1
|
Pu S, Cheng T, Cheng H. Advances in RNA editing in hematopoiesis and associated malignancies. Blood 2025; 145:2424-2438. [PMID: 39869834 DOI: 10.1182/blood.2024027379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/30/2024] [Accepted: 01/12/2025] [Indexed: 01/29/2025] Open
Abstract
ABSTRACT Adenosine-to-inosine (A-to-I) RNA editing is a prevalent RNA modification essential for cell survival. The process is catalyzed by the adenosine deaminase acting on RNA (ADAR) enzyme family that converts adenosines in double-stranded RNAs (dsRNAs) into inosines, which are read as guanosines during translation. Deep sequencing has helped to reveal that A-to-I editing occurs across various types of RNAs, affecting their functions. RNA editing detection is now so sophisticated that we can achieve a high level of accuracy and sensitivity to identify low-abundance edited events. Consequently, A-to-I editing has been implicated in various biological processes, including immune and stress responses, cancer progression, and stem cell fate determination. In particular, a crucial role for this process has been recently reported in hematopoietic cell development and hematologic malignancy progression. Results from genetic mouse models have demonstrated the impact of ADARs' catalytic activity on hematopoietic cells, complemented by insights from human cell studies. Meanwhile, clinical studies have implicated ADAR enzymes and RNA editing events in hematologic malignancies and highlighted their potential as prognostic indicators. In this review, we outline the regulatory mechanisms of RNA editing in both normal hematopoiesis and hematologic malignancies. We then speculate on how targeting ADAR expression and site-specific RNA substrates might serve as a therapeutic avenue for affected patients.
Collapse
Affiliation(s)
- Shuangshuang Pu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China
- Department of Stem Cell and Regenerative Medicine, Peking Union Medical College, Tianjin, China
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China
- Department of Stem Cell and Regenerative Medicine, Peking Union Medical College, Tianjin, China
| | - Hui Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China
- Department of Stem Cell and Regenerative Medicine, Peking Union Medical College, Tianjin, China
| |
Collapse
|
2
|
Sannigrahi A, De N, Bhunia D, Bhadra J. Peptide nucleic acids: Recent advancements and future opportunities in biomedical applications. Bioorg Chem 2025; 155:108146. [PMID: 39817998 DOI: 10.1016/j.bioorg.2025.108146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/27/2024] [Accepted: 01/05/2025] [Indexed: 01/18/2025]
Abstract
Peptide nucleic acids (PNA), synthetic molecules comprising a peptide-like backbone and natural and unnatural nucleobases, have garnered significant attention for their potential applications in gene editing and other biomedical fields. The unique properties of PNA, particularly enhanced stability/specificity/affinity towards targeted DNA and RNA sequences, achieved significant attention recently for gene silencing, gene correction, antisense therapy, drug delivery, biosensing and other various diagnostic aspects. This review explores the structure, properties, and potential of PNA in transforming genetic engineering including potent biomedical challenges. In Addition, we explore future perspectives and potential limitations of PNA-based technologies, highlighting the need for further research and development to fully realize their therapeutic and biotechnological potential.
Collapse
Affiliation(s)
- Achinta Sannigrahi
- University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Nayan De
- Institute for System Biology, 401 Terry Ave N, Seattle, WA 98109, USA
| | - Debmalya Bhunia
- Cold Spring Harbor Laboratory, 1 Bungtown Rd, Cold Spring Harbor, NY 11724, USA.
| | - Jhuma Bhadra
- Department of Chemistry, Sarojini Naidu College for Women, Kolkata 700028, India.
| |
Collapse
|
3
|
Mendoza HG, Beal PA. Structural and functional effects of inosine modification in mRNA. RNA (NEW YORK, N.Y.) 2024; 30:512-520. [PMID: 38531652 PMCID: PMC11019749 DOI: 10.1261/rna.079977.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 02/09/2024] [Indexed: 03/28/2024]
Abstract
Inosine (I), resulting from the deamination of adenosine (A), is a prominent modification in the human transcriptome. The enzymes responsible for the conversion of adenosine to inosine in human mRNAs are the ADARs (adenosine deaminases acting on RNA). Inosine modification introduces a layer of complexity to mRNA processing and function, as it can impact various aspects of RNA biology, including mRNA stability, splicing, translation, and protein binding. The relevance of this process is emphasized in the growing number of human disorders associated with dysregulated A-to-I editing pathways. Here, we describe the impact of the A-to-I conversion on the structure and stability of duplex RNA and on the consequences of this modification at different locations in mRNAs. Furthermore, we highlight specific open questions regarding the interplay between inosine formation in duplex RNA and the innate immune response.
Collapse
Affiliation(s)
- Herra G Mendoza
- Department of Chemistry, University of California, Davis, California 95616, USA
| | - Peter A Beal
- Department of Chemistry, University of California, Davis, California 95616, USA
| |
Collapse
|
4
|
C-to-U RNA Editing: A Site Directed RNA Editing Tool for Restoration of Genetic Code. Genes (Basel) 2022; 13:genes13091636. [PMID: 36140804 PMCID: PMC9498875 DOI: 10.3390/genes13091636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/18/2022] Open
Abstract
The restoration of genetic code by editing mutated genes is a potential method for the treatment of genetic diseases/disorders. Genetic disorders are caused by the point mutations of thymine (T) to cytidine (C) or guanosine (G) to adenine (A), for which gene editing (editing of mutated genes) is a promising therapeutic technique. In C-to-Uridine (U) RNA editing, it converts the base C-to-U in RNA molecules and leads to nonsynonymous changes when occurring in coding regions; however, for G-to-A mutations, A-to-I editing occurs. Editing of C-to-U is not as physiologically common as that of A-to-I editing. Although hundreds to thousands of coding sites have been found to be C-to-U edited or editable in humans, the biological significance of this phenomenon remains elusive. In this review, we have tried to provide detailed information on physiological and artificial approaches for C-to-U RNA editing.
