1
|
Yamaguchi H, Sugawa H, Takahashi H, Nagai R. Rapid and Efficient Synthesis of Succinated Thiol Compounds via Maleic Anhydride Derivatization. Molecules 2025; 30:571. [PMID: 39942675 PMCID: PMC11820211 DOI: 10.3390/molecules30030571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/24/2025] [Accepted: 01/25/2025] [Indexed: 02/16/2025] Open
Abstract
Succination is a non-enzymatic post-translational modification of cysteine (Cys) residues, resulting in the formation of S-(2-succino)cysteine (2SC). While hundreds of 2SC-modified proteins have been identified and are associated with the dysfunction of proteins, the underlying molecular mechanisms remain poorly understood. Conventional methods for synthesizing succinated compounds, such as 2SC, often require prolonged reaction times and/or HCl hydrolysis. In this study, we present a rapid and efficient synthesis method for succinated compounds using maleic anhydride, enabling more effective in vivo studies of succination mechanisms. This method was tested on thiol compounds with varying molecular weights, including Cys derivatives, Cys-containing peptides, and reduced bovine serum albumin. By incubating these compounds in an aqueous buffer with maleic anhydride dissolved in an organic solvent like diethyl ether, we achieved significantly improved succination efficiency compared to conventional methods. The succination efficiency using maleic anhydride surpassed that of fumaric acid or maleic acid. Notably, this approach facilitated the succination of amino acids, peptides, and proteins within minutes at 25 °C, without requiring acid hydrolysis. Our findings provide a straightforward, time-efficient strategy for synthesizing succinated thiol compounds, offering a valuable tool to enhance the understanding of succination's molecular mechanisms and its role in protein function and dysfunction.
Collapse
Affiliation(s)
- Hiroshi Yamaguchi
- Department of Food and Life Science, School of Agriculture, Tokai University, 871-12 Sugido, Mashiki, Kamimashiki, Kumamoto 861-2205, Japan; (H.S.); (R.N.)
- Graduate School of Bioscience, Tokai University, 871-12 Sugido, Mashiki, Kamimashiki, Kumamoto 861-2205, Japan;
| | - Hikari Sugawa
- Department of Food and Life Science, School of Agriculture, Tokai University, 871-12 Sugido, Mashiki, Kamimashiki, Kumamoto 861-2205, Japan; (H.S.); (R.N.)
| | - Himeno Takahashi
- Graduate School of Bioscience, Tokai University, 871-12 Sugido, Mashiki, Kamimashiki, Kumamoto 861-2205, Japan;
| | - Ryoji Nagai
- Department of Food and Life Science, School of Agriculture, Tokai University, 871-12 Sugido, Mashiki, Kamimashiki, Kumamoto 861-2205, Japan; (H.S.); (R.N.)
- Graduate School of Bioscience, Tokai University, 871-12 Sugido, Mashiki, Kamimashiki, Kumamoto 861-2205, Japan;
| |
Collapse
|
2
|
Vijayalakshmi P, Gowdham M, Dinesh DC, Sibiya A, Vaseeharan B, Selvaraj C. Unveiling the guardians of the genome: The dynamic role of histones in DNA organization and disease. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 143:39-68. [PMID: 39843143 DOI: 10.1016/bs.apcsb.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Histones are positively charged proteins found in the chromatin of eukaryotic cells. They regulate gene expression and are required for the organization and packaging of DNA within the nucleus. Histones are extremely conserved, allowing for transcription, replication, and repair. This review delves into their complex structure and function in DNA assembly, their role in nucleosome assembly, and the higher-order chromatin structures they generate. We look at the five different types of histone proteins: H1, H2A, H2B, H3, H4, and their variations. These histones bind with DNA to produce nucleosomes, the basic units of chromatin that are essential for compacting DNA and controlling its accessibility. Their dynamic control of chromatin accessibility has important implications for genomic stability and cellular activities. We elucidate regulatory mechanisms in both normal and pathological situations by investigating their structural features, diverse interaction mechanisms, and chromatin impact. In addition, we discuss the functions of histone post-translational modifications (PTMs) and their significance in various disorders. These alterations, which include methylation, acetylation, phosphorylation, and ubiquitination, are crucial in regulating histone function and chromatin dynamics. We specifically describe and explore the role of changed histones in the evolution of cancer, neurological disorders, sepsis, autoimmune illnesses, and inflammatory conditions. This comprehensive review emphasizes histone's critical role in genomic integrity and their potential as therapeutic targets in various diseases.
Collapse
Affiliation(s)
- Periyasamy Vijayalakshmi
- P.G and Research Department of Biotechnology and Bioinformatics, Holy Cross College, Trichy, Tamil Nadu, India
| | - Manivel Gowdham
- Chemomicrobiomics Laboratory, Department of Biochemistry & Microbiology, KMCH Research Foundation, Coimbatore, Tamil Nadu, India
| | | | - Ashokkumar Sibiya
- Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Science Campus 6th Floor, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Baskaralingam Vaseeharan
- Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Science Campus 6th Floor, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Chandrabose Selvaraj
- CsrDD Lab, Department of Microbiology, Dr. D. Y. Patil Medical College Hospital and Research Centre, Dr. D. Y. Patil Vidyapeeth (Deemed to be University), Pimpri, Pune, India.
| |
Collapse
|
3
|
Boyle AL. Approaches to the Full and Partial Chemical Synthesis of Proteins. Methods Mol Biol 2024; 2819:573-582. [PMID: 39028524 DOI: 10.1007/978-1-0716-3930-6_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Histones are proteins which help to organize DNA. The way in which they function is complex and is partially controlled by post-translational modifications (PTMs). Histone proteins from numerous organisms can be recombinantly produced in bacteria, but many bacterial strains are incapable of installing the variety of PTMs that histones possess. An alternative method of producing histones, which can be used to introduce PTMs, is native chemical ligation (NCL). This chapter provides a general NCL protocol which can be used to produce synthetic, post-translationally modified, histone proteins. The focus is on the NCL procedure itself and not on producing the modified histone protein fragments as there are many different ways in which these can be synthesized, depending on the modification(s) required. The same NCL protocol is also applicable for expressed protein ligation (EPL) with only small modifications to the purification procedure potentially required.
Collapse
Affiliation(s)
- Aimee L Boyle
- Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands.
- School of Chemistry, University of Bristol, Bristol, UK.
| |
Collapse
|
4
|
Currie MF, Singh SK, Ji M, Chatterjee C. The semisynthesis of site-specifically modified histones and histone-based probes of chromatin-modifying enzymes. Methods 2023; 215:28-37. [PMID: 37244506 PMCID: PMC10364803 DOI: 10.1016/j.ymeth.2023.05.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/02/2023] [Accepted: 05/22/2023] [Indexed: 05/29/2023] Open
Abstract
Histone post-translational modifications (PTMs) on lysine residues, including methylation, ubiquitylation, and sumoylation, have been studied using semisynthetic histones reconstituted into nucleosomes. These studies have revealed the in vitro effects of histone PTMs on chromatin structure, gene transcription, and biochemical crosstalk. However, the dynamic and transient nature of most enzyme-chromatin interactions poses a challenge toward identifying specific enzyme-substrate interactions. To address this, we report methodology for the synthesis of two ubiquitylated activity-based probe histones, H2BK120ub(G76C) and H2BK120ub(G76Dha), that may be used to trap enzyme active-site cysteines as disulfides or in the form of thioether linkages, respectively. The general synthetic method we report for converting ubiquitylated nucleosomes into activity-based probes may also be applied to other histone sites of ubiquitylation in order to facilitate the identification of enzyme-chromatin interactions.
Collapse
Affiliation(s)
- Madeline F Currie
- Department of Chemistry, University of Washington, Seattle, WA 98195, United States
| | - Sumeet K Singh
- Department of Chemistry, University of Washington, Seattle, WA 98195, United States
| | - Meihuan Ji
- Department of Chemistry, University of Washington, Seattle, WA 98195, United States
| | - Champak Chatterjee
- Department of Chemistry, University of Washington, Seattle, WA 98195, United States.
| |
Collapse
|
5
|
Singh SK, Reyna A, Xie X, Mao H, Ji M, Zheng N, Hsu PL, Chatterjee C. Total chemical synthesis of sumoylated histone H4 reveals negative biochemical crosstalk with histone ubiquitylation. Chem Commun (Camb) 2023; 59:4063-4066. [PMID: 36938583 PMCID: PMC10099519 DOI: 10.1039/d2cc06683a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
An efficient total chemical synthesis of site-specifically sumoylated histone H4 was undertaken to generate homogenously modified mononucleosomes. These were tested as substrates in biochemical assays with the histone H2B-specific ubiquitin ligases Rad6 and Bre1, which revealed the strong inhibition of H2B ubiquitylation by SUMO. This novel negative biochemical crosstalk between SUMO and ubiquitin was also confirmed to exist in human cells.
