1
|
Huang L, Parvatkar PT, Wagner A, Kulkarni SS, Manetsch R. Chemoselective seleno-click amidation in kinetic target-guided synthesis. Chem Commun (Camb) 2024; 60:12722-12725. [PMID: 39397669 DOI: 10.1039/d4cc04491f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Capitalizing on our previous kinetic target-guided synthesis (KTGS) involving the sulfo-click reaction to form N-acylsulfonamide-linked inhibitors in the presence of the protein-protein interaction target Mcl-1, we herein report a seleno-click approach for amide-linked inhibitors of Mcl-1. The seleno-click reaction leverages the enhanced reactivity of selenocarboxylates, enabling the templated amidation with electron-rich azides, thereby expanding the scope of KTGS. The potential of this approach is demonstrated by generating N-benzyl-5-(4-isopropylthiophenol)-2-hydroxyl nicotinamide, a known Mcl-1 inhibitor featuring an amide, via KTGS at 37 °C against Mcl-1. Notably, the seleno-click strategy was also effective at 4 °C, offering a variant for thermally sensitive biological targets.
Collapse
Affiliation(s)
- Lili Huang
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA.
| | - Prakash T Parvatkar
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA.
| | - Alicia Wagner
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA.
| | - Sameer S Kulkarni
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA
| | - Roman Manetsch
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA.
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
- Center for Drug Discovery, Northeastern University, Boston, MA 02115, USA
- Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
2
|
Kassu M, Parvatkar PT, Milanes J, Monaghan NP, Kim C, Dowgiallo M, Zhao Y, Asakawa AH, Huang L, Wagner A, Miller B, Carter K, Barrett KF, Tillery LM, Barrett LK, Phan IQ, Subramanian S, Myler PJ, Van Voorhis WC, Leahy JW, Rice CA, Kyle DE, Morris J, Manetsch R. Shotgun Kinetic Target-Guided Synthesis Approach Enables the Discovery of Small-Molecule Inhibitors against Pathogenic Free-Living Amoeba Glucokinases. ACS Infect Dis 2023; 9:2190-2201. [PMID: 37820055 PMCID: PMC10644346 DOI: 10.1021/acsinfecdis.3c00284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Indexed: 10/13/2023]
Abstract
Pathogenic free-living amoebae (pFLA) can cause life-threatening central nervous system (CNS) infections and warrant the investigation of new chemical agents to combat the rise of infection from these pathogens. Naegleria fowleri glucokinase (NfGlck), a key metabolic enzyme involved in generating glucose-6-phosphate, was previously identified as a potential target due to its limited sequence similarity with human Glck (HsGlck). Herein, we used our previously demonstrated multifragment kinetic target-guided synthesis (KTGS) screening strategy to identify inhibitors against pFLA glucokinases. Unlike the majority of previous KTGS reports, our current study implements a "shotgun" approach, where fragments were not biased by predetermined binding potentials. The study resulted in the identification of 12 inhibitors against 3 pFLA glucokinase enzymes─NfGlck, Balamuthia mandrillaris Glck (BmGlck), and Acanthamoeba castellanii Glck (AcGlck). This work demonstrates the utility of KTGS to identify small-molecule binders for biological targets where resolved X-ray crystal structures are not readily accessible.
Collapse
Affiliation(s)
- Mintesinot Kassu
- Department
of Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
| | - Prakash T. Parvatkar
- Department
of Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
| | - Jillian Milanes
- Eukaryotic
Pathogens Innovation Center, Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Neil P. Monaghan
- Eukaryotic
Pathogens Innovation Center, Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Chungsik Kim
- Department
of Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
| | - Matthew Dowgiallo
- Department
of Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
| | - Yingzhao Zhao
- Department
of Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
| | - Ami H. Asakawa
- Department
of Pharmaceutical Sciences, Northeastern
University, Boston, Massachusetts 02115, United States
| | - Lili Huang
- Department
of Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
| | - Alicia Wagner
- Department
of Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
| | - Brandon Miller
- Department
of Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
| | - Karissa Carter
- Department
of Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
| | - Kayleigh F. Barrett
- Center
for Emerging and Re-emerging Infectious Diseases (CERID), Division
of Allergy and Infectious Diseases, Department of Medicine, University of Washington School of Medicine, Seattle, Washington 98109, United States
| | - Logan M. Tillery
- Center
for Emerging and Re-emerging Infectious Diseases (CERID), Division
of Allergy and Infectious Diseases, Department of Medicine, University of Washington School of Medicine, Seattle, Washington 98109, United States
| | - Lynn K. Barrett
- Center
for Emerging and Re-emerging Infectious Diseases (CERID), Division
of Allergy and Infectious Diseases, Department of Medicine, University of Washington School of Medicine, Seattle, Washington 98109, United States
| | - Isabelle Q. Phan
- Center for Global Infectious Diseases Research, Seattle Children’s Research Center, Seattle, Washington 98109, United States
| | - Sandhya Subramanian
- Center for Global Infectious Diseases Research, Seattle Children’s Research Center, Seattle, Washington 98109, United States
| | - Peter J. Myler
- Center for Global Infectious Diseases Research, Seattle Children’s Research Center, Seattle, Washington 98109, United States
| | - Wesley C. Van Voorhis
- Center
for Emerging and Re-emerging Infectious Diseases (CERID), Division
of Allergy and Infectious Diseases, Department of Medicine, University of Washington School of Medicine, Seattle, Washington 98109, United States
| | - James W. Leahy
- Department of Chemistry, University
of
South Florida, Tampa, Florida 33620, United States
| | - Christopher A. Rice
- Department
of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue
Institute for Drug Discovery (PIDD), Purdue
University, West Lafayette, Indiana 47907, United States
- Purdue Institute
of Inflammation, Immunology and Infectious Disease (PI4D), Purdue University, West Lafayette, Indiana 47907, United States
- Department
of Cellular Biology, University of Georgia, Athens, Georgia 30602, United States
| | - Dennis E. Kyle
- Department
of Cellular Biology, University of Georgia, Athens, Georgia 30602, United States
| | - James Morris
- Eukaryotic
Pathogens Innovation Center, Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Roman Manetsch
- Department
of Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
- Department
of Pharmaceutical Sciences, Northeastern
University, Boston, Massachusetts 02115, United States
- Center
for Drug Discovery, Northeastern University, Boston, Massachusetts 02115, United States
- Barnett
Institute of Chemical and Biological Analysis, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
3
|
Amador R, Tahrioui A, Barreau M, Lesouhaitier O, Smietana M, Clavé G. N-Acylsulfonamide: a valuable moiety to design new sulfa drug analogues. RSC Med Chem 2023; 14:1567-1571. [PMID: 37593573 PMCID: PMC10429802 DOI: 10.1039/d3md00229b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/04/2023] [Indexed: 08/19/2023] Open
Abstract
Sulfonamides are the oldest class of antibiotics, discovered more than 80 years ago. They are still used today despite the appearance of drug resistance phenomena that limit their prescription. Since the discovery and use of the first sulfa drugs, many analogues have been synthesized in order to obtain new active molecules able to circumvent bacterial resistance. Structurally similar to sulfonamide, the N-acylsulfonamide group arouses interest in the field of medicinal chemistry due to specific physico-chemical properties. We report here the synthesis and antibacterial/antibiofilm activities of 18 sulfa drug analogues with an N-acylsulfonamide moiety. These derivatives were obtained efficiently by sulfo-click reactions between readily available thioacid and sulfonyl azide synthons.
