1
|
Xie W, Kong Y, Ren C, Wen Y, Ying M, Xing H. Chemistries on the inner leaflet of the cell membrane. Chem Commun (Camb) 2025; 61:2387-2402. [PMID: 39810742 DOI: 10.1039/d4cc05186f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The cell membrane, characterized by its inherent asymmetry, functions as a dynamic barrier that regulates numerous cellular activities. This Highlight aims to provide the chemistry community with a comprehensive overview of the intriguing and underexplored inner leaflet, encompassing both fundamental biology and emerging synthetic modification strategies. We begin by describing the asymmetric nature of the plasma membrane, with a focus on the distinct roles of lipids, proteins, and glycan chains, highlighting the composition and biofunctions of the inner leaflet and the biological mechanisms that sustain membrane asymmetry. Next, we explore chemical biological strategies for engineering the inner leaflet, including genetic engineering, transmembrane peptides, and liposome fusion-based transport. In the perspective section, we discuss the challenges in developing chemistries for the inner leaflet of the cell membrane, aiming to inspire researchers and collaborators to explore this field and address its unanswered biological questions.
Collapse
Affiliation(s)
- Wenxue Xie
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| | - Yuhan Kong
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| | - Cong Ren
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| | - Yujian Wen
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| | | | - Hang Xing
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
- Research Institute of Hunan University in Chongqing, Chongqing, 401100, China
| |
Collapse
|
2
|
Reshetnyak YK, Andreev OA, Engelman DM. Aiming the magic bullet: targeted delivery of imaging and therapeutic agents to solid tumors by pHLIP peptides. Front Pharmacol 2024; 15:1355893. [PMID: 38545547 PMCID: PMC10965573 DOI: 10.3389/fphar.2024.1355893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/05/2024] [Indexed: 11/11/2024] Open
Abstract
The family of pH (Low) Insertion Peptides (pHLIP) comprises a tumor-agnostic technology that uses the low pH (or high acidity) at the surfaces of cells within the tumor microenvironment (TME) as a targeted biomarker. pHLIPs can be used for extracellular and intracellular delivery of a variety of imaging and therapeutic payloads. Unlike therapeutic delivery targeted to specific receptors on the surfaces of particular cells, pHLIP targets cancer, stromal and some immune cells all at once. Since the TME exhibits complex cellular crosstalk interactions, simultaneous targeting and delivery to different cell types leads to a significant synergistic effect for many agents. pHLIPs can also be positioned on the surfaces of various nanoparticles (NPs) for the targeted intracellular delivery of encapsulated payloads. The pHLIP technology is currently advancing in pre-clinical and clinical applications for tumor imaging and treatment.
Collapse
Affiliation(s)
- Yana K. Reshetnyak
- Physics Department, University of Rhode Island, Kingston, RI, United States
| | - Oleg A. Andreev
- Physics Department, University of Rhode Island, Kingston, RI, United States
| | - Donald M. Engelman
- Molecular Biophysics and Biochemistry Department, Yale, New Haven, CT, United States
| |
Collapse
|
3
|
Bauer D, Visca H, Weerakkody A, Carter LM, Samuels Z, Kaminsky S, Andreev OA, Reshetnyak YK, Lewis JS. PET Imaging of Acidic Tumor Environment With 89Zr-labeled pHLIP Probes. Front Oncol 2022; 12:882541. [PMID: 35664740 PMCID: PMC9160799 DOI: 10.3389/fonc.2022.882541] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Acidosis of the tumor microenvironment is a hallmark of tumor progression and has emerged as an essential biomarker for cancer diagnosis, prognosis, and evaluation of treatment response. A tool for quantitatively visualizing the acidic tumor environment could significantly advance our understanding of the behavior of aggressive tumors, improving patient management and outcomes. 89Zr-labeled pH-low insertion peptides (pHLIP) are a class of radiopharmaceutical imaging probes for the in vivo analysis of acidic tumor microenvironments via positron emission tomography (PET). Their unique structure allows them to sense and target acidic cancer cells. In contrast to traditional molecular imaging agents, pHLIP's mechanism of action is pH-dependent and does not rely on the presence of tumor-specific molecular markers. In this study, one promising acidity-imaging PET probe ([89Zr]Zr-DFO-Cys-Var3) was identified as a candidate for clinical translation.
Collapse
Affiliation(s)
- David Bauer
- Department of Radiology and the Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Hannah Visca
- Department of Physics, University of Rhode Island, Kingston, RI, United States
| | - Anuradha Weerakkody
- Department of Physics, University of Rhode Island, Kingston, RI, United States
| | - Lukas M. Carter
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Zachary Samuels
- Department of Radiology and the Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Spencer Kaminsky
- Department of Radiology and the Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Oleg A. Andreev
- Department of Physics, University of Rhode Island, Kingston, RI, United States
| | - Yana K. Reshetnyak
- Department of Physics, University of Rhode Island, Kingston, RI, United States
| | - Jason S. Lewis
- Department of Radiology and the Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Department of Radiology, Weill Cornell Medical College, New York, NY, United States
- Department of Pharmacology Program, Weill Cornell Medical College, New York, NY, United States
| |
Collapse
|
4
|
Chen SY, Xu XX, Li X, Yi NB, Li SZ, Xiang XC, Cheng DB, Sun T. Recent advances in the intracellular delivery of macromolecule therapeutics. Biomater Sci 2022; 10:6642-6655. [DOI: 10.1039/d2bm01348g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review summarizes the uptake pathway of intracellular delivery vehicles for macromolecule therapeutics, and provides in-depth discussions and prospects about intracellular delivery of macromolecule therapeutics.
Collapse
Affiliation(s)
- Si-Yi Chen
- School of Chemistry, Chemical Engineering & Life Science, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan, 430070, PR China
| | - Xiao-Xue Xu
- School of Chemistry, Chemical Engineering & Life Science, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan, 430070, PR China
| | - Xin Li
- School of Chemistry, Chemical Engineering & Life Science, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan, 430070, PR China
| | - Ning-Bo Yi
- School of Chemistry, Chemical Engineering & Life Science, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan, 430070, PR China
| | - Shi-Zhuo Li
- School of Chemistry, Chemical Engineering & Life Science, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan, 430070, PR China
| | - Xing-Cheng Xiang
- School of Chemistry, Chemical Engineering & Life Science, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan, 430070, PR China
| | - Dong-Bing Cheng
- School of Chemistry, Chemical Engineering & Life Science, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan, 430070, PR China
| | - Taolei Sun
- School of Chemistry, Chemical Engineering & Life Science, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan, 430070, PR China
| |
Collapse
|
5
|
Chen YH, Yu MM, Wang ZG. Inhibition of MDA-MB-231 cell proliferation by pHLIP(Var7)-P1AP and SPECT imaging of MDA-MB-231 breast cancer-bearing nude mice using 125I-pHLIP(Var7)-P1AP. Nuklearmedizin 2021; 60:240-248. [PMID: 33759146 DOI: 10.1055/a-1307-1923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AIM To observe the effect of pHLIP(Var7)-P1AP on the proliferation of MDA-MB-231 triple-negative breast cancer cells and the small-animal single-photon-emission computed tomography (SPECT) imaging of breast cancer-bearing mice carrying MDA-MB-231 cells. METHODS Peptide pHLIP(Var7)-P1AP was synthesized by solid-phase peptide synthesis. The binding of fluorescently labeled pHLIP(Var7)-P1AP to MDA-MB-231 cells under various pH conditions and its effect on MDA-MB-231 cell proliferation were analyzed. pHLIP(Var7)-P1AP was labeled with 125I, and the biological distribution of 125I-pHLIP(Var7)-P1AP in the breast cancer mouse model carrying MDA-MB-231 cells as well as the outcome of small-animal SPECT imaging were evaluated. RESULTS pHLIP(Var7)-P1AP was successfully synthesized. Under pH 6.0, fluorescently labeled pHLIP(Var7)-P1AP had a higher binding ability to MDA-MB-231 cells and significantly inhibited the proliferation of MDA-MB-231 cells. The labeling efficiency of pHLIP(Var7)-P1AP with 125I was 33.1 ± 2.7 %, and the radiochemical purity was 98.5 ± 1.8 %. 125I-pHLIP(Var7)-P1AP showed a high concentration in tumors. Small-animal SPECT imaging showed clearly visible tumors at 4 h after injection. CONCLUSIONS In the acidic environment, pHLIP(Var7)-P1AP can efficiently target MDA-MB-231 cells and inhibit their growth. Small-animal SPECT of 125I-pHLIP(Var7)-P1AP can clearly image tumors.
