1
|
Pajalunga D, Crescenzi M. Restoring the Cell Cycle and Proliferation Competence in Terminally Differentiated Skeletal Muscle Myotubes. Cells 2021; 10:cells10102753. [PMID: 34685732 PMCID: PMC8534385 DOI: 10.3390/cells10102753] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 09/29/2021] [Accepted: 10/12/2021] [Indexed: 01/04/2023] Open
Abstract
Terminal differentiation is an ill-defined, insufficiently characterized, nonproliferation state. Although it has been classically deemed irreversible, it is now clear that at least several terminally differentiated (TD) cell types can be brought back into the cell cycle. We are striving to uncover the molecular bases of terminal differentiation, whose fundamental understanding is a goal in itself. In addition, the field has sought to acquire the ability to make TD cells proliferate. Attaining this end would probe the very molecular mechanisms we are trying to understand. Equally important, it would be invaluable in regenerative medicine, for tissues depending on TD cells and devoid of significant self-repair capabilities. The skeletal muscle has long been used as a model system to investigate the molecular foundations of terminal differentiation. Here, we summarize more than 50 years of studies in this field.
Collapse
Affiliation(s)
- Deborah Pajalunga
- Department of Oncology and Molecular Medicine, Italian National Institute of Health, 00161 Rome, Italy;
| | - Marco Crescenzi
- Core Facilities, Italian National Institute of Health, 00161 Rome, Italy
- Correspondence:
| |
Collapse
|
2
|
Carleton MM, Sefton MV. Promoting endogenous repair of skeletal muscle using regenerative biomaterials. J Biomed Mater Res A 2021; 109:2720-2739. [PMID: 34041836 DOI: 10.1002/jbm.a.37239] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 02/06/2023]
Abstract
Skeletal muscles normally have a remarkable ability to repair themselves; however, large muscle injuries and several myopathies diminish this ability leading to permanent loss of function. No clinical therapy yet exists that reliably restores muscle integrity and function following severe injury. Consequently, numerous tissue engineering techniques, both acellular and with cells, are being investigated to enhance muscle regeneration. Biomaterials are an essential part of these techniques as they can present physical and biochemical signals that augment the repair process. Successful tissue engineering strategies require regenerative biomaterials that either actively promote endogenous muscle repair or create an environment supportive of regeneration. This review will discuss several acellular biomaterial strategies for skeletal muscle regeneration with a focus on those under investigation in vivo. This includes materials that release bioactive molecules, biomimetic materials and immunomodulatory materials.
Collapse
Affiliation(s)
- Miranda M Carleton
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Michael V Sefton
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada.,Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Reid G, Magarotto F, Marsano A, Pozzobon M. Next Stage Approach to Tissue Engineering Skeletal Muscle. Bioengineering (Basel) 2020; 7:E118. [PMID: 33007935 PMCID: PMC7711907 DOI: 10.3390/bioengineering7040118] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/18/2020] [Accepted: 09/26/2020] [Indexed: 02/08/2023] Open
Abstract
Large-scale muscle injury in humans initiates a complex regeneration process, as not only the muscular, but also the vascular and neuro-muscular compartments have to be repaired. Conventional therapeutic strategies often fall short of reaching the desired functional outcome, due to the inherent complexity of natural skeletal muscle. Tissue engineering offers a promising alternative treatment strategy, aiming to achieve an engineered tissue close to natural tissue composition and function, able to induce long-term, functional regeneration after in vivo implantation. This review aims to summarize the latest approaches of tissue engineering skeletal muscle, with specific attention toward fabrication, neuro-angiogenesis, multicellularity and the biochemical cues that adjuvate the regeneration process.
Collapse
Affiliation(s)
- Gregory Reid
- Department of Cardiac Surgery, University Hospital Basel, 4031 Basel, Switzerland; (G.R.); (A.M.)
- Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | - Fabio Magarotto
- Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy;
- Institute of Pediatric Research, Città della Speranza, 35127 Padova, Italy
| | - Anna Marsano
- Department of Cardiac Surgery, University Hospital Basel, 4031 Basel, Switzerland; (G.R.); (A.M.)
- Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | - Michela Pozzobon
- Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy;
- Institute of Pediatric Research, Città della Speranza, 35127 Padova, Italy
| |
Collapse
|
4
|
Piccoli M, Ghiroldi A, Monasky MM, Cirillo F, Ciconte G, Pappone C, Anastasia L. Reversine: A Synthetic Purine with a Dual Activity as a Cell Dedifferentiating Agent and a Selective Anticancer Drug. Curr Med Chem 2020; 27:3448-3462. [PMID: 30605049 DOI: 10.2174/0929867326666190103120725] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 12/28/2018] [Accepted: 12/28/2018] [Indexed: 12/27/2022]
Abstract
The development of new therapeutic applications for adult and embryonic stem cells has dominated regenerative medicine and tissue engineering for several decades. However, since 2006, induced Pluripotent Stem Cells (iPSCs) have taken center stage in the field, as they promised to overcome several limitations of the other stem cell types. Nonetheless, other promising approaches for adult cell reprogramming have been attempted over the years, even before the generation of iPSCs. In particular, two years before the discovery of iPSCs, the possibility of synthesizing libraries of large organic compounds, as well as the development of high-throughput screenings to quickly test their biological activity, enabled the identification of a 2,6-disubstituted purine, named reversine, which was shown to be able to reprogram adult cells to a progenitor-like state. Since its discovery, the effect of reversine has been confirmed on different cell types, and several studies on its mechanism of action have revealed its central role in inhibitory activity on several kinases implicated in cell cycle regulation and cytokinesis. These key features, together with its chemical nature, suggested a possible use of the molecule as an anti-cancer drug. Remarkably, reversine exhibited potent cytotoxic activity against several tumor cell lines in vitro and a significant effect in decreasing tumor progression and metastatization in vivo. Thus, 15 years since its discovery, this review aims at critically summarizing the current knowledge to clarify the dual role of reversine as a dedifferentiating agent and anti-cancer drug.
