1
|
Li J, Xu M, Sun J, Li J, Chen J, Chen Q, Chen J. Rapid titration of recombinant baculoviruses based on NanoLuc secretion in early infection. J Virol Methods 2022; 307:114565. [PMID: 35728698 DOI: 10.1016/j.jviromet.2022.114565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/18/2022] [Accepted: 06/08/2022] [Indexed: 11/26/2022]
Abstract
The baculovirus expression vector system has become a powerful tool for recombinant protein production and gene delivery. However, existing titration methods for baculovirus are not economical in terms of test time and cost. A titration method based on NanoLuc secretion that allows for titration of recombinant baculoviruses at 4 h post infection (hpi) is described. In the assay, the envelop protein GP64 signal peptide-guided NanoLuc was secreted into the culture medium in proportion to the virus amount during early infection under combined control by the homologous region 5 (hr5) enhancer and the promoter of immediate early gene 1 (ie1) plus L21. Two timepoint standard curves of luciferase activity to virus titers of 5-9 logs were established with excellent linearity and correlation coefficients (slope = 1.050, R2 ≥ 0.9969) using a secretory Nanoluc (secrNluc) - inserted standard baculovirus. Through the assay, the titers of three recombinant viruses prepared independently were calculated by directly measuring luciferase activity in the supernatant at 4 and 6 hpi, with greater accuracy compared to the endpoint dilution assay. These results show the efficacy of this proposed method as a streamlined assay for rapidly titrating recombinant baculoviruses.
Collapse
Affiliation(s)
- Jige Li
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Meng Xu
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Juan Sun
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Junjun Li
- Institute of Molecular Enzymology and School of Biology & Basic Medical Sciences, Medical College, Soochow University, Suzhou 215123, China
| | - Jianqing Chen
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Qin Chen
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jian Chen
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
2
|
Abstract
The general strategy of the baculovirus expression system is to infect insect cells with a virus that expresses a foreign protein at a very late stage of infection. Almost all baculovirus expression systems use the procedures for insect cell transfection, baculovirus production, and protein expression given in the main portion of this protocol. This protocol also includes a method that uses molecular biology techniques to produce recombinant baculovirus DNA in E. coli before transfection of insect cells. It is important to quantify the viral titer to achieve optimal and reproducible expression of target proteins. Accordingly, the viral plaque assay is also described here.
Collapse
|
3
|
Imasaki T, Wenzel S, Yamada K, Bryant ML, Takagi Y. Titer estimation for quality control (TEQC) method: A practical approach for optimal production of protein complexes using the baculovirus expression vector system. PLoS One 2018; 13:e0195356. [PMID: 29614134 PMCID: PMC5882171 DOI: 10.1371/journal.pone.0195356] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 03/21/2018] [Indexed: 11/18/2022] Open
Abstract
The baculovirus expression vector system (BEVS) is becoming the method of choice for expression of many eukaryotic proteins and protein complexes for biochemical, structural and pharmaceutical studies. Significant technological advancement has made generation of recombinant baculoviruses easy, efficient and user-friendly. However, there is a tremendous variability in the amount of proteins made using the BEVS, including different batches of virus made to express the same proteins. Yet, what influences the overall production of proteins or protein complexes remains largely unclear. Many downstream applications, particularly protein structure determination, require purification of large quantities of proteins in a repetitive manner, calling for a reliable experimental set-up to obtain proteins or protein complexes of interest consistently. During our investigation of optimizing the expression of the Mediator Head module, we discovered that the ‘initial infectivity’ was an excellent indicator of overall production of protein complexes. Further, we show that this initial infectivity can be mathematically described as a function of multiplicity of infection (MOI), correlating recombinant protein yield and virus titer. All these findings led us to develop the Titer Estimation for Quality Control (TEQC) method, which enables researchers to estimate initial infectivity, titer/MOI values in a simple and affordable way, and to use these values to quantitatively optimize protein expressions utilizing BEVS in a highly reproducible fashion.