Collapse
Affiliation(s)
- Sumeet K Singh
- Department of Chemistry, University of Washington, Seattle 98195, USA.
| | - Andres Reyna
- Department of Chemistry, University of Washington, Seattle 98195, USA.
| | - Xiaowen Xie
- Department of Pharmacology, University of Washington; Howard Hughes Medical Institute, University of Washington, Seattle 98195, USA
| | - Haibin Mao
- Department of Pharmacology, University of Washington; Howard Hughes Medical Institute, University of Washington, Seattle 98195, USA
| | - Meihuan Ji
- Department of Chemistry, University of Washington, Seattle 98195, USA.
| | - Ning Zheng
- Department of Pharmacology, University of Washington; Howard Hughes Medical Institute, University of Washington, Seattle 98195, USA
| | - Peter L Hsu
- Department of Pharmacology, University of Washington; Howard Hughes Medical Institute, University of Washington, Seattle 98195, USA
| | | |
Collapse
|
6
|
Afonso CF, Marques MC, António JPM, Cordeiro C, Gois PMP, Cal PMSD, Bernardes GJL. Cysteine-Assisted Click-Chemistry for Proximity-Driven, Site-Specific Acetylation of Histones. Angew Chem Int Ed Engl 2022; 61:e202208543. [PMID: 36124857 PMCID: PMC9828500 DOI: 10.1002/anie.202208543] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Indexed: 01/12/2023]
Abstract
Post-translational modifications of histones are essential in the regulation of chromatin structure and function. Among these modifications, lysine acetylation is one of the most established. Earlier studies relied on the use of chromatin containing heterogeneous mixtures of histones acetylated at multiple sites. Differentiating the individual contribution of single acetylation events towards chromatin regulation is thus of great relevance. However, it is difficult to access homogeneous samples of histones, with a single acetylation, in sufficient quantities for such studies. By engineering histone H3 with a cysteine in proximity of the lysine of interest, we demonstrate that conjugation with maleimide-DBCO followed by a strain-promoted alkyne-azide cycloaddition reaction results in the acetylation of a single lysine in a controlled, site-specific manner. The chemical precision offered by our click-to-acetylate approach will facilitate access to and the study of acetylated histones.
Collapse
Affiliation(s)
- Cláudia F. Afonso
- Instituto de Medicina Molecular João Lobo AntunesFaculdade de MedicinaUniversidade de LisboaAvenida Professor Egas Moniz1649-028LisboaPortugal
| | - Marta C. Marques
- Instituto de Medicina Molecular João Lobo AntunesFaculdade de MedicinaUniversidade de LisboaAvenida Professor Egas Moniz1649-028LisboaPortugal
| | - João P. M. António
- Research Institute for Medicines (iMed.ULisboa)Faculdade de FarmáciaUniversidade de LisboaAv. Prof. Gama Pinto1649-003LisboaPortugal
| | - Carlos Cordeiro
- Laboratório de FT-ICR e Espectrometria de Massa EstruturalFaculdade de CiênciasUniversidade de LisboaCampo Grande1749-016LisboaPortugal
| | - Pedro M. P. Gois
- Research Institute for Medicines (iMed.ULisboa)Faculdade de FarmáciaUniversidade de LisboaAv. Prof. Gama Pinto1649-003LisboaPortugal
| | - Pedro M. S. D. Cal
- Instituto de Medicina Molecular João Lobo AntunesFaculdade de MedicinaUniversidade de LisboaAvenida Professor Egas Moniz1649-028LisboaPortugal
| | - Gonçalo J. L. Bernardes
- Instituto de Medicina Molecular João Lobo AntunesFaculdade de MedicinaUniversidade de LisboaAvenida Professor Egas Moniz1649-028LisboaPortugal,Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCB2 1EWCambridgeUK
| |
Collapse
|
7
|
Zhang Z, Lin J, Liu Z, Tian G, Li XM, Jing Y, Li X, Li XD. Photo-Cross-Linking To Delineate Epigenetic Interactome. J Am Chem Soc 2022; 144:20979-20997. [DOI: 10.1021/jacs.2c06135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zhuoyuan Zhang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Jianwei Lin
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
- Greater Bay Biomedical InnoCenter, Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Zheng Liu
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Gaofei Tian
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Xiao-Meng Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Yihang Jing
- Greater Bay Biomedical InnoCenter, Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Xin Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
- Greater Bay Biomedical InnoCenter, Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Xiang David Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| |
Collapse
|
8
|
Ai H, Sun M, Liu A, Sun Z, Liu T, Cao L, Liang L, Qu Q, Li Z, Deng Z, Tong Z, Chu G, Tian X, Deng H, Zhao S, Li JB, Lou Z, Liu L. H2B Lys34 Ubiquitination Induces Nucleosome Distortion to Stimulate Dot1L Activity. Nat Chem Biol 2022; 18:972-980. [PMID: 35739357 DOI: 10.1038/s41589-022-01067-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 05/19/2022] [Indexed: 11/09/2022]
Abstract
Ubiquitination-dependent histone crosstalk plays critical roles in chromatin-associated processes and is highly associated with human diseases. Mechanism studies of the crosstalk have been of the central focus. Here our study on the crosstalk between H2BK34ub and Dot1L-catalyzed H3K79me suggests a novel mechanism of ubiquitination-induced nucleosome distortion to stimulate the activity of an enzyme. We determined the cryo-electron microscopy structures of Dot1L-H2BK34ub nucleosome complex and the H2BK34ub nucleosome alone. The structures reveal that H2BK34ub induces an almost identical orientation and binding pattern of Dot1L on nucleosome as H2BK120ub, which positions Dot1L for the productive conformation through direct ubiquitin-enzyme contacts. However, H2BK34-anchored ubiquitin does not directly interact with Dot1L as occurs in the case of H2BK120ub, but rather induces DNA and histone distortion around the modified site. Our findings establish the structural framework for understanding the H2BK34ub-H3K79me trans-crosstalk and highlight the diversity of mechanisms for histone ubiquitination to activate chromatin-modifying enzymes.
Collapse
Affiliation(s)
- Huasong Ai
- Department of Chemistry, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, China
| | - Maoshen Sun
- Department of Chemistry, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, China
| | - Aijun Liu
- MOE Key Laboratory of Protein Science, School of Life Sciences and School of Medicine, Tsinghua University, Beijing, China.,Kobilka Institute of Innovative Drug Discovery, School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Zixian Sun
- MOE Key Laboratory of Protein Science, School of Life Sciences and School of Medicine, Tsinghua University, Beijing, China
| | - Tingting Liu
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Lin Cao
- MOE Key Laboratory of Protein Science, School of Life Sciences and School of Medicine, Tsinghua University, Beijing, China.,State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Response, College of Life Sciences, and College of Pharmacy, Nankai University, Tianjin, China
| | - Lujun Liang
- Department of Chemistry, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, China
| | - Qian Qu
- Department of Chemistry, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, China
| | - Zichen Li
- Department of Chemistry, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, China
| | - Zhiheng Deng
- Department of Chemistry, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, China
| | - Zebin Tong
- Department of Chemistry, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, China
| | - Guochao Chu
- Department of Chemistry, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, China
| | - Xiaolin Tian
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Suwen Zhao
- iHuman Institute, ShanghaiTech University, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jia-Bin Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China.
| | - Zhiyong Lou
- MOE Key Laboratory of Protein Science, School of Life Sciences and School of Medicine, Tsinghua University, Beijing, China.
| | - Lei Liu
- Department of Chemistry, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, China.
| |
Collapse
|
9
|
Kuwik J, Wagner S, Sudhamalla B, Debiec R, Islam K. Hydrophobic cavity-directed azide-acetyllysine photochemistry for profiling non-histone interacting partners of bromodomain protein 1. RSC Chem Biol 2022; 3:1061-1068. [PMID: 35975005 PMCID: PMC9347360 DOI: 10.1039/d2cb00043a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/13/2022] [Indexed: 01/19/2023] Open
Abstract
Bromodomain containing protein 1 (BRD1) plays critical roles in chromatin acetylation, gene transcription, erythropoiesis, and brain development. BRD1 is also implicated in several human conditions and is a therapeutic target for cancer. Although, the bromodomain is known to bind acetylated histones, how the function of BRD1 is regulated via non-histone acetylation is unexplored. To identify the non-histone acetylome of BRD1, we develop an R585AzF variant carrying photo responsive 4-azido phenylalanine (AzF) via amber suppressor mutagenesis. We demonstrate biochemical integrity of the AzF-containing analogue and its ability to crosslink non-histone interacting partners present in human cells. Subsequent proteomic experiments led to the identification of the novel BRD1 interactome representing diverse signaling pathways. As a proof-of-concept demonstration, we validated acetylated PDIA1 protein as a bona fide binding partner of BRD1. Our work suggests that BRD1 interacts with additional acetyllysine motifs, beyond those characterized in histone proteins.