Collapse
Affiliation(s)
- Marco Piccoli
- Stem Cells for Tissue Engineering Lab, IRCCS Policlinico San Donato, piazza Malan 2, San Donato Milanese, Milan, Italy
| | - Andrea Ghiroldi
- Stem Cells for Tissue Engineering Lab, IRCCS Policlinico San Donato, piazza Malan 2, San Donato Milanese, Milan, Italy
| | - Michelle M Monasky
- Arrhythmology Department, IRCCS Policlinico San Donato, piazza Malan 2, San Donato Milanese, Milan, Italy
| | - Federica Cirillo
- Stem Cells for Tissue Engineering Lab, IRCCS Policlinico San Donato, piazza Malan 2, San Donato Milanese, Milan, Italy
| | - Giuseppe Ciconte
- Arrhythmology Department, IRCCS Policlinico San Donato, piazza Malan 2, San Donato Milanese, Milan, Italy
| | - Carlo Pappone
- Arrhythmology Department, IRCCS Policlinico San Donato, piazza Malan 2, San Donato Milanese, Milan, Italy
| | - Luigi Anastasia
- Stem Cells for Tissue Engineering Lab, IRCCS Policlinico San Donato, piazza Malan 2, San Donato Milanese, Milan, Italy.,Department of Biomedical Sciences for Health, University of Milan, via Luigi Mangiagalli 31, 20133 Milan, Italy
| |
Collapse
|
5
|
Kim AR, Kim SW, Lee BW, Kim KH, Kim WH, Seok H, Lee JH, Um J, Yim SH, Ahn Y, Jin SW, Jung DW, Oh WK, Williams DR. Screening ginseng saponins in progenitor cells identifies 20(R)-ginsenoside Rh 2 as an enhancer of skeletal and cardiac muscle regeneration. Sci Rep 2020; 10:4967. [PMID: 32188912 PMCID: PMC7080739 DOI: 10.1038/s41598-020-61491-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/24/2020] [Indexed: 01/18/2023] Open
Abstract
Aging is associated with increased prevalence of skeletal and cardiac muscle disorders, such as sarcopenia and cardiac infarction. In this study, we constructed a compendium of purified ginsenoside compounds from Panax ginseng C.A. Meyer, which is a traditional Korean medicinal plant used to treat for muscle weakness. Skeletal muscle progenitor cell-based screening identified three compounds that enhance cell viability, of which 20(R)-ginsenoside Rh2 showed the most robust response. 20(R)-ginsenoside Rh2 increased viability in myoblasts and cardiomyocytes, but not fibroblasts or disease-related cells. The cellular mechanism was identified as downregulation of cyclin-dependent kinase inhibitor 1B (p27Kip1) via upregulation of Akt1/PKB phosphorylation at serine 473, with the orientation of the 20 carbon epimer being crucially important for biological activity. In zebrafish and mammalian models, 20(R)-ginsenoside Rh2 enhanced muscle cell proliferation and accelerated recovery from degeneration. Thus, we have identified 20(R)-ginsenoside Rh2 as a p27Kip1 inhibitor that may be developed as a natural therapeutic for muscle degeneration.
Collapse
Affiliation(s)
- Ah Ra Kim
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Jeollanam-do, 61005, Republic of Korea
- Developmental Genetics Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Jeollanam-do, 61005, Republic of Korea
| | - Seon-Wook Kim
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Jeollanam-do, 61005, Republic of Korea
| | - Ba-Wool Lee
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kuk-Hwa Kim
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Woong-Hee Kim
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Jeollanam-do, 61005, Republic of Korea
| | - Hong Seok
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Jeollanam-do, 61005, Republic of Korea
| | - Ji-Hyung Lee
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Jeollanam-do, 61005, Republic of Korea
| | - JungIn Um
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Jeollanam-do, 61005, Republic of Korea
| | - Soon-Ho Yim
- Department of Pharmaceutical Engineering, Dongshin University, Naju, Jeollanam-do, 58245, Republic of Korea
| | - Youngkeun Ahn
- Cell Regeneration Research Center, Department of Cardiology, Chonnam National University Hospital/Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
| | - Suk-Won Jin
- Developmental Genetics Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Jeollanam-do, 61005, Republic of Korea
- Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Da-Woon Jung
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Jeollanam-do, 61005, Republic of Korea.
| | - Won Keun Oh
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Darren R Williams
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Jeollanam-do, 61005, Republic of Korea.
| |
Collapse
|
6
|
Dong Y, Li Y, Zhang C, Chen H, Liu L, Chen S. Effects of SW033291 on the myogenesis of muscle-derived stem cells and muscle regeneration. Stem Cell Res Ther 2020; 11:76. [PMID: 32085799 PMCID: PMC7035785 DOI: 10.1186/s13287-020-1574-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 01/17/2020] [Accepted: 01/27/2020] [Indexed: 12/15/2022] Open
Abstract
Background The unmet medical needs in repairing large muscle defects promote the development of tissue regeneration strategy. The use of bioactive molecules in combination with biomaterial scaffold has become an area of great interest. SW033291, a small-molecule inhibitor targeting 15-hydroxyprostaglandin dehydrogenase (15-PDGH) and subsequently elevating the production of prostaglandin E2 (PGE2), has been proved to accelerate the recovery and potentiate the regeneration of multiple tissues including the bone, liver, and colon. The limited understanding of the potential therapeutic effects on myogenesis motivated us to investigate the role of SW033291 in regulating muscle-derived stem cell (MDSC) myogenic differentiation and MDSC-mediated muscle regeneration. Methods The characteristics of rat MDSCs, including cell-specific markers and myogenic differentiation potential, were determined. MDSCs were incubated with SW033291 to evaluate PGE2 production and cytotoxicity. The effects of SW033291 on MDSC myogenic differentiation were assessed by quantitative real-time polymerase chain reaction (qPCR), western blot, and immunocytochemistry. The fibrin gel containing MDSCs and SW033291 was used for muscle regeneration in a tibialis anterior muscle defect model. Results Our data demonstrated that MDSCs were well-tolerated to SW033291 and treatment with SW033291 significantly promoted the production of PGE2 by MDSCs. In vitro analysis showed that SW033291 enhanced the myogenic differentiation and myotube formation by upregulating a series of myogenic markers. Additionally, the activation of PI3K/Akt pathway was involved in the mechanism underlying these promotive effects. Then, in situ casting of fibrin gel containing MDSCs and SW033291 was used to repair the tibialis anterior muscle defect; the addition of SW033291 significantly promoted myofiber formation within the defect region with mild immune response, less fibrosis, and sufficient vascularization. Conclusion SW033291 acted as a positive regulator of MDSC myogenic differentiation, and incorporating the compound with MDSCs in fibrin gel could serve as an effective method to repair large skeletal muscle defects.