Collapse
|
5
|
Baker AR, Slack FJ. ADAR1 and its implications in cancer development and treatment. Trends Genet 2022; 38:821-830. [PMID: 35459560 PMCID: PMC9283316 DOI: 10.1016/j.tig.2022.03.013] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/14/2022] [Accepted: 03/17/2022] [Indexed: 12/12/2022]
Abstract
The family of adenosine deaminases acting on RNA (ADARs) regulates global gene expression output by catalyzing adenosine-to-inosine (A-to-I) editing of double-stranded RNA (dsRNA) and through interacting with RNA and other proteins. ADARs play important roles in development and disease, including an increasing connection to cancer progression. ADAR1 has demonstrated a largely pro-oncogenic role in a growing list of cancer types, and its function in cancer has been attributed to diverse mechanisms. Here, we review existing literature on ADAR1 biology and function, its roles in human disease including cancer, and summarize known cancer-associated phenotypes and mechanisms. Lastly, we discuss implications and outstanding questions in the field, including strategies for targeting ADAR1 in cancer.
Collapse
Affiliation(s)
- Allison R Baker
- Harvard Medical School Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Frank J Slack
- Harvard Medical School Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
6
|
Chaytow H, Sethw Hassan I, Akbar S, Popplewell L, Dickson G, Chen PE. A new strategy to increase RNA editing at the Q/R site of GluA2 AMPA receptor subunits by targeting alternative splicing patterns of ADAR2. J Neurosci Methods 2021; 364:109357. [PMID: 34536489 PMCID: PMC8573265 DOI: 10.1016/j.jneumeth.2021.109357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 08/25/2021] [Accepted: 09/09/2021] [Indexed: 11/27/2022]
Abstract
Background The GluA2 subunit of AMPA receptors (AMPARs) undergoes RNA editing at a specific base mediated by the enzyme ADAR2, changing the coded amino acid from a glutamine to arginine at the so-called Q/R site, which is critical for regulating calcium permeability. ADAR2 exists as multiple alternatively-spliced variants within mammalian cells with differing editing efficiency. New method In this study, phosphorodiamidate morpholino oligomers (PMOs) were used to increase Q/R site editing, by affecting the alternative splicing of ADAR2. Results PMOs targeting the ADAR2 pre-mRNA transcript successfully induced alternative splicing around the AluJ cassette leading to expression of a more active isoform with increased editing of the GluA2 subunit compared to control. Comparison with existing method(s) Previously PMOs have been used to disrupt RNA editing via steric hindrance of the GluA2 RNA duplex. In contrast we report PMOs that can increase the expression of more catalytically active variants of ADAR2, leading to enhanced GluA2 Q/R RNA editing. Conclusions Using PMOs to increase Q/R site editing is presented here as a validated method that would allow investigation of downstream cellular processes implicated in altered ADAR2 activity. Aberrant RNA editing has been linked to a number of neurodegenerative diseases. Phosphorodiamidate morpholino oligomers (PMOs) were targeted to ADAR2 pre-mRNA. These PMOs increased expression of ADAR2 isoforms with higher editing efficiency. These PMOs significantly increased Q/R editing in HeLa and SH-SY5Y cell lines.
Collapse
Affiliation(s)
- Helena Chaytow
- Centres of Gene and Cell Therapy and Biomedical Sciences, Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey, UK
| | - Ilda Sethw Hassan
- Centres of Gene and Cell Therapy and Biomedical Sciences, Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey, UK
| | - Sara Akbar
- Centres of Gene and Cell Therapy and Biomedical Sciences, Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey, UK
| | - Linda Popplewell
- Centres of Gene and Cell Therapy and Biomedical Sciences, Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey, UK
| | - George Dickson
- Centres of Gene and Cell Therapy and Biomedical Sciences, Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey, UK
| | - Philip E Chen
- Centres of Gene and Cell Therapy and Biomedical Sciences, Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey, UK.
| |
Collapse
|
7
|
Tai Tay DJ, Song Y, Peng B, Toh TB, Hooi L, Kaixin Toh DF, Hong H, Tang SJ, Han J, Gan WL, Man Chan TH, Krishna MS, Patil KM, Maraswami M, Loh TP, Dan YY, Zhou L, Bonney GK, Kah-Hoe Chow P, Chen G, Kai-Hua Chow E, Le MT, Chen L. Targeting RNA Editing of Antizyme Inhibitor 1: a Potential Oligonucleotide-Based Antisense Therapy for Cancer. Mol Ther 2021; 29:3258-3273. [PMID: 33974998 PMCID: PMC8571177 DOI: 10.1016/j.ymthe.2021.05.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 03/29/2021] [Accepted: 05/05/2021] [Indexed: 11/26/2022] Open
Abstract
Dysregulated adenosine-to-inosine (A-to-I) RNA editing is implicated in various cancers. However, no available RNA editing inhibitors have so far been developed to inhibit cancer-associated RNA editing events. Here, we decipher the RNA secondary structure of antizyme inhibitor 1 (AZIN1), one of the best-studied A-to-I editing targets in cancer, by locating its editing site complementary sequence (ECS) at the 3′ end of exon 12. Chemically modified antisense oligonucleotides (ASOs) that target the editing region of AZIN1 caused a substantial exon 11 skipping, whereas ECS-targeting ASOs effectively abolished AZIN1 editing without affecting splicing and translation. We demonstrate that complete 2′-O-methyl (2′-O-Me) sugar ring modification in combination with partial phosphorothioate (PS) backbone modification may be an optimal chemistry for editing inhibition. ASO3.2, which targets the ECS, specifically inhibits cancer cell viability in vitro and tumor incidence and growth in xenograft models. Our results demonstrate that this AZIN1-targeting, ASO-based therapeutics may be applicable to a wide range of tumor types.