Collapse
Affiliation(s)
- Jordan Kuwik
- Department of Chemistry, University of Pittsburgh Pittsburgh, PA 15260 USA
| | - Shana Wagner
- Department of Chemistry, University of Pittsburgh Pittsburgh, PA 15260 USA
| | - Babu Sudhamalla
- Department of Chemistry, University of Pittsburgh Pittsburgh, PA 15260 USA
- Current address: Department of Biological Sciences, Indian Institute of Science Education and Research-Kolkata Mohanpur 741246 India
| | - Ronald Debiec
- Department of Chemistry, University of Pittsburgh Pittsburgh, PA 15260 USA
| | - Kabirul Islam
- Department of Chemistry, University of Pittsburgh Pittsburgh, PA 15260 USA
| |
Collapse
|
10
|
Wu D, Zhang Y, Tang Z, Chen X, Ling X, Li L, Cao W, Zheng W, Wu J, Tang H, Liu X, Luo X, Liu T. Creation of a Yeast Strain with Co‐Translationally Acylated Nucleosomes. Angew Chem Int Ed Engl 2022; 61:e202205570. [DOI: 10.1002/anie.202205570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Dan Wu
- State Key Laboratory of Natural and Biomimetic Drugs Chemical Biology Center Department of Molecular and Cellular, Pharmacology, Pharmaceutical Sciences Peking University 38 Xueyuan Road, Haidian District Beijing 100191 China
| | - Yunfeng Zhang
- Center for Synthetic Biochemistry Institute of Synthetic Biology Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
| | - Zhiheng Tang
- Department of Microbiology School of Basic Medical Sciences Peking University 38 Xueyuan Road, Haidian District Beijing 100191 China
| | - Xiaoxu Chen
- State Key Laboratory of Natural and Biomimetic Drugs Chemical Biology Center Department of Molecular and Cellular, Pharmacology, Pharmaceutical Sciences Peking University 38 Xueyuan Road, Haidian District Beijing 100191 China
| | - Xinyu Ling
- State Key Laboratory of Natural and Biomimetic Drugs Chemical Biology Center Department of Molecular and Cellular, Pharmacology, Pharmaceutical Sciences Peking University 38 Xueyuan Road, Haidian District Beijing 100191 China
| | - Longtu Li
- Key Laboratory of Protein and Plant Gene Research School of Life Sciences and Peking-Tsinghua Center for Life Science Peking University Beijing 100871 China
| | - Wenbing Cao
- State Key Laboratory of Natural and Biomimetic Drugs Chemical Biology Center Department of Molecular and Cellular, Pharmacology, Pharmaceutical Sciences Peking University 38 Xueyuan Road, Haidian District Beijing 100191 China
| | - Wei Zheng
- State Key Laboratory of Natural and Biomimetic Drugs Chemical Biology Center Department of Molecular and Cellular, Pharmacology, Pharmaceutical Sciences Peking University 38 Xueyuan Road, Haidian District Beijing 100191 China
| | - Jiale Wu
- Key Laboratory of Protein and Plant Gene Research School of Life Sciences and Peking-Tsinghua Center for Life Science Peking University Beijing 100871 China
| | - Hongting Tang
- Center for Synthetic Biochemistry Institute of Synthetic Biology Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
| | - Xiaoyun Liu
- Department of Microbiology School of Basic Medical Sciences Peking University 38 Xueyuan Road, Haidian District Beijing 100191 China
| | - Xiaozhou Luo
- Center for Synthetic Biochemistry Institute of Synthetic Biology Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
- CAS Key Laboratory of Quantitative Engineering Biology Institute of Synthetic Biology Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
| | - Tao Liu
- State Key Laboratory of Natural and Biomimetic Drugs Chemical Biology Center Department of Molecular and Cellular, Pharmacology, Pharmaceutical Sciences Peking University 38 Xueyuan Road, Haidian District Beijing 100191 China
| |
Collapse
|
11
|
Wu D, Zhang Y, Tang Z, Chen X, Ling X, Li L, Cao W, Zheng W, Wu J, Tang H, Liu X, Luo X, Liu T. Creation of a Yeast Strain with Co‐Translationally Acylated Nucleosomes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Dan Wu
- State Key Laboratory of Natural and Biomimetic Drugs Chemical Biology Center Department of Molecular and Cellular, Pharmacology, Pharmaceutical Sciences Peking University 38 Xueyuan Road, Haidian District Beijing 100191 China
| | - Yunfeng Zhang
- Center for Synthetic Biochemistry Institute of Synthetic Biology Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
| | - Zhiheng Tang
- Department of Microbiology School of Basic Medical Sciences Peking University 38 Xueyuan Road, Haidian District Beijing 100191 China
| | - Xiaoxu Chen
- State Key Laboratory of Natural and Biomimetic Drugs Chemical Biology Center Department of Molecular and Cellular, Pharmacology, Pharmaceutical Sciences Peking University 38 Xueyuan Road, Haidian District Beijing 100191 China
| | - Xinyu Ling
- State Key Laboratory of Natural and Biomimetic Drugs Chemical Biology Center Department of Molecular and Cellular, Pharmacology, Pharmaceutical Sciences Peking University 38 Xueyuan Road, Haidian District Beijing 100191 China
| | - Longtu Li
- Key Laboratory of Protein and Plant Gene Research School of Life Sciences and Peking-Tsinghua Center for Life Science Peking University Beijing 100871 China
| | - Wenbing Cao
- State Key Laboratory of Natural and Biomimetic Drugs Chemical Biology Center Department of Molecular and Cellular, Pharmacology, Pharmaceutical Sciences Peking University 38 Xueyuan Road, Haidian District Beijing 100191 China
| | - Wei Zheng
- State Key Laboratory of Natural and Biomimetic Drugs Chemical Biology Center Department of Molecular and Cellular, Pharmacology, Pharmaceutical Sciences Peking University 38 Xueyuan Road, Haidian District Beijing 100191 China
| | - Jiale Wu
- Key Laboratory of Protein and Plant Gene Research School of Life Sciences and Peking-Tsinghua Center for Life Science Peking University Beijing 100871 China
| | - Hongting Tang
- Center for Synthetic Biochemistry Institute of Synthetic Biology Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
| | - Xiaoyun Liu
- Department of Microbiology School of Basic Medical Sciences Peking University 38 Xueyuan Road, Haidian District Beijing 100191 China
| | - Xiaozhou Luo
- Center for Synthetic Biochemistry Institute of Synthetic Biology Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
- CAS Key Laboratory of Quantitative Engineering Biology Institute of Synthetic Biology Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
| | - Tao Liu
- State Key Laboratory of Natural and Biomimetic Drugs Chemical Biology Center Department of Molecular and Cellular, Pharmacology, Pharmaceutical Sciences Peking University 38 Xueyuan Road, Haidian District Beijing 100191 China
| |
Collapse
|
12
|
Ding H, Pei Y, Li Y, Xu W, Mei L, Hou Z, Guang Y, Cao L, Li P, Cao H, Bian J, Chen K, Luo C, Zhou B, Zhang T, Li Z, Yang Y. Design, synthesis and biological evaluation of a novel spiro oxazolidinedione as potent p300/CBP HAT inhibitor for the treatment of ovarian cancer. Bioorg Med Chem 2021; 52:116512. [PMID: 34801827 DOI: 10.1016/j.bmc.2021.116512] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 10/08/2021] [Accepted: 10/15/2021] [Indexed: 01/10/2023]
Abstract
Histone acetylation is one of the most essential parts of epigenetic modification, mediating a variety of complex biological functions. In these procedure, p300/CBP could catalyze the acetylation of lysine 27 on histone 3 (H3K27ac), and had been reported to mediate tumorigenesis and development in a variety of tumors by enhancing chromatin transcription activity. Ovarian cancer, as an extremely malignant tumor, has also been observed to undergo abnormal acetylation of histones. However, whether the treatment of ovarian cancer could be achieved by inhibiting the acetylation activity of p300/CBP on H3K27 has not been well investigated. In this article, we modified the structure of p300/CBP HAT domain inhibitor A-485 and obtained a highly active small molecule known as 13f, which has an IC50 value of 0.49 nM for inhibiting the in vitro enzyme activity of p300, as well as the anti-proliferation IC50 value on ovarian cancer cell line OVCAR-3 was 153 nM. In addition, 13f had strong acetylase family selectivity, good metabolic stability and promising in vivo anti-tumor activity in OVCAR-3 xenograft model. The discovery of 13f revealed a more active chemical entity of the HATs domain of p300/CBP and provided a novel idea for the application of epigenetic inhibitors in the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Hong Ding
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Yuan Pei
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Yuanqing Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Wen Xu
- Hospital & Institute of Obstetrics and Gynecology, Fudan University, Shanghai 200011, China
| | - Lianghe Mei
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023,China
| | - Zeng Hou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Yiman Guang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Liyuan Cao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Peizhuo Li
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023,China
| | - Haijing Cao
- Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai 200032, China
| | - Jinlei Bian
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Kaixian Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023,China
| | - Cheng Luo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Bing Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Ting Zhang
- Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai 200032, China.
| | - Zhiyu Li
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China.
| | - Yaxi Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China.
| |
Collapse
|
13
|
Ai H, Peng S, Li JB. Chemical methods for studying the crosstalk between histone H2B ubiquitylation and H3 methylation. J Pept Sci 2021; 28:e3381. [PMID: 34811838 DOI: 10.1002/psc.3381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 10/19/2021] [Accepted: 11/03/2021] [Indexed: 11/06/2022]
Abstract
The reversible and dynamic post-translational modifications (PTMs) of histones in eukaryotic chromatin are intimately connected to cell development and gene function, and abnormal regulation of PTMs can result in cancer and neurodegenerative diseases. Specific combinations of these modifications are mediated by a series of chromatin proteins that write, erase, and read the "histone codes," but mechanistic studies of the precise biochemical and structural relationships between different sets of modifications and their effects on chromatin function constitute a unique challenge to canonical biochemical approaches. In the past decade, the development and application of chemical methods for investigating histone PTM crosstalks has received considerable attention in the field of chemical biology. In this review, taking the functional crosstalk between H2B ubiquitylation at Lys120 (H2BK120ub) and H3 methylation at Lys79 (H3K79me) as a typical example, we survey recent developments of different chemical methods, in particular, protein synthetic chemistry and protein-based chemical probes, for studying the mechanism of the functional crosstalks of histone PTMs.