Collapse
Affiliation(s)
- Yue Hua Chen
- Intensive Care Unit, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ming Ming Yu
- Nuclear Medicine Department, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhen Guang Wang
- Nuclear Medicine Department, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
6
|
An Experimental Study on [ 125I]I-pHLIP (Var7) for SPECT/CT Imaging of an MDA-MB-231 Triple-Negative Breast Cancer Mouse Model by Targeting the Tumor Microenvironment. Mol Imaging 2021; 2021:5565932. [PMID: 33746628 PMCID: PMC7953584 DOI: 10.1155/2021/5565932] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 01/15/2021] [Indexed: 12/19/2022] Open
Abstract
Objective To evaluate the diagnostic efficacy of MDA-MB-231 triple-negative breast cancer with 125I-labeled pHLIP (Var7) by single-photon emission computed tomography/computed tomography (SPECT/CT) imaging. Methods The binding fraction of [125I]I-pHLIP (Var7) and MDA-MB-231 cells was measured at pH 7.4 and pH 6.0, and tumor-bearing mice were subjected to small-animal SPECT/CT imaging studies. Results At pH = 6.0, the binding fractions of [125I]I-pHLIP (Var7) and MDA-MB-231 cells at 10 min, 40 min, 1 h, and 2 h were 1.9 ± 0.1%, 3.5 ± 0.1%, 6.3 ± 0.8%, and 6.6 ± 0.3%, respectively. At pH = 7.4, there was no measured binding between [125I]I-pHLIP (Var7) and MDA-MB-231 cells. Small-animal SPECT/CT imaging showed clearly visible tumors at 1 and 2 h after injection. Conclusions [125I]I-pHLIP (Var7) could bind to MDA-MB-231 cells in an acidic environment, and small-animal SPECT/CT imaging showed clear tumors at 1 and 2 h after probe injection.
Collapse
|
7
|
Pharmacokinetic modeling reveals parameters that govern tumor targeting and delivery by a pH-Low Insertion Peptide (pHLIP). Proc Natl Acad Sci U S A 2021; 118:2016605118. [PMID: 33443162 PMCID: PMC7817199 DOI: 10.1073/pnas.2016605118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Tumors exhibit an acidic extracellular microenvironment that is accentuated at cell surfaces. As a result, they can be targeted by a pH-Low Insertion Peptide (pHLIP), an acid-triggered tumor-targeting peptide that can also serve as a vehicle for drug delivery. In this work, we use a pharmacokinetic modeling approach to deepen our understanding of the mechanisms and factors that influence pHLIP tumor targeting and delivery, and also identify factors that do not. In so doing, we predict pHLIP phenotypes with significantly enhanced capabilities. The model may therefore be useful for guiding the future development of pHLIP variants. A pH-Low Insertion Peptide (pHLIP) is a pH-sensitive peptide that undergoes membrane insertion, resulting in transmembrane helix formation, on exposure to acidity at a tumor cell surface. As a result, pHLIPs preferentially accumulate within tumors and can be used for tumor-targeted imaging and drug delivery. Here we explore the determinants of pHLIP insertion, targeting, and delivery through a computational modeling approach. We generate a simple mathematical model to describe the transmembrane insertion process and then integrate it into a pharmacokinetic model, which predicts the tumor vs. normal tissue biodistribution of the most studied pHLIP, “wild-type pHLIP,” over time after a single intravenous injection. From these models, we gain insight into the various mechanisms behind pHLIP tumor targeting and delivery, as well as the various biological parameters that influence it. Furthermore, we analyze how changing the properties of pHLIP can influence the efficacy of tumor targeting and delivery, and we predict the properties for optimal pHLIP phenotypes that have superior tumor targeting and delivery capabilities compared with wild-type pHLIP.
Collapse
|
8
|
Yu M, Chen Y, Wang Z, Ding X. pHLIP(Var7)-P1AP suppresses tumor cell proliferation in MDA-MB-231 triple-negative breast cancer by targeting protease activated receptor 1. Breast Cancer Res Treat 2020; 180:379-384. [PMID: 32034579 PMCID: PMC7066270 DOI: 10.1007/s10549-020-05560-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 01/31/2020] [Indexed: 01/17/2023]
Abstract
PURPOSE Protease-activated receptor 1 (PAR1) is a signaling protein ubiquitously present on the surface of tumor cells, and its homologous protein fragment, PAR1-activating peptide (P1AP), can inhibit protein signal transduction of PAR1/G in tumor cells. pH (Low) insertion peptide (pHLIP) can target the acidic tumor microenvironment (TME) and can be used as an excellent carrier to deliver P1AP to tumor cells for therapeutic purposes. METHODS PAR1 expression on the surface of MDA-MB-231 cells and human MCF10A mammary epithelial cells was observed. The binding between fluorescent-labeled pHLIP(Var7)-P1AP and MDA-MB-231 cells under different pH values was analyzed. The effect of pHLIP(Var7)-P1AP on the proliferation of MDA-MB-231 cells was analyzed under the conditions of pH 7.4 and 6.0. RESULTS PAR1 was highly expressed on the surface of MDA-MB-231 cells. In an acidic environment (pH 6.0 and 5.0), fluorescent-labeled pHLIP(Var7)-P1AP and MDA-MB-231 cells had a high binding ability, and the binding ability increased with the decrease in pH. In an acidic environment (pH 6.0), pHLIP(Var7)-P1AP significantly inhibited MDA-MB-231 cell proliferation. With 0.5 μg, 1 μg, 2 μg, 4 μg, and 8 μg of pHLIP(Var7)-P1AP, the cell proliferation inhibition rates were 3.39%, 5.27%, 14.29%, 22.14%, and 35.69%, respectively. CONCLUSION PAR1 was highly expressed on the surface of MDA-MB-231 cells. pHLIP(Var7)-P1AP can effectively target MDA-MB-231 cells in an acidic environment and inhibit the growth of MDA-MB-231 cells by inhibiting the signal transduction of PAR1/G protein.