Collapse
Affiliation(s)
- Daryl Jin Tai Tay
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore 117599
| | - Yangyang Song
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore 117599
| | - Boya Peng
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore 117600; Department of Biomedical Sciences, School of Veterinary Medicine and Life Sciences, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
| | - Tan Boon Toh
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore 117599; The N.1 Institute for Health (N.1), 28 Medical Dr, Singapore 117456
| | - Lissa Hooi
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore 117599
| | - Desiree-Faye Kaixin Toh
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 21 Nanyang Link, Singapore 637371
| | - HuiQi Hong
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore 117599; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 2 Medical Drive, Singapore 117593
| | - Sze Jing Tang
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore 117599
| | - Jian Han
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore 117599
| | - Wei Liang Gan
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore 117599
| | - Tim Hon Man Chan
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore 117599
| | - Manchugondanahalli S Krishna
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 21 Nanyang Link, Singapore 637371
| | - Kiran M Patil
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 21 Nanyang Link, Singapore 637371
| | - Manikantha Maraswami
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 21 Nanyang Link, Singapore 637371
| | - Teck Peng Loh
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 21 Nanyang Link, Singapore 637371
| | - Yock Young Dan
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore 117599; Division of Gastroenterology and Hepatology, National University Health System, Singapore 119228
| | - Lei Zhou
- Division of Gastroenterology and Hepatology, National University Health System, Singapore 119228
| | - Glenn Kunnath Bonney
- Division of Hepatobiliary and Liver Transplantation Surgery, National University Health System, Singapore 119228
| | - Pierce Kah-Hoe Chow
- Division of Surgical Oncology, National Cancer Centre Singapore, Singapore 169610; Department of Hepato-Pancreato-Biliary and Transplant Surgery, Singapore General Hospital, Singapore 169608; Duke-NUS Medical School, Singapore 169857
| | - Gang Chen
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 21 Nanyang Link, Singapore 637371
| | - Edward Kai-Hua Chow
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore 117599; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore 117600; The N.1 Institute for Health (N.1), 28 Medical Dr, Singapore 117456
| | - Minh Tn Le
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore 117600; Department of Biomedical Sciences, School of Veterinary Medicine and Life Sciences, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
| | - Leilei Chen
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore 117599; Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, 4 Medical Drive, Singapore 117594.
| |
Collapse
|
8
|
Erdmann EA, Mahapatra A, Mukherjee P, Yang B, Hundley HA. To protect and modify double-stranded RNA - the critical roles of ADARs in development, immunity and oncogenesis. Crit Rev Biochem Mol Biol 2020; 56:54-87. [PMID: 33356612 DOI: 10.1080/10409238.2020.1856768] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Adenosine deaminases that act on RNA (ADARs) are present in all animals and function to both bind double-stranded RNA (dsRNA) and catalyze the deamination of adenosine (A) to inosine (I). As inosine is a biological mimic of guanosine, deamination by ADARs changes the genetic information in the RNA sequence and is commonly referred to as RNA editing. Millions of A-to-I editing events have been reported for metazoan transcriptomes, indicating that RNA editing is a widespread mechanism used to generate molecular and phenotypic diversity. Loss of ADARs results in lethality in mice and behavioral phenotypes in worm and fly model systems. Furthermore, alterations in RNA editing occur in over 35 human pathologies, including several neurological disorders, metabolic diseases, and cancers. In this review, a basic introduction to ADAR structure and target recognition will be provided before summarizing how ADARs affect the fate of cellular RNAs and how researchers are using this knowledge to engineer ADARs for personalized medicine. In addition, we will highlight the important roles of ADARs and RNA editing in innate immunity and cancer biology.
Collapse
Affiliation(s)
- Emily A Erdmann
- Department of Biology, Indiana University, Bloomington, IN, USA
| | | | - Priyanka Mukherjee
- Medical Sciences Program, Indiana University School of Medicine-Bloomington, Bloomington, IN, USA
| | - Boyoon Yang
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, USA
| | - Heather A Hundley
- Medical Sciences Program, Indiana University School of Medicine-Bloomington, Bloomington, IN, USA
| |
Collapse
|
9
|
Teoh PJ, Koh MY, Chng WJ. ADARs, RNA editing and more in hematological malignancies. Leukemia 2020; 35:346-359. [PMID: 33139858 DOI: 10.1038/s41375-020-01076-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/21/2020] [Accepted: 10/20/2020] [Indexed: 02/08/2023]
Abstract
Adenosine-to-inosine (A-to-I) editing is the most prevalent type of RNA editing in humans, mediated by the adenosine deaminases acting on RNA (ADARs). Physiologically, these enzymes are present in the nucleus and/or the cytoplasm, where they catalyze the conversion of adenosines (A) to inosines (I) on double-stranded mRNA molecules. Aberrant ADAR-mediated-editing is a prominent feature in a variety of cancers. Importantly, the biological functions of ADARs and its functional implications in hematological malignancies have recently been unraveled. In this review, we will highlight the functions of ADARs and their involvements in cancer, specifically in hematological malignancies. RNA editing-independent function of cellular processes by ADARs and the potential of developing novel therapeutic approaches revolving RNA editing will also be discussed.