Collapse
Affiliation(s)
- Romain Amador
- Institut des Biomolécules Max Mousseron, Université de Montpellier, CNRS, ENSCM 1919 route de Mende 34095 Montpellier France
| | - Ali Tahrioui
- Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, Communication Bactérienne et Stratégies Anti-infectieuses (CBSA) UR 4312 F-76000 Rouen France
| | - Magalie Barreau
- Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, Communication Bactérienne et Stratégies Anti-infectieuses (CBSA) UR 4312 F-76000 Rouen France
| | - Olivier Lesouhaitier
- Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, Communication Bactérienne et Stratégies Anti-infectieuses (CBSA) UR 4312 F-76000 Rouen France
| | - Michael Smietana
- Institut des Biomolécules Max Mousseron, Université de Montpellier, CNRS, ENSCM 1919 route de Mende 34095 Montpellier France
| | - Guillaume Clavé
- Institut des Biomolécules Max Mousseron, Université de Montpellier, CNRS, ENSCM 1919 route de Mende 34095 Montpellier France
| |
Collapse
|
4
|
Grenier D, Audebert S, Preto J, Guichou JF, Krimm I. Linkers in fragment-based drug design: an overview of the literature. Expert Opin Drug Discov 2023; 18:987-1009. [PMID: 37466331 DOI: 10.1080/17460441.2023.2234285] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/05/2023] [Indexed: 07/20/2023]
Abstract
INTRODUCTION In fragment-based drug design, fragment linking is a popular strategy where two fragments binding to different sub-pockets of a target are linked together. This attractive method remains challenging especially due to the design of ideal linkers. AREAS COVERED The authors review the types of linkers and chemical reactions commonly used to the synthesis of linkers, including those utilized in protein-templated fragment self-assembly, where fragments are directly linked in the presence of the protein. Finally, they detail computational workflows and software including generative models that have been developed for fragment linking. EXPERT OPINION The authors believe that fragment linking offers key advantages for compound design, particularly for the design of bivalent inhibitors linking two distinct pockets of the same or different subunits. On the other hand, more studies are needed to increase the potential of protein-templated approaches in FBDD. Important computational tools such as structure-based de novo software are emerging to select suitable linkers. Fragment linking will undoubtedly benefit from developments in computational approaches and machine learning models.
Collapse
Affiliation(s)
- Dylan Grenier
- Team Small Molecules for Biological Targets, Centre de Recherche En Cancérologie (CRCL) - INSERM 1052 - CNRS 5286 - Centre Léon Bérard - Université Claude Bernard Lyon 1, Institut Convergence Plascan, Lyon, France
| | - Solène Audebert
- Centre de Biologie Structurale, CNRS, INSERM, Univ. Montpellier, Montpellier, France
| | - Jordane Preto
- Team Small Molecules for Biological Targets, Centre de Recherche En Cancérologie (CRCL) - INSERM 1052 - CNRS 5286 - Centre Léon Bérard - Université Claude Bernard Lyon 1, Institut Convergence Plascan, Lyon, France
| | - Jean-François Guichou
- Centre de Biologie Structurale, CNRS, INSERM, Univ. Montpellier, Montpellier, France
| | - Isabelle Krimm
- Team Small Molecules for Biological Targets, Centre de Recherche En Cancérologie (CRCL) - INSERM 1052 - CNRS 5286 - Centre Léon Bérard - Université Claude Bernard Lyon 1, Institut Convergence Plascan, Lyon, France
| |
Collapse
|
5
|
Nacheva K, Kulkarni SS, Kassu M, Flanigan D, Monastyrskyi A, Iyamu ID, Doi K, Barber M, Namelikonda N, Tipton JD, Parvatkar P, Wang HG, Manetsch R. Going beyond Binary: Rapid Identification of Protein-Protein Interaction Modulators Using a Multifragment Kinetic Target-Guided Synthesis Approach. J Med Chem 2023; 66:5196-5207. [PMID: 37000900 PMCID: PMC10620989 DOI: 10.1021/acs.jmedchem.3c00108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Indexed: 04/03/2023]
Abstract
Kinetic target-guided synthesis (KTGS) is a powerful screening approach that enables identification of small molecule modulators for biomolecules. While many KTGS variants have emerged, a majority of the examples suffer from limited throughput and a poor signal/noise ratio, hampering reliable hit detection. Herein, we present our optimized multifragment KTGS screening strategy that tackles these limitations. This approach utilizes selected reaction monitoring liquid chromatography tandem mass spectrometry for hit detection, enabling the incubation of 190 fragment combinations per screening well. Consequentially, our fragment library was expanded from 81 possible combinations to 1710, representing the largest KTGS screening library assembled to date. The expanded library was screened against Mcl-1, leading to the discovery of 24 inhibitors. This work unveils the true potential of KTGS with respect to the rapid and reliable identification of hits, further highlighting its utility as a complement to the existing repertoire of screening methods used in drug discovery.
Collapse
Affiliation(s)
- Katya Nacheva
- Department
of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Sameer S. Kulkarni
- Department
of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Mintesinot Kassu
- Department
of Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
| | - David Flanigan
- Department
of Chemistry, University of South Florida, Tampa, Florida 33620, United States
- Department
of Sciences, Hillsborough Community College, Tampa, Florida 33619, United States
| | - Andrii Monastyrskyi
- Department
of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Iredia D. Iyamu
- Department
of Chemistry, University of South Florida, Tampa, Florida 33620, United States
- Department
of Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
| | - Kenichiro Doi
- Department
of Pediatrics, Division of Pediatric Hematology and Oncology, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Megan Barber
- Department
of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Niranjan Namelikonda
- Department
of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Jeremiah D. Tipton
- Proteomics
and Mass Spectrometry Core Facility, University
of South Florida, Tampa, Florida 33620, United States
| | - Prakash Parvatkar
- Department
of Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
| | - Hong-Gang Wang
- Department
of Pediatrics, Division of Pediatric Hematology and Oncology, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Roman Manetsch
- Department
of Chemistry, University of South Florida, Tampa, Florida 33620, United States
- Department
of Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
- Department
of Pharmaceutical Sciences, Northeastern
University, Boston, Massachusetts 02115, United States
- Center for
Drug Discovery, Northeastern University, Boston, Massachusetts 02115, United States
- Barnett
Institute of Chemical and Biological Analysis, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
6
|
Tiemann M, Nawrotzky E, Schmieder P, Wehrhan L, Bergemann S, Martos V, Song W, Arkona C, Keller BG, Rademann J. A Formylglycine-Peptide for the Site-Directed Identification of Phosphotyrosine-Mimetic Fragments. Chemistry 2022; 28:e202201282. [PMID: 35781901 PMCID: PMC9804470 DOI: 10.1002/chem.202201282] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Indexed: 01/05/2023]
Abstract
Discovery of protein-binding fragments for precisely defined binding sites is an unmet challenge to date. Herein, formylglycine is investigated as a molecular probe for the sensitive detection of fragments binding to a spatially defined protein site . Formylglycine peptide 3 was derived from a phosphotyrosine-containing peptide substrate of protein tyrosine phosphatase PTP1B by replacing the phosphorylated amino acid with the reactive electrophile. Fragment ligation with formylglycine occurred in situ in aqueous physiological buffer. Structures and kinetics were validated by NMR spectroscopy. Screening and hit validation revealed fluorinated and non-fluorinated hit fragments being able to replace the native phosphotyrosine residue. The formylglycine probe identified low-affinity fragments with high spatial resolution as substantiated by molecular modelling. The best fragment hit, 4-amino-phenyl-acetic acid, was converted into a cellularly active, nanomolar inhibitor of the protein tyrosine phosphatase SHP2.