Collapse
Affiliation(s)
- Yuanqiang Dong
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Yuan Li
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Chuan Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Haibin Chen
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Lijia Liu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China.
| | - Simeng Chen
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China.
| |
Collapse
|
7
|
Chemical characterization and biological activity data for a novel indirubin derivative, LDD-1819. Data Brief 2019; 25:104373. [PMID: 31489353 PMCID: PMC6717215 DOI: 10.1016/j.dib.2019.104373] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/08/2019] [Accepted: 08/01/2019] [Indexed: 11/22/2022] Open
Abstract
This article contains chemical characterization and biological activity data for a novel indirubin derivative, termed LDD-1819. The detailed synthesis procedure and associated NMR data are presented. The concentration-dependent inhibition data of two biological targets, glycogen synthase kinase-3β and aurora kinase A are described. The following biological data are also contained in this article: 1) the cellularization of skeletal muscle myotubes by LDD-1819 or two small molecule inhibitors of glycogen synthase kinase-3β and aurora kinase A (BIO and reversine) and gene expression data for the myoblast markers Pax-7 and Myf5, 2) Cell viability of hTERT human immortalized fibroblasts, colon cancer cells and breast cancer cells, and 3) Western blotting analysis of full length and cleaved caspse-7, and cleaved poly (ADP-ribose) polymerase (PARP) in hTERT fibroblasts treated with LDD-1819. A schematic diagram of the biological activities of LDD-1819 is also presented. Further interpretation and discussion of these data are provided in the associated research article ‘A novel indirubin derivative that increases somatic cell plasticity and inhibits tumorigenicity’ (Kim et al., 2019).
Collapse
|
8
|
Qin H, Zhao A, Fu X. Chemical modulation of cell fates: in situ regeneration. SCIENCE CHINA-LIFE SCIENCES 2018; 61:1137-1150. [PMID: 30099708 DOI: 10.1007/s11427-018-9349-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 05/09/2018] [Indexed: 12/18/2022]
Abstract
Chemical modulation of cell fates has been widely used to promote tissue and organ regeneration. Small molecules can target the self-renewal, expansion, differentiation, and survival of endogenous stem cells for enhancing their regenerative power or induce dedifferentiation or transdifferentiation of mature cells into proliferative progenitors or specialized cell types needed for regeneration. Here, we discuss current progress and potential using small molecules to promote in vivo regenerative processes by regulating the cell fate. Current studies of small molecules in regeneration will provide insights into developing safe and efficient chemical approaches for in situ tissue repair and regeneration.
Collapse
Affiliation(s)
- Hua Qin
- Graduate School of Tianjin Medical University, Tianjin, 300070, China.,Cell Biology and Tissue Repair Laboratory, Key Laboratory of Wound Repair and Regeneration of PLA, the First Hospital Affiliated to the PLA General Hospital, Beijing, 100048, China
| | - Andong Zhao
- Graduate School of Tianjin Medical University, Tianjin, 300070, China.,Cell Biology and Tissue Repair Laboratory, Key Laboratory of Wound Repair and Regeneration of PLA, the First Hospital Affiliated to the PLA General Hospital, Beijing, 100048, China
| | - Xiaobing Fu
- Cell Biology and Tissue Repair Laboratory, Key Laboratory of Wound Repair and Regeneration of PLA, the First Hospital Affiliated to the PLA General Hospital, Beijing, 100048, China. .,College of Life Sciences, PLA General Hospital, PLA Medical College, Beijing, 100853, China.
| |
Collapse
|
9
|
Stocum DL. Mechanisms of urodele limb regeneration. REGENERATION (OXFORD, ENGLAND) 2017; 4:159-200. [PMID: 29299322 PMCID: PMC5743758 DOI: 10.1002/reg2.92] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 10/04/2017] [Indexed: 12/21/2022]
Abstract
This review explores the historical and current state of our knowledge about urodele limb regeneration. Topics discussed are (1) blastema formation by the proteolytic histolysis of limb tissues to release resident stem cells and mononucleate cells that undergo dedifferentiation, cell cycle entry and accumulation under the apical epidermal cap. (2) The origin, phenotypic memory, and positional memory of blastema cells. (3) The role played by macrophages in the early events of regeneration. (4) The role of neural and AEC factors and interaction between blastema cells in mitosis and distalization. (5) Models of pattern formation based on the results of axial reversal experiments, experiments on the regeneration of half and double half limbs, and experiments using retinoic acid to alter positional identity of blastema cells. (6) Possible mechanisms of distalization during normal and intercalary regeneration. (7) Is pattern formation is a self-organizing property of the blastema or dictated by chemical signals from adjacent tissues? (8) What is the future for regenerating a human limb?
Collapse
Affiliation(s)
- David L. Stocum
- Department of BiologyIndiana University−Purdue University Indianapolis723 W. Michigan StIndianapolisIN 46202USA
| |
Collapse
|
10
|
Baranek M, Belter A, Naskręt-Barciszewska MZ, Stobiecki M, Markiewicz WT, Barciszewski J. Effect of small molecules on cell reprogramming. MOLECULAR BIOSYSTEMS 2017; 13:277-313. [PMID: 27918060 DOI: 10.1039/c6mb00595k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The essential idea of regenerative medicine is to fix or replace tissues or organs with alive and patient-specific implants. Pluripotent stem cells are able to indefinitely self-renew and differentiate into all cell types of the body which makes them a potent substantial player in regenerative medicine. The easily accessible source of induced pluripotent stem cells may allow obtaining and cultivating tissues in vitro. Reprogramming refers to regression of mature cells to its initial pluripotent state. One of the approaches affecting pluripotency is the usage of low molecular mass compounds that can modulate enzymes and receptors leading to the formation of pluripotent stem cells (iPSCs). It would be great to assess the general character of such compounds and reveal their new derivatives or modifications to increase the cell reprogramming efficiency. Many improvements in the methods of pluripotency induction have been made by various groups in order to limit the immunogenicity and tumorigenesis, increase the efficiency and accelerate the kinetics. Understanding the epigenetic changes during the cellular reprogramming process will extend the comprehension of stem cell biology and lead to potential therapeutic approaches. There are compounds which have been already proven to be or for now only putative inducers of the pluripotent state that may substitute for the classic reprogramming factors (Oct3/4, Sox2, Klf4, c-Myc) in order to improve the time and efficiency of pluripotency induction. The effect of small molecules on gene expression is dosage-dependent and their application concentration needs to be strictly determined. In this review we analysed the role of small molecules in modulations leading to pluripotency induction, thereby contributing to our understanding of stem cell biology and uncovering the major mechanisms involved in that process.