Collapse
Affiliation(s)
- Huasong Ai
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China.,Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Shuai Peng
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Jia-Bin Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
14
|
Brunty S, Mitchell B, Bou-Zgheib N, Santanam N. Endometriosis and ovarian cancer risk, an epigenetic connection. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1715. [PMID: 33490227 PMCID: PMC7812227 DOI: 10.21037/atm-20-2449] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Endometriosis is a gynecological disorder that affects 176 million women worldwide and 1 in 10 females in the United States. Endometriosis most often affects women of child-bearing age, with most going undiagnosed. Endometriosis also shares many characteristics common to invasive cancer and has been known to be associated with epithelial ovarian cancer. Ovarian cancer is the 11th most common cancer among women and over 22,000 new cases will be diagnosed within the next year. Women most commonly diagnosed with this cancer are between the ages of 55–64 years, outside the range of the age of women affected with endometriosis. While no known cause of either disease has been established, epigenetic regulation is thought to play a major role in both. This review focuses on epigenetic changes that occur within each individual disease as well as those that are similar in both, suggesting a possible etiological link between the two diseases.
Collapse
Affiliation(s)
- Sarah Brunty
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - Brenda Mitchell
- Department of Obstetrics and Gynecology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - Nadim Bou-Zgheib
- Department of Obstetrics and Gynecology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - Nalini Santanam
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
| |
Collapse
|
15
|
Dhall A, Shelton PMM, Delachat AMF, Leonen CJA, Fierz B, Chatterjee C. Nucleosome Binding by the Lysine Specific Demethylase 1 (LSD1) Enzyme Enables Histone H3 Demethylation. Biochemistry 2020; 59:2479-2483. [PMID: 32567837 DOI: 10.1021/acs.biochem.0c00412] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The essential human enzyme lysine specific demethylase 1 (LSD1) silences genes by demethylating mono- and dimethylated lysine 4 in histone H3 (H3K4me1/2). Studies of the minimal requirements for LSD1 activity are complicated by the heterogeneity of histone modification states in cells. We overcame this challenge by generating homogeneous mononucleosome substrates containing semisynthetic H3K4me2. Biophysical and biochemical assays with full-length LSD1 revealed its ability to bind and demethylate nucleosomes. Consistent with a requirement for nucleosome binding prior to demethylation, a competing nucleosome-binding peptide from the high-mobility group protein effectively inhibited LSD1 activity. Thus, our studies provide the first glimpse of nucleosome demethylation by LSD1 in the absence of other scaffolding proteins.
Collapse
Affiliation(s)
- Abhinav Dhall
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Patrick M M Shelton
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Aurore M-F Delachat
- Institut des sciences et ingénierie chimiques (ISIC), Ecole polytechnique fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Calvin J A Leonen
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Beat Fierz
- Institut des sciences et ingénierie chimiques (ISIC), Ecole polytechnique fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Champak Chatterjee
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
16
|
Jbara M, Maity SK, Brik A. Examining Several Strategies for the Chemical Synthesis of Phosphorylated Histone H3 Reveals the Effectiveness of the Convergent Approach. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900257] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Muhammad Jbara
- Schulich Faculty of Chemistry; Technion-Israel Institute of Technology; 3200008 Haifa Israel
| | - Suman Kumar Maity
- Schulich Faculty of Chemistry; Technion-Israel Institute of Technology; 3200008 Haifa Israel
| | - Ashraf Brik
- Schulich Faculty of Chemistry; Technion-Israel Institute of Technology; 3200008 Haifa Israel
| |
Collapse
|
17
|
Whedon SD, Parker MK, Tyson EL, Ritterhoff T, Shelton PMM, Chatterjee C. A clickable glutamine (CliQ) derivative for the traceless reversible modification of peptides and proteins. Chem Commun (Camb) 2019; 55:2043-2045. [DOI: 10.1039/c8cc09404g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Cu(i)-mediated click reaction of proteins with affinity tags enables their selective isolation from complex mixtures.
Collapse
|
18
|
Islam K. The Bump-and-Hole Tactic: Expanding the Scope of Chemical Genetics. Cell Chem Biol 2018; 25:1171-1184. [PMID: 30078633 PMCID: PMC6195450 DOI: 10.1016/j.chembiol.2018.07.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/13/2018] [Accepted: 07/02/2018] [Indexed: 12/15/2022]
Abstract
Successful mapping of the human genome has sparked a widespread interest in deciphering functional information encoded in gene sequences. However, because of the high degree of conservation in sequences along with topological and biochemical similarities among members of a protein superfamily, uncovering physiological role of a particular protein has been a challenging task. Chemical genetic approaches have made significant contributions toward understanding protein function. One such effort, dubbed the bump-and-hole approach, has convincingly demonstrated that engineering at the protein-small molecule interface constitutes a powerful method for elucidating the function of a specific gene product. By manipulating the steric component of protein-ligand interactions in a complementary manner, an orthogonal system is developed to probe a specific enzyme-cofactor pair without interference from related members. This article outlines current efforts to expand the approach for diverse protein classes and their applications. Potential future innovations to address contemporary biological problems are highlighted as well.
Collapse
Affiliation(s)
- Kabirul Islam
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
19
|
Sueoka T, Koyama K, Hayashi G, Okamoto A. Chemistry-Driven Epigenetic Investigation of Histone and DNA Modifications. CHEM REC 2018; 18:1727-1744. [PMID: 30070422 DOI: 10.1002/tcr.201800040] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 06/22/2018] [Indexed: 12/26/2022]
Abstract
In the regulation processes of gene expression, genomic DNA and nuclear proteins, including histone proteins, cooperate with each other, leading to the distinctive functions of eukaryotic cells such as pluripotency and differentiation. Chemical modification of histone proteins and DNA has been revealed as one of the major driving forces in the complicated epigenetic regulation system. However, understanding of the precise molecular mechanisms is still limited. To address this issue, researchers have proposed both biological and chemical strategies for the preparation and detection of modified proteins and nucleic acids. In this review, we focus on chemical methods around the field of epigenetics. Chemical protein synthesis has enabled the preparation of site-specifically modified histones and their successful application to various in vitro assays, which have emphasized the significance of posttranslational modifications of interest. We also review the modification-specific chemical reactions against synthetic and genomic DNA, which enabled discrimination of several modified bases at single-base resolution.
Collapse
Affiliation(s)
- Takuma Sueoka
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kenta Koyama
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Gosuke Hayashi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Akimitsu Okamoto
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.,Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| |
Collapse
|
20
|
Nadal S, Raj R, Mohammed S, Davis BG. Synthetic post-translational modification of histones. Curr Opin Chem Biol 2018; 45:35-47. [DOI: 10.1016/j.cbpa.2018.02.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/17/2018] [Accepted: 02/10/2018] [Indexed: 12/14/2022]
|
21
|
Leonen CJA, Upadhyay E, Chatterjee C. Studies of biochemical crosstalk in chromatin with semisynthetic histones. Curr Opin Chem Biol 2018; 45:27-34. [PMID: 29494828 DOI: 10.1016/j.cbpa.2018.02.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 02/08/2018] [Accepted: 02/11/2018] [Indexed: 01/26/2023]
Abstract
Reversible post-translational modifications of histone proteins in eukaryotic chromatin are closely tied to gene function and cellular development. Specific combinations of histone modifications, or marks, are implicated in distinct DNA-templated processes mediated by a range of chromatin-associated enzymes that install, erase and interpret the histone code. Mechanistic studies of the precise biochemical relationship between sets of marks and their effects on chromatin function are significantly complicated by the dynamic nature and heterogeneity of marks in cellular chromatin. Protein semisynthesis is a chemical technique that enables the piecewise assembly of uniformly and site-specifically modified histones in quantities sufficient for biophysical and biochemical analyses. Recent pioneering efforts in semisynthesis have yielded access to histones site-specifically modified by entire proteins, such as ubiquitin (Ub) and the small ubiquitin-like modifier (SUMO). Herein, we highlight key studies of biochemical crosstalk involving Ub and SUMO in chromatin that were enabled by histone semisynthesis.
Collapse
Affiliation(s)
| | - Esha Upadhyay
- Department of Chemistry, University of Washington, Seattle, WA 98195, United States
| | - Champak Chatterjee
- Department of Chemistry, University of Washington, Seattle, WA 98195, United States.
| |
Collapse
|
22
|
Dhall A, Weller CE, Chu A, Shelton PMM, Chatterjee C. Chemically Sumoylated Histone H4 Stimulates Intranucleosomal Demethylation by the LSD1-CoREST Complex. ACS Chem Biol 2017; 12:2275-2280. [PMID: 28832116 DOI: 10.1021/acschembio.7b00716] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Lysine-specific demethylase 1 (LSD1) downregulates eukaryotic gene activity by demethylating mono- and dimethylated Lys4 in histone H3. Elucidating the biochemical crosstalk of LSD1 with histone post-translational modifications (PTMs) is essential for developing LSD1-targeted therapeutics in human cancers. We interrogated the small ubiquitin-like modifier (SUMO)-driven regulation of LSD1 activity with semisynthetic nucleosomes containing site-specifically methylated and sumoylated histones. We discovered that nucleosomes containing sumoylated histone H4 (suH4), a modification associated with gene repression, stimulate LSD1 activity by a mechanism dependent upon the SUMO-interaction motif in CoREST. Furthermore, the stimulatory effect of suH4 was spatially limited and did not extend to the demethylation of adjacent nonsumoylated nucleosomes. Thus, we have identified histone modification by SUMO as the first PTM that stimulates intranucleosomal demethylation by the developmentally critical LSD1-CoREST complex.