Collapse
Affiliation(s)
- Tsuyoshi Imasaki
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Sabine Wenzel
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Kentaro Yamada
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Megan L. Bryant
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Yuichiro Takagi
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- * E-mail:
| |
Collapse
|
4
|
Recombinant Protein Production in Large-Scale Agitated Bioreactors Using the Baculovirus Expression Vector System. Methods Mol Biol 2016; 1350:241-61. [PMID: 26820861 DOI: 10.1007/978-1-4939-3043-2_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The production of recombinant proteins using the baculovirus expression vector system (BEVS) in large-scale agitated bioreactors is discussed in this chapter. Detailed methods of the key stages of a batch process, including host cell growth, virus stock amplification and quantification, bioreactor preparation and operation, the infection process, final harvesting, and primary separation steps for recovery of the product are presented. Furthermore, methods involved with advanced on-line monitoring and bioreactor control, which have a significant impact on the overall process success, are briefly discussed.
Collapse
|
5
|
Abstract
The ease of use, robustness, cost-effectiveness, and posttranslational machinery make baculovirus expression system a popular choice for production of eukaryotic membrane proteins. This system can be readily adapted for high-throughput operations. This chapter outlines the techniques and procedures for cloning, transfection, small-scale production, and purification of membrane protein samples in a high-throughput manner.
Collapse
|
6
|
Yang JP. Small-Scale Production of Recombinant Proteins Using the Baculovirus Expression Vector System. Methods Mol Biol 2016; 1350:225-239. [PMID: 26820860 DOI: 10.1007/978-1-4939-3043-2_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Numerous technological improvements, including progress in vector design, simplification of virus isolation techniques, and advancements in molecular biology and cell culture technologies, have greatly facilitated the use of the baculovirus-insect cell system for routine production of recombinant proteins. This chapter outlines the basic techniques for small-scale protein production using the Baculovirus Expression Vector System (BEVS), including protocols for titer estimation in 96-well plates, expression optimization in 24-well plates, and recombinant protein expression from adherent and suspension cultures in six-well plates and in 50 mL insect cell cultures.
Collapse
Affiliation(s)
- Jian-Ping Yang
- Synthetic Biology, Life Science Solution, ThermoFisher Scientific, 5781 Van Allen Way, Carlsbad, CA, 92008, USA.
| |
Collapse
|
7
|
Purification and characterization of the human cysteine-rich S100A3 protein and its pseudo citrullinated forms expressed in insect cells. Methods Mol Biol 2013; 963:73-86. [PMID: 23296605 DOI: 10.1007/978-1-62703-230-8_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
High quantity and quality of recombinant Ca(2+)-binding proteins are required to study their molecular interactions, self-assembly, posttranslational modifications, and biological activities to elucidate Ca(2+)-dependent cellular signaling pathways. S100A3 is a unique member of the S100 protein family with the highest cysteine content (10%). This protein, derived from human hair follicles and cuticles, is characterized by an N-terminal acetyl group and irreversible posttranslational citrullination by peptidylarginine deiminase causing its homotetramer assembly. Insect cells, capable of introducing eukaryotic N-terminus and disulfide bonds, are an appropriate host in which to express this cysteine-rich protein. Four out of ten cysteines in the recombinant S100A3 form two intramolecular disulfide bridges that modulate its Ca(2+)-affinity. Three free thiol groups located at the C-terminus are predicted to form the high-affinity Zn(2+)-binding site. Citrullination of specific arginine residues in native S100A3 can be mimicked by site-directed mutagenic substitution of Arg/Ala. This chapter details our procedures used for the purification and characterization of the human S100A3 protein and its pseudo citrullinated forms expressed in insect cells.
Collapse
|
8
|
Development of a novel baculovirus titration method using the Enzyme-linked immunosorbent spot (ELISPOT) assay. J Virol Methods 2012; 188:114-20. [PMID: 23274754 DOI: 10.1016/j.jviromet.2012.12.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 12/11/2012] [Accepted: 12/17/2012] [Indexed: 01/09/2023]
Abstract
The baculovirus expression vector system (BEVS) is one of the most powerful methods for production of recombinant proteins for research or commercial purposes. Titration of viable virus in insect cell culture is often required when BEVS is used for basic research or bioprocessing. An enzyme-linked immunosorbent spot (ELISPOT) assay using monoclonal antibodies against the major capsid protein VP39 of both Autographa californica nuclear polyhedrosis virus (AcMNPV) and Bombyx mori nuclear polyhedrosis virus (BmNPV) was developed for baculovirus quantitation at 48h post-infection. The titer was determined by visualizing infected insect cells as blue spots and automated spot counting was achieved with ELISPOT hardware and software. Log-scale comparison of the results between the ELISPOT assay and a conventional end point dilution assay using a fluorescent marker showed a good correlation for both AcMNPV (R(2)=0.9980, p<0.05) and BmNPV (R(2)=0.9834, p<0.05). In conclusion, a novel, rapid and semi-automated procedure for titrating baculovirus was developed based on the specific immunostaining of infected cells followed by automated spot counting.