Collapse
Affiliation(s)
- Phaik Ju Teoh
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Cancer Science Institute of Singapore, Singapore, Singapore
| | - Mun Yee Koh
- Cancer Science Institute of Singapore, Singapore, Singapore
| | - Wee Joo Chng
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore. .,Cancer Science Institute of Singapore, Singapore, Singapore. .,Department of Haematology-Oncology, National University Cancer Institute of Singapore, National University Health System, Singapore, Singapore.
| |
Collapse
|
10
|
Christofi T, Zaravinos A. RNA editing in the forefront of epitranscriptomics and human health. J Transl Med 2019; 17:319. [PMID: 31547885 PMCID: PMC6757416 DOI: 10.1186/s12967-019-2071-4] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 09/17/2019] [Indexed: 12/21/2022] Open
Abstract
Post-transcriptional modifications have been recently expanded with the addition of RNA editing, which is predominantly mediated by adenosine and cytidine deaminases acting on DNA and RNA. Here, we review the full spectrum of physiological processes in which these modifiers are implicated, among different organisms. Adenosine to inosine (A-to-I) editors, members of the ADAR and ADAT protein families are important regulators of alternative splicing and transcriptional control. On the other hand, cytidine to uridine (C-to-U) editors, members of the AID/APOBEC family, are heavily implicated in innate and adaptive immunity with important roles in antibody diversification and antiviral response. Physiologically, these enzymes are present in the nucleus and/or the cytoplasm, where they modify various RNA molecules, including miRNAs, tRNAs apart from mRNAs, whereas DNA editing is also possible by some of them. The expansion of next generation sequencing technologies provided a wealth of data regarding such modifications. RNA editing has been implicated in various disorders including cancer, and neurological diseases of the brain or the central nervous system. It is also related to cancer heterogeneity and the onset of carcinogenesis. Response to treatment can also be affected by the RNA editing status where drug efficacy is significantly compromised. Studying RNA editing events can pave the way to the identification of new disease biomarkers, and provide a more personalised therapy to various diseases.
Collapse
Affiliation(s)
- Theodoulakis Christofi
- Department of Life Sciences, School of Sciences, European University Cyprus, 2404, Nicosia, Cyprus
| | - Apostolos Zaravinos
- Department of Life Sciences, School of Sciences, European University Cyprus, 2404, Nicosia, Cyprus.
- Centre for Risk and Decision Sciences (CERIDES), 2404, Nicosia, Cyprus.
| |
Collapse
|
11
|
Kung CP, Maggi LB, Weber JD. The Role of RNA Editing in Cancer Development and Metabolic Disorders. Front Endocrinol (Lausanne) 2018; 9:762. [PMID: 30619092 PMCID: PMC6305585 DOI: 10.3389/fendo.2018.00762] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 12/03/2018] [Indexed: 12/26/2022] Open
Abstract
Numerous human diseases arise from alterations of genetic information, most notably DNA mutations. Thought to be merely the intermediate between DNA and protein, changes in RNA sequence were an afterthought until the discovery of RNA editing 30 years ago. RNA editing alters RNA sequence without altering the sequence or integrity of genomic DNA. The most common RNA editing events are A-to-I changes mediated by adenosine deaminase acting on RNA (ADAR), and C-to-U editing mediated by apolipoprotein B mRNA editing enzyme, catalytic polypeptide 1 (APOBEC1). Both A-to-I and C-to-U editing were first identified in the context of embryonic development and physiological homeostasis. The role of RNA editing in human disease has only recently started to be understood. In this review, the impact of RNA editing on the development of cancer and metabolic disorders will be examined. Distinctive functions of each RNA editase that regulate either A-to-I or C-to-U editing will be highlighted in addition to pointing out important regulatory mechanisms governing these processes. The potential of developing novel therapeutic approaches through intervention of RNA editing will be explored. As the role of RNA editing in human disease is elucidated, the clinical utility of RNA editing targeted therapies will be needed. This review aims to serve as a bridge of information between past findings and future directions of RNA editing in the context of cancer and metabolic disease.
Collapse
Affiliation(s)
- Che-Pei Kung
- ICCE Institute, Washington University School of Medicine, Saint Louis, MO, United States
- Division of Molecular Oncology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States
| | - Leonard B. Maggi
- ICCE Institute, Washington University School of Medicine, Saint Louis, MO, United States
- Division of Molecular Oncology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States
| | - Jason D. Weber
- ICCE Institute, Washington University School of Medicine, Saint Louis, MO, United States
- Division of Molecular Oncology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States
- Siteman Cancer Center, Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO, United States
| |
Collapse
|
12
|
Aberrant hyperediting of the myeloma transcriptome by ADAR1 confers oncogenicity and is a marker of poor prognosis. Blood 2018; 132:1304-1317. [DOI: 10.1182/blood-2018-02-832576] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 07/25/2018] [Indexed: 12/17/2022] Open
Abstract
Key Points
The integrity of the MM transcriptome is compromised by ADAR1 overexpression, conferring oncogenic events in an editing-dependent manner. NEIL1 is an important ADAR1 editing target, and its recoded protein has a defective functional capacity and gain-of-function properties.
