázquez JA, Femenia A. Application of thermosonication for Aloe vera (Aloe barbadensis Miller) juice processing: Impact on the functional properties and the main bioactive polysaccharides. ULTRASONICS SONOCHEMISTRY 2019; 56:125-133. [PMID: 31101246 DOI: 10.1016/j.ultsonch.2019.03.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/26/2019] [Accepted: 03/29/2019] [Indexed: 05/06/2023]
Abstract
The impact of thermosonication on the functional properties and the main polysaccharides from Aloe vera was investigated. Thermal processing was used for comparison purposes. Acemannan was the predominant polysaccharide in Aloe vera juice followed by pectins. Interestingly, thermosonication promoted a minor degradation of the acetylated mannose from acemannan than thermal processing. On the other hand, the degree of methylesterification of pectins was slightly reduced as a consequence of thermosonication. Further, swelling and fat adsorption capacities were improved by thermosonication. Thus, the highest values for swelling (>150 mL/g AIR) and for fat adsorption capacity (∼120 g oil/g AIR) were observed when thermosonication was performed at 50 °C for 6 min. Moreover, high inactivation of L. plantarum (∼75%) was observed when thermosonication was carried out at 50 °C for 9 min. Interestingly, thermosonication promoted a similar color change (ΔE = 7.7) to the modification observed during pasteurization carried out at 75 °C for 15 min (ΔE = 8.2 ± 0.9). Overall, these results suggested that thermosonication could be a good alternative to thermal procedures of Aloe vera juice, since not only caused minor degradation of bioactive polysaccharides but was also able to improve functional properties.
Collapse
Affiliation(s)
- Guadalupe Alvarado-Morales
- Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza and José Cárdenas s/n República Oriente, Saltillo, Coahuila, Mexico
| | - Rafael Minjares-Fuentes
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Av. Articulo 123 s/n Fracc. Filadelfia, 35010 Gómez Palacio, Durango, Mexico.
| | - Juan Carlos Contreras-Esquivel
- Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza and José Cárdenas s/n República Oriente, Saltillo, Coahuila, Mexico
| | - Julio Montañez
- Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza and José Cárdenas s/n República Oriente, Saltillo, Coahuila, Mexico
| | - Jorge Armando Meza-Velázquez
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Av. Articulo 123 s/n Fracc. Filadelfia, 35010 Gómez Palacio, Durango, Mexico
| | - Antoni Femenia
- Department of Chemistry, University of the Balearic Islands, Ctra Valldemossa Km 7.5, 07122 Palma de Mallorca, Spain
| |
Collapse
|
15
|
Comparison of chain conformation properties of bio-active fucosylated chondroitin sulfates from two different sea cucumbers. Int J Biol Macromol 2019; 133:44-50. [DOI: 10.1016/j.ijbiomac.2019.04.080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/04/2019] [Accepted: 04/11/2019] [Indexed: 01/17/2023]
|
16
|
Shi XD, Yin JY, Zhang LJ, Li OY, Huang XJ, Nie SP. Studies on polysaccharides from leaf skin of Aloe barbadensis Miller: Part II. Structural characteristics and molecular properties of two lower molecular weight fractions. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.01.038] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
17
|
Patruni K, Chakraborty S, Pavuluri SR. Rheological, functional and morphological characterization of reconstituted Aloe vera gels at different levels of pH and concentration. Int J Biol Macromol 2018; 120:414-421. [DOI: 10.1016/j.ijbiomac.2018.08.044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/17/2018] [Accepted: 08/08/2018] [Indexed: 10/28/2022]
|
18
|
Kaur J, Kaur G. Optimization of pH conditions and characterization of polyelectrolyte complexes between gellan gum and cationic guar gum. POLYM ADVAN TECHNOL 2018. [DOI: 10.1002/pat.4424] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jasleen Kaur
- Department of Pharmaceutical Sciences and Drug Research; Punjabi University; Patiala India