Collapse
|
9
|
Lesch HP, Makkonen KE, Laitinen A, Määttä AM, Närvänen O, Airenne KJ, Ylä-Herttuala S. Requirements for baculoviruses for clinical gene therapy applications. J Invertebr Pathol 2011; 107 Suppl:S106-12. [PMID: 21784225 DOI: 10.1016/j.jip.2011.05.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 01/23/2011] [Indexed: 11/30/2022]
Affiliation(s)
- Hanna P Lesch
- AI Virtanen Institute Department of Biotechnology and Molecular Medicine, University of Eastern Finland/Kuopio, Finland
| | | | | | | | | | | | | |
Collapse
|
10
|
Lo WH, Chen CY, Yeh CN, Lin CY, Hu YC. Rapid baculovirus titration based on regulatable green fluorescent protein expression in mammalian cells. Enzyme Microb Technol 2010; 48:13-8. [PMID: 22112765 DOI: 10.1016/j.enzmictec.2010.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 08/12/2010] [Accepted: 08/13/2010] [Indexed: 10/19/2022]
Abstract
Baculovirus is a promising gene delivery vector and can be titrated by constitutive EGFP expression in HeLa cells, which, however, might interfere with target transgene expression and impart cytotoxicity. Here we constructed Bac-ME accommodating egfp under the inducible metallothionein promoter and Bac-MECB harboring an additional BMP-2 gene. Bac-ME effectively transduced HeLa cells with minimal leaky expression, but expressed EGFP robustly upon induction with ZnSO(4), hence allowing for virus titration by transducing HeLa cells with serially diluted virus, subsequent ZnSO(4) induction and flow cytometry analysis of EGFP-positive cells. The titration protocol enabled the generation of discernable titration curves, determination of transducing titers, and discrimination of the transducing abilities of different virus batches. After titration, cell transduction with pre-determined Bac-ME dose revealed consistent transduction efficiency dependence on the dose, regardless of virus batch and cell type. Bac-MECB was similarly titrated by inducible EGFP expression and used to transduce de-differentiated articular chondrocytes without EGFP induction. BMP-2 expression was proportional to the Bac-MECB dose and promoted cartilage-specific matrix synthesis, implicating the potential of Bac-MECB in restoring chondrocyte differentiation. These data confirmed that regulatable EGFP expression enabled rapid, reliable baculovirus titration without interference with subsequent applications.
Collapse
Affiliation(s)
- Wen-Hsin Lo
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| | | | | | | | | |
Collapse
|
11
|
Trowitzsch S, Bieniossek C, Nie Y, Garzoni F, Berger I. New baculovirus expression tools for recombinant protein complex production. J Struct Biol 2010; 172:45-54. [PMID: 20178849 DOI: 10.1016/j.jsb.2010.02.010] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Revised: 02/12/2010] [Accepted: 02/15/2010] [Indexed: 02/07/2023]
Abstract
Most eukaryotic proteins exist as large multicomponent assemblies with many subunits, which act in concert to catalyze specific cellular activities. Many of these molecular machines are only present in low amounts in their native hosts, which impede purification from source material. Unraveling their structure and function at high resolution will often depend on heterologous overproduction. Recombinant expression of multiprotein complexes for structural studies can entail considerable, sometimes inhibitory, investment in both labor and materials, in particular if altering and diversifying of the individual subunits are necessary for successful structure determination. Our laboratory has addressed this challenge by developing technologies that streamline the complex production and diversification process. Here, we review several of these developments for recombinant multiprotein complex production using the MultiBac baculovirus/insect cell expression system which we created. We also addressed parallelization and automation of gene assembly for multiprotein complex expression by developing robotic routines for multigene vector generation. In this contribution, we focus on several improvements of baculovirus expression system performance which we introduced: the modifications of the transfer plasmids, the methods for generation of composite multigene baculoviral DNA, and the simplified and standardized expression procedures which we delineated using our MultiBac system.