Collapse
|
13
|
Lian H, Wang QH, Zhu CB, Ma J, Jin WL. Deciphering the Epitranscriptome in Cancer. Trends Cancer 2018; 4:207-221. [PMID: 29506671 DOI: 10.1016/j.trecan.2018.01.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 01/12/2018] [Accepted: 01/25/2018] [Indexed: 11/16/2022]
Abstract
Technological and methodological advancements have recently revolutionized our understanding of widespread epitranscriptome including RNA modifications and editing. N6-methyladenosine (m6A) represents the most prevalent internal modification in mammalian RNAs. Adenosine to inosine (A-to-I) RNA editing is an important mechanism underlying RNA generation and protein diversity through the post-transcriptional modification of single nucleotides in RNA sequences. In this review, we attempt to summarize its functional importance in various fundamental bioprocesses of m6A and A-to-I editing. We also highlight some of the key findings that have helped shape our understanding of epitranscriptome in tumorigenesis, tumor progression, and metastasis. Finally, we discuss conceivable targets and future directions of m6A and A-to-I editing in cancer therapeutics.
Collapse
Affiliation(s)
- Hao Lian
- Department of Pediatric Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Qin-Hua Wang
- Department of Pediatric Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Chang-Bin Zhu
- Department of Pediatric Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Jie Ma
- Department of Pediatric Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| | - Wei-Lin Jin
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; National Center for Translational Medicine, Collaborative Innovational Center for System Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Huaian Key Laboratory of Gastrointestinal Cancer, Jiangsu College of Nursing, Huaian 223001, China.
| |
Collapse
|
14
|
Nakano M, Nakajima M. Significance of A-to-I RNA editing of transcripts modulating pharmacokinetics and pharmacodynamics. Pharmacol Ther 2018; 181:13-21. [DOI: 10.1016/j.pharmthera.2017.07.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
15
|
Jiang Q, Crews LA, Holm F, Jamieson CHM. RNA editing-dependent epitranscriptome diversity in cancer stem cells. Nat Rev Cancer 2017; 17:381-392. [PMID: 28416802 PMCID: PMC5665169 DOI: 10.1038/nrc.2017.23] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cancer stem cells (CSCs) can regenerate all facets of a tumour as a result of their stem cell-like capacity to self-renew, survive and become dormant in protective microenvironments. CSCs evolve during tumour progression in a manner that conforms to Charles Darwin's principle of natural selection. Although somatic DNA mutations and epigenetic alterations promote evolution, post-transcriptional RNA modifications together with RNA binding protein activity (the 'epitranscriptome') might also contribute to clonal evolution through dynamic determination of RNA function and gene expression diversity in response to environmental stimuli. Deregulation of these epitranscriptomic events contributes to CSC generation and maintenance, which governs cancer progression and drug resistance. In this Review, we discuss the role of malignant RNA processing in CSC generation and maintenance, including mechanisms of RNA methylation, RNA editing and RNA splicing, and the functional consequences of their aberrant regulation in human malignancies. Finally, we highlight the potential of these events as novel CSC biomarkers as well as therapeutic targets.
Collapse
Affiliation(s)
- Qingfei Jiang
- Division of Regenerative Medicine, Department of Medicine, Moores Cancer Center and Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - Leslie A Crews
- Division of Regenerative Medicine, Department of Medicine, Moores Cancer Center and Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - Frida Holm
- Division of Regenerative Medicine, Department of Medicine, Moores Cancer Center and Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - Catriona H M Jamieson
- Division of Regenerative Medicine, Department of Medicine, Moores Cancer Center and Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|
16
|
Chan THM, Qamra A, Tan KT, Guo J, Yang H, Qi L, Lin JS, Ng VHE, Song Y, Hong H, Tay ST, Liu Y, Lee J, Rha SY, Zhu F, So JBY, Teh BT, Yeoh KG, Rozen S, Tenen DG, Tan P, Chen L. ADAR-Mediated RNA Editing Predicts Progression and Prognosis of Gastric Cancer. Gastroenterology 2016; 151:637-650.e10. [PMID: 27373511 PMCID: PMC8286172 DOI: 10.1053/j.gastro.2016.06.043] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 06/23/2016] [Accepted: 06/24/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUD & AIMS Gastric cancer (GC) is the third leading cause of global cancer mortality. Adenosine-to-inosine RNA editing is a recently described novel epigenetic mechanism involving sequence alterations at the RNA but not DNA level, primarily mediated by ADAR (adenosine deaminase that act on RNA) enzymes. Emerging evidence suggests a role for RNA editing and ADARs in cancer, however, the relationship between RNA editing and GC development and progression remains unknown. METHODS In this study, we leveraged on the next-generation sequencing transcriptomics to demarcate the GC RNA editing landscape and the role of ADARs in this deadly malignancy. RESULTS Relative to normal gastric tissues, almost all GCs displayed a clear RNA misediting phenotype with ADAR1/2 dysregulation arising from the genomic gain and loss of the ADAR1 and ADAR2 gene in primary GCs, respectively. Clinically, patients with GCs exhibiting ADAR1/2 imbalance demonstrated extremely poor prognoses in multiple independent cohorts. Functionally, we demonstrate in vitro and in vivo that ADAR-mediated RNA misediting is closely associated with GC pathogenesis, with ADAR1 and ADAR2 playing reciprocal oncogenic and tumor suppressive roles through their catalytic deaminase domains, respectively. Using an exemplary target gene PODXL (podocalyxin-like), we demonstrate that the ADAR2-regulated recoding editing at codon 241 (His to Arg) confers a loss-of-function phenotype that neutralizes the tumorigenic ability of the unedited PODXL. CONCLUSIONS Our study highlights a major role for RNA editing in GC disease and progression, an observation potentially missed by previous next-generation sequencing analyses of GC focused on DNA alterations alone. Our findings also suggest new GC therapeutic opportunities through ADAR1 enzymatic inhibition or the potential restoration of ADAR2 activity.