Collapse
Affiliation(s)
- MingMing Yu
- Department of Nuclear Medicine, The Affiliated Hospital of Qingdao University, No. 59, Haier Rd., Qingdao, 266100, China
| | - YueHua Chen
- Intensive Care Unit, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - ZhenGuang Wang
- Department of Nuclear Medicine, The Affiliated Hospital of Qingdao University, No. 59, Haier Rd., Qingdao, 266100, China.
| | - XiaoDong Ding
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
9
|
Svoronos AA, Bahal R, Pereira MC, Barrera FN, Deacon JC, Bosenberg M, DiMaio D, Glazer PM, Engelman DM. Tumor-Targeted, Cytoplasmic Delivery of Large, Polar Molecules Using a pH-Low Insertion Peptide. Mol Pharm 2020; 17:461-471. [PMID: 31855437 DOI: 10.1021/acs.molpharmaceut.9b00883] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Tumor-targeted drug delivery systems offer not only the advantage of an enhanced therapeutic index, but also the possibility of overcoming the limitations that have largely restricted drug design to small, hydrophobic, "drug-like" molecules. Here, we explore the ability of a tumor-targeted delivery system centered on the use of a pH-low insertion peptide (pHLIP) to directly deliver moderately polar, multi-kDa molecules into tumor cells. A pHLIP is a short, pH-responsive peptide capable of inserting across a cell membrane to form a transmembrane helix at acidic pH. pHLIPs target the acidic tumor microenvironment with high specificity, and a drug attached to the inserting end of a pHLIP can be translocated across the cell membrane during the insertion process. We investigate the ability of wildtype pHLIP to deliver peptide nucleic acid (PNA) cargoes of varying sizes across lipid membranes. We find that pHLIP effectively delivers PNAs up to ∼7 kDa into cells in a pH-dependent manner. In addition, pHLIP retains its tumor-targeting capabilities when linked to cargoes of this size, although the amount delivered is reduced for PNA cargoes greater than ∼6 kDa. As drug-like molecules are traditionally restricted to sizes of ∼500 Da, this constitutes an order-of-magnitude expansion in the size range of deliverable drug candidates.
Collapse
Affiliation(s)
| | - Raman Bahal
- Department of Pharmaceutical Sciences , University of Connecticut , Storrs , Connecticut 06269 , United States
| | - Mohan C Pereira
- Department of Science & Mathematics , Cedarville University , Cedarville , Ohio 45314 , United States
| | - Francisco N Barrera
- Department of Biochemistry & Cellular and Molecular Biology , University of Tennessee , Knoxville , Tennessee 37996 , United States
| | | | | | | | | | | |
Collapse
|
10
|
Vasquez-Montes V, Gerhart J, Thévenin D, Ladokhin AS. Divalent Cations and Lipid Composition Modulate Membrane Insertion and Cancer-Targeting Action of pHLIP. J Mol Biol 2019; 431:5004-5018. [PMID: 31689432 PMCID: PMC6920566 DOI: 10.1016/j.jmb.2019.10.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 10/24/2019] [Accepted: 10/24/2019] [Indexed: 02/06/2023]
Abstract
The pH-Low Insertion Peptide (pHLIP) has emerged as an important tool for targeting cancer cells; it has been assumed that its targeting mechanism depends solely on the mild acidic environment surrounding tumors. Here, we examine the role of Ca2+ and Mg2+ on pHLIP's insertion, cellular targeting, and drug delivery. We demonstrate that physiologically relevant concentrations of either cation can shift the protonation-dependent transition by up to several pH units toward basic pH and induce substantial protonation-independent transmembrane insertion of pHLIP at pH as high as 10. Consistent with these results, the ability of pHLIP to deliver the cytotoxic compound monomethyl-auristatin-F to HeLa cells is increased several fold in presence of Ca2+. Complementary measurements with model membranes confirmed this Ca2+/Mg2+-dependent membrane-insertion mechanism. The magnitude of this alternative Ca2+/Mg2+-dependent effect is also modulated by lipid composition-specifically by the presence of phosphatidylserine-providing new clues to pHLIP's unique tumor-targeting ability in vivo. These results exemplify the complex coupling between protonation of anionic residues and lipid-selective targeting by divalent cations, which is relevant to the general signaling on membrane interfaces.
Collapse
Affiliation(s)
- Victor Vasquez-Montes
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Janessa Gerhart
- Department of Chemistry, Lehigh University, 6 East Packer Avenue, Bethlehem, PA, 18015, USA
| | - Damien Thévenin
- Department of Chemistry, Lehigh University, 6 East Packer Avenue, Bethlehem, PA, 18015, USA
| | - Alexey S Ladokhin
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| |
Collapse
|
11
|
Roberts S, Strome A, Choi C, Andreou C, Kossatz S, Brand C, Williams T, Bradbury M, Kircher MF, Reshetnyak YK, Grimm J, Lewis JS, Reiner T. Acid specific dark quencher QC1 pHLIP for multi-spectral optoacoustic diagnoses of breast cancer. Sci Rep 2019; 9:8550. [PMID: 31189972 PMCID: PMC6561946 DOI: 10.1038/s41598-019-44873-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 05/20/2019] [Indexed: 12/29/2022] Open
Abstract
Breast cancer is the most common type of malignant growth in women. Early detection of breast cancer, as well as the identification of possible metastatic spread poses a significant challenge because of the structural and genetic heterogeneity that occurs during the progression of the disease. Currently, mammographies, biopsies and MRI scans are the standard of care techniques used for breast cancer diagnosis, all of which have their individual shortfalls, especially when it comes to discriminating tumors and benign growths. With this in mind, we have developed a non-invasive optoacoustic imaging strategy that targets the acidic environment of breast cancer. A pH low insertion peptide (pHLIP) was conjugated to the dark quencher QC1, yielding a non-fluorescent sonophore with high extinction coefficient in the near infrared that increases signal as a function of increasing amounts of membrane insertion. In an orthotopic murine breast cancer model, pHLIP-targeted optoacoustic imaging allowed us to differentiate between healthy and breast cancer tissues with high signal/noise ratios. In vivo, the sonophore QC1-pHLIP could detect malignancies at higher contrast than its fluorescent analog ICG-pHLIP, which was developed for fluorescence-guided surgical applications. PHLIP-type optoacoustic imaging agents in clinical settings are attractive due to their ability to target breast cancer and a wide variety of other malignant growths for diagnostic purposes. Intuitively, these agents could also be used for visualization during surgery.