Collapse
Affiliation(s)
- M Baranek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego str. 12/14, 61-704 Poznań, Poland.
| | - A Belter
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego str. 12/14, 61-704 Poznań, Poland.
| | - M Z Naskręt-Barciszewska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego str. 12/14, 61-704 Poznań, Poland.
| | - M Stobiecki
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego str. 12/14, 61-704 Poznań, Poland.
| | - W T Markiewicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego str. 12/14, 61-704 Poznań, Poland.
| | - J Barciszewski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego str. 12/14, 61-704 Poznań, Poland.
| |
Collapse
|
11
|
Um J, Jung DW, Williams DR. Lessons from the swamp: developing small molecules that confer salamander muscle cellularization in mammals. Clin Transl Med 2017; 6:13. [PMID: 28332147 PMCID: PMC5362566 DOI: 10.1186/s40169-017-0143-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 03/09/2017] [Indexed: 01/19/2023] Open
Abstract
The ability of salamanders, such as newts, to regenerate damaged tissues has been studied for centuries. A prominent example of this regenerative power is the ability to re-grow entire amputated limbs. One important step in this regeneration process is skeletal muscle cellularization, in which the muscle fibers break down into dedifferentiated, mononuclear cells that proliferate and form new muscle in the replacement limb. In contrast, mammalian skeletal muscle does not undergo cellularization after injury. A significant proportion of research about tissue regeneration in salamanders aims to characterize regulatory genes that may have mammalian homologs. A less mainstream approach is to develop small molecule compounds that induce regeneration-related mechanisms in mammals. In this commentary, we discuss progress in discovering small molecules that induce cellularization in mammalian muscle. New research findings using these compounds has also shed light on cellular processes that regulate cellularization, such as apoptotic signaling. Although formidable technical hurdles remain, this progress increases our understanding of tissue regeneration and provide opportunities for developing small molecules that may enhance tissue repair in humans.
Collapse
Affiliation(s)
- JungIn Um
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, 1 Oryong-Dong, Buk-Gu, Gwangju, 61005, Republic of Korea
| | - Da-Woon Jung
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, 1 Oryong-Dong, Buk-Gu, Gwangju, 61005, Republic of Korea.
| | - Darren Reece Williams
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, 1 Oryong-Dong, Buk-Gu, Gwangju, 61005, Republic of Korea.
| |
Collapse
|
12
|
Frasch M. Dedifferentiation, Redifferentiation, and Transdifferentiation of Striated Muscles During Regeneration and Development. Curr Top Dev Biol 2016; 116:331-55. [PMID: 26970627 DOI: 10.1016/bs.ctdb.2015.12.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
In some rare and striking cases, striated muscle fibers of the skeleton or body wall, which consist of terminally differentiated syncytia with complex ultrastructures, were found to be capable of dedifferentiating and fragmenting into mononucleate cells. Examples of such events will be discussed in which the dedifferentiated cells reenter the cell cycle, proliferate, and rebuilt damaged muscle fibers during limb regeneration or transdifferentiate to generate new types of muscles during normal development.
Collapse
Affiliation(s)
- Manfred Frasch
- Department of Biology, Division of Developmental Biology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
13
|
Smeriglio P, Alonso-Martin S, Masciarelli S, Madaro L, Iosue I, Marrocco V, Relaix F, Fazi F, Marazzi G, Sassoon DA, Bouché M. Phosphotyrosine phosphatase inhibitor bisperoxovanadium endows myogenic cells with enhanced muscle stem cell functions via epigenetic modulation of Sca-1 and Pw1 promoters. FASEB J 2015; 30:1404-15. [PMID: 26672000 DOI: 10.1096/fj.15-275420] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 11/23/2015] [Indexed: 02/06/2023]
Abstract
Understanding the regulation of the stem cell fate is fundamental for designing novel regenerative medicine strategies. Previous studies have suggested that pharmacological treatments with small molecules provide a robust and reversible regulation of the stem cell program. Previously, we showed that treatment with a vanadium compound influences muscle cell fatein vitro In this study, we demonstrate that treatment with the phosphotyrosine phosphatase inhibitor bisperoxovanadium (BpV) drives primary muscle cells to a poised stem cell stage, with enhanced function in muscle regenerationin vivofollowing transplantation into injured muscles. Importantly, BpV-treated cells displayed increased self-renewal potentialin vivoand replenished the niche in both satellite and interstitial cell compartments. Moreover, we found that BpV treatment induces specific activating chromatin modifications at the promoter regions of genes associated with stem cell fate, includingSca-1andPw1 Thus, our findings indicate that BpV resets the cell fate program by specific epigenetic regulations, such that the committed myogenic cell fate is redirected to an earlier progenitor cell fate stage, which leads to an enhanced regenerative stem cell potential.-Smeriglio, P., Alonso-Martin, S., Masciarelli, S., Madaro, L., Iosue, I., Marrocco, V., Relaix, F., Fazi, F., Marazzi, G., Sassoon, D. A., Bouché, M. Phosphotyrosine phosphatase inhibitor bisperoxovanadium endows myogenic cells with enhanced muscle stem cell functionsviaepigenetic modulation of Sca-1 and Pw1 promoters.
Collapse
Affiliation(s)
- Piera Smeriglio
- *Stem Cells and Regenerative Medicine, Institute of Cardiometabolism and Nutrition Unité Mixte de Recherche en Santé 1166 INSERM/Sorbonne University (Pierre and Marie Curie University, Paris VI), Paris, France; Department of Anatomy, Histology, Forensic Medicine, and Orthopedics, Unit of Histology, Sapienza University of Rome, Rome, Italy; INSERM Unité 955 Institut Mondor de Recherche Biomédicale, Creteil, France; Université Paris-Est Créteil, Faculty of Medicine, Creteil, France; Sorbonne Universités, Pierre and Marie Curie University, Paris VI, INSERM Unité Mixte de Recherche en Santé 974, Centre National de la Recherche Scientifique FRE3617, Center for Research in Myology, Paris, France; Etablissement Français du Sang, Creteil, France; and Université Paris Est, Ecole Nationale Veterinaire d'Alfort, Maison Alfort, France
| | - Sonia Alonso-Martin
- *Stem Cells and Regenerative Medicine, Institute of Cardiometabolism and Nutrition Unité Mixte de Recherche en Santé 1166 INSERM/Sorbonne University (Pierre and Marie Curie University, Paris VI), Paris, France; Department of Anatomy, Histology, Forensic Medicine, and Orthopedics, Unit of Histology, Sapienza University of Rome, Rome, Italy; INSERM Unité 955 Institut Mondor de Recherche Biomédicale, Creteil, France; Université Paris-Est Créteil, Faculty of Medicine, Creteil, France; Sorbonne Universités, Pierre and Marie Curie University, Paris VI, INSERM Unité Mixte de Recherche en Santé 974, Centre National de la Recherche Scientifique FRE3617, Center for Research in Myology, Paris, France; Etablissement Français du Sang, Creteil, France; and Université Paris Est, Ecole Nationale Veterinaire d'Alfort, Maison Alfort, France