Collapse
Affiliation(s)
- Tim Hon Man Chan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Aditi Qamra
- Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, Singapore,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Kar Tong Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Jing Guo
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Henry Yang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Lihua Qi
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Jaymie Siqi Lin
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Vanessa Hui En Ng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Yangyang Song
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Huiqi Hong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Su Ting Tay
- Cancer and Stem Cell Biology Program, Duke–National University of Singapore Graduate Medical School, Singapore
| | - Yujing Liu
- Cancer and Stem Cell Biology Program, Duke–National University of Singapore Graduate Medical School, Singapore,Singapore–Massachusetts Institute of Technology Alliance, Singapore
| | - Jeeyun Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Sun Yong Rha
- Yonsei Cancer Center, Seodaemun-gu, Seoul, South Korea
| | - Feng Zhu
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jimmy Bok Yan So
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Bin Tean Teh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore,Cancer and Stem Cell Biology Program, Duke–National University of Singapore Graduate Medical School, Singapore,Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, Singapore
| | - Khay Guan Yeoh
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore,Department of Gastroenterology and Hepatology, National University Health System, Singapore
| | - Steve Rozen
- Cancer and Stem Cell Biology Program, Duke–National University of Singapore Graduate Medical School, Singapore,Centre for Computational Biology, Duke–National University of Singapore Graduate Medical School, Singapore
| | - Daniel G. Tenen
- Cancer Science Institute of Singapore, National University of Singapore, Singapore,Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts
| | - Patrick Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore; Cancer and Stem Cell Biology Program, Duke-National University of Singapore Graduate Medical School, Singapore; Cellular and Molecular Research, National Cancer Centre, Singapore; Genome Institute of Singapore, Singapore.
| | - Leilei Chen
- Cancer Science Institute of Singapore, National University of Singapore, Singapore; Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
17
|
Rigo F, Seth PP, Bennett CF. Antisense oligonucleotide-based therapies for diseases caused by pre-mRNA processing defects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 825:303-52. [PMID: 25201110 DOI: 10.1007/978-1-4939-1221-6_9] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Before a messenger RNA (mRNA) is translated into a protein in the cytoplasm, its pre-mRNA precursor is extensively processed through capping, splicing and polyadenylation in the nucleus. Defects in the processing of pre-mRNAs due to mutations in RNA sequences often cause disease. Traditional small molecules or protein-based therapeutics are not well suited for correcting processing defects by targeting RNA. However, antisense oligonucleotides (ASOs) designed to bind RNA by Watson-Crick base pairing can target most RNA transcripts and have emerged as the ideal therapeutic agents for diseases that are caused by pre-mRNA processing defects. Here we review the diverse ASO-based mechanisms that can be exploited to modulate the expression of RNA. We also discuss how advancements in medicinal chemistry and a deeper understanding of the pharmacokinetic and toxicological properties of ASOs have enabled their use as therapeutic agents. We end by describing how ASOs have been used successfully to treat various pre-mRNA processing diseases in animal models.
Collapse
Affiliation(s)
- Frank Rigo
- Isis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA, USA,
| | | | | |
Collapse
|
18
|
Liu H, Ma CP, Chen YT, Schuyler SC, Chang KP, Tan BCM. Functional Impact of RNA editing and ADARs on regulation of gene expression: perspectives from deep sequencing studies. Cell Biosci 2014; 4:44. [PMID: 25949793 PMCID: PMC4422215 DOI: 10.1186/2045-3701-4-44] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 07/14/2014] [Indexed: 11/13/2022] Open
Abstract
Cells regulate gene expression at multiple levels leading to a balance between robustness and complexity within their proteome. One core molecular step contributing to this important balance during metazoan gene expression is RNA editing, such as the co-transcriptional recoding of RNA transcripts catalyzed by the adenosine deaminse acting on RNA (ADAR) family of enzymes. Understanding of the adenosine-to-inosine RNA editing process has been broadened considerably by the next generation sequencing (NGS) technology, which allows for in-depth demarcation of an RNA editome at nucleotide resolution. However, critical issues remain unresolved with regard to how RNA editing cooperates with other transcript-associated events to underpin regulated gene expression. Here we review the growing body of evidence, provided by recent NGS-based studies, that links RNA editing to other mechanisms of post-transcriptional RNA processing and gene expression regulation including alternative splicing, transcript stability and localization, and the biogenesis and function of microRNAs (miRNAs). We also discuss the possibility that systematic integration of NGS data may be employed to establish the rules of an “RNA editing code”, which may give us new insights into the functional consequences of RNA editing.