Collapse
Affiliation(s)
- Abhinav Dhall
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Caroline E. Weller
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Aurea Chu
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Patrick M. M. Shelton
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Champak Chatterjee
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
23
|
Chen Q, Yang R, Korolev N, Liu CF, Nordenskiöld L. Regulation of Nucleosome Stacking and Chromatin Compaction by the Histone H4 N-Terminal Tail-H2A Acidic Patch Interaction. J Mol Biol 2017; 429:2075-2092. [PMID: 28322915 DOI: 10.1016/j.jmb.2017.03.016] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/13/2017] [Accepted: 03/13/2017] [Indexed: 01/15/2023]
Abstract
Chromatin folding and dynamics are critically dependent on nucleosome-nucleosome interactions with important contributions from internucleosome binding of the histone H4 N-terminal tail K16-R23 domain to the surface of the H2A/H2B dimer. The H4 Lys16 plays a pivotal role in this regard. Using in vitro reconstituted 12-mer nucleosome arrays, we have investigated the mechanism of the H4 N-terminal tail in maintaining nucleosome-nucleosome stacking and mediating intra- and inter-array chromatin compaction, with emphasis on the role of K16 and the positive charge region, R17-R23. Analytical ultracentrifugation sedimentation velocity experiments and precipitation assays were employed to analyze effects on chromatin folding and self-association, respectively. Effects on chromatin folding caused by various mutations and modifications at position K16 in the H4 histone were studied. Additionally, using charge-quenching mutations, we characterized the importance of the interaction of the residues within the H4 positive charge region R17-R23 with the H2A acidic patch of the adjacent nucleosome. Furthermore, crosslinking experiments were conducted to establish the proximity of the basic tail region to the acidic patch. Our data indicate that the positive charge and length of the side chain of H4 K16 are important for its access to the adjacent nucleosome in the process of nucleosome-nucleosome stacking and array folding. The location and orientation of the H4 R17-R23 domain on the H2A/H2B dimer surface of the neighboring nucleosome core particle (NCP) in the compacted chromatin fiber were established. The dominance of electrostatic interactions in maintaining intra-array interaction was demonstrated.
Collapse
Affiliation(s)
- Qinming Chen
- School of Biological Sciences, College of Science, Nanyang Technological University, 60, Nanyang Drive, 637551, Singapore
| | - Renliang Yang
- School of Biological Sciences, College of Science, Nanyang Technological University, 60, Nanyang Drive, 637551, Singapore
| | - Nikolay Korolev
- School of Biological Sciences, College of Science, Nanyang Technological University, 60, Nanyang Drive, 637551, Singapore
| | - Chuan Fa Liu
- School of Biological Sciences, College of Science, Nanyang Technological University, 60, Nanyang Drive, 637551, Singapore
| | - Lars Nordenskiöld
- School of Biological Sciences, College of Science, Nanyang Technological University, 60, Nanyang Drive, 637551, Singapore.
| |
Collapse
|
24
|
Shelton PMM, Weller CE, Chatterjee C. A Facile N-Mercaptoethoxyglycinamide (MEGA) Linker Approach to Peptide Thioesterification and Cyclization. J Am Chem Soc 2017; 139:3946-3949. [PMID: 28230996 DOI: 10.1021/jacs.6b13271] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The C-terminal electrophilic activation of peptides by α-thioesterification requires strongly acidic conditions or complex chemical manipulations, which ultimately limit functional group compatibility and broad utility. Herein, we report a readily accessible N-mercaptoethoxyglycinamide (MEGA) solid-phase linker for the facile synthesis of latent peptide α-thioesters. Incubating peptide-MEGA sequences with 2-mercaptoethanesulfonic acid at mildly acidic pH yielded α-thioesters that were directly used in NCL without purification. The MEGA linker yielded robust access to thioesters ranging in length from 4 to 35 amino acids, and greatly simplified the synthesis of cyclic peptides. Finally, the high utility of MEGA was demonstrated by the one-pot synthesis of a functional analog of the Sunflower Trypsin Inhibitor 1.
Collapse
Affiliation(s)
- Patrick M M Shelton
- Department of Chemistry, University of Washington , Seattle, Washington 98195, United States
| | - Caroline E Weller
- Department of Chemistry, University of Washington , Seattle, Washington 98195, United States
| | - Champak Chatterjee
- Department of Chemistry, University of Washington , Seattle, Washington 98195, United States
| |
Collapse
|
25
|
He Q, Li J, Qi Y, Wang Z, Huang Y, Liu L. Chemical synthesis of histone H2A with methylation at Gln104. Sci China Chem 2016. [DOI: 10.1007/s11426-016-0386-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
26
|
Nuccio AG, Bui M, Dalal Y, Nita-Lazar A. Mass Spectrometry-Based Methodology for Identification of Native Histone Variant Modifications From Mammalian Tissues and Solid Tumors. Methods Enzymol 2016; 586:275-290. [PMID: 28137567 DOI: 10.1016/bs.mie.2016.09.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Histone posttranslational modifications (PTMs) are key epigenetic marks involved in gene silencing or activation. Histone modifications impact chromatin organization and transcriptional processes through the changes in charge density between histones and DNA. They also serve as recognition and binding sites for specific binding proteins. Histone tails and globular cores contain many basic amino acid residues, which are subject to various dynamic modifications, making the modification repertoire extremely diverse. Consequently, determination of histone PTM identity and quantity has been a challenging task. In recent years, mass spectrometry-based methods have proven useful in histone PTM characterization. This chapter provides a brief overview of these methods and describes the approach to analyze the PTMs of the histone variant CENP-A, essential for the cell cycle progression, when present in minute amounts from tumor and mammalian tissues. Because this method does not rely on antibody-based immunopurification, we anticipate that these tools could be readily adaptable to the investigation to other histone variants in a range of mammalian tissues and solid tumors.
Collapse
Affiliation(s)
- A G Nuccio
- Cellular Networks Proteomics Unit, Laboratory of Systems Biology, NIAID, NIH, Bethesda, MD, United States
| | - M Bui
- Chromatin Structure and Epigenetic Mechanisms Unit, Laboratory of Receptor Biology and Gene Expression, CCR, NCI, NIH, Bethesda, MD, United States
| | - Y Dalal
- Chromatin Structure and Epigenetic Mechanisms Unit, Laboratory of Receptor Biology and Gene Expression, CCR, NCI, NIH, Bethesda, MD, United States.
| | - A Nita-Lazar
- Cellular Networks Proteomics Unit, Laboratory of Systems Biology, NIAID, NIH, Bethesda, MD, United States.
| |
Collapse
|
27
|
Sekirnik Née Measures AR, Hewings DS, Theodoulou NH, Jursins L, Lewendon KR, Jennings LE, Rooney TPC, Heightman TD, Conway SJ. Isoxazole-Derived Amino Acids are Bromodomain-Binding Acetyl-Lysine Mimics: Incorporation into Histone H4 Peptides and Histone H3. Angew Chem Int Ed Engl 2016; 55:8353-7. [PMID: 27264992 PMCID: PMC5089653 DOI: 10.1002/anie.201602908] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/08/2016] [Indexed: 02/06/2023]
Abstract
A range of isoxazole‐containing amino acids was synthesized that displaced acetyl‐lysine‐containing peptides from the BAZ2A, BRD4(1), and BRD9 bromodomains. Three of these amino acids were incorporated into a histone H4‐mimicking peptide and their affinity for BRD4(1) was assessed. Affinities of the isoxazole‐containing peptides are comparable to those of a hyperacetylated histone H4‐mimicking cognate peptide, and demonstrated a dependence on the position at which the unnatural residue was incorporated. An isoxazole‐based alkylating agent was developed to selectively alkylate cysteine residues in situ. Selective monoalkylation of a histone H4‐mimicking peptide, containing a lysine to cysteine residue substitution (K12C), resulted in acetyl‐lysine mimic incorporation, with high affinity for the BRD4 bromodomain. The same technology was used to alkylate a K18C mutant of histone H3.