Collapse
Affiliation(s)
- Sheryl Roberts
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York, 10065, USA
| | - Arianna Strome
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York, 10065, USA
| | - Crystal Choi
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York, 10065, USA
| | - Chrysafis Andreou
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York, 10065, USA
| | - Susanne Kossatz
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York, 10065, USA
| | - Christian Brand
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York, 10065, USA
| | - Travis Williams
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York, 10065, USA
| | - Michelle Bradbury
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York, 10065, USA.,Molecular Pharmacology Program, Sloan Kettering Institute for Cancer Research, New York, New York, 10065, USA
| | - Moritz F Kircher
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York, 10065, USA.,Molecular Pharmacology Program, Sloan Kettering Institute for Cancer Research, New York, New York, 10065, USA.,Center for Molecular Imaging and Nanotechnology (CMINT), Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.,Department of Radiology, Weill Cornell Medical College, 1300 York Avenue, New York, New York, 10065, USA.,Department of Imaging, Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA 02215, USA
| | - Yana K Reshetnyak
- Department of Physics, University of Rhode Island, 2 Lippitt Rd, Kingston, RI, 02881, USA
| | - Jan Grimm
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York, 10065, USA.,Department of Radiology, Weill Cornell Medical College, 1300 York Avenue, New York, New York, 10065, USA.,Department of Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Department of Pharmacology, Weill Cornell Medical College, New York, NY, USA
| | - Jason S Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York, 10065, USA.,Department of Radiology, Weill Cornell Medical College, 1300 York Avenue, New York, New York, 10065, USA.,Department of Pharmacology, Weill Cornell Medical College, New York, NY, USA.,Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Radiochemistry and Molecular Imaging Probes Core, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Thomas Reiner
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York, 10065, USA. .,Department of Radiology, Weill Cornell Medical College, 1300 York Avenue, New York, New York, 10065, USA. .,Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York City, NY, 10065, United States.
| |
Collapse
|
12
|
Karabadzhak AG, Weerakkody D, Deacon J, Andreev OA, Reshetnyak YK, Engelman DM. Bilayer Thickness and Curvature Influence Binding and Insertion of a pHLIP Peptide. Biophys J 2019; 114:2107-2115. [PMID: 29742404 DOI: 10.1016/j.bpj.2018.03.036] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 01/30/2018] [Accepted: 03/05/2018] [Indexed: 11/15/2022] Open
Abstract
The physical properties of lipid bilayers, such as curvature and fluidity, can affect the interactions of polypeptides with membranes, influencing biological events. Additionally, given the growing interest in peptide-based therapeutics, understanding the influence of membrane properties on membrane-associated peptides has potential utility. pH low insertion peptides (pHLIPs) are a family of water-soluble peptides that can insert across cell membranes in a pH-dependent manner, enabling the use of pH to follow peptide-lipid interactions. Here we study pHLIP interactions with liposomes varying in size and composition, to determine the influence of several key membrane physical properties. We find that pHLIP binding to bilayer surfaces at neutral pH is governed by the ease of access to the membrane's hydrophobic core, which can be facilitated by membrane curvature, thickness, and the cholesterol content of the membrane. After surface binding, if the pH is lowered, the kinetics of pHLIP folding to form a helix and subsequent insertion across the membrane depends on the fluidity and energetic dynamics of the membrane. We showed that pHLIP is capable of forming a helix across lipid bilayers of different thicknesses at low pH. However, the kinetics of the slow phase of insertion corresponding to the translocation of C-terminal end of the peptide across lipid bilayer, vary approximately twofold, and correlate with bilayer thickness and fluidity. Although these influences are not large, local curvature variations in membranes of different fluidity could selectively influence surface binding in mixed cell populations.
Collapse
Affiliation(s)
- Alexander G Karabadzhak
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut
| | | | - John Deacon
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut
| | - Oleg A Andreev
- Physics Department, University of Rhode Island, Kingston, Rhode Island
| | - Yana K Reshetnyak
- Physics Department, University of Rhode Island, Kingston, Rhode Island.
| | - Donald M Engelman
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut.
| |
Collapse
|
13
|
Kalmouni M, Al-Hosani S, Magzoub M. Cancer targeting peptides. Cell Mol Life Sci 2019; 76:2171-2183. [PMID: 30877335 PMCID: PMC11105397 DOI: 10.1007/s00018-019-03061-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 02/08/2019] [Accepted: 03/07/2019] [Indexed: 12/19/2022]
Abstract
Despite continuing advances in the development of biomacromolecules for therapeutic purposes, successful application of these often large and hydrophilic molecules has been hindered by their inability to efficiently traverse the cellular plasma membrane. In recent years, cell-penetrating peptides (CPPs) have received considerable attention as a promising class of delivery vectors due to their ability to mediate the efficient import of a large number of cargoes in vitro and in vivo. However, the lack of target specificity of CPPs remains a major obstacle to their clinical development. To address this issue, researchers have developed strategies in which chemotherapeutic drugs are conjugated to cancer targeting peptides (CTPs) that exploit the unique characteristics of the tumor microenvironment or cancer cells, thereby improving cancer cell specificity. This review highlights several of these strategies that are currently in use, and discusses how multi-component nanoparticles conjugated to CTPs can be designed to provide a more efficient cancer therapeutic delivery strategy.
Collapse
Affiliation(s)
- Mona Kalmouni
- Biology Program, New York University Abu Dhabi, PO Box 129188, Saadiyat Island Campus, Abu Dhabi, United Arab Emirates
| | - Sumaya Al-Hosani
- Biology Program, New York University Abu Dhabi, PO Box 129188, Saadiyat Island Campus, Abu Dhabi, United Arab Emirates
| | - Mazin Magzoub
- Biology Program, New York University Abu Dhabi, PO Box 129188, Saadiyat Island Campus, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
14
|
Olson MT, Ly QP, Mohs AM. Fluorescence Guidance in Surgical Oncology: Challenges, Opportunities, and Translation. Mol Imaging Biol 2019; 21:200-218. [PMID: 29942988 PMCID: PMC6724738 DOI: 10.1007/s11307-018-1239-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Surgical resection continues to function as the primary treatment option for most solid tumors. However, the detection of cancerous tissue remains predominantly subjective and reliant on the expertise of the surgeon. Surgery that is guided by fluorescence imaging has shown clinical relevance as a new approach to detecting the primary tumor, tumor margins, and metastatic lymph nodes. It is a technique to reduce recurrence and increase the possibility of a curative resection. While significant progress has been made in developing this emerging technology as a tool to assist the surgeon, further improvements are still necessary. Refining imaging agents and tumor targeting strategies to be a precise and reliable surgical strategy is essential in order to translate this technology into patient care settings. This review seeks to provide a comprehensive update on the most recent progress of fluorescence-guided surgery and its translation into the clinic. By highlighting the current status and recent developments of fluorescence image-guided surgery in the field of surgical oncology, we aim to offer insight into the challenges and opportunities that require further investigation.
Collapse
Affiliation(s)
- Madeline T Olson
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Quan P Ly
- Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Aaron M Mohs
- Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 5-12315 Scott Research Tower, Omaha, NE, 68198, USA.
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
15
|
Ji T, Lang J, Ning B, Qi F, Wang H, Zhang Y, Zhao R, Yang X, Zhang L, Li W, Shi X, Qin Z, Zhao Y, Nie G. Enhanced Natural Killer Cell Immunotherapy by Rationally Assembling Fc Fragments of Antibodies onto Tumor Membranes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1804395. [PMID: 30549110 DOI: 10.1002/adma.201804395] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 11/04/2018] [Indexed: 06/09/2023]
Abstract
Recent advances in cancer immunotherapy have exploited the efficient potential of natural killer (NK) cells to kill tumor cells through antibody-dependent cell-mediated cytotoxicity (ADCC). However, this therapeutic strategy is seriously limited by tumor antigen heterogeneity since antibodies can only recognize specific antigens. In this work, modified antibodies or their Fc fragments that can target solid tumors without the necessity of specific antigen presentation on tumors are developed. Briefly, Fc fragments or therapeutic monoclonal antibodies are conjugated with the N-terminus of pH low insertion peptide so that they will selectively assemble onto the membrane of solid tumor cells via the conformational transformation of the peptide by responding to the acidic tumor microenvironment. The inserted Fc fragments or antibodies can efficiently activate NK cells, initiating ADCC and killing multiple types of tumor cells, including antigen-negative cancer cells. In vivo therapeutic results also exhibit significant efficacy on both primary solid tumors and tumor metastasis. These modified Fc fragments and antibodies present strong potential to overcome the limitation of tumor antigen heterogeneity, broadening the applications of NK cell immunotherapy on solid tumor treatment.