| | - Gurpreet Kaur
- Department of Pharmaceutical Sciences and Drug Research; Punjabi University; Patiala India
| |
Collapse
|
19
|
Chemical and rheological properties of polysaccharides from litchi pulp. Int J Biol Macromol 2018; 112:968-975. [DOI: 10.1016/j.ijbiomac.2018.02.054] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 02/07/2018] [Accepted: 02/09/2018] [Indexed: 12/20/2022]
|
20
|
Sun Y, Gong G, Guo Y, Wang Z, Song S, Zhu B, Zhao L, Jiang J. Purification, structural features and immunostimulatory activity of novel polysaccharides from Caulerpa lentillifera. Int J Biol Macromol 2018; 108:314-323. [DOI: 10.1016/j.ijbiomac.2017.12.016] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 11/30/2017] [Accepted: 12/04/2017] [Indexed: 12/12/2022]
|
21
|
Khemakhem I, Abdelhedi O, Trigui I, Ayadi MA, Bouaziz M. Structural, antioxidant and antibacterial activities of polysaccharides extracted from olive leaves. Int J Biol Macromol 2018; 106:425-432. [DOI: 10.1016/j.ijbiomac.2017.08.037] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/18/2017] [Accepted: 08/04/2017] [Indexed: 12/28/2022]
|
22
|
Shi XD, Nie SP, Yin JY, Que ZQ, Zhang LJ, Huang XJ. Polysaccharide from leaf skin of Aloe barbadensis Miller: Part I. Extraction, fractionation, physicochemical properties and structural characterization. Food Hydrocoll 2017. [DOI: 10.1016/j.foodhyd.2017.06.039] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
23
|
Maciel VBV, Yoshida CMP, Pereira SMSS, Goycoolea FM, Franco TT. Electrostatic Self-Assembled Chitosan-Pectin Nano- and Microparticles for Insulin Delivery. Molecules 2017; 22:molecules22101707. [PMID: 29023400 PMCID: PMC6151702 DOI: 10.3390/molecules22101707] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/29/2017] [Accepted: 10/04/2017] [Indexed: 12/31/2022] Open
Abstract
A polyelectrolyte complex system of chitosan-pectin nano- and microparticles was developed to encapsulate the hormone insulin. The aim of this work was to obtain small particles for oral insulin delivery without chemical crosslinkers based on natural and biodegradable polysaccharides. The nano- and microparticles were developed using chitosans (with different degrees of acetylation: 15.0% and 28.8%) and pectin solutions at various charge ratios (n⁺/n- given by the chitosan/pectin mass ratio) and total charge. Nano- and microparticles were characterized regarding particle size, zeta potential, production yield, encapsulation efficiency, stability in different media, transmission electron microscopy and cytotoxicity assays using Caco-2 cells. The insulin release was evaluated in vitro in simulated gastric and intestinal media. Small-sized particles (~240-~1900 nm) with a maximum production yield of ~34.0% were obtained. The highest encapsulation efficiency (~62.0%) of the system was observed at a charge ratio (n⁺/n-) 5.00. The system was stable in various media, particularly in simulated gastric fluid (pH 1.2). Transmission electron microscopy (TEM) analysis showed spherical shape particles when insulin was added to the system. In simulated intestinal fluid (pH 6.8), controlled insulin release occurred over 2 h. In vitro tests indicated that the proposed system presents potential as a drug delivery for oral administration of bioactive peptides.
Collapse
Affiliation(s)
- Vinicius B V Maciel
- Faculty of Animal Science and Food Engineering, USP-University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga CEP 13635-900, São Paulo, Brazil.
- School of Chemical Engineering, UNICAMP-State University of Campinas, Av. Albert Einstein, 500, Campinas CEP 13083-852, São Paulo, Brazil.
| | - Cristiana M P Yoshida
- Department of Exact and Earth Science, UNIFESP-Federal University of São Paulo, Rua São Nicolau, 210, Diadema CEP 09913-030, São Paulo, Brazil.
| | - Susana M S S Pereira
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossgarten 3, 48149 Münster, Germany.
| | - Francisco M Goycoolea
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossgarten 3, 48149 Münster, Germany.