| | - Silvia Masciarelli
- *Stem Cells and Regenerative Medicine, Institute of Cardiometabolism and Nutrition Unité Mixte de Recherche en Santé 1166 INSERM/Sorbonne University (Pierre and Marie Curie University, Paris VI), Paris, France; Department of Anatomy, Histology, Forensic Medicine, and Orthopedics, Unit of Histology, Sapienza University of Rome, Rome, Italy; INSERM Unité 955 Institut Mondor de Recherche Biomédicale, Creteil, France; Université Paris-Est Créteil, Faculty of Medicine, Creteil, France; Sorbonne Universités, Pierre and Marie Curie University, Paris VI, INSERM Unité Mixte de Recherche en Santé 974, Centre National de la Recherche Scientifique FRE3617, Center for Research in Myology, Paris, France; Etablissement Français du Sang, Creteil, France; and Université Paris Est, Ecole Nationale Veterinaire d'Alfort, Maison Alfort, France
| | - Luca Madaro
- *Stem Cells and Regenerative Medicine, Institute of Cardiometabolism and Nutrition Unité Mixte de Recherche en Santé 1166 INSERM/Sorbonne University (Pierre and Marie Curie University, Paris VI), Paris, France; Department of Anatomy, Histology, Forensic Medicine, and Orthopedics, Unit of Histology, Sapienza University of Rome, Rome, Italy; INSERM Unité 955 Institut Mondor de Recherche Biomédicale, Creteil, France; Université Paris-Est Créteil, Faculty of Medicine, Creteil, France; Sorbonne Universités, Pierre and Marie Curie University, Paris VI, INSERM Unité Mixte de Recherche en Santé 974, Centre National de la Recherche Scientifique FRE3617, Center for Research in Myology, Paris, France; Etablissement Français du Sang, Creteil, France; and Université Paris Est, Ecole Nationale Veterinaire d'Alfort, Maison Alfort, France
| | - Ilaria Iosue
- *Stem Cells and Regenerative Medicine, Institute of Cardiometabolism and Nutrition Unité Mixte de Recherche en Santé 1166 INSERM/Sorbonne University (Pierre and Marie Curie University, Paris VI), Paris, France; Department of Anatomy, Histology, Forensic Medicine, and Orthopedics, Unit of Histology, Sapienza University of Rome, Rome, Italy; INSERM Unité 955 Institut Mondor de Recherche Biomédicale, Creteil, France; Université Paris-Est Créteil, Faculty of Medicine, Creteil, France; Sorbonne Universités, Pierre and Marie Curie University, Paris VI, INSERM Unité Mixte de Recherche en Santé 974, Centre National de la Recherche Scientifique FRE3617, Center for Research in Myology, Paris, France; Etablissement Français du Sang, Creteil, France; and Université Paris Est, Ecole Nationale Veterinaire d'Alfort, Maison Alfort, France
| | - Valeria Marrocco
- *Stem Cells and Regenerative Medicine, Institute of Cardiometabolism and Nutrition Unité Mixte de Recherche en Santé 1166 INSERM/Sorbonne University (Pierre and Marie Curie University, Paris VI), Paris, France; Department of Anatomy, Histology, Forensic Medicine, and Orthopedics, Unit of Histology, Sapienza University of Rome, Rome, Italy; INSERM Unité 955 Institut Mondor de Recherche Biomédicale, Creteil, France; Université Paris-Est Créteil, Faculty of Medicine, Creteil, France; Sorbonne Universités, Pierre and Marie Curie University, Paris VI, INSERM Unité Mixte de Recherche en Santé 974, Centre National de la Recherche Scientifique FRE3617, Center for Research in Myology, Paris, France; Etablissement Français du Sang, Creteil, France; and Université Paris Est, Ecole Nationale Veterinaire d'Alfort, Maison Alfort, France
| | - Frédéric Relaix
- *Stem Cells and Regenerative Medicine, Institute of Cardiometabolism and Nutrition Unité Mixte de Recherche en Santé 1166 INSERM/Sorbonne University (Pierre and Marie Curie University, Paris VI), Paris, France; Department of Anatomy, Histology, Forensic Medicine, and Orthopedics, Unit of Histology, Sapienza University of Rome, Rome, Italy; INSERM Unité 955 Institut Mondor de Recherche Biomédicale, Creteil, France; Université Paris-Est Créteil, Faculty of Medicine, Creteil, France; Sorbonne Universités, Pierre and Marie Curie University, Paris VI, INSERM Unité Mixte de Recherche en Santé 974, Centre National de la Recherche Scientifique FRE3617, Center for Research in Myology, Paris, France; Etablissement Français du Sang, Creteil, France; and Université Paris Est, Ecole Nationale Veterinaire d'Alfort, Maison Alfort, France
| | - Francesco Fazi
- *Stem Cells and Regenerative Medicine, Institute of Cardiometabolism and Nutrition Unité Mixte de Recherche en Santé 1166 INSERM/Sorbonne University (Pierre and Marie Curie University, Paris VI), Paris, France; Department of Anatomy, Histology, Forensic Medicine, and Orthopedics, Unit of Histology, Sapienza University of Rome, Rome, Italy; INSERM Unité 955 Institut Mondor de Recherche Biomédicale, Creteil, France; Université Paris-Est Créteil, Faculty of Medicine, Creteil, France; Sorbonne Universités, Pierre and Marie Curie University, Paris VI, INSERM Unité Mixte de Recherche en Santé 974, Centre National de la Recherche Scientifique FRE3617, Center for Research in Myology, Paris, France; Etablissement Français du Sang, Creteil, France; and Université Paris Est, Ecole Nationale Veterinaire d'Alfort, Maison Alfort, France
| | - Giovanna Marazzi
- *Stem Cells and Regenerative Medicine, Institute of Cardiometabolism and Nutrition Unité Mixte de Recherche en Santé 1166 INSERM/Sorbonne University (Pierre and Marie Curie University, Paris VI), Paris, France; Department of Anatomy, Histology, Forensic Medicine, and Orthopedics, Unit of Histology, Sapienza University of Rome, Rome, Italy; INSERM Unité 955 Institut Mondor de Recherche Biomédicale, Creteil, France; Université Paris-Est Créteil, Faculty of Medicine, Creteil, France; Sorbonne Universités, Pierre and Marie Curie University, Paris VI, INSERM Unité Mixte de Recherche en Santé 974, Centre National de la Recherche Scientifique FRE3617, Center for Research in Myology, Paris, France; Etablissement Français du Sang, Creteil, France; and Université Paris Est, Ecole Nationale Veterinaire d'Alfort, Maison Alfort, France
| | - David A Sassoon
- *Stem Cells and Regenerative Medicine, Institute of Cardiometabolism and Nutrition Unité Mixte de Recherche en Santé 1166 INSERM/Sorbonne University (Pierre and Marie Curie University, Paris VI), Paris, France; Department of Anatomy, Histology, Forensic Medicine, and Orthopedics, Unit of Histology, Sapienza University of Rome, Rome, Italy; INSERM Unité 955 Institut Mondor de Recherche Biomédicale, Creteil, France; Université Paris-Est Créteil, Faculty of Medicine, Creteil, France; Sorbonne Universités, Pierre and Marie Curie University, Paris VI, INSERM Unité Mixte de Recherche en Santé 974, Centre National de la Recherche Scientifique FRE3617, Center for Research in Myology, Paris, France; Etablissement Français du Sang, Creteil, France; and Université Paris Est, Ecole Nationale Veterinaire d'Alfort, Maison Alfort, France
| | - Marina Bouché
- *Stem Cells and Regenerative Medicine, Institute of Cardiometabolism and Nutrition Unité Mixte de Recherche en Santé 1166 INSERM/Sorbonne University (Pierre and Marie Curie University, Paris VI), Paris, France; Department of Anatomy, Histology, Forensic Medicine, and Orthopedics, Unit of Histology, Sapienza University of Rome, Rome, Italy; INSERM Unité 955 Institut Mondor de Recherche Biomédicale, Creteil, France; Université Paris-Est Créteil, Faculty of Medicine, Creteil, France; Sorbonne Universités, Pierre and Marie Curie University, Paris VI, INSERM Unité Mixte de Recherche en Santé 974, Centre National de la Recherche Scientifique FRE3617, Center for Research in Myology, Paris, France; Etablissement Français du Sang, Creteil, France; and Université Paris Est, Ecole Nationale Veterinaire d'Alfort, Maison Alfort, France