Collapse
Affiliation(s)
| | - David S Hewings
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | - Natalie H Theodoulou
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | - Lukass Jursins
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | - Katie R Lewendon
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | - Laura E Jennings
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | - Timothy P C Rooney
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | - Tom D Heightman
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Stuart J Conway
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK.
| |
Collapse
|
28
|
Sekirnik née Measures AR, Hewings DS, Theodoulou NH, Jursins L, Lewendon KR, Jennings LE, Rooney TPC, Heightman TD, Conway SJ. Isoxazole-Derived Amino Acids are Bromodomain-Binding Acetyl-Lysine Mimics: Incorporation into Histone H4 Peptides and Histone H3. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201602908] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
| | - David S. Hewings
- Department of Chemistry, Chemistry Research Laboratory; University of Oxford; Mansfield Road Oxford OX1 3TA UK
| | - Natalie H. Theodoulou
- Department of Chemistry, Chemistry Research Laboratory; University of Oxford; Mansfield Road Oxford OX1 3TA UK
| | - Lukass Jursins
- Department of Chemistry, Chemistry Research Laboratory; University of Oxford; Mansfield Road Oxford OX1 3TA UK
| | - Katie R. Lewendon
- Department of Chemistry, Chemistry Research Laboratory; University of Oxford; Mansfield Road Oxford OX1 3TA UK
| | - Laura E. Jennings
- Department of Chemistry, Chemistry Research Laboratory; University of Oxford; Mansfield Road Oxford OX1 3TA UK
| | - Timothy P. C. Rooney
- Department of Chemistry, Chemistry Research Laboratory; University of Oxford; Mansfield Road Oxford OX1 3TA UK
| | - Tom D. Heightman
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium; University of Oxford, Old Road Campus Research Building; Roosevelt Drive Oxford OX3 7DQ UK
| | - Stuart J. Conway
- Department of Chemistry, Chemistry Research Laboratory; University of Oxford; Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
29
|
Jbara M, Maity SK, Morgan M, Wolberger C, Brik A. Chemical Synthesis of Phosphorylated Histone H2A at Tyr57 Reveals Insight into the Inhibition Mode of the SAGA Deubiquitinating Module. Angew Chem Int Ed Engl 2016; 55:4972-6. [PMID: 26960207 DOI: 10.1002/anie.201600638] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Indexed: 11/06/2022]
Abstract
Monoubiquitination of histone H2B plays a central role in transcription activation and is required for downstream histone-methylation events. Deubiquitination of H2B by the Spt-Ada-Gcn5 acetyltransferase (SAGA) coactivator complex is regulated by a recently discovered histone mark, phosphorylated H2AY57 (H2AY57p), which inhibits deubiquitination of H2B by the SAGA complex as well as restricting demethylation of H3 and increasing its acetylation. Evidence for the effect of H2AY57p, however, was indirect and was investigated in vivo by monitoring the effects of chemical inhibition of Tyr kinase CK2 or by mutating the phosphorylation site. We applied the total chemical synthesis of proteins to prepare H2AY57p efficiently and study the molecular details of this regulation. This analogue, together with semisynthetically prepared ubiquitinated H2B, enabled us to provide direct evidence for the cross-talk between those two marks and the inhibition of SAGA activity by H2AY57p.
Collapse
Affiliation(s)
- Muhammad Jbara
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, 3200008, Israel
| | - Suman Kumar Maity
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, 3200008, Israel
| | - Michael Morgan
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD, 21205-2185, USA
| | - Cynthia Wolberger
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD, 21205-2185, USA.
| | - Ashraf Brik
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, 3200008, Israel.
| |
Collapse
|
30
|
Jbara M, Maity SK, Morgan M, Wolberger C, Brik A. Chemical Synthesis of Phosphorylated Histone H2A at Tyr57 Reveals Insight into the Inhibition Mode of the SAGA Deubiquitinating Module. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201600638] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Muhammad Jbara
- Schulich Faculty of Chemistry; Technion-Israel Institute of Technology; Haifa 3200008 Israel
| | - Suman Kumar Maity
- Schulich Faculty of Chemistry; Technion-Israel Institute of Technology; Haifa 3200008 Israel
| | - Michael Morgan
- Department of Biophysics and Biophysical Chemistry; Johns Hopkins University School of Medicine; 725 North Wolfe Street Baltimore MD 21205-2185 USA
| | - Cynthia Wolberger
- Department of Biophysics and Biophysical Chemistry; Johns Hopkins University School of Medicine; 725 North Wolfe Street Baltimore MD 21205-2185 USA
| | - Ashraf Brik
- Schulich Faculty of Chemistry; Technion-Israel Institute of Technology; Haifa 3200008 Israel
| |
Collapse
|
31
|
Yu RR, Mahto SK, Justus K, Alexander MM, Howard CJ, Ottesen JJ. Hybrid phase ligation for efficient synthesis of histone proteins. Org Biomol Chem 2016; 14:2603-7. [PMID: 26821702 PMCID: PMC4767651 DOI: 10.1039/c5ob02195b] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We introduce a hybrid solid-solution phase ligation approach that combines the efficiency of solid phase ligation with solution phase ligation in the total synthesis of modified histone proteins. A two linker strategy allows analysis throughout work on the solid phase and maximizes yields through cleavage at an external Rink, while an internal HMBA linker allows the native carboxyl terminus for any protein sequence. We demonstrate this approach for two histone proteins: triple-acetylated H4-K5ac, K12ac, K91ac and CENP-A-K124ac.
Collapse
Affiliation(s)
- Ruixuan R Yu
- Department of Chemistry & Biochemistry, The Ohio State University, USA and Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA.
| | - Santosh K Mahto
- Department of Chemistry & Biochemistry, The Ohio State University, USA
| | - Kurt Justus
- Department of Chemistry & Biochemistry, The Ohio State University, USA and Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA.
| | | | - Cecil J Howard
- Department of Chemistry & Biochemistry, The Ohio State University, USA and Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA.
| | - Jennifer J Ottesen
- Department of Chemistry & Biochemistry, The Ohio State University, USA and Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
32
|
Dhall A, Weller CE, Chatterjee C. Rapid Semisynthesis of Acetylated and Sumoylated Histone Analogs. Methods Enzymol 2016; 574:149-165. [PMID: 27423861 DOI: 10.1016/bs.mie.2016.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The density and diversity of posttranslational modifications (PTMs) observed in histone proteins typically limit their purification to homogeneity from biological sources. Access to quantities of uniformly modified histones is, however, critical for investigating the downstream effects of histone PTMs on chromatin-templated processes. Therefore, a number of semisynthetic methodologies have been developed to generate histones bearing precisely defined PTMs or close analogs thereof. In this chapter, we present two optimized and rapid strategies for generating functional analogs of site-specifically acetylated and sumoylated histones. First, we describe a convergent strategy to site-specifically attach the small ubiquitin-like modifier-3 (SUMO-3) protein to the site of Lys12 in histone H4 by means of a disulfide linkage. We then describe the generation of thialysine analogs of histone H3 acetylated at Lys14 or Lys56, using thiol-ene coupling chemistry. Both strategies afford multimilligram quantities of uniformly modified histones that are easily incorporated into mononucleosomes and nucleosome arrays for biophysical and biochemical investigations. These methods are readily extendable to any desired sites in the four core nucleosomal histones and their variant forms.
Collapse
Affiliation(s)
- A Dhall
- University of Washington, Seattle, WA, United States
| | - C E Weller
- University of Washington, Seattle, WA, United States
| | - C Chatterjee
- University of Washington, Seattle, WA, United States.
| |
Collapse
|
33
|
Weller CE, Chatterjee C. All about that Amide Bond: The Sixth Chemical Protein Synthesis (CPS) Meeting. Chembiochem 2015; 16:2531-6. [PMID: 26457983 PMCID: PMC4749268 DOI: 10.1002/cbic.201500473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Indexed: 11/11/2022]
Abstract
Endless potential: The sixth Chemical Protein Synthesis Meeting, held recently in St. Augustine, Florida, showed the potential of peptide and protein chemistry when applied toward understanding and controlling complex biological processes. This report highlights the diverse and cutting-edge protein chemistry presented at the meeting.
Collapse
Affiliation(s)
- Caroline E Weller
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA, 98195, USA.
| | - Champak Chatterjee
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA, 98195, USA.
| |
Collapse
|
34
|
Hayashi G, Sakamoto R, Okamoto A. 2-Oxazoline formation for selective chemical labeling of 5-hydroxylysine. Chem Asian J 2015; 10:1138-41. [PMID: 25757225 DOI: 10.1002/asia.201500172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Indexed: 11/07/2022]
Abstract
Hydroxylation of lysine, one of posttranslational modifications of proteins, generates 5-hydroxylysine (Koh) and plays a crucial role in regulating protein functions in cellular activity. We have developed a chemical labeling method of Koh. The 1,2-aminoalcohol moiety of Koh in synthetic peptide sequences was trapped by an alkyne-containing benzimidate to form a 2-oxazoline ring. An additional ammonia treatment process removed the undesirable amidine residue formed between benzimidate and lysine. During the ammonia treatment, the oxazoline residue formed at Koh mainly remained intact, and the ring opening to the amide form was observed for only part of oxazoline, indicating that the chemical labeling is amino acid selective. Azide-substituted biotin or fluorescent dye was attached to the peptide through Huisgen cycloaddition at Koh and converted into an alkyne-labeled oxazoline form. The Koh-labeling assay could provide a platform to enhance proteomic research of lysine hydroxylation.