Collapse
Affiliation(s)
- Markus Tiemann
- Department of Biology, Chemistry, PharmacyInstitute of PharmacyFreie Universität BerlinKönigin-Luise-Strasse 2+414195BerlinGermany
| | - Eric Nawrotzky
- Department of Biology, Chemistry, PharmacyInstitute of PharmacyFreie Universität BerlinKönigin-Luise-Strasse 2+414195BerlinGermany
| | - Peter Schmieder
- Leibniz Institute of Molecular Pharmacology (FMP)Robert-Rössle-Strasse 1013125BerlinGermany
| | - Leon Wehrhan
- Department of Biology, Chemistry, PharmacyInstitute of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2214195BerlinGermany
| | - Silke Bergemann
- Department of Biology, Chemistry, PharmacyInstitute of PharmacyFreie Universität BerlinKönigin-Luise-Strasse 2+414195BerlinGermany
| | - Vera Martos
- Leibniz Institute of Molecular Pharmacology (FMP)Robert-Rössle-Strasse 1013125BerlinGermany
| | - Wei Song
- Department of Biology, Chemistry, PharmacyInstitute of PharmacyFreie Universität BerlinKönigin-Luise-Strasse 2+414195BerlinGermany
| | - Christoph Arkona
- Department of Biology, Chemistry, PharmacyInstitute of PharmacyFreie Universität BerlinKönigin-Luise-Strasse 2+414195BerlinGermany
| | - Bettina G. Keller
- Department of Biology, Chemistry, PharmacyInstitute of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2214195BerlinGermany
| | - Jörg Rademann
- Department of Biology, Chemistry, PharmacyInstitute of PharmacyFreie Universität BerlinKönigin-Luise-Strasse 2+414195BerlinGermany
| |
Collapse
|
7
|
Bedwell E, McCarthy WJ, Coyne AG, Abell C. Development of potent inhibitors by fragment-linking strategies. Chem Biol Drug Des 2022; 100:469-486. [PMID: 35854428 DOI: 10.1111/cbdd.14120] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/12/2022] [Accepted: 07/17/2022] [Indexed: 11/29/2022]
Abstract
Fragment-based drug discovery (FBDD) is a method of identifying small molecule hits that can be elaborated rationally through fragment growing, merging, and linking, to afford high affinity ligands for biological targets. Despite the promised theoretical potential of fragment linking, examples are still surprisingly sparse and remain overshadowed by the successes of fragment growing. The aim of this review is to outline a number of key examples of fragment linking strategies and discuss their strengths and limitations. Structure-based approaches including X-ray crystallography and in silico methods fragment optimisation are discussed, as well as fragment linking guided by NMR experiments. Target-guided approaches, exploiting the biological target to assemble its own inhibitors through dynamic combinatorial chemistry (DCC) and kinetic target-guided synthesis (KTGS), are identified as alternative efficient methods for fragment linking.
Collapse
Affiliation(s)
- Elizabeth Bedwell
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambrdige, United Kingdom
| | - William J McCarthy
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambrdige, United Kingdom
| | - Anthony G Coyne
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambrdige, United Kingdom
| | - Chris Abell
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambrdige, United Kingdom
| |
Collapse
|
8
|
Shukla P, Asati A, Bhardiya SR, Singh M, Rai VK, Rai A. Metal-free C-H Activation over Graphene Oxide toward Direct Syntheses of Structurally Different Amines and Amides in Water. J Org Chem 2020; 85:15552-15561. [PMID: 33146530 DOI: 10.1021/acs.joc.0c02219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Unprecedented metal-free synthesis of a variety of amines and amides is reported via amination of C(sp3)-H and C(sp2)-H bonds. The strategy involves graphene-oxide/I2-catalyzed nitrene insertion using PhINTs as a nitrene (NT) source in water at room temperature. A wide range of structurally different substrates, viz., cyclohexane, cyclic ethers, arenes, alkyl aromatic systems, and aldehydes/ketones, having an α-phenyl ring have been employed successfully to afford the corresponding nitrene insertion product in good yield, albeit low in few cases. The envisaged method has superiority over others in terms of its operational simplicity, metal-free catalysis, use of water as a solvent, ambient reaction conditions, and reusability of the catalyst.
Collapse
Affiliation(s)
- Prashant Shukla
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110 067, India
| | - Ambika Asati
- Department of Chemistry, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh 495 009, India
| | - Smita R Bhardiya
- Department of Chemistry, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh 495 009, India
| | - Manorama Singh
- Department of Chemistry, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh 495 009, India
| | - Vijai K Rai
- Department of Chemistry, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh 495 009, India
| | - Ankita Rai
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110 067, India
| |
Collapse
|
9
|
Bancet A, Raingeval C, Lomberget T, Le Borgne M, Guichou JF, Krimm I. Fragment Linking Strategies for Structure-Based Drug Design. J Med Chem 2020; 63:11420-11435. [DOI: 10.1021/acs.jmedchem.0c00242] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Alexandre Bancet
- EA 4446 Bioactive Molecules and Medicinal Chemistry, Faculté de Pharmacie, ISPB, SFR Santé Lyon-Est CNRS UMS3453, INSERM US7, Université de Lyon, Université Claude Bernard Lyon 1, 69373 Lyon Cedex 8, France
- Centre de RMN à Très Hauts Champs, Université de Lyon, CNRS, Université Claude Bernard Lyon 1, ENS, 5 Rue de la Doua, F-69100 Villeurbanne, France
| | - Claire Raingeval
- Centre de RMN à Très Hauts Champs, Université de Lyon, CNRS, Université Claude Bernard Lyon 1, ENS, 5 Rue de la Doua, F-69100 Villeurbanne, France
| | - Thierry Lomberget
- EA 4446 Bioactive Molecules and Medicinal Chemistry, Faculté de Pharmacie, ISPB, SFR Santé Lyon-Est CNRS UMS3453, INSERM US7, Université de Lyon, Université Claude Bernard Lyon 1, 69373 Lyon Cedex 8, France
| | - Marc Le Borgne
- EA 4446 Bioactive Molecules and Medicinal Chemistry, Faculté de Pharmacie, ISPB, SFR Santé Lyon-Est CNRS UMS3453, INSERM US7, Université de Lyon, Université Claude Bernard Lyon 1, 69373 Lyon Cedex 8, France
| | | | - Isabelle Krimm
- Centre de RMN à Très Hauts Champs, Université de Lyon, CNRS, Université Claude Bernard Lyon 1, ENS, 5 Rue de la Doua, F-69100 Villeurbanne, France
- Centre de Recherche en Cancérologie de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, 69008 Lyon, France
| |
Collapse
|
10
|
van der Vlag R, Yagiz Unver M, Felicetti T, Twarda‐Clapa A, Kassim F, Ermis C, Neochoritis CG, Musielak B, Labuzek B, Dömling A, Holak TA, Hirsch AKH. Optimized Inhibitors of MDM2 via an Attempted Protein-Templated Reductive Amination. ChemMedChem 2020; 15:370-375. [PMID: 31774938 PMCID: PMC7064911 DOI: 10.1002/cmdc.201900574] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/21/2019] [Indexed: 12/17/2022]
Abstract
Innovative and efficient hit-identification techniques are required to accelerate drug discovery. Protein-templated fragment ligations represent a promising strategy in early drug discovery, enabling the target to assemble and select its binders from a pool of building blocks. Development of new protein-templated reactions to access a larger structural diversity and expansion of the variety of targets to demonstrate the scope of the technique are of prime interest for medicinal chemists. Herein, we present our attempts to use a protein-templated reductive amination to target protein-protein interactions (PPIs), a challenging class of drug targets. We address a flexible pocket, which is difficult to achieve by structure-based drug design. After careful analysis we did not find one of the possible products in the kinetic target-guided synthesis (KTGS) approach, however subsequent synthesis and biochemical evaluation of each library member demonstrated that all the obtained molecules inhibit MDM2. The most potent library member (Ki =0.095 μm) identified is almost as active as Nutlin-3, a potent inhibitor of the p53-MDM2 PPI.