Collapse
Affiliation(s)
- Simon Trowitzsch
- European Molecular Biology Laboratory (EMBL), Grenoble Outstation, and Unit of Virus Host Cell Interactions UVHCI, UMI3265, 6 rue Jules Horowitz, Grenoble Cedex 9, France
| | | | | | | | | |
Collapse
|
12
|
Kato T, Manoha SL, Tanaka S, Park EY. High-titer preparation of Bombyx mori nucleopolyhedrovirus (BmNPV) displaying recombinant protein in silkworm larvae by size exclusion chromatography and its characterization. BMC Biotechnol 2009; 9:55. [PMID: 19523201 PMCID: PMC2703641 DOI: 10.1186/1472-6750-9-55] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Accepted: 06/12/2009] [Indexed: 01/13/2023] Open
Abstract
Background Budded baculoviruses are utilized for vaccine, the production of antibody and functional analysis of transmembrane proteins. In this study, we tried to produce and purify the recombinant Bombyx mori nucleopolyhedrovirus (rBmNPV-hPRR) that displayed human (pro)renin receptor (hPRR) connected with FLAG peptide sequence on its own surface. These particles were used for further binding analysis of hPRR to human prorenin. The rBmNPV-hPRR was produced in silkworm larvae and purified from its hemolymph using size exclusion chromatography (SEC). Results A rapid method of BmNPV titer determination in hemolymph was performed using quantitative real-time PCR (Q-PCR). A correlation coefficient of BmNPV determination between end-point dilution and Q-PCR methods was found to be 0.99. rBmNPV-hPRR bacmid-injected silkworm larvae produced recombinant baculovirus of 1.31 × 108 plaque forming unit (pfu) in hemolymph, which was 2.8 × 104 times higher than transfection solution in Bm5 cells. Its purification yield by Sephacryl S-1000 SF column chromatography was 264 fold from larval hemolymph at 4 days post-injection (p.i.), but 35 or 39 fold at 4.5 or 5 days p.i., respectively. Protein patterns of rBmNPV-hPRR purified at 4 and 5 days were the same and ratio of envelope proteins (76, 45 and 35 kDa) to VP39, one of nucleocapsid proteins, increased at 5 days p.i. hPRR was detected in only purified rBmNPV-hPRR at 5 days p.i.. Conclusion The successful purification of rBmNPV-hPRR indicates that baculovirus production using silkworm larvae and its purification from hemolymph by Sephacryl S-1000 SF column chromatography can provide an economical approach in obtaining the purified BmNPV stocks with high titer for large-scale production of hPRR. Also, it can be utilized for further binding analysis and screening of inhibitors of hPRR.
Collapse
Affiliation(s)
- Tatsuya Kato
- Laboratory of Biotechnology, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan.
| | | | | | | |
Collapse
|
13
|
Kärkkäinen HR, Lesch HP, Määttä AI, Toivanen PI, Mähönen AJ, Roschier MM, Airenne KJ, Laitinen OH, Ylä-Herttuala S. A 96-well format for a high-throughput baculovirus generation, fast titering and recombinant protein production in insect and mammalian cells. BMC Res Notes 2009; 2:63. [PMID: 19389242 PMCID: PMC2680411 DOI: 10.1186/1756-0500-2-63] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Accepted: 04/23/2009] [Indexed: 11/10/2022] Open
Abstract
Background Baculovirus expression vector system (BEVS) has become a standard in recombinant protein production and virus-like particle preparation for numerous applications. Findings We describe here protocols which adapt baculovirus generation into 96-well format. Conclusion The established methodology allows simple baculovirus generation, fast virus titering within 18 h and efficient recombinant protein production in a high-throughput format. Furthermore, the produced baculovirus vectors are compatible with gene expression in vertebrate cells in vitro and in vivo.