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK.
| | - Telma T Franco
- School of Chemical Engineering, UNICAMP-State University of Campinas, Av. Albert Einstein, 500, Campinas CEP 13083-852, São Paulo, Brazil.
| |
Collapse
|
24
|
Ogunjimi AT, Melo SM, Vargas-Rechia CG, Emery FS, Lopez RF. Hydrophilic polymeric nanoparticles prepared from Delonix galactomannan with low cytotoxicity for ocular drug delivery. Carbohydr Polym 2017; 157:1065-1075. [DOI: 10.1016/j.carbpol.2016.10.076] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 10/20/2016] [Accepted: 10/24/2016] [Indexed: 11/29/2022]
|
25
|
Xu X, Xue C, Chang Y, Chen F, Wang J. Conformational and physicochemical properties of fucosylated chondroitin sulfate from sea cucumber Apostichopus japonicus. Carbohydr Polym 2016; 152:26-32. [DOI: 10.1016/j.carbpol.2016.06.061] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 06/04/2016] [Accepted: 06/15/2016] [Indexed: 10/21/2022]
|
26
|
Chain conformational and physicochemical properties of fucoidans from sea cucumber. Carbohydr Polym 2016; 152:433-440. [DOI: 10.1016/j.carbpol.2016.06.093] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/20/2016] [Accepted: 06/24/2016] [Indexed: 01/04/2023]
|
27
|
Kiran P, Swami Hulle NR, Rao PS. Viscoelastic behavior of reconstituted Aloe vera hydrogels as a function of concentration and temperature. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2016. [DOI: 10.1080/10942912.2016.1168436] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Patruni Kiran
- Department of Agricultural and Food Engineering, Indian Institute of Technology—Kharagpur, Kharagpur, West Bengal, India
| | - Nishant R. Swami Hulle
- College of Food Processing Technology and Bio-Energy, Anand Agricultural University, Anand Gujarat, India
| | - P. Srinivasa Rao
- Department of Agricultural and Food Engineering, Indian Institute of Technology—Kharagpur, Kharagpur, West Bengal, India
| |
Collapse
|
28
|
Unperturbed dimension, interaction parameters, zeta potential and rheology of sodium alginate in binary solvent mixtures. JOURNAL OF POLYMER RESEARCH 2016. [DOI: 10.1007/s10965-016-1057-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Development and characterization of reconstituted hydrogel from Aloe vera (Aloe barbadensis Miller) powder. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2016. [DOI: 10.1007/s11694-016-9320-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
30
|
Karavasili C, Fatouros DG. Smart materials: in situ gel-forming systems for nasal delivery. Drug Discov Today 2015; 21:157-166. [PMID: 26563428 DOI: 10.1016/j.drudis.2015.10.016] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Revised: 09/29/2015] [Accepted: 10/22/2015] [Indexed: 11/16/2022]
Abstract
In the last decade in situ gelling systems have emerged as a novel approach in intranasal delivery of therapeutics, capturing the interest of scientific community. Considerable advances have been currently made in the development of novel formulations containing both natural and synthetic polymers. In this paper we present recent developments on in situ gelling systems for nasal delivery, highlighting the mechanisms that govern their formation.
Collapse
Affiliation(s)
- Christina Karavasili
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124, Greece
| | - Dimitrios G Fatouros
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124, Greece.
| |
Collapse
|
31
|
Huang J, Zhou L. Peach gum polysaccharide polyelectrolyte: Preparation, properties and application in layer-by-layer self-assembly. Carbohydr Polym 2014; 113:373-9. [DOI: 10.1016/j.carbpol.2014.07.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 07/07/2014] [Accepted: 07/09/2014] [Indexed: 11/16/2022]
|
32
|
Kiran P, Rao PS. Rheological and structural characterization of prepared aqueous Aloe vera dispersions. Food Res Int 2014. [DOI: 10.1016/j.foodres.2014.05.033] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
33
|
Abodinar A, Smith AM, Morris GA. A novel method to estimate the stiffness of carbohydrate polyelectrolyte polymers based on the ionic strength dependence of zeta potential. Carbohydr Polym 2014; 112:6-9. [PMID: 25129709 DOI: 10.1016/j.carbpol.2014.05.063] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 05/22/2014] [Accepted: 05/23/2014] [Indexed: 10/25/2022]
Abstract
Polysaccharides have received a great deal of attention from, for example, the food, cosmetic and pharmaceutical industries. Their conformations (flexibility/stiffness) span a wide range of conformational flexibilities with large hydrated volumes, these properties are important in relation to polysaccharide structure-function relationships. Perhaps the simplest parameter available to estimate the dilute solution conformation of polysaccharides is the Smidsrød-Haug stiffness parameter (B) where the stiffness of polyelectrolytes can be estimated by measuring the intrinsic viscosity at a number of different ionic strengths. In this paper we propose an alternative method for estimating the Smidsrød-Haug stiffness parameter (B) using the ionic strength dependency of zeta potential. For this purpose we have studied a number of different polysaccharides.