Collapse
Affiliation(s)
- Tianjiao Ji
- The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, China
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
- University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China
| | - Jiayan Lang
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
- University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China
- Sino-Danish Center for Education and Research/Sino-Danish College of UCAS, Beijing, 100190, China
| | - Bo Ning
- Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Feifei Qi
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
- University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China
| | - Hui Wang
- CAS Key Laboratory of Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Yinlong Zhang
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
- University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China
| | - Ruifang Zhao
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
- University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China
| | - Xiao Yang
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
- University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China
| | - Lijing Zhang
- The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, China
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
- University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China
| | - Wei Li
- International Joint Cancer Institute, The Second Military Medical University, Shanghai, 200433, China
| | - Xinghua Shi
- CAS Key Laboratory of Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Zhihai Qin
- The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, China
| | - Ying Zhao
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
- University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China
| | - Guangjun Nie
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
- University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China
| |
Collapse
|
16
|
Burns KE, Delehanty JB. Cellular delivery of doxorubicin mediated by disulfide reduction of a peptide-dendrimer bioconjugate. Int J Pharm 2018; 545:64-73. [PMID: 29709616 DOI: 10.1016/j.ijpharm.2018.04.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 04/08/2018] [Accepted: 04/13/2018] [Indexed: 02/07/2023]
Abstract
In this study, we developed a peptide-dendrimer-drug conjugate system for the pH-triggered direct cytosolic delivery of the cancer chemotherapeutic doxorubicin (DOX) using the pH Low Insertion Peptide (pHLIP). We synthesized a pHLIP-dendrimer-DOX conjugate in which a single copy of pHLIP displayed a generation three dendrimer bearing multiple copies of DOX via disulfide linkages. Biophysical analysis showed that both the dendrimer and a single DOX conjugate inserted into membrane bilayers in a pH-dependent manner. Time-resolved confocal microscopy indicate the single DOX conjugate may undergo a faster rate of membrane translocation, due to greater nuclear localization of DOX at 24 h and 48 h post delivery. At 72 h, however, the levels of DOX nuclear accumulation for both constructs were identical. Cytotoxicity assays revealed that both constructs mediated ∼80% inhibition of cellular proliferation at 10 µM, the dendrimer complex exhibited a 17% greater cytotoxic effect at lower concentrations and greater than three-fold improvement in IC50 over free DOX. Our findings show proof of concept that the dendrimeric display of DOX on the pHLIP carrier (1) facilitates the pH-dependent and temporally-controlled release of DOX to the cytosol, (2) eliminates the endosomal sequestration of the drug cargo, and (3) augments DOX cytotoxicity relative to the free drug.
Collapse
Affiliation(s)
- Kelly E Burns
- Center for Bio/Molecular Science and Engineering, U.S. Naval Research Laboratory, Code 6900, Washington DC 20375, United States; National Research Council, Washington DC 20001, United States
| | - James B Delehanty
- Center for Bio/Molecular Science and Engineering, U.S. Naval Research Laboratory, Code 6900, Washington DC 20375, United States.
| |
Collapse
|
17
|
Kydd J, Jadia R, Velpurisiva P, Gad A, Paliwal S, Rai P. Targeting Strategies for the Combination Treatment of Cancer Using Drug Delivery Systems. Pharmaceutics 2017; 9:E46. [PMID: 29036899 PMCID: PMC5750652 DOI: 10.3390/pharmaceutics9040046] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 10/01/2017] [Accepted: 10/10/2017] [Indexed: 12/20/2022] Open
Abstract
Cancer cells have characteristics of acquired and intrinsic resistances to chemotherapy treatment-due to the hostile tumor microenvironment-that create a significant challenge for effective therapeutic regimens. Multidrug resistance, collateral toxicity to normal cells, and detrimental systemic side effects present significant obstacles, necessitating alternative and safer treatment strategies. Traditional administration of chemotherapeutics has demonstrated minimal success due to the non-specificity of action, uptake and rapid clearance by the immune system, and subsequent metabolic alteration and poor tumor penetration. Nanomedicine can provide a more effective approach to targeting cancer by focusing on the vascular, tissue, and cellular characteristics that are unique to solid tumors. Targeted methods of treatment using nanoparticles can decrease the likelihood of resistant clonal populations of cancerous cells. Dual encapsulation of chemotherapeutic drug allows simultaneous targeting of more than one characteristic of the tumor. Several first-generation, non-targeted nanomedicines have received clinical approval starting with Doxil® in 1995. However, more than two decades later, second-generation or targeted nanomedicines have yet to be approved for treatment despite promising results in pre-clinical studies. This review highlights recent studies using targeted nanoparticles for cancer treatment focusing on approaches that target either the tumor vasculature (referred to as 'vascular targeting'), the tumor microenvironment ('tissue targeting') or the individual cancer cells ('cellular targeting'). Recent studies combining these different targeting methods are also discussed in this review. Finally, this review summarizes some of the reasons for the lack of clinical success in the field of targeted nanomedicines.
Collapse
Affiliation(s)
- Janel Kydd
- Department of Biomedical Engineering and Biotechnology, University of Massachusetts, 1 University Ave, Lowell, MA 01854, USA.
| | - Rahul Jadia
- Department of Biomedical Engineering and Biotechnology, University of Massachusetts, 1 University Ave, Lowell, MA 01854, USA.
| | - Praveena Velpurisiva
- Department of Biomedical Engineering and Biotechnology, University of Massachusetts, 1 University Ave, Lowell, MA 01854, USA.
| | - Aniket Gad
- Confocal Imaging Core, Beth Israel Deaconess Medical Center, 330 Brookline Avenue Boston, MA 02215, USA.
| | - Shailee Paliwal
- Department of Chemical Engineering, University of Massachusetts, 1 University Ave, Lowell, MA 01854, USA.
| | - Prakash Rai
- Department of Biomedical Engineering and Biotechnology, University of Massachusetts, 1 University Ave, Lowell, MA 01854, USA.
- Department of Chemical Engineering, University of Massachusetts, 1 University Ave, Lowell, MA 01854, USA.
| |
Collapse
|
18
|
Adochite RC, Moshnikova A, Golijanin J, Andreev OA, Katenka NV, Reshetnyak YK. Comparative Study of Tumor Targeting and Biodistribution of pH (Low) Insertion Peptides (pHLIP(®) Peptides) Conjugated with Different Fluorescent Dyes. Mol Imaging Biol 2017; 18:686-96. [PMID: 27074841 DOI: 10.1007/s11307-016-0949-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE Acidification of extracellular space promotes tumor development, progression, and invasiveness. pH (low) insertion peptides (pHLIP(®) peptides) belong to the class of pH-sensitive membrane peptides, which target acidic tumors and deliver imaging and/or therapeutic agents to cancer cells within tumors. PROCEDURES Ex vivo fluorescent imaging of tissue and organs collected at various time points after administration of different pHLIP(®) variants conjugated with fluorescent dyes of various polarity was performed. Methods of multivariate statistical analyses were employed to establish classification between fluorescently labeled pHLIP(®) variants in multidimensional space of spectral parameters. RESULTS The fluorescently labeled pHLIP(®) variants were classified based on their biodistribution profile and ability of targeting of primary tumors. Also, submillimeter-sized metastatic lesions in lungs were identified by ex vivo imaging after intravenous administration of fluorescent pHLIP(®) peptide. CONCLUSIONS Different cargo molecules conjugated with pHLIP(®) peptides can alter biodistribution and tumor targeting. The obtained knowledge is essential for the design of novel pHLIP(®)-based diagnostic and therapeutic agents targeting primary tumors and metastatic lesions.