Collapse
Affiliation(s)
- Hanna-Riikka Kärkkäinen
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, Kuopio, Finland.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Roldão A, Oliveira R, Carrondo MJT, Alves PM. Error assessment in recombinant baculovirus titration: evaluation of different methods. J Virol Methods 2009; 159:69-80. [PMID: 19442848 DOI: 10.1016/j.jviromet.2009.03.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Revised: 02/27/2009] [Accepted: 03/09/2009] [Indexed: 10/21/2022]
Abstract
The success of baculovirus/insect cells system in heterologous protein expression depends on the robustness and efficiency of the production workflow. It is essential that process parameters are controlled and include as little variability as possible. The multiplicity of infection (MOI) is the most critical factor since irreproducible MOIs caused by inaccurate estimation of viral titers hinder batch consistency and process optimization. This lack of accuracy is related to intrinsic characteristics of the method such as the inability to distinguish between infectious and non-infectious baculovirus. In this study, several methods for baculovirus titration were compared. The most critical issues identified were the incubation time and cell concentration at the time of infection. These variables influence strongly the accuracy of titers and must be defined for optimal performance of the titration method. Although the standard errors of the methods varied significantly (7-36%), titers were within the same order of magnitude; thus, viral titers can be considered independent of the method of titration. A cost analysis of the baculovirus titration methods used in this study showed that the alamarblue, real time Q-PCR and plaque assays were the most expensive techniques. The remaining methods cost on average 75% less than the former methods. Based on the cost, time and error analysis undertaken in this study, the end-point dilution assay, microculture tetrazolium assay and flow cytometric assay were found to be the techniques that combine all these three main factors better. Nevertheless, it is always recommended to confirm the accuracy of the titration either by comparison with a well characterized baculovirus reference stock or by titration using two different methods and verification of the variability of results.
Collapse
|
15
|
Buchs M, Kim E, Pouliquen Y, Sachs M, Geisse S, Mahnke M, Hunt I. High-throughput insect cell protein expression applications. Methods Mol Biol 2009; 498:199-227. [PMID: 18988028 DOI: 10.1007/978-1-59745-196-3_14] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
The Baculovirus Expression Vector System (BEVS) is one of the most efficient systems for production of recombinant proteins and consequently its application is wide-spread in industry as well as in academia. Since the early 1970s, when the first stable insect cell lines were established and the infectivity of bacu-lovirus in an in vitro culture system was demonstrated (1, 2), virtually thousands of reports have been published on the successful expression of proteins using this system as well as on method improvement. However, despite its popularity the system is labor intensive and time consuming. Moreover, adaptation of the system to multi-parallel (high-throughput) expression is much more difficult to achieve than with E. coli due to its far more complex nature. However, recent years have seen the development of strategies that have greatly enhanced the stream-lining and speed of baculovirus protein expression for increased throughput via use of automation and miniaturization. This chapter therefore tries to collate these developments in a series of protocols (which are modifications to standard procedure plus several new approaches) that will allow the user to expedite the speed and throughput of baculovirus-mediated protein expression and facilitate true multi-parallel, high-throughput protein expression profiling in insect cells. In addition we also provide a series of optimized protocols for small and large-scale transient insect cell expression that allow for both the rapid analysis of multiple constructs and the concomitant scale-up of those selected for on-going analysis. Since this approach is independent of viral propagation, the timelines for this approach are markedly shorter and offer a significant advantage over standard bacu-lovirus expression approach strategies in the context of HT applications.
Collapse
Affiliation(s)
- Mirjam Buchs
- Biologics Center, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | | | | | | | | | | | | |
Collapse
|
16
|
Brondyk WH. Chapter 11 Selecting an Appropriate Method for Expressing a Recombinant Protein. Methods Enzymol 2009; 463:131-47. [DOI: 10.1016/s0076-6879(09)63011-1] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
17
|
|
18
|
Elias CB, Jardin B, Kamen A. Recombinant protein production in large-scale agitated bioreactors using the baculovirus expression vector system. Methods Mol Biol 2007; 388:225-46. [PMID: 17951773 DOI: 10.1007/978-1-59745-457-5_11] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
The production of recombinant proteins using the baculovirus expression vector system in large-scale agitated bioreactors is discussed in this chapter. Detailed methods of the key stages of a batch process, including host cell growth, virus stock amplification and quantification, bioreactor preparation and operation, the infection process, final harvesting, and primary separation steps for recovery of the product are presented. Furthermore, methods involved with online monitoring and bioreactor control, which have a significant impact on the overall success of the process, are provided, including advanced online monitoring of physiological parameters such as biovolume and respiration activity for batch and fed-batch insect cell cultures along with their role in operating high cell density cultures.