Collapse
Affiliation(s)
- Atiga Abodinar
- Department of Chemical Sciences, School of Applied Sciences, University of Huddersfield, Huddersfield HD1 3DH, UK
| | - Alan M Smith
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield HD1 3DH, UK
| | - Gordon A Morris
- Department of Chemical Sciences, School of Applied Sciences, University of Huddersfield, Huddersfield HD1 3DH, UK.
| |
Collapse
|
34
|
Swami Hulle NR, Patruni K, Rao PS. Rheological Properties of Aloe Vera (A
loe barbadensis
Miller) Juice Concentrates. J FOOD PROCESS ENG 2014. [DOI: 10.1111/jfpe.12093] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nishant R. Swami Hulle
- Agricultural and Food Engineering Department; Indian Institute of Technology; Kharagpur West Bengal 721302 India
| | - Kiran Patruni
- Agricultural and Food Engineering Department; Indian Institute of Technology; Kharagpur West Bengal 721302 India
| | - P. Srinivasa Rao
- Agricultural and Food Engineering Department; Indian Institute of Technology; Kharagpur West Bengal 721302 India
| |
Collapse
|
35
|
Gentilini R, Bozzini S, Munarin F, Petrini P, Visai L, Tanzi MC. Pectins fromAloe Vera: Extraction and production of gels for regenerative medicine. J Appl Polym Sci 2013. [DOI: 10.1002/app.39760] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Roberta Gentilini
- Laboratorio di Biomateriali; Dipartimento di Chimica, Materiali e Ingegneria Chimica, ‘G. Natta’, Politecnico di Milano; P.zza Leonardo da Vinci 32 20133 Milano Italy
| | - Sabrina Bozzini
- Laboratorio di Biomateriali; Dipartimento di Chimica, Materiali e Ingegneria Chimica, ‘G. Natta’, Politecnico di Milano; P.zza Leonardo da Vinci 32 20133 Milano Italy
- Unità di Ricerca del Consorzio Interuniversitario Nazionale Per la Scienza e Tecnologia dei Materiali (INSTM); Italy
| | - Fabiola Munarin
- Laboratorio di Biomateriali; Dipartimento di Chimica, Materiali e Ingegneria Chimica, ‘G. Natta’, Politecnico di Milano; P.zza Leonardo da Vinci 32 20133 Milano Italy
- Unità di Ricerca del Consorzio Interuniversitario Nazionale Per la Scienza e Tecnologia dei Materiali (INSTM); Italy
| | - Paola Petrini
- Laboratorio di Biomateriali; Dipartimento di Chimica, Materiali e Ingegneria Chimica, ‘G. Natta’, Politecnico di Milano; P.zza Leonardo da Vinci 32 20133 Milano Italy
- Unità di Ricerca del Consorzio Interuniversitario Nazionale Per la Scienza e Tecnologia dei Materiali (INSTM); Italy
| | - Livia Visai
- Unità di Ricerca del Consorzio Interuniversitario Nazionale Per la Scienza e Tecnologia dei Materiali (INSTM); Italy
- Department. of Molecular Medicine; Center for Tissue Engineering (C.I.T.), Università di Pavia; Pavia Italy
- Salvatore Maugeri Foundation; IRCCS Pavia Italy
| | - Maria Cristina Tanzi
- Laboratorio di Biomateriali; Dipartimento di Chimica, Materiali e Ingegneria Chimica, ‘G. Natta’, Politecnico di Milano; P.zza Leonardo da Vinci 32 20133 Milano Italy
- Unità di Ricerca del Consorzio Interuniversitario Nazionale Per la Scienza e Tecnologia dei Materiali (INSTM); Italy
| |
Collapse
|
36
|
Lad V, Murthy Z. Rheology of Aloe barbadensis Miller: A naturally available material of high therapeutic and nutrient value for food applications. J FOOD ENG 2013. [DOI: 10.1016/j.jfoodeng.2012.10.036] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
37
|
Effects of pasteurization on bioactive polysaccharide acemannan and cell wall polymers from Aloe barbadensis Miller. Carbohydr Polym 2011. [DOI: 10.1016/j.carbpol.2011.06.084] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
38
|