Collapse
Affiliation(s)
- Ramon van der Vlag
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 79747 AGGroningenThe Netherlands
| | - M. Yagiz Unver
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 79747 AGGroningenThe Netherlands
| | - Tommaso Felicetti
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 79747 AGGroningenThe Netherlands
- Department of Pharmaceutical SciencesUniversity of PerugiaVia del Liceo 106123PerugiaItaly
| | | | - Fatima Kassim
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 79747 AGGroningenThe Netherlands
| | - Cagdas Ermis
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 79747 AGGroningenThe Netherlands
| | - Constantinos G. Neochoritis
- Department of Pharmacy, Drug Design groupUniversity of GroningenA. Deusinglaan 1GroningenThe Netherlands
- Chemistry departmentUniversity of Crete70013HeraklionGreece
| | - Bogdan Musielak
- Faculty of ChemistryJagiellonian UniversityGronostajowa 230-387KrakowPoland
| | - Beata Labuzek
- Faculty of ChemistryJagiellonian UniversityGronostajowa 230-387KrakowPoland
| | - Alexander Dömling
- Department of Pharmacy, Drug Design groupUniversity of GroningenA. Deusinglaan 1GroningenThe Netherlands
| | - Tad A. Holak
- Faculty of ChemistryJagiellonian UniversityGronostajowa 230-387KrakowPoland
| | - Anna K. H. Hirsch
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 79747 AGGroningenThe Netherlands
- Department of Drug Design and OptimizationHelmholtz Institute for Pharmaceutical Research Saarland (HIPS) – Helmholtz Centre for Infection Research (HZI)Campus Building E8.166123SaarbrückenGermany
- Department of PharmacySaarland UniversityCampus Building E8.166123SaarbrückenGermany
| |
Collapse
|
11
|
Bosc D, Camberlein V, Gealageas R, Castillo-Aguilera O, Deprez B, Deprez-Poulain R. Kinetic Target-Guided Synthesis: Reaching the Age of Maturity. J Med Chem 2019; 63:3817-3833. [PMID: 31820982 DOI: 10.1021/acs.jmedchem.9b01183] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Kinetic target-guided synthesis (KTGS) is an original discovery strategy allowing a target to catalyze the irreversible synthesis of its own ligands from a pool of reagents. Although pioneered almost two decades ago, it only recently proved its usefulness in medicinal chemistry, as exemplified by the increasing number of protein targets used, the wider range of target and pocket types, and the diversity of therapeutic areas explored. In recent years, two new leads for in vivo studies were released. Amidations and multicomponent reactions expanded the armamentarium of reactions beyond triazole formation and two new examples of in cellulo KTGS were also disclosed. Herein, we analyze the origins and the chemical space of both KTGS ligands and warhead-bearing reagents. We review the KTGS timeline focusing on recent cases in order to give medicinal chemists the full scope of this strategy which has great potential for hit discovery and hit or lead optimization.
Collapse
Affiliation(s)
- Damien Bosc
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177-Drugs and Molecules for Living Systems, F-59000 Lille, France
| | - Virgyl Camberlein
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177-Drugs and Molecules for Living Systems, F-59000 Lille, France
| | - Ronan Gealageas
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177-Drugs and Molecules for Living Systems, F-59000 Lille, France
| | - Omar Castillo-Aguilera
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177-Drugs and Molecules for Living Systems, F-59000 Lille, France
| | - Benoit Deprez
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177-Drugs and Molecules for Living Systems, F-59000 Lille, France
| | - Rebecca Deprez-Poulain
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177-Drugs and Molecules for Living Systems, F-59000 Lille, France.,Institut Universitaire de France, F- 75005 Paris, France
| |
Collapse
|
12
|
Gladysz R, Vrijdag J, Van Rompaey D, Lambeir A, Augustyns K, De Winter H, Van der Veken P. Efforts towards an On‐Target Version of the Groebke–Blackburn–Bienaymé (GBB) Reaction for Discovery of Druglike Urokinase (uPA) Inhibitors. Chemistry 2019; 25:12380-12393. [DOI: 10.1002/chem.201901917] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/18/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Rafaela Gladysz
- Laboratory of Medicinal Chemistry (UAMC)Department of Pharmaceutical SciencesUniversity of Antwerp Universiteitsplein 1 2610 Wilrijk Belgium
| | - Johannes Vrijdag
- Laboratory of Medicinal Chemistry (UAMC)Department of Pharmaceutical SciencesUniversity of Antwerp Universiteitsplein 1 2610 Wilrijk Belgium
- Laboratory of Medical BiochemistryDepartment of, Pharmaceutical SciencesUniversity of Antwerp Universiteitsplein 1 2610 Wilrijk Belgium
| | - Dries Van Rompaey
- Laboratory of Medicinal Chemistry (UAMC)Department of Pharmaceutical SciencesUniversity of Antwerp Universiteitsplein 1 2610 Wilrijk Belgium
| | - Anne‐Marie Lambeir
- Laboratory of Medical BiochemistryDepartment of, Pharmaceutical SciencesUniversity of Antwerp Universiteitsplein 1 2610 Wilrijk Belgium
| | - Koen Augustyns
- Laboratory of Medicinal Chemistry (UAMC)Department of Pharmaceutical SciencesUniversity of Antwerp Universiteitsplein 1 2610 Wilrijk Belgium
| | - Hans De Winter
- Laboratory of Medicinal Chemistry (UAMC)Department of Pharmaceutical SciencesUniversity of Antwerp Universiteitsplein 1 2610 Wilrijk Belgium
| | - Pieter Van der Veken
- Laboratory of Medicinal Chemistry (UAMC)Department of Pharmaceutical SciencesUniversity of Antwerp Universiteitsplein 1 2610 Wilrijk Belgium
| |
Collapse
|
13
|
Hayashi R, Morimoto S, Tomohiro T. Tag‐Convertible Photocrosslinker with Click‐On/OffN‐Acylsulfonamide Linkage for Protein Identification. Chem Asian J 2019; 14:3145-3148. [DOI: 10.1002/asia.201900859] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/26/2019] [Indexed: 12/25/2022]
Affiliation(s)
- Ryuji Hayashi
- Graduate School of Medicine and Pharmaceutical SciencesUniversity of Toyama 2630 Sugitani Toyama 930-0194 Japan
| | - Shota Morimoto
- Graduate School of Medicine and Pharmaceutical SciencesUniversity of Toyama 2630 Sugitani Toyama 930-0194 Japan
- Department of Pharmaceutical SciencesSuzuka University of Medical Science Suzuka Mie 510-0293 Japan
| | - Takenori Tomohiro
- Graduate School of Medicine and Pharmaceutical SciencesUniversity of Toyama 2630 Sugitani Toyama 930-0194 Japan
| |
Collapse
|
14
|
Wu G, Zhao T, Kang D, Zhang J, Song Y, Namasivayam V, Kongsted J, Pannecouque C, De Clercq E, Poongavanam V, Liu X, Zhan P. Overview of Recent Strategic Advances in Medicinal Chemistry. J Med Chem 2019; 62:9375-9414. [PMID: 31050421 DOI: 10.1021/acs.jmedchem.9b00359] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Introducing novel strategies, concepts, and technologies that speed up drug discovery and the drug development cycle is of great importance both in the highly competitive pharmaceutical industry as well as in academia. This Perspective aims to present a "big-picture" overview of recent strategic innovations in medicinal chemistry and drug discovery.