Collapse
Affiliation(s)
- Cynthia B Elias
- Animal Cell Technology Group, Biotechnology Research Institute, National Research Council Canada, Montreal, Canada
| | | | | |
Collapse
|
19
|
Hitchman RB, Siaterli EA, Nixon CP, King LA. Quantitative real-time PCR for rapid and accurate titration of recombinant baculovirus particles. Biotechnol Bioeng 2007; 96:810-4. [PMID: 16952179 DOI: 10.1002/bit.21177] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We describe the use of quantitative PCR (QPCR) to titer recombinant baculoviruses. Custom primers and probe were designed to gp64 and used to calculate a standard curve of QPCR derived titers from dilutions of a previously titrated baculovirus stock. Each dilution was titrated by both plaque assay and QPCR, producing a consistent and reproducible inverse relationship between C(T) and plaque forming units per milliliter. No significant difference was observed between titers produced by QPCR and plaque assay for 12 recombinant viruses, confirming the validity of this technique as a rapid and accurate method of baculovirus titration.
Collapse
Affiliation(s)
- Richard B Hitchman
- School of Biological & Molecular Sciences, Headington Campus, Oxford Brookes University, Oxford OX3 0BP, UK.
| | | | | | | |
Collapse
|
20
|
Nguyen KV. Utilization of Nucleotide Probes in Elisa Procedure for the Quantitative Determination of Baculovirus Titer. ANAL LETT 2007. [DOI: 10.1080/00032710600964791] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
21
|
Janakiraman V, Forrest WF, Seshagiri S. Estimation of baculovirus titer based on viable cell size. Nat Protoc 2006; 1:2271-6. [PMID: 17406467 DOI: 10.1038/nprot.2006.387] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In this paper, a simple and rapid protocol for determination of baculovirus titers based on increasing viable insect cell size/diameter following virus infection is presented. There are different methods available for determining virus titers such as plaque assays end-point dilution, quantitative real-time polymerase chain reaction and flow cytometry. However, most of these methods are time consuming and labor intensive. The titer estimation method presented here can be completed in approximately 28 h from start to finish. In this method, the Vi-CELL (Beckman Coulter) was used to measure cell diameter change over a range of virus dilutions, following infection. The cell diameter change data were used to compute the virus titer using a statistical method called the method of moments that we have described previously.
Collapse
Affiliation(s)
- Vasantharajan Janakiraman
- Department of Molecular Biology, Genentech Inc., 1 DNA way, South San Francisco, California 94080, USA
| | | | | |
Collapse
|
22
|
Suzuki M, Kohsaka T, Park EY. Identification of epitope on DNA-binding protein expressed in insect cell infected by baculovirus. Mol Biol Rep 2006; 33:97-102. [PMID: 16817018 DOI: 10.1007/s11033-005-0414-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2005] [Indexed: 11/24/2022]
Abstract
DNA-binding protein (DBP) is an early gene product produced during viral replication. Polyclonal anti-DBP was produced using rabbit by intradermal injections of Escherichia coli-expressed purified recombinant DBP. Prepared anti-DBP completely blocked the replication of baculovirus in insect cells. The anti-DBP binding to DBP was confirmed by both Western blotting with Tn-5B1-4 insect cell lysates as well as immunostained baculovirus-infected Tn-5B1-4 insect cells. To determine the anti-DBP epitope 12 peptides were synthesized and their specific-binding activities were measured using ELISA. Based on specific-binding activity against anti-DBP the epitope was predicted to be between amino acid residues 248-265 (QRMSVEDFDRLFEMDKID). Especially from 18 amino acid residues it was further to be narrowed between amino acid residues 260-265 (EMDKID) which showed a critical role in specific-binding activity.
Collapse
Affiliation(s)
- Mami Suzuki
- Laboratory of Biotechnology, Department of Applied Biological Chemistry, Faculty of Agriculture, Shizuoka University, 836 Ohya, Shizuoka, 422-8529, Japan
| | | | | |
Collapse
|
23
|
Pouliquen Y, Kolbinger F, Geisse S, Mahnke M. Automated baculovirus titration assay based on viable cell growth monitoring using a colorimetric indicator. Biotechniques 2006; 40:282, 284, 286 passim. [PMID: 16568817 DOI: 10.2144/000112136] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Yann Pouliquen
- Novartis Institutes for BioMedical Research, Basel, Switzerland.