Collapse
Affiliation(s)
- Hsuan Liu
- Graduate Institute of Biomedical Sciences, Tao-Yuan, Taiwan ; Department of Biochemistry, Tao-Yuan, Taiwan ; Molecular Medicine Research Center, Chang Gung University, Tao-Yuan, Taiwan
| | - Chung-Pei Ma
- Graduate Institute of Biomedical Sciences, Tao-Yuan, Taiwan
| | - Yi-Tung Chen
- Graduate Institute of Biomedical Sciences, Tao-Yuan, Taiwan
| | - Scott C Schuyler
- Graduate Institute of Biomedical Sciences, Tao-Yuan, Taiwan ; Department of Biomedical Sciences, College of Medicine, Tao-Yuan, Taiwan
| | - Kai-Ping Chang
- Molecular Medicine Research Center, Chang Gung University, Tao-Yuan, Taiwan ; Department of Otolaryngology, Chang Gung Memorial Hospital at Lin-Kuo, Tao-Yuan, Taiwan
| | - Bertrand Chin-Ming Tan
- Graduate Institute of Biomedical Sciences, Tao-Yuan, Taiwan ; Department of Biomedical Sciences, College of Medicine, Tao-Yuan, Taiwan ; Molecular Medicine Research Center, Chang Gung University, Tao-Yuan, Taiwan
| |
Collapse
|
19
|
Bestas B, Moreno PMD, Blomberg KEM, Mohammad DK, Saleh AF, Sutlu T, Nordin JZ, Guterstam P, Gustafsson MO, Kharazi S, Piątosa B, Roberts TC, Behlke MA, Wood MJA, Gait MJ, Lundin KE, El Andaloussi S, Månsson R, Berglöf A, Wengel J, Smith CIE. Splice-correcting oligonucleotides restore BTK function in X-linked agammaglobulinemia model. J Clin Invest 2014; 124:4067-81. [PMID: 25105368 DOI: 10.1172/jci76175] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 07/03/2014] [Indexed: 11/17/2022] Open
Abstract
X-linked agammaglobulinemia (XLA) is an inherited immunodeficiency that results from mutations within the gene encoding Bruton's tyrosine kinase (BTK). Many XLA-associated mutations affect splicing of BTK pre-mRNA and severely impair B cell development. Here, we assessed the potential of antisense, splice-correcting oligonucleotides (SCOs) targeting mutated BTK transcripts for treating XLA. Both the SCO structural design and chemical properties were optimized using 2'-O-methyl, locked nucleic acid, or phosphorodiamidate morpholino backbones. In order to have access to an animal model of XLA, we engineered a transgenic mouse that harbors a BAC with an authentic, mutated, splice-defective human BTK gene. BTK transgenic mice were bred onto a Btk knockout background to avoid interference of the orthologous mouse protein. Using this model, we determined that BTK-specific SCOs are able to correct aberrantly spliced BTK in B lymphocytes, including pro-B cells. Correction of BTK mRNA restored expression of functional protein, as shown both by enhanced lymphocyte survival and reestablished BTK activation upon B cell receptor stimulation. Furthermore, SCO treatment corrected splicing and restored BTK expression in primary cells from patients with XLA. Together, our data demonstrate that SCOs can restore BTK function and that BTK-targeting SCOs have potential as personalized medicine in patients with XLA.
Collapse
|
20
|
Qiao JJ, Chan THM, Qin YR, Chen L. ADAR1: a promising new biomarker for esophageal squamous cell carcinoma? Expert Rev Anticancer Ther 2014; 14:865-8. [PMID: 24928581 DOI: 10.1586/14737140.2014.928595] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Esophageal Squamous Cell Carcinoma (ESCC) is a heterogeneous tumor with enormous genetic and epigenetic changes. RNA editing is an epigenetic mechanism that serves as an additional layer of 'RNA mutations' in parallel to DNA mutations. The most frequent type of RNA editing, A-to-I (adenosine-to-inosine) editing catalyzed by Adenosine DeAminase that act on RNA (ADARs), modulates RNA transcripts with profound impact on cellular functions. RNA editing dysregulation has been found to be associated with cancers. Our recent study demonstrated that among all the three RNA editing enzymes, only ADAR1 was overexpressed in primary ESCCs compared with matched non-tumor specimens. In this review, we will discuss current views on the involvement of abnormal A-to-I editing in cancer development, more specifically on the ADAR1-mediated editing in ESCC. Although much is not yet learned about the role of ADAR1 in ESCC, ADAR1 may present an attractive option as a new biomarker for ESCC and as a new molecular therapeutic target.
Collapse
Affiliation(s)
- Jun-Jing Qiao
- Department of Clinical Oncology, the First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | | | | | | |
Collapse
|
21
|
Vogel P, Schneider MF, Wettengel J, Stafforst T. Chemisch modifizierte guideRNAs verbessern die ortsgerichtete RNA-Editierung in vitro und in Zellkultur. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201402634] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
22
|
Vogel P, Schneider MF, Wettengel J, Stafforst T. Improving Site-Directed RNA Editing In Vitro and in Cell Culture by Chemical Modification of the GuideRNA. Angew Chem Int Ed Engl 2014; 53:6267-71. [DOI: 10.1002/anie.201402634] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Indexed: 12/20/2022]
|
23
|
Avesson L, Barry G. The emerging role of RNA and DNA editing in cancer. Biochim Biophys Acta Rev Cancer 2014; 1845:308-16. [PMID: 24607277 DOI: 10.1016/j.bbcan.2014.03.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 01/25/2014] [Accepted: 03/01/2014] [Indexed: 12/22/2022]
Abstract
UNLABELLED Nucleotide sequence modification through single base editing in animals is emerging as an important player in tumorigenesis. RNA editing especially has increased greatly during mammalian evolution and modulates diverse cellular functions presumably in a context-dependent manner. Sequence editing impacts development, including pluripotency and hematopoiesis, and multiple recent studies have shown that dysregulation of editing is associated with tumor biology. Much is yet to be learned about the role of sequence editing in human biology but this process is a critical modulator of cell regulation and may present an attractive option for therapeutic intervention in cancer in the future. SIGNIFICANCE Sequence editing provides an additional regulatory layer of cancer initiation and progression that may be amenable to therapeutic design. Although editing of both RNA and DNA substrates has been known to occur for some time, the extent and implications of these modifications have been grossly underappreciated until recent genome-wide and disease-association studies were reported. This review highlights the cellular processes controlled by sequence editing, their implications in normal and cancerous states and considers potential targeted therapeutic strategies.