Collapse
Affiliation(s)
- Gaochan Wu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Ji'nan , Shandong , P. R. China
| | - Tong Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Ji'nan , Shandong , P. R. China
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Ji'nan , Shandong , P. R. China
| | - Jian Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Ji'nan , Shandong , P. R. China
| | - Yuning Song
- Department of Clinical Pharmacy , Qilu Hospital of Shandong University , 250012 Ji'nan , China
| | - Vigneshwaran Namasivayam
- Pharmaceutical Institute, Pharmaceutical Chemistry II , University of Bonn , 53121 Bonn , Germany
| | - Jacob Kongsted
- Department of Physics, Chemistry, and Pharmacy , University of Southern Denmark , DK-5230 Odense M , Denmark
| | - Christophe Pannecouque
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy , K.U. Leuven , Herestraat 49 Postbus 1043 (09.A097) , B-3000 Leuven , Belgium
| | - Erik De Clercq
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy , K.U. Leuven , Herestraat 49 Postbus 1043 (09.A097) , B-3000 Leuven , Belgium
| | - Vasanthanathan Poongavanam
- Department of Physics, Chemistry, and Pharmacy , University of Southern Denmark , DK-5230 Odense M , Denmark
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Ji'nan , Shandong , P. R. China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Ji'nan , Shandong , P. R. China
| |
Collapse
|
15
|
Wong EL, Nawrotzky E, Arkona C, Kim BG, Beligny S, Wang X, Wagner S, Lisurek M, Carstanjen D, Rademann J. The transcription factor STAT5 catalyzes Mannich ligation reactions yielding inhibitors of leukemic cell proliferation. Nat Commun 2019; 10:66. [PMID: 30622248 PMCID: PMC6325109 DOI: 10.1038/s41467-018-07923-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 12/06/2018] [Indexed: 12/19/2022] Open
Abstract
Protein-templated fragment ligations have been established as a powerful method for the assembly and detection of optimized protein ligands. Initially developed for reversible ligations, the method has been expanded to irreversible reactions enabling the formation of super-additive fragment combinations. Here, protein-induced Mannich ligations are discovered as a biocatalytic reaction furnishing inhibitors of the transcription factor STAT5. STAT5 protein catalyzes multicomponent reactions of a phosphate mimetic, formaldehyde, and 1H-tetrazoles yielding protein ligands with greatly increased binding affinity and ligand efficiency. Reactions are induced under physiological conditions selectively by native STAT5 but not by other proteins. Formation of ligation products and (auto-)inhibition of the reaction are quantified and the mechanism is investigated. Inhibitors assembled by STAT5 block specifically the phosphorylation of this protein in a cellular model of acute myeloid leukemia (AML), DNA-binding of STAT5 dimers, expression of downstream targets of the transcription factor, and the proliferation of cancer cells in mice. The oncogene STAT5 is involved in cancer cell proliferation. Here, the authors use STAT5 protein to assemble its own small molecule inhibitors via Mannich ligation (three-component-reactions) and show that the resultant ligands can inhibit the proliferation of cancer cells in a mouse model.
Collapse
Affiliation(s)
- Ee Lin Wong
- Department of Biology, Chemistry and Pharmacy, Medicinal Chemistry, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195, Berlin, Germany
| | - Eric Nawrotzky
- Department of Biology, Chemistry and Pharmacy, Medicinal Chemistry, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195, Berlin, Germany
| | - Christoph Arkona
- Department of Biology, Chemistry and Pharmacy, Medicinal Chemistry, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195, Berlin, Germany
| | - Boo Geun Kim
- Department of Medicinal Chemistry, Leibniz Institut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Samuel Beligny
- Department of Medicinal Chemistry, Leibniz Institut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Xinning Wang
- Department of Biology, Chemistry and Pharmacy, Medicinal Chemistry, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195, Berlin, Germany
| | - Stefan Wagner
- Department of Biology, Chemistry and Pharmacy, Medicinal Chemistry, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195, Berlin, Germany
| | - Michael Lisurek
- Department of Medicinal Chemistry, Leibniz Institut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Dirk Carstanjen
- Department of Medicinal Chemistry, Leibniz Institut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Jörg Rademann
- Department of Biology, Chemistry and Pharmacy, Medicinal Chemistry, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195, Berlin, Germany. .,Department of Medicinal Chemistry, Leibniz Institut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125, Berlin, Germany.
| |
Collapse
|
16
|
Unver MY, Gierse RM, Ritchie H, Hirsch AKH. Druggability Assessment of Targets Used in Kinetic Target-Guided Synthesis. J Med Chem 2018; 61:9395-9409. [DOI: 10.1021/acs.jmedchem.8b00266] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- M. Yagiz Unver
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
- Helmholtz Institute for Pharmaceutical Research (HIPS) − Helmholtz Centre for Infection Research (HZI), Department for Drug Design and Optimization, Campus Building E 8.1, 66123 Saarbrücken, Germany
| | - Robin M. Gierse
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
- Helmholtz Institute for Pharmaceutical Research (HIPS) − Helmholtz Centre for Infection Research (HZI), Department for Drug Design and Optimization, Campus Building E 8.1, 66123 Saarbrücken, Germany
| | - Harry Ritchie
- Helmholtz Institute for Pharmaceutical Research (HIPS) − Helmholtz Centre for Infection Research (HZI), Department for Drug Design and Optimization, Campus Building E 8.1, 66123 Saarbrücken, Germany
| | - Anna K. H. Hirsch
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
- Helmholtz Institute for Pharmaceutical Research (HIPS) − Helmholtz Centre for Infection Research (HZI), Department for Drug Design and Optimization, Campus Building E 8.1, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus Building E8.1, 66123 Saarbrücken, Germany
| |
Collapse
|
17
|
Stepek IA, Bode JW. Synthetic fermentation of bioactive molecules. Curr Opin Chem Biol 2018; 46:18-24. [PMID: 29627458 DOI: 10.1016/j.cbpa.2018.03.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 03/18/2018] [Accepted: 03/22/2018] [Indexed: 02/08/2023]
Abstract
The concept of synthetic fermentation is to 'grow' complex organic molecules in a controlled and predictable manner by combining small molecule building blocks in water-without the need for reagents, enzymes, or organisms. This approach mimics the production of small mixtures of structurally related natural products by living organisms, particularly microbes, under conditions compatible with direct screening of the cultures for biological activity. This review discusses the development and implementation of this concept, its use for the discovery of protease inhibitors, its basis as a chemistry outreach program allowing non-specialists to make and discover new antibiotics, and highlights of related approaches.
Collapse
Affiliation(s)
- Iain A Stepek
- Laboratorium für Organische Chemie, Department of Chemistry and Applied Biosciences, ETH-Zürich, 8093 Zürich, Switzerland
| | - Jeffrey W Bode
- Laboratorium für Organische Chemie, Department of Chemistry and Applied Biosciences, ETH-Zürich, 8093 Zürich, Switzerland; Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8602, Japan.
| |
Collapse
|
18
|
Meghani NM, Amin HH, Lee BJ. Mechanistic applications of click chemistry for pharmaceutical drug discovery and drug delivery. Drug Discov Today 2017; 22:1604-1619. [PMID: 28754291 DOI: 10.1016/j.drudis.2017.07.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 06/18/2017] [Accepted: 07/17/2017] [Indexed: 01/30/2023]
Abstract
The concept of click chemistry (CC), first introduced by K.B. Sharpless, has been widely adopted for use in drug discovery, novel drug delivery systems (DDS), polymer chemistry, and material sciences. In this review, we outline novel aspects of CC related to drug discovery and drug delivery, with a brief overview of molecular mechanisms underlying each click reaction commonly used by researchers, and the main patents that paved the way for further diverse medicinal applications. We also describe recent progress in drug discovery and polymeric and carbon material-based drug delivery for potential pharmaceutical applications and advancements based on the CC approach, and discuss some intrinsic limitations of this popular conjugation reaction. The use of CC is likely to significantly advance drug discovery and bioconjugation development.