| | | | | | | |
Collapse
|
24
|
Janakiraman V, Forrest WF, Chow B, Seshagiri S. A rapid method for estimation of baculovirus titer based on viable cell size. J Virol Methods 2005; 132:48-58. [PMID: 16213601 DOI: 10.1016/j.jviromet.2005.08.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2005] [Revised: 08/27/2005] [Accepted: 08/31/2005] [Indexed: 10/25/2022]
Abstract
Baculovirus protein expression system is a powerful tool for producing recombinant proteins. To optimize conditions for efficient recombinant protein expression, it is important to determine titer of virus stock for arriving at an optimal multiplicity of infection (MOI) that maximizes recombinant protein expression. Traditionally plaque assays have been used for titer determination. Other methods such as endpoint dilution, quantitative real-time polymerase chain reaction and flow cytometry have been developed to aid the determination of virus titers. However, most of these methods are time-consuming and labor intensive. In this regard, a simple and rapid method for determination of virus titers based on the cytopathic effects that lead to viable cell size increase following virus infection is presented in this paper. In this study, the Vi-CELL (Beckman Coulter) was used to measure cell-diameter over a range of virus dilutions, following infection. Applying statistical modeling techniques, the viable cell-diameter data was used to estimate the virus titer. The results indicated that the viable cell-diameter based titer estimation to be reliable and comparable to titers determined by the traditional plaque assay.
Collapse
|
25
|
Baculovirus as versatile vectors for protein expression in insect and mammalian cells. Nat Biotechnol 2005; 23:567-75. [PMID: 15877075 PMCID: PMC3610534 DOI: 10.1038/nbt1095] [Citation(s) in RCA: 694] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Today, many thousands of recombinant proteins, ranging from cytosolic enzymes to membrane-bound proteins, have been successfully produced in baculovirus-infected insect cells. Yet, in addition to its value in producing recombinant proteins in insect cells and larvae, this viral vector system continues to evolve in new and unexpected ways. This is exemplified by the development of engineered insect cell lines to mimic mammalian cell glycosylation of expressed proteins, baculovirus display strategies and the application of the virus as a mammalian-cell gene delivery vector. Novel vector design and cell engineering approaches will serve to further enhance the value of baculovirus technology.
Collapse
|
26
|
Hunt I. From gene to protein: a review of new and enabling technologies for multi-parallel protein expression. Protein Expr Purif 2005; 40:1-22. [PMID: 15721767 DOI: 10.1016/j.pep.2004.10.018] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2004] [Revised: 10/07/2004] [Indexed: 10/26/2022]
Abstract
In the post-genomic era, increasingly greater demands and expectations are being placed on protein production laboratories to produce more proteins and in faster timelines. This has been coupled with an exponential increase in the number of requests for the production of proteins which lack structural and functional information. No longer can groups use literature available in the public domain solely to drive their expression strategy, and moreover current expression and concomitant purification strategies clearly do not meet modern-day demands for protein production. This review will therefore attempt to provide a definitive review of current 'best in class' cloning, expression and purification systems, and the adaptations and developments that have been made by laboratories, both academic and industrial, to enhance protein production throughput.
Collapse
Affiliation(s)
- Ian Hunt
- Novartis Horsham Research Centre, Novartis Institutes for Biomedical Research, Wimblehurst Road, Horsham, West Sussex, UK.
| |
Collapse
|
27
|
Lo HR, Chao YC. Rapid titer determination of baculovirus by quantitative real-time polymerase chain reaction. Biotechnol Prog 2004; 20:354-60. [PMID: 14763863 DOI: 10.1021/bp034132i] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Titer determination is a prerequisite for the study of viruses. However, the current available methods are tedious and time-consuming. To improve the efficiency of titer determination, we have developed a rapid and simple method for the routine detection of baculovirus titers using a quantitative real-time PCR. This method is based on the amplification of approximately 150-bp fragments located in the coding regions of selected genes. The PCR was found to be quantitative in a range of 10(3) to 10(9) virus particles per 200 microL of supernatant, and the results were closely correlated with titers detected from 50% tissue culture infectious doses (TCID(50)) of baculovirus. This quantitative real-time PCR requires only 30 min to perform, and the entire titer determination can be accomplished within 1 h without the need for cell seeding or further virus dilution and infection. Because this technology is easy to operate, generates data with high precision, and most importantly is very quick, it will certainly be broadly applied for titer determination of baculoviruses in the future.
Collapse
Affiliation(s)
- Huei-Ru Lo
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan, ROC
| | | |
Collapse
|
28
|
Malde V, Hunt I. Calculation of baculovirus titer using a microfluidic-based bioanalyzer. Biotechniques 2004; 36:942-4, 946. [PMID: 15211743 DOI: 10.2144/04366bm04] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Vikash Malde
- Novartis Horsham Research Centre, Horsham, West Sussex, UK
| | | |
Collapse
|