Collapse
Affiliation(s)
- Gosuke Hayashi
- Department of Chemistry and Biotechnology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)
| | | | | |
Collapse
|
35
|
Baba R, Hori Y, Kikuchi K. Intramolecular Long-Distance Nucleophilic Reactions as a Rapid Fluorogenic Switch Applicable to the Detection of Enzymatic Activity. Chemistry 2015; 21:4695-702. [DOI: 10.1002/chem.201406093] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Indexed: 01/10/2023]
|
36
|
Dhall A, Wei S, Fierz B, Woodcock CL, Lee TH, Chatterjee C. Sumoylated human histone H4 prevents chromatin compaction by inhibiting long-range internucleosomal interactions. J Biol Chem 2014; 289:33827-37. [PMID: 25294883 DOI: 10.1074/jbc.m114.591644] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The structure of eukaryotic chromatin directly influences gene function, and is regulated by chemical modifications of the core histone proteins. Modification of the human histone H4 N-terminal tail region by the small ubiquitin-like modifier protein, SUMO-3, is associated with transcription repression. However, the direct effect of sumoylation on chromatin structure and function remains unknown. Therefore, we employed a disulfide-directed strategy to generate H4 homogenously and site-specifically sumoylated at Lys-12 (suH4ss). Chromatin compaction and oligomerization assays with nucleosomal arrays containing suH4ss established that SUMO-3 inhibits array folding and higher order oligomerization, which underlie chromatin fiber formation. Moreover, the effect of sumoylation differed from that of acetylation, and could be recapitulated with the structurally similar protein ubiquitin. Mechanistic studies at the level of single nucleosomes revealed that, unlike acetylation, the effect of SUMO-3 arises from the attenuation of long-range internucleosomal interactions more than from the destabilization of a compacted dinucleosome state. Altogether, our results present the first insight on the direct structural effects of histone H4 sumoylation and reveal a novel mechanism by which SUMO-3 inhibits chromatin compaction.
Collapse
Affiliation(s)
- Abhinav Dhall
- From the Department of Chemistry, University of Washington, Seattle, Washington 98195
| | - Sijie Wei
- the Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Beat Fierz
- the Institute of Chemical Sciences and Engineering, Ecole polytechnique fédérale de Lausanne, CH-1015 Lausanne, Switzerland, and
| | | | - Tae-Hee Lee
- the Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802,
| | - Champak Chatterjee
- From the Department of Chemistry, University of Washington, Seattle, Washington 98195,
| |
Collapse
|
37
|
Wang Y, Kavran JM, Chen Z, Karukurichi KR, Leahy DJ, Cole PA. Regulation of S-adenosylhomocysteine hydrolase by lysine acetylation. J Biol Chem 2014; 289:31361-72. [PMID: 25248746 DOI: 10.1074/jbc.m114.597153] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
S-Adenosylhomocysteine hydrolase (SAHH) is an NAD(+)-dependent tetrameric enzyme that catalyzes the breakdown of S-adenosylhomocysteine to adenosine and homocysteine and is important in cell growth and the regulation of gene expression. Loss of SAHH function can result in global inhibition of cellular methyltransferase enzymes because of high levels of S-adenosylhomocysteine. Prior proteomics studies have identified two SAHH acetylation sites at Lys(401) and Lys(408) but the impact of these post-translational modifications has not yet been determined. Here we use expressed protein ligation to produce semisynthetic SAHH acetylated at Lys(401) and Lys(408) and show that modification of either position negatively impacts the catalytic activity of SAHH. X-ray crystal structures of 408-acetylated SAHH and dually acetylated SAHH have been determined and reveal perturbations in the C-terminal hydrogen bonding patterns, a region of the protein important for NAD(+) binding. These crystal structures along with mutagenesis data suggest that such hydrogen bond perturbations are responsible for SAHH catalytic inhibition by acetylation. These results suggest how increased acetylation of SAHH may globally influence cellular methylation patterns.
Collapse
Affiliation(s)
- Yun Wang
- From the Deptartments of Pharmacology and Molecular Sciences and
| | - Jennifer M Kavran
- Biophysics and Biophysical Chemistry, The Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Zan Chen
- From the Deptartments of Pharmacology and Molecular Sciences and
| | | | - Daniel J Leahy
- From the Deptartments of Pharmacology and Molecular Sciences and Biophysics and Biophysical Chemistry, The Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Philip A Cole
- From the Deptartments of Pharmacology and Molecular Sciences and
| |
Collapse
|
38
|
Gurard-Levin ZA, Almouzni G. Histone modifications and a choice of variant: a language that helps the genome express itself. F1000PRIME REPORTS 2014; 6:76. [PMID: 25343033 PMCID: PMC4166940 DOI: 10.12703/p6-76] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Covalent post-translational modifications on histones impact chromatin structure and function. Their misfunction, along with perturbations or mutations in genes that regulate their dynamic status, has been observed in several diseases. Thus, targeting histone modifications represents attractive opportunities for therapeutic intervention and biomarker discovery. The best approach to address this challenge is to paint a comprehensive picture integrating the growing number of modifications on individual residues and their combinatorial association, the corresponding modifying enzymes, and effector proteins that bind modifications. Furthermore, how they are imposed in a distinct manner during the cell cycle and on specific histone variants are important dimensions to consider. Firstly, this report highlights innovative technologies used to characterize histone modifications, and the corresponding enzymes and effector proteins. Secondly, we examine the recent progress made in understanding the dynamics and maintenance of histone modifications on distinct variants. We also discuss their roles as potential carriers of epigenetic information. Finally, we provide examples of initiatives to exploit histone modifications in cancer management, with the potential for new therapeutic opportunities.
Collapse
Affiliation(s)
- Zachary A. Gurard-Levin
- Institut Curie, Centre de RechercheParis, F-75248France
- CNRS, UMR3664Paris, F-75248France
- Équipe Labellisée Ligue contre le Cancer, UMR3664Paris, F-75248France
- UPMC, UMR3664Paris, F-75248France
- Sorbonne University, PSLParisFrance
| | - Geneviève Almouzni
- Institut Curie, Centre de RechercheParis, F-75248France
- CNRS, UMR3664Paris, F-75248France
- Équipe Labellisée Ligue contre le Cancer, UMR3664Paris, F-75248France
- UPMC, UMR3664Paris, F-75248France
- Sorbonne University, PSLParisFrance
| |
Collapse
|
39
|
Zhang Z, Liu D, Murugan AK, Liu Z, Xing M. Histone deacetylation of NIS promoter underlies BRAF V600E-promoted NIS silencing in thyroid cancer. Endocr Relat Cancer 2014; 21:161-73. [PMID: 24243688 PMCID: PMC3920838 DOI: 10.1530/erc-13-0399] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The BRAF V600E mutation causes impaired expression of sodium iodide symporter (NIS) and radioiodine refractoriness of thyroid cancer, but the underlying mechanism remains undefined. In this study, we hypothesized that histone deacetylation at the NIS (SLC5A5) promoter was the mechanism. Using the chromatin immunoprecipitation approach, we examined histone acetylation status on the lysine residues H3K9/14, H3K18, total H4, and H4K16 at the NIS promoter under the influence of BRAF V600E. We found that expression of stably or transiently transfected BRAF V600E inhibited NIS expression while the deacetylase inhibitor SAHA stimulated NIS expression in PCCL3 rat thyroid cells. Although BRAF V600E enhanced global histone acetylation, it caused histone deacetylation at the NIS promoter while SAHA caused acetylation in the cells. In human thyroid cancer BCPAP cells harboring homozygous BRAF V600E mutation, BRAF V600E inhibitor, PLX4032, and MEK inhibitor, AZD6244, increased histone acetylation of the NIS promoter, suggesting that BRAF V600E normally maintained histone in a deacetylated state at the NIS promoter. The regions most commonly affected with deacetylation by BRAF V600E were the transcriptionally active areas upstream of the translation start that contained important transcription factor binding sites, including nucleotides -297/-107 in the rat NIS promoter and -692/-370 in the human NIS promoter. Our findings not only reveal an epigenetic mechanism for BRAF V600E-promoted NIS silencing involving histone deacetylation at critical regulatory regions of the NIS promoter but also provide further support for our previously proposed combination therapy targeting major signaling pathways and histone deacetylase to restore thyroid gene expression for radioiodine treatment of thyroid cancer.
Collapse
Affiliation(s)
- Zongjing Zhang
- Division of Endocrinology, Diabetes, and Metabolism, Laboratory for Cellular and Molecular Thyroid ResearchJohns Hopkins University School of Medicine1830 East Monument Street, Suite 333, Baltimore, Maryland, 21287USA
- Department of Endocrinology and MetabolismChangzheng Hospital, the Second Military Medical UniversityShanghaiChina
| | - Dingxie Liu
- Division of Endocrinology, Diabetes, and Metabolism, Laboratory for Cellular and Molecular Thyroid ResearchJohns Hopkins University School of Medicine1830 East Monument Street, Suite 333, Baltimore, Maryland, 21287USA
| | - Avaniyapuram Kannan Murugan
- Division of Endocrinology, Diabetes, and Metabolism, Laboratory for Cellular and Molecular Thyroid ResearchJohns Hopkins University School of Medicine1830 East Monument Street, Suite 333, Baltimore, Maryland, 21287USA
| | - Zhimin Liu
- Department of Endocrinology and MetabolismChangzheng Hospital, the Second Military Medical UniversityShanghaiChina
| | - Mingzhao Xing
- Division of Endocrinology, Diabetes, and Metabolism, Laboratory for Cellular and Molecular Thyroid ResearchJohns Hopkins University School of Medicine1830 East Monument Street, Suite 333, Baltimore, Maryland, 21287USA
- Correspondence should be addressed to M Xing
| |
Collapse
|
40
|
Weller CE, Pilkerton ME, Chatterjee C. Chemical strategies to understand the language of ubiquitin signaling. Biopolymers 2014; 101:144-55. [PMID: 23576160 PMCID: PMC5770187 DOI: 10.1002/bip.22253] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 04/01/2013] [Indexed: 12/22/2022]
Abstract
Ubiquitin (Ub) is a small 76 amino acid long protein that is highly conserved in all eukaryotes studied to date. In humans, more than 600 ligases are involved in the reversible modification of specific lysine side-chain amines in substrate proteins by conjugation with the C-terminal carboxylate of Ub. Initially monoubiquitylated proteins can undergo repetitive ubiquitylation starting from one of seven lysine residues or the α-amine in the first Ub to generate a variety of polyUb chains with different topologies and functions. The most well known role for protein ubiquitylation is in targeting substrates for proteolytic destruction by 26S proteasomes. However, a growing body of evidence indicates that both mono- and polyubiquitylation play proteasome-independent roles in modulating the structure, function, and localization of protein substrates. Understanding the complexity of Ub-mediated functions in our cells is a major challenge for modern biology. In addition to well-established in vivo genetic methods, biochemical and biophysical investigations of ubiquitylated proteins in vitro can shed light on the direct mechanistic roles for Ub in different contexts. Such studies have traditionally been limited by the ability to obtain sufficient quantities of homogenously ubiquitylated proteins with precisely defined linkages. This review focuses on recent advances in both synthetic and recombinant protein-based methods that have yielded access to homogenously site-specifically ubiquitylated proteins. Mechanistic studies of the roles for protein ubiquitylation and of the enzymes involved in protein deubiquitylation that are enabled by these chemical tools are highlighted.