| |
Collapse
|
14
|
Wolf MT, Dearth CL, Sonnenberg SB, Loboa EG, Badylak SF. Naturally derived and synthetic scaffolds for skeletal muscle reconstruction. Adv Drug Deliv Rev 2015; 84:208-21. [PMID: 25174309 DOI: 10.1016/j.addr.2014.08.011] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Revised: 07/22/2014] [Accepted: 08/20/2014] [Indexed: 12/15/2022]
Abstract
Skeletal muscle tissue has an inherent capacity for regeneration following injury. However, severe trauma, such as volumetric muscle loss, overwhelms these natural muscle repair mechanisms prompting the search for a tissue engineering/regenerative medicine approach to promote functional skeletal muscle restoration. A desirable approach involves a bioscaffold that simultaneously acts as an inductive microenvironment and as a cell/drug delivery vehicle to encourage muscle ingrowth. Both biologically active, naturally derived materials (such as extracellular matrix) and carefully engineered synthetic polymers have been developed to provide such a muscle regenerative environment. Next generation naturally derived/synthetic "hybrid materials" would combine the advantageous properties of these materials to create an optimal platform for cell/drug delivery and possess inherent bioactive properties. Advances in scaffolds using muscle tissue engineering are reviewed herein.
Collapse
Affiliation(s)
- Matthew T Wolf
- McGowan Institute for Regenerative Medicine, Pittsburgh, PA 15219, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Christopher L Dearth
- McGowan Institute for Regenerative Medicine, Pittsburgh, PA 15219, USA; Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Sonya B Sonnenberg
- Joint Department of Biomedical Engineering at University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA
| | - Elizabeth G Loboa
- Joint Department of Biomedical Engineering at University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA; Department of Materials Science & Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Stephen F Badylak
- McGowan Institute for Regenerative Medicine, Pittsburgh, PA 15219, USA; Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
15
|
Davies SG, Kennewell PD, Russell AJ, Seden PT, Westwood R, Wynne GM. Stemistry: the control of stem cells in situ using chemistry. J Med Chem 2015; 58:2863-94. [PMID: 25590360 DOI: 10.1021/jm500838d] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A new paradigm for drug research has emerged, namely the deliberate search for molecules able to selectively affect the proliferation, differentiation, and migration of adult stem cells within the tissues in which they exist. Recently, there has been significant interest in medicinal chemistry toward the discovery and design of low molecular weight molecules that affect stem cells and thus have novel therapeutic activity. We believe that a successful agent from such a discover program would have profound effects on the treatment of many long-term degenerative disorders. Among these conditions are examples such as cardiovascular decay, neurological disorders including Alzheimer's disease, and macular degeneration, all of which have significant unmet medical needs. This perspective will review evidence from the literature that indicates that discovery of such agents is achievable and represents a worthwhile pursuit for the skills of the medicinal chemist.
Collapse
Affiliation(s)
- Stephen G Davies
- †Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, U.K
| | - Peter D Kennewell
- †Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, U.K
| | - Angela J Russell
- †Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, U.K.,‡Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, U.K
| | - Peter T Seden
- †Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, U.K
| | - Robert Westwood
- †Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, U.K
| | - Graham M Wynne
- †Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, U.K
| |
Collapse
|
16
|
Jung DW, Hong YJ, Kim SY, Kim WH, Seo S, Lee JE, Shen H, Kim YC, Williams DR. 5-Nitro-5'hydroxy-indirubin-3'oxime is a novel inducer of somatic cell transdifferentiation. Arch Pharm (Weinheim) 2014; 347:806-18. [PMID: 25363410 DOI: 10.1002/ardp.201400223] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Revised: 07/09/2014] [Accepted: 07/11/2014] [Indexed: 12/17/2022]
Abstract
Patient-derived cell transplantation is an attractive therapy for regenerative medicine. However, this requires effective strategies to reliably differentiate patient cells into clinically useful cell types. Herein, we report the discovery that 5-nitro-5'hydroxy-indirubin-3'oxime (5'-HNIO) is a novel inducer of cell transdifferentiation. 5'-HNIO induced muscle transdifferentiation into adipogenic and osteogenic cells. 5'-HNIO was shown to inhibit aurora kinase A, which is a known cell fate regulator. 5'-HNIO produced a favorable level of transdifferentiation compared to other aurora kinase inhibitors and induced transdifferentiation across cell lineage boundaries. Significantly, 5'-HNIO treatment produced direct transdifferentiation without up-regulating potentially oncogenic induced pluripotent stem cell (iPSC) reprogramming factors. Thus, our results demonstrate that 5'-HNIO is an attractive molecular tool for cell transdifferentiation and cell fate research.
Collapse
Affiliation(s)
- Da-Woon Jung
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Jung DW, Kim WH, Williams DR. Reprogram or reboot: small molecule approaches for the production of induced pluripotent stem cells and direct cell reprogramming. ACS Chem Biol 2014; 9:80-95. [PMID: 24245936 DOI: 10.1021/cb400754f] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Stem cell transplantation is a potential therapy for regenerative medicine, which aims to restore tissues damaged by trauma, aging, and diseases. Since its conception in the late 1990s, chemical biology has provided powerful and diverse small molecule tools for modulating stem cell function. Embryonic stem cells could be an ideal source for transplantation, but ethical concerns restrict their development for cell therapy. The seminal advance of induced pluripotent stem cell (iPSC) technology provided an attractive alternative to human embryonic stem cells. However, iPSCs are not yet considered an ideal stem cell source, due to limitations associated with the reprogramming process and their potential tumorigenic behavior. This is an area of research where chemical biology has made a significant contribution to facilitate the efficient production of high quality iPSCs and elucidate the biological mechanisms governing their phenotype. In this review, we summarize these advances and discuss the latest progress in developing small molecule modulators. Moreover, we also review a new trend in stem cell research, which is the direct reprogramming of readily accessible cell types into clinically useful cells, such as neurons and cardiac cells. This is a research area where chemical biology is making a pivotal contribution and illustrates the many advantages of using small molecules in stem cell research.