Collapse
Affiliation(s)
- Nilesh M Meghani
- College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea
| | - Hardik H Amin
- College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea
| | - Beom-Jin Lee
- College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea; Institute of Pharmaceutical Science and Technology, Ajou University, Suwon 16499, Republic of Korea.
| |
Collapse
|
19
|
Jaegle M, Wong EL, Tauber C, Nawrotzky E, Arkona C, Rademann J. Proteintemplat-gesteuerte Fragmentligationen - von der molekularen Erkennung zur Wirkstofffindung. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 129:7464-7485. [PMID: 32313319 PMCID: PMC7159557 DOI: 10.1002/ange.201610372] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 01/10/2017] [Indexed: 12/28/2022]
Abstract
AbstractProteintemplat‐gesteuerte Fragmentligationen sind ein neuartiges Konzept zur Unterstützung der Wirkstofffindung und können dazu beitragen, die Wirksamkeit von Proteinliganden zu verbessern. Es handelt sich dabei um chemische Reaktionen zwischen niedermolekularen Verbindungen (“Fragmenten”), die die Oberfläche eines Proteins als Reaktionsgefäß verwenden, um die Bildung eines Proteinliganden mit erhöhter Bindungsaffinität zu katalysieren. Die Methode nutzt die molekulare Erkennung kleiner reaktiver Fragmente durch die Proteine sowohl zur Assemblierung der Liganden als auch zur Identifizierung bioaktiver Fragmentkombinationen. Chemische Synthese und Bioassay werden dabei in einem Schritt vereint. Dieser Aufsatz diskutiert die biophysikalischen Grundlagen der reversiblen und irreversiblen Fragmentligationen und gibt einen Überblick über die Methoden, mit denen die durch das Proteintemplat gebildeten Ligationsprodukte detektiert werden können. Der chemische Reaktionsraum und aktuelle Anwendungen wie auch die Bedeutung dieses Konzeptes für die Wirkstofffindung werden erörtert.
Collapse
Affiliation(s)
- Mike Jaegle
- Freie Universität BerlinMedicinal ChemistryKönigin-Luise-Straße 2+4Berlin14195Deutschland
| | - Ee Lin Wong
- Freie Universität BerlinMedicinal ChemistryKönigin-Luise-Straße 2+4Berlin14195Deutschland
| | - Carolin Tauber
- Freie Universität BerlinMedicinal ChemistryKönigin-Luise-Straße 2+4Berlin14195Deutschland
| | - Eric Nawrotzky
- Freie Universität BerlinMedicinal ChemistryKönigin-Luise-Straße 2+4Berlin14195Deutschland
| | - Christoph Arkona
- Freie Universität BerlinMedicinal ChemistryKönigin-Luise-Straße 2+4Berlin14195Deutschland
| | - Jörg Rademann
- Freie Universität BerlinMedicinal ChemistryKönigin-Luise-Straße 2+4Berlin14195Deutschland
| |
Collapse
|
20
|
Jaegle M, Wong EL, Tauber C, Nawrotzky E, Arkona C, Rademann J. Protein-Templated Fragment Ligations-From Molecular Recognition to Drug Discovery. Angew Chem Int Ed Engl 2017; 56:7358-7378. [PMID: 28117936 PMCID: PMC7159684 DOI: 10.1002/anie.201610372] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 01/10/2017] [Indexed: 12/14/2022]
Abstract
Protein-templated fragment ligation is a novel concept to support drug discovery and can help to improve the efficacy of protein ligands. Protein-templated fragment ligations are chemical reactions between small molecules ("fragments") utilizing a protein's surface as a reaction vessel to catalyze the formation of a protein ligand with increased binding affinity. The approach exploits the molecular recognition of reactive small-molecule fragments by proteins both for ligand assembly and for the identification of bioactive fragment combinations. In this way, chemical synthesis and bioassay are integrated in one single step. This Review discusses the biophysical basis of reversible and irreversible fragment ligations and gives an overview of the available methods to detect protein-templated ligation products. The chemical scope and recent applications as well as future potential of the concept in drug discovery are reviewed.
Collapse
Affiliation(s)
- Mike Jaegle
- Freie Universität BerlinMedicinal ChemistryKönigin-Luise-Strasse 2+4Berlin14195Germany
| | - Ee Lin Wong
- Freie Universität BerlinMedicinal ChemistryKönigin-Luise-Strasse 2+4Berlin14195Germany
| | - Carolin Tauber
- Freie Universität BerlinMedicinal ChemistryKönigin-Luise-Strasse 2+4Berlin14195Germany
| | - Eric Nawrotzky
- Freie Universität BerlinMedicinal ChemistryKönigin-Luise-Strasse 2+4Berlin14195Germany
| | - Christoph Arkona
- Freie Universität BerlinMedicinal ChemistryKönigin-Luise-Strasse 2+4Berlin14195Germany
| | - Jörg Rademann
- Freie Universität BerlinMedicinal ChemistryKönigin-Luise-Strasse 2+4Berlin14195Germany
| |
Collapse
|
21
|
Doak BC, Norton RS, Scanlon MJ. The ways and means of fragment-based drug design. Pharmacol Ther 2016; 167:28-37. [DOI: 10.1016/j.pharmthera.2016.07.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 07/08/2016] [Indexed: 12/21/2022]
|
22
|
Irreversible inhibitors of the 3C protease of Coxsackie virus through templated assembly of protein-binding fragments. Nat Commun 2016; 7:12761. [PMID: 27677239 PMCID: PMC5052702 DOI: 10.1038/ncomms12761] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 07/29/2016] [Indexed: 02/01/2023] Open
Abstract
Small-molecule fragments binding to biomacromolecules can be starting points for the development of drugs, but are often difficult to detect due to low affinities. Here we present a strategy that identifies protein-binding fragments through their potential to induce the target-guided formation of covalently bound, irreversible enzyme inhibitors. A protein-binding nucleophile reacts reversibly with a bis-electrophilic warhead, thereby positioning the second electrophile in close proximity of the active site of a viral protease, resulting in the covalent de-activation of the enzyme. The concept is implemented for Coxsackie virus B3 3C protease, a pharmacological target against enteroviral infections. Using an aldehyde-epoxide as bis-electrophile, active fragment combinations are validated through measuring the protein inactivation rate and by detecting covalent protein modification in mass spectrometry. The structure of one enzyme-inhibitor complex is determined by X-ray crystallography. The presented warhead activation assay provides potent non-peptidic, broad-spectrum inhibitors of enteroviral proteases.
Collapse
|
23
|
Kinetic target-guided synthesis in drug discovery and chemical biology: a comprehensive facts and figures survey. Future Med Chem 2016; 8:381-404. [DOI: 10.4155/fmc-2015-0007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
For the last 15 years, kinetic target-guided syntheses, including in situ click chemistry, have been used as alternative methods to find ligands to therapeutically relevant proteins. In this review, a comprehensive survey of biological targets used in kinetic target-guided synthesis covers historical and recent examples. The chemical reactions employed and practical aspects, including controls, library sizes and product detection, are presented. A particular focus is on the reagents and warhead selection and design with a critical overview of the challenges encountered. As protein supply remains a key success factor, it appears that increased efforts should be taken toward miniaturization in order to expand the scope of this strategy and qualify it as a fully fledged drug discovery tool.