Collapse
Affiliation(s)
- Caroline E Weller
- Department of Chemistry, University of Washington, Seattle, WA, 98195
| | | | | |
Collapse
|
41
|
|
42
|
Li J, Li Y, He Q, Li Y, Li H, Liu L. One-pot native chemical ligation of peptide hydrazides enables total synthesis of modified histones. Org Biomol Chem 2014; 12:5435-41. [DOI: 10.1039/c4ob00715h] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
One of the rising demands in the field of protein chemical synthesis is the development of facile strategies that yield the protein in workable quantities and homogeneity, with fewer handling steps.
Collapse
Affiliation(s)
- Jiabin Li
- Tsinghua-Peking Center for Life Sciences
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)
- Department of Chemistry
- MOE Key Laboratory of Protein Sciences
- Center for Structural Biology
| | - Yuanyuan Li
- Tsinghua-Peking Center for Life Sciences
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)
- Department of Chemistry
- MOE Key Laboratory of Protein Sciences
- Center for Structural Biology
| | - Qiaoqiao He
- Tsinghua-Peking Center for Life Sciences
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)
- Department of Chemistry
- MOE Key Laboratory of Protein Sciences
- Center for Structural Biology
| | - Yiming Li
- Tsinghua-Peking Center for Life Sciences
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)
- Department of Chemistry
- MOE Key Laboratory of Protein Sciences
- Center for Structural Biology
| | - Haitao Li
- Tsinghua-Peking Center for Life Sciences
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)
- Department of Chemistry
- MOE Key Laboratory of Protein Sciences
- Center for Structural Biology
| | - Lei Liu
- Tsinghua-Peking Center for Life Sciences
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)
- Department of Chemistry
- MOE Key Laboratory of Protein Sciences
- Center for Structural Biology
| |
Collapse
|
43
|
Abstract
Chromatin modifications have been well-established to play a critical role in the regulation of genome function. Many of these modifications are introduced and removed by enzymes that utilize cofactors derived from primary metabolism. Recently, it has been shown that endogenous cofactors and metabolites can regulate the activity of chromatin-modifying enzymes, providing a direct link between the metabolic state of the cell and epigenetics. Here we review metabolic mechanisms of epigenetic regulation with an emphasis on their role in cancer. Focusing on three core mechanisms, we detail and draw parallels between metabolic and chemical strategies to modulate epigenetic signaling, and highlight opportunities for chemical biologists to help shape our knowledge of this emerging phenomenon. Continuing to integrate our understanding of metabolic and genomic regulatory mechanisms may help elucidate the role of nutrition in diseases such as cancer, while also providing a basis for new approaches to modulate epigenetic signaling for therapeutic benefit.
Collapse
Affiliation(s)
- Jordan L. Meier
- Chemical
Genomics Section,
Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| |
Collapse
|
44
|
Duan J, Sun Y, Chen H, Qiu G, Zhou H, Tang T, Deng Z, Hong X. HMDO-Promoted Peptide and Protein Synthesis in Ionic Liquids. J Org Chem 2013; 78:7013-22. [DOI: 10.1021/jo400797t] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Jianli Duan
- Key Laboratory of Combinatorial
Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education,
and Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, PR China
| | - Yao Sun
- Key Laboratory of Combinatorial
Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education,
and Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, PR China
| | - Hao Chen
- Key Laboratory of Combinatorial
Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education,
and Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, PR China
| | - Guofu Qiu
- Key Laboratory of Combinatorial
Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education,
and Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, PR China
| | - Haibing Zhou
- Key Laboratory of Combinatorial
Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education,
and Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, PR China
| | - Ting Tang
- College of Health Management, Hangzhou Normal University, Hangzhou, Zhejiang 310036,
PR China
| | - Zixin Deng
- Key Laboratory of Combinatorial
Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education,
and Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, PR China
| | - Xuechuan Hong
- Key Laboratory of Combinatorial
Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education,
and Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, PR China
- State Key Laboratory of Bioorganic
and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, PR China
| |
Collapse
|
45
|
Chatterjee J, Rechenmacher F, Kessler H. N-methylation of peptides and proteins: an important element for modulating biological functions. Angew Chem Int Ed Engl 2012; 52:254-69. [PMID: 23161799 DOI: 10.1002/anie.201205674] [Citation(s) in RCA: 368] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Indexed: 11/06/2022]
Abstract
N-Methylation is one of the simplest chemical modifications often occurring in peptides and proteins of prokaryotes and higher eukaryotes. Over years of evolution, nature has employed N-methylation of peptides as an ingenious technique to modulate biological function, often as a mode of survival through the production of antibiotics. This small structural change can not only mobilize large protein complexes (as in the histone methylation), but also inhibits the action of enzymes by selective recognition of protein-protein interaction surfaces. In recent years through the advancement in synthetic approaches, the potential of N-methylation has begun to be revealed, not only in modulating biological activity and selectivity as well as pharmacokinetic properties of peptides, but also in delivering novel drugs. Herein, we summarize the current knowledge of the versatility of N-methylation in modulating biological, structural, and pharmacokinetic properties of peptides.
Collapse
Affiliation(s)
- Jayanta Chatterjee
- Genome biology unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | |
Collapse
|
46
|
Chatterjee J, Rechenmacher F, Kessler H. N-Methylierung von Peptiden und Proteinen: ein wichtiges Element für die Regulation biologischer Funktionen. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201205674] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
47
|
Kim CH, Kang M, Kim HJ, Chatterjee A, Schultz PG. Site-specific incorporation of ε-N-crotonyllysine into histones. Angew Chem Int Ed Engl 2012; 51:7246-9. [PMID: 22689270 DOI: 10.1002/anie.201203349] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Indexed: 11/10/2022]
Abstract
A novel post-translationally modified amino acid, crotonyllysine (Kcr), was genetically incorporated into proteins in bacterial and mammalian cells using an evolved pyrrolysyl-tRNA/synthetase-tRNA pair. The ability to produce histones with homogenous, site-specific Kcr modifications will be valuable in elucidating the biological role of this recently identified post-translational modification.
Collapse
Affiliation(s)
- Chan Hyuk Kim
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
48
|
|
49
|
Luo M. Current chemical biology approaches to interrogate protein methyltransferases. ACS Chem Biol 2012; 7:443-63. [PMID: 22220966 DOI: 10.1021/cb200519y] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Protein methyltransferases (PMTs) play various physiological and pathological roles through methylating histone and nonhistone targets. However, most PMTs including more than 60 human PMTs remain to be fully characterized. The current approaches to elucidate the functions of PMTs have been diversified by many emerging chemical biology technologies. This review focuses on progress in these aspects and is organized into four discussion modules (assays, substrates, cofactors, and inhibitors) that are important to elucidate biological functions of PMTs. These modules are expected to provide general guidance and present emerging methods for researchers to select and combine suitable PMT-activity assays, well-defined substrates, novel SAM surrogates, and PMT inhibitors to interrogate PMTs.
Collapse
Affiliation(s)
- Minkui Luo
- Molecular Pharmacology
and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, New
York 10065, United States
| |
Collapse
|
50
|
Abstract
Protein ubiquitination, the covalent attachment of ubiquitin to target proteins, has emerged as one of the most prevalent posttranslational modifications (PTMs), regulating nearly every cellular pathway. The diversity of signaling associated with this particular PTM stems from the myriad ways in which a target protein can be modified by ubiquitin, e.g., monoubiquitin, multi-monoubiquitin, and polyubiquitin linkages. In this Review, we focus on developments in both enzymatic and chemical methods that engender ubiquitin with new chemical and physical properties. Moreover, we highlight how these methods have enabled studies directed toward (i) characterizing enzymes responsible for reversing the ubiquitin modification, (ii) understanding the influence of ubiquitin on protein function and crosstalk with other PTMs, and (iii) uncovering the impact of polyubiquitin chain linkage and length on downstream signaling events.
Collapse
Affiliation(s)
- Eric R. Strieter
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706,
United States
| | - David A. Korasick
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706,
United States
| |
Collapse
|