Collapse
Affiliation(s)
- Da-Woon Jung
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, 1 Oryong-Dong, Buk-Gu, Gwangju 500-712, Republic of Korea
| | - Woong-Hee Kim
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, 1 Oryong-Dong, Buk-Gu, Gwangju 500-712, Republic of Korea
| | - Darren Reece Williams
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, 1 Oryong-Dong, Buk-Gu, Gwangju 500-712, Republic of Korea
| |
Collapse
|
18
|
Lo KWH, Jiang T, Gagnon KA, Nelson C, Laurencin CT. Small-molecule based musculoskeletal regenerative engineering. Trends Biotechnol 2014; 32:74-81. [PMID: 24405851 DOI: 10.1016/j.tibtech.2013.12.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 12/09/2013] [Accepted: 12/10/2013] [Indexed: 01/13/2023]
Abstract
Clinicians and scientists working in the field of regenerative engineering are actively investigating a wide range of methods to promote musculoskeletal tissue regeneration. Small-molecule-mediated tissue regeneration is emerging as a promising strategy for regenerating various musculoskeletal tissues and a large number of small-molecule compounds have been recently discovered as potential bioactive molecules for musculoskeletal tissue repair and regeneration. In this review, we summarize the recent literature encompassing the past 4 years in the area of small bioactive molecules for promoting repair and regeneration of various musculoskeletal tissues including bone, muscle, cartilage, tendon, and nerve.
Collapse
Affiliation(s)
- Kevin W-H Lo
- Institute for Regenerative Engineering, University of Connecticut Health Center, School of Medicine, Farmington, CT 06030, USA; The Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, School of Medicine, Farmington, CT 06030, USA; Department of Medicine, Division of Endocrinology, University of Connecticut Health Center, School of Medicine, Farmington, CT 06030, USA; Department of Biomedical Engineering, University of Connecticut, School of Engineering, Storrs, CT 06268, USA.
| | - Tao Jiang
- Institute for Regenerative Engineering, University of Connecticut Health Center, School of Medicine, Farmington, CT 06030, USA; The Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, School of Medicine, Farmington, CT 06030, USA; Department of Medicine, Division of Endocrinology, University of Connecticut Health Center, School of Medicine, Farmington, CT 06030, USA
| | - Keith A Gagnon
- Institute for Regenerative Engineering, University of Connecticut Health Center, School of Medicine, Farmington, CT 06030, USA
| | - Clarke Nelson
- Institute for Regenerative Engineering, University of Connecticut Health Center, School of Medicine, Farmington, CT 06030, USA; The Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, School of Medicine, Farmington, CT 06030, USA
| | - Cato T Laurencin
- Institute for Regenerative Engineering, University of Connecticut Health Center, School of Medicine, Farmington, CT 06030, USA; The Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, School of Medicine, Farmington, CT 06030, USA; Department of Biomedical Engineering, University of Connecticut, School of Engineering, Storrs, CT 06268, USA; Department of Orthopaedic Surgery, University of Connecticut Health Center, School of Medicine, Farmington, CT 06030, USA; Department of Chemical, Materials and Biomolecular Engineering, University of Connecticut, School of Engineering, Storrs, CT 06268, USA.
| |
Collapse
|
19
|
Lee J, Jung DW, Kim WH, Um JI, Yim SH, Oh WK, Williams DR. Development of a highly visual, simple, and rapid test for the discovery of novel insulin mimetics in living vertebrates. ACS Chem Biol 2013; 8:1803-14. [PMID: 23725454 DOI: 10.1021/cb4000162] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Diabetes mellitus is a global epidemic with major impacts on human health and society. Drug discovery for diabetes can be facilitated by the development of a rapid, vertebrate-based screen for identifying new insulin mimetic compounds. Our study describes the first development of a zebrafish-based system based on direct monitoring of glucose flux and validated for identifying novel anti-diabetic drugs. Our system utilizes a fluorescent-tagged glucose probe in an experimentally convenient 96-well plate format. To validate our new system, we identified compounds that can induce glucose uptake via activity-guided fractionation of the inner shell from the Japanese Chestnut (Castanea crenata). The best performing compound, UP3.2, was identified as fraxidin and validated as a novel insulin mimetic using a mammalian adipocyte system. Additional screening using sets of saponin- and triazine-based compounds was undertaken to further validate this assay, which led to the discovery of triazine PP-II-A03 as a novel insulin mimetic. Moreover, we demonstrate that our zebrafish-based system allows concomitant toxicological analysis of anti-diabetic drug candidates. Thus, we have developed a rapid and inexpensive vertebrate model that can enhance diabetes drug discovery by preselecting hits from chemical library screens, before testing in relatively expensive rodent assays.
Collapse
Affiliation(s)
| | | | | | | | | | - Won Keun Oh
- Korea Bioactive Natural Material
Bank, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | | |
Collapse
|
20
|
Jung DW, Kim WH, Park SH, Lee J, Kim J, Su D, Ha HH, Chang YT, Williams DR. A unique small molecule inhibitor of enolase clarifies its role in fundamental biological processes. ACS Chem Biol 2013; 8:1271-82. [PMID: 23547795 DOI: 10.1021/cb300687k] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Enolase is a component of the glycolysis pathway and a "moonlighting" protein, with important roles in diverse cellular processes that are not related to its function in glycolysis. However, small molecule tools to probe enolase function have been restricted to crystallography or enzymology. In this study, we report the discovery of the small molecule "ENOblock", which is the first, nonsubstrate analogue that directly binds to enolase and inhibits its activity. ENOblock was isolated by small molecule screening in a cancer cell assay to detect cytotoxic agents that function in hypoxic conditions, which has previously been shown to induce drug resistance. Further analysis revealed that ENOblock can inhibit cancer cell metastasis in vivo. Moreover, an unexpected role for enolase in glucose homeostasis was revealed by in vivo analysis. Thus, ENOblock is the first reported enolase inhibitor that is suitable for biological assays. This new chemical tool may also be suitable for further study as a cancer and diabetes drug candidate.