Collapse
Affiliation(s)
| | - Anna Moshnikova
- Physics Department, University of Rhode Island, 2 Lippitt Road, Kingston, RI, 02881, USA
| | - Jovana Golijanin
- Physics Department, University of Rhode Island, 2 Lippitt Road, Kingston, RI, 02881, USA
| | - Oleg A Andreev
- Physics Department, University of Rhode Island, 2 Lippitt Road, Kingston, RI, 02881, USA
| | - Natallia V Katenka
- Department of Computer Sciences and Statistics, University of Rhode Island, 9 Greenhouse Road, Kingston, RI, 02881, USA
| | - Yana K Reshetnyak
- Physics Department, University of Rhode Island, 2 Lippitt Road, Kingston, RI, 02881, USA.
| |
Collapse
|
19
|
Heinzmann K, Carter LM, Lewis JS, Aboagye EO. Multiplexed imaging for diagnosis and therapy. Nat Biomed Eng 2017; 1:697-713. [PMID: 31015673 DOI: 10.1038/s41551-017-0131-8] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 08/02/2017] [Indexed: 12/12/2022]
Abstract
Complex molecular and metabolic phenotypes depict cancers as a constellation of different diseases with common themes. Precision imaging of such phenotypes requires flexible and tunable modalities capable of identifying phenotypic fingerprints by using a restricted number of parameters while ensuring sensitivity to dynamic biological regulation. Common phenotypes can be detected by in vivo imaging technologies, and effectively define the emerging standards for disease classification and patient stratification in radiology. However, for the imaging data to accurately represent a complex fingerprint, the individual imaging parameters need to be measured and analysed in relation to their wider spatial and molecular context. In this respect, targeted palettes of molecular imaging probes facilitate the detection of heterogeneity in oncogene-driven alterations and their response to treatment, and lead to the expansion of rational-design elements for the combination of imaging experiments. In this Review, we evaluate criteria for conducting multiplexed imaging, and discuss its opportunities for improving patient diagnosis and the monitoring of therapy.
Collapse
Affiliation(s)
- Kathrin Heinzmann
- Department of Surgery and Cancer, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Lukas M Carter
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Jason S Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Eric O Aboagye
- Department of Surgery and Cancer, Imperial College London, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
20
|
Applications of pHLIP Technology for Cancer Imaging and Therapy. Trends Biotechnol 2017; 35:653-664. [PMID: 28438340 DOI: 10.1016/j.tibtech.2017.03.014] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 03/24/2017] [Accepted: 03/29/2017] [Indexed: 12/14/2022]
Abstract
Acidity is a biomarker of cancer that is not subject to the blunting clonal selection effects that reduce the efficacy of other biomarker technologies, such as antibody targeting. The pH (low) insertion peptides (pHLIP®s) provide new opportunities for targeting acidic tissues. Through the physical mechanism of membrane-associated folding, pHLIPs are triggered by the acidic microenvironment to insert and span the membranes of tumor cells. The pHLIP platform can be applied to imaging acidic tissues, delivering cell-permeable and impermeable molecules to the cytoplasm, and promoting the cellular uptake of nanoparticles. Since acidosis is a hallmark of tumor development, progression, and aggressiveness, the pHLIP technology may prove useful in targeting cancer cells and metastases for tumor diagnosis, imaging, and therapy.
Collapse
|
21
|
Daniels JL, Crawford TM, Andreev OA, Reshetnyak YK. Synthesis and characterization of pHLIP ® coated gold nanoparticles. Biochem Biophys Rep 2017; 10:62-69. [PMID: 28955736 PMCID: PMC5614664 DOI: 10.1016/j.bbrep.2017.02.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/19/2017] [Accepted: 02/26/2017] [Indexed: 11/04/2022] Open
Abstract
Novel approaches in synthesis of spherical and multispiked gold nanoparticles coated with polyethylene glycol (PEG) and pH Low Insertion Peptide (pHLIP®) were introduced. The presence of a tumor-targeting pHLIP® peptide in the nanoparticle coating enhances the stability of particles in solution and promotes a pH-dependent cellular uptake. The spherical particles were prepared with sodium citrate as a gold reducing agent to form particles of 7.0±2.5 nm in mean metallic core diameter and ∼43 nm in mean hydrodynamic diameter. The particles that were injected into tumors in mice (21 µg of gold) were homogeneously distributed within a tumor mass with no staining of the muscle tissue adjacent to the tumor. Up to 30% of the injected gold dose remained within the tumor one hour post-injection. The multispiked gold nanoparticles with a mean metallic core diameter of 146.0±50.4 nm and a mean hydrodynamic size of ~161 nm were prepared using ascorbic acid as a reducing agent and disk-like bicelles as a template. Only the presence of a soft template, like bicelles, ensured the appearance of spiked nanoparticles with resonance in the near infrared region. The irradiation of spiked gold nanoparticles by an 805 nm laser led to the time- and concentration-dependent increase of temperature. Both pHLIP® and PEG coated gold spherical and multispiked nanoparticles might find application in radiation and thermal therapies of tumors. pHLIP®-PEG coated pH-sensitive gold spherical nanoparticles were synthesized. 30% of the injected gold dose remained within the tumor one hour post-injection. pHLIP®-PEG coated pH-sensitive gold multispiked nanoparticles were synthesized. Bicelles were used as a soft template to obtain multispiked nanoparticles. Temperature increases after 805 nm irradiation of spiked gold nanoparticles.
Collapse
Affiliation(s)
- Jennifer L Daniels
- Physics Department, University of Rhode Island, 2 Lippitt Rd., Kingston, RI 02881, USA
| | - Troy M Crawford
- Physics Department, University of Rhode Island, 2 Lippitt Rd., Kingston, RI 02881, USA
| | - Oleg A Andreev
- Physics Department, University of Rhode Island, 2 Lippitt Rd., Kingston, RI 02881, USA
| | - Yana K Reshetnyak
- Physics Department, University of Rhode Island, 2 Lippitt Rd., Kingston, RI 02881, USA
| |
Collapse
|
22
|
Burns KE, Hensley H, Robinson MK, Thévenin D. Therapeutic Efficacy of a Family of pHLIP-MMAF Conjugates in Cancer Cells and Mouse Models. Mol Pharm 2017; 14:415-422. [PMID: 28048942 DOI: 10.1021/acs.molpharmaceut.6b00847] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The targeting of therapeutics specifically to diseased tissue is crucial for the development of successful cancer treatments. The approach here is based on the pH(low) insertion peptide (pHLIP) for the delivery of a potent mitotic inhibitor monomethyl auristatin F (MMAF). We investigated six pHLIP variants conjugated to MMAF to compare their efficacy in vitro against cultured cancer cells. While all pHLIP-MMAF conjugates exhibit potent pH- and concentration-dependent killing, their cytotoxicity profiles are remarkably different. We also show that the lead conjugate exhibits significant therapeutic efficacy in mouse models without overt toxicities. This study confirms pHLIP-monomethyl auristatin conjugates as possible new therapeutic options for cancer treatment and supports their further development.