Collapse
Affiliation(s)
- Lotta Avesson
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| | - Guy Barry
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia.
| |
Collapse
|
24
|
Gambari R. Peptide nucleic acids: a review on recent patents and technology transfer. Expert Opin Ther Pat 2014; 24:267-94. [PMID: 24405414 DOI: 10.1517/13543776.2014.863874] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION DNA/RNA-based drugs are considered of major interest in molecular diagnosis and nonviral gene therapy. In this field, peptide nucleic acids (PNAs, DNA analogs in which the sugar-phosphate backbone is replaced by N-(2-aminoethyl)glycine units or similar building blocks) have been demonstrated to be excellent candidates as diagnostic reagents and biodrugs. AREAS COVERED Recent (2002 - 2013) patents based on studies on development of PNA analogs, delivery systems for PNAs, applications of PNAs in molecular diagnosis, and use of PNA for innovative therapeutic protocols. EXPERT OPINION PNAs are unique reagents in molecular diagnosis and have been proven to be very active and specific for alteration of gene expression, despite the fact that solubility and uptake by target cells can be limiting factors. Accordingly, patents on PNAs have taken in great consideration delivery strategies. PNAs have been proven stable and effective in vivo, despite the fact that possible long-term toxicity should be considered. For possible clinical applications, the use of PNA molecules in combination with drugs already employed in therapy has been suggested. Considering the patents available and the results on in vivo testing on animal models, we expect in the near future relevant PNA-based clinical trials.
Collapse
Affiliation(s)
- Roberto Gambari
- University of Ferrara, Department of Life Sciences and Biotechnology, Biochemistry and Molecular Biology Section , Via Fossato di Mortara n.74, 44100 Ferrara , Italy +39 532 974443 ; +39 532 974500 ;
| |
Collapse
|
25
|
Li JB, Church GM. Deciphering the functions and regulation of brain-enriched A-to-I RNA editing. Nat Neurosci 2013; 16:1518-22. [PMID: 24165678 DOI: 10.1038/nn.3539] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 09/11/2013] [Indexed: 01/14/2023]
Abstract
Adenosine-to-inosine (A-to-I) RNA editing, in which genomically encoded adenosine is changed to inosine in RNA, is catalyzed by adenosine deaminase acting on RNA (ADAR). This fine-tuning mechanism is critical during normal development and diseases, particularly in relation to brain functions. A-to-I RNA editing has also been hypothesized to be a driving force in human brain evolution. A large number of RNA editing sites have recently been identified, mostly as a result of the development of deep sequencing and bioinformatic analyses. Deciphering the functional consequences of RNA editing events is challenging, but emerging genome engineering approaches may expedite new discoveries. To understand how RNA editing is dynamically regulated, it is imperative to construct a spatiotemporal atlas at the species, tissue and cell levels. Future studies will need to identify the cis and trans regulatory factors that drive the selectivity and frequency of RNA editing. We anticipate that recent technological advancements will aid researchers in acquiring a much deeper understanding of the functions and regulation of RNA editing.
Collapse
Affiliation(s)
- Jin Billy Li
- Department of Genetics, Stanford University, Stanford, California, USA
| | | |
Collapse
|
26
|
Penn AC, Balik A, Greger IH. Reciprocal regulation of A-to-I RNA editing and the vertebrate nervous system. Front Neurosci 2013; 7:61. [PMID: 23616744 PMCID: PMC3629306 DOI: 10.3389/fnins.2013.00061] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 04/02/2013] [Indexed: 12/30/2022] Open
Abstract
The fine control of molecules mediating communication in the nervous system is key to adjusting neuronal signaling during development and in maintaining the stability of established networks in the face of altered sensory input. To prevent the culmination of pathological recurrent network excitation or debilitating periods of quiescence, adaptive alterations occur in the signaling molecules and ion channels that control membrane excitability and synaptic transmission. However, rather than encoding (and thus "hardwiring") modified gene copies, the nervous systems of metazoa have opted for expanding on post-transcriptional pre-mRNA splicing by altering key encoded amino acids using a conserved mechanism of A-to-I RNA editing: the enzymatic deamination of adenosine to inosine. Inosine exhibits similar base-pairing properties to guanosine with respect to tRNA codon recognition, replication by polymerases, and RNA secondary structure (i.e.,: forming-capacity). In addition to recoding within the open reading frame, adenosine deamination also occurs with high frequency throughout the non-coding transcriptome, where it affects multiple aspects of RNA metabolism and gene expression. Here, we describe the recoding function of key RNA editing targets in the mammalian central nervous system and their potential to be regulated. We will then discuss how interactions of A-to-I editing with gene expression and alternative splicing could play a wider role in regulating the neuronal transcriptome. Finally, we will highlight the increasing complexity of this multifaceted control hub by summarizing new findings from high-throughput studies.
Collapse
Affiliation(s)
- Andrew C Penn
- Interdisciplinary Institute for Neuroscience, Université de Bordeaux, UMR 5297 Bordeaux, France ; CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297 Bordeaux, France
| | | | | |
Collapse
|