Collapse
Affiliation(s)
- Da-Woon Jung
- New Drug Targets Laboratory,
School of Life Sciences, Gwangju Institute of Science and Technology, 1 Oryong-Dong, Buk-Gu, Gwangju 500-712,
Republic of Korea
| | - Woong-Hee Kim
- New Drug Targets Laboratory,
School of Life Sciences, Gwangju Institute of Science and Technology, 1 Oryong-Dong, Buk-Gu, Gwangju 500-712,
Republic of Korea
| | - Si-Hwan Park
- New Drug Targets Laboratory,
School of Life Sciences, Gwangju Institute of Science and Technology, 1 Oryong-Dong, Buk-Gu, Gwangju 500-712,
Republic of Korea
| | - Jinho Lee
- New Drug Targets Laboratory,
School of Life Sciences, Gwangju Institute of Science and Technology, 1 Oryong-Dong, Buk-Gu, Gwangju 500-712,
Republic of Korea
| | - Jinmi Kim
- New Drug Targets Laboratory,
School of Life Sciences, Gwangju Institute of Science and Technology, 1 Oryong-Dong, Buk-Gu, Gwangju 500-712,
Republic of Korea
| | - Dongdong Su
- Department
of Chemistry, National University
of Singapore and MedChem Program of Life Sciences Institute, National University of Singapore, 3 Science Drive 3,
Singapore 117543
| | - Hyung-Ho Ha
- College
of Pharmacy, Sunchon National University, Sunchon, 570-742, Korea
| | - Young-Tae Chang
- Department
of Chemistry, National University
of Singapore and MedChem Program of Life Sciences Institute, National University of Singapore, 3 Science Drive 3,
Singapore 117543
- Laboratory
of Bioimaging Probe
Development, Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Singapore
138667
| | - Darren R. Williams
- New Drug Targets Laboratory,
School of Life Sciences, Gwangju Institute of Science and Technology, 1 Oryong-Dong, Buk-Gu, Gwangju 500-712,
Republic of Korea
| |
Collapse
|
21
|
Jung DW, Williams DR. Reawakening atlas: chemical approaches to repair or replace dysfunctional musculature. ACS Chem Biol 2012; 7:1773-90. [PMID: 23043623 DOI: 10.1021/cb3003368] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Muscle diseases are major health concerns. For example, ischemic heart disease is the third most common cause of death. Cell therapy is an attractive approach for treating muscle diseases, although this is hampered by the need to generate large numbers of functional muscle cells. Small molecules have become established as attractive tools for modulating cell behavior and, in this review, we discuss the recent, rapid research advances made in the development of small molecule methods to facilitate the production of functional cardiac, skeletal, and smooth muscle cells. We also describe how new developments in small molecule strategies for muscle disease aim to induce repair and remodelling of the damaged tissues in situ. Recent progress has been made in developing small molecule cocktails that induce skeletal muscle regeneration, and these are discussed in a broader context, because a similar phenomenon occurs in the early stages of salamander appendage regeneration. Although formidable technical hurdles still remain, these new advances in small molecule-based methodologies should provide hope that cell therapies for patients suffering from muscle disease can be developed in the near future.
Collapse
Affiliation(s)
- Da-Woon Jung
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, 1 Oryong-Dong,
Buk-Gu, Gwangju 500-712, Republic of Korea
| | - Darren R. Williams
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, 1 Oryong-Dong,
Buk-Gu, Gwangju 500-712, Republic of Korea
| |
Collapse
|
22
|
Kim WH, Lee J, Jung DW, Williams DR. Visualizing sweetness: increasingly diverse applications for fluorescent-tagged glucose bioprobes and their recent structural modifications. SENSORS 2012; 12:5005-27. [PMID: 22666073 PMCID: PMC3355456 DOI: 10.3390/s120405005] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 04/03/2012] [Accepted: 04/09/2012] [Indexed: 01/23/2023]
Abstract
Glucose homeostasis is a fundamental aspect of life and its dysregulation is associated with important diseases, such as cancer and diabetes. Traditionally, glucose radioisotopes have been used to monitor glucose utilization in biological systems. Fluorescent-tagged glucose analogues were initially developed in the 1980s, but it is only in the past decade that their use as a glucose sensor has increased significantly. These analogues were developed for monitoring glucose uptake in blood cells, but their recent applications include tracking glucose uptake by tumor cells and imaging brain cell metabolism. This review outlines the development of fluorescent-tagged glucose analogues, describes their recent structural modifications and discusses their increasingly diverse biological applications.
Collapse
Affiliation(s)
| | | | - Da-Woon Jung
- Authors to whom correspondence should be addressed; E-Mails: (D.-W.J.); (D.R.W.); Tel.: +82-62-715-2509; Fax: +82-62-715-2484
| | - Darren R. Williams
- Authors to whom correspondence should be addressed; E-Mails: (D.-W.J.); (D.R.W.); Tel.: +82-62-715-2509; Fax: +82-62-715-2484
| |
Collapse
|
23
|
Milner DJ, Cameron JA. Muscle repair and regeneration: stem cells, scaffolds, and the contributions of skeletal muscle to amphibian limb regeneration. Curr Top Microbiol Immunol 2012; 367:133-59. [PMID: 23224711 DOI: 10.1007/82_2012_292] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Skeletal muscle possesses a robust innate capability for repair of tissue damage. Natural repair of muscle damage is a stepwise process that requires the coordinated activity of a number of cell types, including infiltrating macrophages, resident myogenic and non-myogenic stem cells, and connective tissue fibroblasts. Despite the proficiency of this intrinsic repair capability, severe injuries that result in significant loss of muscle tissue overwhelm the innate repair process and require intervention if muscle function is to be restored. Recent advances in stem cell biology, regenerative medicine, and materials science have led to attempts at developing tissue engineering-based methods for repairing severe muscle defects. Muscle tissue also plays a role in the ability of tailed amphibians to regenerate amputated limbs through epimorphic regeneration. Muscle contributes adult stem cells to the amphibian regeneration blastema, but it can also contribute blastemal cells through the dedifferentiation of multinucleate myofibers into mononuclear precursors. This fascinating plasticity and its contributions to limb regeneration have prompted researchers to investigate the potential for mammalian muscle to undergo dedifferentiation. Several works have shown that mammalian myotubes can be fragmented into mononuclear cells and induced to re-enter the cell cycle, but mature myofibers are resistant to fragmentation. However, recent works suggest that there may be a path to inducing fragmentation of mature myofibers into proliferative multipotent cells with the potential for use in muscle tissue engineering and regenerative therapies.
Collapse
Affiliation(s)
- Derek J Milner
- Department of Cell and Developmental Biology, University of Illinois, Urbana, IL, USA.
| | | |
Collapse
|