Collapse
Affiliation(s)
- Kelly E Burns
- Department of Chemistry, Lehigh University , 6 East Packer Avenue, Bethlehem, Pennsylvania 18015, United States
| | - Harvey Hensley
- Molecular Therapeutics Program, Fox Chase Cancer Center , 333 Cottman Avenue, Philadelphia, Pennsylvania 19111, United States
| | - Matthew K Robinson
- Molecular Therapeutics Program, Fox Chase Cancer Center , 333 Cottman Avenue, Philadelphia, Pennsylvania 19111, United States
| | - Damien Thévenin
- Department of Chemistry, Lehigh University , 6 East Packer Avenue, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
23
|
Oh KI, Smith-Dupont KB, Markiewicz BN, Gai F. Kinetics of peptide folding in lipid membranes. Biopolymers 2016; 104:281-90. [PMID: 25808575 DOI: 10.1002/bip.22640] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 02/12/2015] [Accepted: 02/14/2015] [Indexed: 12/31/2022]
Abstract
Despite our extensive understanding of water-soluble protein folding kinetics, much less is known about the folding dynamics and mechanisms of membrane proteins. However, recent studies have shown that for relatively simple systems, such as peptides that form a transmembrane α-helix, helical dimer, or helix-turn-helix, it is possible to assess the kinetics of several important steps, including peptide binding to the membrane from aqueous solution, peptide folding on the membrane surface, helix insertion into the membrane, and helix-helix association inside the membrane. Herein, we provide a brief review of these studies and also suggest new initiation and probing methods that could lead to improved temporal and structural resolution in future experiments.
Collapse
Affiliation(s)
- Kwang-Im Oh
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104
| | - Kathryn B Smith-Dupont
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | | | - Feng Gai
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
24
|
Abstract
We have developed a way to measure cell surface pH by positioning a pH-sensitive fluorescent dye, seminaphtharhodafluor (SNARF), conjugated to the pH low insertion peptide (pHLIP). It has been observed that many diseased tissues are acidic and that tumors are especially so. A combination of effects acidifies tumor cell interiors, and cells pump out lactic acid and protons to maintain intracellular pH, acidifying the extracellular space. Overexpression of carbonic anhydrases on cell surfaces further contributes to acidification. Thus, the pH near tumor cell surfaces is expected to be low and to increase with distance from the membrane, so bulk pH measurements will not report surface acidity. Our new surface pH-measurement tool was validated in cancer cells grown in spheroids, in mouse tumor models in vivo, and in excised tumors. We found that the surface pH is sensitive to cell glycolytic activity: the pH decreases in high glucose and increases if glucose is replaced with nonmetabolized deoxyglucose. For highly metastatic cancer cells, the pH measured at the surface was 6.7-6.8, when the surrounding external pH was 7.4. The approach is sensitive enough to detect 0.2-0.3 pH unit changes in vivo in tumors induced by i.p. injection of glucose. The pH at the surfaces of highly metastatic cells within tumors was found to be about 6.1-6.4, whereas in nonmetastatic tumors, it was 6.7-6.9, possibly creating a way to distinguish more aggressive from less aggressive tumors. Other biological roles of surface acidity may be found, now that targeted measurements are possible.
Collapse
|
25
|
A pH-Driven and photoresponsive nanocarrier: Remotely-controlled by near-infrared light for stepwise antitumor treatment. Biomaterials 2016; 79:25-35. [DOI: 10.1016/j.biomaterials.2015.11.049] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 11/29/2015] [Indexed: 02/07/2023]
|
26
|
Dubovskii PV, Vassilevski AA, Kozlov SA, Feofanov AV, Grishin EV, Efremov RG. Latarcins: versatile spider venom peptides. Cell Mol Life Sci 2015; 72:4501-22. [PMID: 26286896 PMCID: PMC11113828 DOI: 10.1007/s00018-015-2016-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 08/05/2015] [Accepted: 08/06/2015] [Indexed: 12/14/2022]
Abstract
Arthropod venoms feature the presence of cytolytic peptides believed to act synergetically with neurotoxins to paralyze prey or deter aggressors. Many of them are linear, i.e., lack disulfide bonds. When isolated from the venom, or obtained by other means, these peptides exhibit common properties. They are cationic; being mostly disordered in aqueous solution, assume amphiphilic α-helical structure in contact with lipid membranes; and exhibit general cytotoxicity, including antifungal, antimicrobial, hemolytic, and anticancer activities. To suit the pharmacological needs, the activity spectrum of these peptides should be modified by rational engineering. As an example, we provide a detailed review on latarcins (Ltc), linear cytolytic peptides from Lachesana tarabaevi spider venom. Diverse experimental and computational techniques were used to investigate the spatial structure of Ltc in membrane-mimicking environments and their effects on model lipid bilayers. The antibacterial activity of Ltc was studied against a panel of Gram-negative and Gram-positive bacteria. In addition, the action of Ltc on erythrocytes and cancer cells was investigated in detail with confocal laser scanning microscopy. In the present review, we give a critical account of the progress in the research of Ltc. We explore the relationship between Ltc structure and their biological activity and derive molecular characteristics, which can be used for optimization of other linear peptides. Current applications of Ltc and prospective use of similar membrane-active peptides are outlined.
Collapse
Affiliation(s)
- Peter V Dubovskii
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya, Moscow, 117997, Russia.
| | - Alexander A Vassilevski
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya, Moscow, 117997, Russia
| | - Sergey A Kozlov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya, Moscow, 117997, Russia
| | - Alexey V Feofanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya, Moscow, 117997, Russia
- Biological Faculty, M.V. Lomonosov Moscow State University, 1 Leninskie Gory, Moscow, 119234, Russia
| | - Eugene V Grishin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya, Moscow, 117997, Russia
| | - Roman G Efremov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya, Moscow, 117997, Russia
- Higher School of Economics, 20 Myasnitskaya, Moscow, 101000, Russia
- Moscow Institute of Physics and Technology (State University), 9 Institutskiy per., Dolgoprudny, Moscow Region, 141700, Russia
| |
Collapse
|
27
|
Shu NS, Chung MS, Yao L, An M, Qiang W. Residue-specific structures and membrane locations of pH-low insertion peptide by solid-state nuclear magnetic resonance. Nat Commun 2015. [PMID: 26195283 PMCID: PMC4518304 DOI: 10.1038/ncomms8787] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The pH-low insertion peptide (pHLIP) binds to a membrane at pH 7.4 unstructured but folds across the bilayer as a transmembrane helix at pH∼6. Despite their promising applications as imaging probes and drug carriers that target cancer cells for cytoplasmic cargo delivery, the mechanism of pH modulation on pHLIP-membrane interactions has not been completely understood. Here, we show the first study on membrane-associated pHLIP using solid-state NMR spectroscopy. Data on residue-specific conformation and membrane location describe pHLIP in various surface-bound and membrane-inserted states at pH 7.4, 6.4 and 5.3. The critical membrane-adsorbed state is more complex than previously envisioned. At pH 6.4, for the major unstructured population, the peptide sinks deeper into the membrane in a state II′ that is distinct from the adsorbed state II observed at pH 7.4, which may enable pHLIP to sense slight change in acidity even before insertion. The pH-low insertion peptides (pHLIPs) respond to environmental pH variations by forming transmembrane α-helices. Here, the authors present the residue-specific structures and membrane locations of pHLIPs at different pH levels to probe the mechanism of their pH-dependant membrane insertion.