Influence of concentration, ionic strength and pH on zeta potential and mean hydrodynamic diameter of edible polysaccharide solutions envisaged for multinanolayered films production. Carbohydr Polym 2011. [DOI: 10.1016/j.carbpol.2011.03.001] [Citation(s) in RCA: 173] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
39
|
Yang L, Fu S, Zhu X, Zhang LM, Yang Y, Yang X, Liu H. Hyperbranched acidic polysaccharide from green tea. Biomacromolecules 2010; 11:3395-405. [PMID: 21028801 DOI: 10.1021/bm100902d] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An acidic tea polysaccharide (ALTPS), isolated from green tea ( Camellia sinensis ), was characterized as a hyperbranched glycoprotein containing the acidic heteropolysaccharide chains and the protein residues from the results of UV-vis, FTIR, one- and two-dimensional NMR, GC, GC-MS, and amino acid analyses. Solution properties of ALTPS were investigated by static and dynamic light scattering analyses and viscometry. The results indicated that the viscosity behavior of ALTPS exhibited a typical polyelectrolyte effect in distilled water, which may be avoided by adding salts. The low intrinsic viscosity of ALTPS in the solutions (8-15 mL/g) is attributed to its hyperbranched structure. By application of the polymer solution theory, it was revealed that ALTPS was present in a sphere-like conformation in the solutions as a result of the hyperbranched structure. The TEM image further confirmed that ALTPS existed in a spherical conformation in aqueous NaCl solution. Glucose was absorbed by ALTPS, which may be one of blood glucose lowering mechanisms of tea polysaccharides.
Collapse
Affiliation(s)
- Liqun Yang
- Institute of Polymer Science, School of Chemistry and Chemical Engineering, BME Center, State Key Laboratory of Optoelectronic Materials and Technologies, DSAPM Lab and PCFM Lab, Sun Yat-sen University, Guangzhou 510275, China.
| | | | | | | | | | | | | |
Collapse
|
40
|
Rodríguez Rodríguez E, Darias Martín J, Díaz Romero C. Aloe vera as a functional ingredient in foods. Crit Rev Food Sci Nutr 2010; 50:305-26. [PMID: 20301017 DOI: 10.1080/10408390802544454] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The main scientific discoveries on Aloe vera published mainly in the last three decades are presented in this work. After describing Aloe from a botanical point of view, the papers related with the chemical composition of different parts of the leaf of Aloe, particularly those in which the gel is described and are presented in a synthetic manner. The chemical analyses reveal that Aloe gel contains mannose polymers with some glucose and other sugars, among which the most important is Acemannan. Besides these, other components such as glycoproteins, enzymes, amino acids, vitamins, and minerals are described. Different factors also affecting the chemical composition of the gel, such as species and variety, climatic and soil conditions, cultivation methods, processing and preservation, are enumerated and discussed. On the other hand, the main therapeutic applications have been revised and the possible damaging effects of Aloe are also commented upon. A special emphasis is placed on the biologically active compounds or groups of compounds responsible for the therapeutic applications and which are their action mechanisms. The paper concludes that more research is needed to confirm the therapeutic and beneficial effects and to definitively clarify the myth surrounding Aloe vera. A general view on the problem of the commercialization and establishment of the quality and safety of Aloe products in the food industry has been offered here. The main points and European regulations that need to be considered regarding the quality control of prepared Aloe products are presented in this paper.