Collapse
|
24
|
Xie S, Fukumoto R, Ramström O, Yan M. Anilide formation from thioacids and perfluoroaryl azides. J Org Chem 2015; 80:4392-7. [PMID: 25837012 DOI: 10.1021/acs.joc.5b00240] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A metal-free method for fast and clean anilide formation from perfluoroaryl azide and thioacid is presented. The reaction proved highly efficient, displaying fast kinetics, high yield, and good chemoselectivity. The transformation was compatible with various solvents and tolerant to a wide variety of functional groups, and it showed high performance in polar protic/aprotic media, including aqueous buffer systems.
Collapse
Affiliation(s)
- Sheng Xie
- †Department of Chemistry, KTH-Royal Institute of Technology, Teknikringen 36, S-10044 Stockholm, Sweden
| | - Ryo Fukumoto
- †Department of Chemistry, KTH-Royal Institute of Technology, Teknikringen 36, S-10044 Stockholm, Sweden
| | - Olof Ramström
- †Department of Chemistry, KTH-Royal Institute of Technology, Teknikringen 36, S-10044 Stockholm, Sweden
| | - Mingdi Yan
- †Department of Chemistry, KTH-Royal Institute of Technology, Teknikringen 36, S-10044 Stockholm, Sweden.,‡Department of Chemistry, University of Massachusetts Lowell, 1 University Avenue, Lowell, Massachusetts 01854, United States
| |
Collapse
|
25
|
Fu DY, Jin S, Zheng DD, Zha X, Wu Y. Peptidic inhibitors for in vitro pentamer formation of human papillomavirus capsid protein l1. ACS Med Chem Lett 2015; 6:381-5. [PMID: 25893037 DOI: 10.1021/ml500392y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 02/25/2015] [Indexed: 12/18/2022] Open
Abstract
A new 14 peptide, originating essentially from the helix 5 of HPV 16L1, illustrates an IC50 of 19.38 nM for the inhibition of HPV 16 L1 pentamer formation, which is highly efficient for targeting a specific protein segment. In addition, mechanism studies reveal that the length, sequence, and the folding of the peptide are critical factors for its inhibition. Particularly, the peptide shows similar inhibition against the pentamer formation of HPV 58L1, although it is designed specially for HPV 16 L1. This study opens a way for the development of high-efficiency, broad-spectrum inhibitors as a new class of anti-HPV agents, which could be extended to the treatment of other virus types.
Collapse
Affiliation(s)
- Ding-Yi Fu
- State Key Laboratory
of Supramolecular Structure and Materials, Institute of Theoretical
Chemistry, Jilin University, No. 2699, Qianjin Street, Changchun 130012, China
| | - Shi Jin
- State Key Laboratory
of Supramolecular Structure and Materials, Institute of Theoretical
Chemistry, Jilin University, No. 2699, Qianjin Street, Changchun 130012, China
| | - Dong-Dong Zheng
- State Key Laboratory
of Supramolecular Structure and Materials, Institute of Theoretical
Chemistry, Jilin University, No. 2699, Qianjin Street, Changchun 130012, China
| | - Xiao Zha
- Sichuan Tumor Hospital & Institute, Chengdu 610041, China
| | - Yuqing Wu
- State Key Laboratory
of Supramolecular Structure and Materials, Institute of Theoretical
Chemistry, Jilin University, No. 2699, Qianjin Street, Changchun 130012, China
| |
Collapse
|
26
|
Oueis E, Sabot C, Renard PY. New insights into the kinetic target-guided synthesis of protein ligands. Chem Commun (Camb) 2015; 51:12158-69. [DOI: 10.1039/c5cc04183j] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This review describes the recent applications of the kinetic target guided synthesis and highlights the new advances of this strategy.
Collapse
Affiliation(s)
- Emilia Oueis
- Biomedical Sciences Research Council
- University of St. Andrews
- St. Andrews KY16 9ST
- UK
| | - Cyrille Sabot
- Normandie University
- COBRA
- UMR 6014 & FR 3038; Univ Rouen; INSA Rouen; CNRS
- Cedex
- France
| | - Pierre-Yves Renard
- Normandie University
- COBRA
- UMR 6014 & FR 3038; Univ Rouen; INSA Rouen; CNRS
- Cedex
- France
| |
Collapse
|
27
|
Milroy LG, Grossmann TN, Hennig S, Brunsveld L, Ottmann C. Modulators of Protein–Protein Interactions. Chem Rev 2014; 114:4695-748. [DOI: 10.1021/cr400698c] [Citation(s) in RCA: 352] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Lech-Gustav Milroy
- Laboratory
of Chemical Biology and Institute of Complex Molecular Systems, Department
of Biomedical Engineering, Technische Universiteit Eindhoven, Den Dolech
2, 5612 AZ Eindhoven, The Netherlands
| | - Tom N. Grossmann
- Chemical Genomics Centre of the Max Planck Society, Otto-Hahn Straße 15, 44227 Dortmund, Germany
- Department
of Chemistry and Chemical Biology, Technical University Dortmund, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany
| | - Sven Hennig
- Chemical Genomics Centre of the Max Planck Society, Otto-Hahn Straße 15, 44227 Dortmund, Germany
| | - Luc Brunsveld
- Laboratory
of Chemical Biology and Institute of Complex Molecular Systems, Department
of Biomedical Engineering, Technische Universiteit Eindhoven, Den Dolech
2, 5612 AZ Eindhoven, The Netherlands
| | - Christian Ottmann
- Laboratory
of Chemical Biology and Institute of Complex Molecular Systems, Department
of Biomedical Engineering, Technische Universiteit Eindhoven, Den Dolech
2, 5612 AZ Eindhoven, The Netherlands
| |
Collapse
|
28
|
Oueis E, Nachon F, Sabot C, Renard PY. First enzymatic hydrolysis/thio-Michael addition cascade route to synthesis of AChE inhibitors. Chem Commun (Camb) 2014; 50:2043-5. [DOI: 10.1039/c3cc48871c] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
29
|
Mühlberg M, Siebertz KD, Schlegel B, Schmieder P, Hackenberger CPR. Controlled thioamide vs. amide formation in the thioacid–azide reaction under acidic aqueous conditions. Chem Commun (Camb) 2014; 50:4603-6. [DOI: 10.1039/c4cc00774c] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
Thirumurugan P, Matosiuk D, Jozwiak K. Click Chemistry for Drug Development and Diverse Chemical–Biology Applications. Chem Rev 2013; 113:4905-79. [DOI: 10.1021/cr200409f] [Citation(s) in RCA: 1309] [Impact Index Per Article: 109.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Prakasam Thirumurugan
- Laboratory
of Medical Chemistry and Neuroengineering, Department of Chemistry, and ‡Department of
Synthesis and Chemical Technology of Pharmaceutical Substances, Medical University of Lublin, Lublin
20093, Poland
| | - Dariusz Matosiuk
- Laboratory
of Medical Chemistry and Neuroengineering, Department of Chemistry, and ‡Department of
Synthesis and Chemical Technology of Pharmaceutical Substances, Medical University of Lublin, Lublin
20093, Poland
| | - Krzysztof Jozwiak
- Laboratory
of Medical Chemistry and Neuroengineering, Department of Chemistry, and ‡Department of
Synthesis and Chemical Technology of Pharmaceutical Substances, Medical University of Lublin, Lublin
20093, Poland
| |
Collapse
|
31
|
Peruzzotti C, Borrelli S, Ventura M, Pantano R, Fumagalli G, Christodoulou MS, Monticelli D, Luzzani M, Fallacara AL, Tintori C, Botta M, Passarella D. Probing the binding site of abl tyrosine kinase using in situ click chemistry. ACS Med Chem Lett 2013; 4:274-7. [PMID: 24900659 DOI: 10.1021/ml300394w] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 01/15/2013] [Indexed: 02/06/2023] Open
Abstract
Modern combinatorial chemistry is used to discover compounds with desired function by an alternative strategy, in which the biological target is directly involved in the choice of ligands assembled from a pool of smaller fragments. Herein, we present the first experimental result where the use of in situ click chemistry has been successfully applied to probe the ligand-binding site of Abl and the ability of this enzyme to form its inhibitor. Docking studies show that Abl is able to allow the in situ click chemistry between specific azide and alkyne fragments by binding to Abl-active sites. This report allows medicinal chemists to use protein-directed in situ click chemistry for exploring the conformational space of a ligand-binding pocket and the ability of the protein to guide its inhibitor. This approach can be a novel, valuable tool to guide drug design synthesis in the field of tyrosine kinases.