Collapse
Affiliation(s)
- Nicolas S Shu
- Department of Chemistry, State University of New York, Binghamton, New York 13902, USA
| | - Michael S Chung
- Department of Chemistry, State University of New York, Binghamton, New York 13902, USA
| | - Lan Yao
- Department of Physics, Applied Physics and Astronomy, State University of New York, Binghamton, New York 13902, USA
| | - Ming An
- Department of Chemistry, State University of New York, Binghamton, New York 13902, USA
| | - Wei Qiang
- Department of Chemistry, State University of New York, Binghamton, New York 13902, USA
| |
Collapse
|
28
|
Burns KE, Robinson MK, Thévenin D. Inhibition of cancer cell proliferation and breast tumor targeting of pHLIP-monomethyl auristatin E conjugates. Mol Pharm 2015; 12:1250-8. [PMID: 25741818 DOI: 10.1021/mp500779k] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Localized delivery is vital for the successful development of novel and effective therapeutics for the treatment of cancer. The targeting and delivery described herein is based on the pH (low) insertion peptide (pHLIP), a unique delivery peptide that can selectively target tumors in mice and translocate and release cargo molecules intracellularly based solely on the low extracellular pH intrinsic to cancer cells. In this study, we investigate the efficacy of pHLIP to target and deliver the highly potent and clinically validated microtubule inhibitor monomethyl auristatin E (MMAE) to cancer cells and breast tumors. We show that pHLIP-MMAE conjugates induce a potent cytotoxic effect (>90% inhibition of cell growth) in a concentration- and pH-dependent manner after only 2 h incubation without any apparent disruption of the plasma membrane. pHLIP-MMAE conjugates exhibit between an 11- and 144-fold higher antiproliferative effect at low pH than that at physiological pH and a pronounced pH-dependent cytotoxicity as compared to that of free drug. Furthermore, we demonstrate that a pHLIP-MMAE drug conjugate effectively targets triple-negative breast tumor xenografts in mice. These results indicate that pHLIP-based auristatin conjugates may have an enhanced therapeutic window as compared to that of free drug, providing a targeting mechanism to attenuate systemic toxicity.
Collapse
Affiliation(s)
- Kelly E Burns
- †Department of Chemistry, Lehigh University, 6 East Packer Avenue, Bethlehem, Pennsylvania 18015, United States
| | - Matthew K Robinson
- ‡Molecular Therapeutics Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, Pennsylvania 19111, United States
| | - Damien Thévenin
- †Department of Chemistry, Lehigh University, 6 East Packer Avenue, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
29
|
Onyango JO, Chung MS, Eng CH, Klees LM, Langenbacher R, Yao L, An M. Noncanonical amino acids to improve the pH response of pHLIP insertion at tumor acidity. Angew Chem Int Ed Engl 2015; 54:3658-3663. [PMID: 25650762 DOI: 10.1002/anie.201409770] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Revised: 11/27/2014] [Indexed: 12/17/2022]
Abstract
The pH low insertion peptide (pHLIP) offers the potential to deliver drugs selectively to the cytoplasm of cancer cells based on tumor acidosis. The WT pHLIP inserts into membranes with a pH50 of 6.1, while most solid tumors have extracellular pH (pH(e)) of 6.5-7.0. To close this gap, a SAR study was carried out to search for pHLIP variants with improved pH response. Replacing Asp25 with α-aminoadipic acid (Aad) adjusts the pH50 to 6.74, matching average tumor acidity, and replacing Asp14 with γ-carboxyglutamic acid (Gla) increases the sharpness of pH response (transition over 0.5 instead of 1 pH unit). These effects are additive: the Asp14Gla/Asp25Aad double variant shows a pH50 of 6.79, with sharper transition than Asp25Aad. Furthermore, the advantage of the double variant over WT pHLIP in terms of cargo delivery was demonstrated in turn-on fluorescence assays and anti-proliferation studies (using paclitaxel as cargo) in A549 lung cancer cells at pH 6.6.
Collapse
Affiliation(s)
- Joab O Onyango
- Department of Chemistry, State University of New York (SUNY), Binghamton University P. O. Box 6000, Binghamton, NY 13902 (USA)
| | - Michael S Chung
- Department of Chemistry, State University of New York (SUNY), Binghamton University P. O. Box 6000, Binghamton, NY 13902 (USA)
| | - Chee-Huat Eng
- Department of Chemistry, State University of New York (SUNY), Binghamton University P. O. Box 6000, Binghamton, NY 13902 (USA)
| | - Lukas M Klees
- Department of Chemistry, State University of New York (SUNY), Binghamton University P. O. Box 6000, Binghamton, NY 13902 (USA)
| | - Rachel Langenbacher
- Department of Chemistry, State University of New York (SUNY), Binghamton University P. O. Box 6000, Binghamton, NY 13902 (USA)
| | - Lan Yao
- Department of Physics, Applied Physics and Astronomy State University of New York (SUNY), Binghamton University P. O. Box 6000, Binghamton, NY 13902 (USA)
| | - Ming An
- Department of Chemistry, State University of New York (SUNY), Binghamton University P. O. Box 6000, Binghamton, NY 13902 (USA)
| |
Collapse
|
30
|
Onyango JO, Chung MS, Eng CH, Klees LM, Langenbacher R, Yao L, An M. Noncanonical Amino Acids to Improve the pH Response of pHLIP Insertion at Tumor Acidity. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201409770] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
31
|
Deacon JC, Engelman DM, Barrera FN. Targeting acidity in diseased tissues: mechanism and applications of the membrane-inserting peptide, pHLIP. Arch Biochem Biophys 2014; 565:40-8. [PMID: 25444855 DOI: 10.1016/j.abb.2014.11.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 10/30/2014] [Accepted: 11/04/2014] [Indexed: 12/24/2022]
Abstract
pHLIPs are a family of soluble ∼36 amino acid peptides, which bind to membrane surfaces. If the environment is acidic, a pHLIP folds and inserts across the membrane to form a stable transmembrane helix, thus preferentially locating itself in acidic tissues. Since tumors and other disease tissues are acidic, pHLIPs' low-pH targeting behavior leads to applications as carriers for diagnostic and surgical imaging agents. The energy of membrane insertion can also be used to promote the insertion of modestly polar, normally cell-impermeable cargos across the cell membrane into the cytosol of targeted cells, leading to applications in tumor-targeted delivery of therapeutic molecules. We review the biochemical and biophysical basis of pHLIPs' unique properties, diagnostic and therapeutic applications, and the principles upon which translational applications are being developed.
Collapse
Affiliation(s)
- John C Deacon
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Donald M Engelman
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Francisco N Barrera
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|