Collapse
Affiliation(s)
- Elena Rodríguez Rodríguez
- Department of Analytical Chemistry, Food Science and Nutrition, University of La Laguna, La Laguna, Santa Cruz de Tenerife, Spain
| | | | | |
Collapse
|
41
|
Peng HT, Shek PN. Development of in situ-forming hydrogels for hemorrhage control. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2009; 20:1753-1762. [PMID: 19347258 DOI: 10.1007/s10856-009-3721-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Accepted: 02/17/2009] [Indexed: 05/27/2023]
Abstract
We report the preparation of in situ-forming hydrogels, composed of oxidized dextran (Odex) and amine-containing polymers, for their potential use as a wound dressing to promote blood clotting. Dextran was oxidized by sodium periodate to introduce aldehyde groups to form hydrogels, upon mixing in solution with different polymers containing primary amine groups, including polyallylamine (PAA), oligochitosan and glycol chitosan. A series of experiments were conducted to identify the optimum gelation condition for the Odex-PAA system. The polymer concentration appeared to have a major effect on gelation time and the polymer weight ratio affected the resulting gel content and swelling. Other influencing factors included pH of the buffer used to dissolve each polymer, PAA molecular weight, and the type of individual material. The latter also contributed significantly to gel content and swelling. Thromboelastography was used to examine the effects of the in situ gelation on blood coagulation in vitro, where the Odex-PAA combination was found to be most pro-hemostatic, as indicated by a decrease in clotting time and an increase in clot strength. The results of this study demonstrated that in situ-forming hydrogels could promote clotting in vitro; however, further studies are required to determine if the same hydrogel formulations are effective in controlling hemorrhage in vivo.
Collapse
Affiliation(s)
- Henry T Peng
- Defence Research and Development Canada - Toronto, Toronto, ON, Canada.
| | | |
Collapse
|
42
|
Song Y, Zhou J, Li Q, Lue A, Zhang L. Solution properties of the acrylamide-modified cellulose polyelectrolytes in aqueous solutions. Carbohydr Res 2009; 344:1332-9. [DOI: 10.1016/j.carres.2009.04.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2009] [Revised: 04/20/2009] [Accepted: 04/21/2009] [Indexed: 10/20/2022]
|
43
|
Ogushi Y, Sakai S, Kawakami K. Phenolic Hydroxy Groups Incorporated for the Peroxidase-Catalyzed Gelation of a Carboxymethylcellulose Support: Cellular Adhesion and Proliferation. Macromol Biosci 2009; 9:262-7. [DOI: 10.1002/mabi.200800263] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
44
|
McConaughy SD, Kirkland SE, Treat NJ, Stroud PA, McCormick CL. Tailoring the Network Properties of Ca2+ Crosslinked Aloe vera Polysaccharide Hydrogels for in Situ Release of Therapeutic Agents. Biomacromolecules 2008; 9:3277-87. [DOI: 10.1021/bm8008457] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shawn D. McConaughy
- Department of Polymer Science, Department of Chemistry and Biochemistry, The University of Southern Mississippi, Hattiesburg, Mississippi 39406, DelSite Biotechnologies, Irving, Texas 75038
| | - Stacey E. Kirkland
- Department of Polymer Science, Department of Chemistry and Biochemistry, The University of Southern Mississippi, Hattiesburg, Mississippi 39406, DelSite Biotechnologies, Irving, Texas 75038
| | - Nicolas J. Treat
- Department of Polymer Science, Department of Chemistry and Biochemistry, The University of Southern Mississippi, Hattiesburg, Mississippi 39406, DelSite Biotechnologies, Irving, Texas 75038
| | - Paul A. Stroud
- Department of Polymer Science, Department of Chemistry and Biochemistry, The University of Southern Mississippi, Hattiesburg, Mississippi 39406, DelSite Biotechnologies, Irving, Texas 75038
| | - Charles L. McCormick
- Department of Polymer Science, Department of Chemistry and Biochemistry, The University of Southern Mississippi, Hattiesburg, Mississippi 39406, DelSite Biotechnologies, Irving, Texas 75038
| |
Collapse
|