Collapse
Affiliation(s)
- Cristina Peruzzotti
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi
19, 20133 Milano, Italy
| | - Stella Borrelli
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi
19, 20133 Milano, Italy
| | - Micol Ventura
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi
19, 20133 Milano, Italy
| | - Rebecca Pantano
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi
19, 20133 Milano, Italy
| | - Gaia Fumagalli
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi
19, 20133 Milano, Italy
| | | | - Damiano Monticelli
- Dipartimento di Scienze Alta
Tecnologia, Università degli Studi dell’Insubria, Via Valleggio 11, 22100 Como, Italy
| | | | - Anna Lucia Fallacara
- Dipartimento Farmaco Chimico
Tecnologico, Università degli Studi di Siena, Via Alcide de Gasperi 2, I-53100, Siena, Italy
| | - Cristina Tintori
- Dipartimento Farmaco Chimico
Tecnologico, Università degli Studi di Siena, Via Alcide de Gasperi 2, I-53100, Siena, Italy
| | - Maurizio Botta
- Dipartimento Farmaco Chimico
Tecnologico, Università degli Studi di Siena, Via Alcide de Gasperi 2, I-53100, Siena, Italy
| | - Daniele Passarella
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi
19, 20133 Milano, Italy
| |
Collapse
|
32
|
Jia L, Cheng Z, Shi L, Li J, Wang C, Jiang D, Zhou W, Meng H, Qi Y, Cheng D, Zhang L. Fluorine-18 labeling by click chemistry: multiple probes in one pot. Appl Radiat Isot 2013; 75:64-70. [PMID: 23455406 DOI: 10.1016/j.apradiso.2013.01.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 12/31/2012] [Accepted: 01/29/2013] [Indexed: 12/18/2022]
Abstract
Click chemistry has been widely applied in drug development including radiopharmaceuticals and has shown great advantages. Here we reported a novel strategy for rapid preparation of multiple (18)F labeled PET probes in one pot using the 'Click Reaction' of Cu(I)-catalyzed Huisgen 1,3-dipolar cycloaddition of terminal alkynes and organic azides (CuAAC). Preliminary results showed its high efficiency and potential for speeding up the preclinical screening of PET probes.
Collapse
Affiliation(s)
- Lina Jia
- Shanghai Institute of Applied Physics (SINAP), Chinese Academy of Sciences, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Lee J, Bogyo M. Target deconvolution techniques in modern phenotypic profiling. Curr Opin Chem Biol 2013; 17:118-26. [PMID: 23337810 DOI: 10.1016/j.cbpa.2012.12.022] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 12/19/2012] [Accepted: 12/30/2012] [Indexed: 01/12/2023]
Abstract
The past decade has seen rapid growth in the use of diverse compound libraries in classical phenotypic screens to identify modulators of a given process. The subsequent process of identifying the molecular targets of active hits, also called 'target deconvolution', is an essential step for understanding compound mechanism of action and for using the identified hits as tools for further dissection of a given biological process. Recent advances in 'omics' technologies, coupled with in silico approaches and the reduced cost of whole genome sequencing, have greatly improved the workflow of target deconvolution and have contributed to a renaissance of 'modern' phenotypic profiling. In this review, we will outline how both new and old techniques are being used in the difficult process of target identification and validation as well as discuss some of the ongoing challenges remaining for phenotypic screening.
Collapse
Affiliation(s)
- Jiyoun Lee
- Department of Global Medical Science, Sungshin Women's University, Seoul 142-732, Republic of Korea.
| | | |
Collapse
|
34
|
Ko E, Raghuraman A, Perez LM, Ioerger TR, Burgess K. Exploring key orientations at protein-protein interfaces with small molecule probes. J Am Chem Soc 2013; 135:167-73. [PMID: 23270593 PMCID: PMC3551583 DOI: 10.1021/ja3067258] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Small molecule probes that selectively perturb protein-protein interactions (PPIs) are pivotal to biomedical science, but their discovery is challenging. We hypothesized that conformational resemblance of semirigid scaffolds expressing amino acid side-chains to PPI-interface regions could guide this process. Consequently, a data mining algorithm was developed to sample huge numbers of PPIs to find ones that match preferred conformers of a selected semirigid scaffold. Conformations of one such chemotype (1aaa; all methyl side-chains) matched several biomedically significant PPIs, including the dimerization interface of HIV-1 protease. On the basis of these observations, four molecules 1 with side-chains corresponding to the matching HIV-1 dimerization interface regions were prepared; all four inhibited HIV-1 protease via perturbation of dimerization. These data indicate this approach may inspire design of small molecule interface probes to perturb PPIs.
Collapse
Affiliation(s)
- Eunhwa Ko
- Department of Chemistry, Texas A & M University, Box 30012, College Station, TX 77842
| | - Arjun Raghuraman
- Department of Chemistry, Texas A & M University, Box 30012, College Station, TX 77842
| | - Lisa M. Perez
- Laboratory for Molecular Simulation, Texas A & M University, Box 30012, College Station, TX 77842
| | - Thomas R. Ioerger
- Department of Computer Science, Texas A & M University, College Station, TX 77843-3112
| | - Kevin Burgess
- Department of Chemistry, Texas A & M University, Box 30012, College Station, TX 77842
| |
Collapse
|
35
|
Aswad M, Chiba J, Tomohiro T, Hatanaka Y. Coupling reaction of thioamides with sulfonyl azides: an efficient catalyst-free click-type ligation under mild conditions. Chem Commun (Camb) 2013; 49:10242-4. [DOI: 10.1039/c3cc46055j] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
36
|
Kundu R, Cushing PR, Popp BV, Zhao Y, Madden DR, Ball ZT. Hybrid Organic-Inorganic Inhibitors of a PDZ Interaction that Regulates the Endocytic Fate of CFTR. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201202291] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
37
|
Kundu R, Cushing PR, Popp BV, Zhao Y, Madden DR, Ball ZT. Hybrid organic-inorganic inhibitors of a PDZ interaction that regulates the endocytic fate of CFTR. Angew Chem Int Ed Engl 2012; 51:7217-20. [PMID: 22700245 DOI: 10.1002/anie.201202291] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 05/21/2012] [Indexed: 12/13/2022]
Abstract
Together strong: Cooperative binding of organic (see picture, red) and inorganic fragments provides a strategy for the potent inhibition of protein-protein interactions. By targeting specific Lewis basic side chains in peripheral regions of the binding site for coordination to a rhodium(II) center, the affinity of otherwise weak ligands is improved.
Collapse
Affiliation(s)
- Rituparna Kundu
- Department of Chemistry, Rice University, 6100 Main St., Houston, TX 77005, USA
| | | | | | | | | | | |
Collapse
|
38
|
Namelikonda NK, Manetsch R. Sulfo-click reaction via in situ generated thioacids and its application in kinetic target-guided synthesis. Chem Commun (Camb) 2012; 48:1526-8. [DOI: 10.1039/c1cc14724b] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|