1
|
Weiss MB, Borges RM, Sullivan P, Domingues JPB, da Silva FHS, Trindade VGS, Luo S, Orjala J, Crnkovic CM. Chemical diversity of cyanobacterial natural products. Nat Prod Rep 2025; 42:6-49. [PMID: 39540765 PMCID: PMC11948988 DOI: 10.1039/d4np00040d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Covering: 2010 to 2023Cyanobacterial natural products are a diverse group of molecules with promising biotechnological applications. This review examines the chemical diversity of 995 cyanobacterial metabolites reported from 2010 to 2023. A computational analysis using similarity networking was applied to visualize the chemical space and to compare the diversity of cyanobacterial metabolites among taxonomic orders and environmental sources. Key examples are highlighted, detailing their sources, biological activities, and discovery processes.
Collapse
Affiliation(s)
- Márcio B Weiss
- Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, CEP 05508-000, São Paulo, SP, Brazil.
| | - Ricardo M Borges
- Instituto de Pesquisas de Produtos Naturais Walter Mors, Universidade Federal do Rio de Janeiro, CEP 21941-599, Rio de Janeiro, RJ, Brazil
| | - Peter Sullivan
- Helmholtz Institute for Pharmaceutical Research Saarland, Saarland University, 66123, Saarbrücken, Germany
| | - João P B Domingues
- Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, CEP 05508-000, São Paulo, SP, Brazil.
| | - Francisco H S da Silva
- Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, CEP 05508-000, São Paulo, SP, Brazil.
| | - Victória G S Trindade
- Instituto de Pesquisas de Produtos Naturais Walter Mors, Universidade Federal do Rio de Janeiro, CEP 21941-599, Rio de Janeiro, RJ, Brazil
| | - Shangwen Luo
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Jimmy Orjala
- College of Pharmacy, University of Illinois at Chicago, 60612, Chicago, IL, USA
| | - Camila M Crnkovic
- Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, CEP 05508-000, São Paulo, SP, Brazil.
| |
Collapse
|
2
|
Overlingė D, Cegłowska M, Konkel R, Mazur-Marzec H. Aeruginosin 525 (AER525) from Cyanobacterium Aphanizomenon Sp. (KUCC C2): A New Serine Proteases Inhibitor. Mar Drugs 2024; 22:506. [PMID: 39590786 PMCID: PMC11595689 DOI: 10.3390/md22110506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/01/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
Aeruginosins (AERs) are one of the most common classes of cyanobacterial peptides synthesised through a hybrid non-ribosomal peptide synthase/polyketide synthase pathway. They have been found in Microcystis, Nodularia spumigena, Oscillatoria/Plantothrix, and Nostoc. The presence of AER in Aphanizomenon isolated from the Curonian Lagoon was reported for the first time in our previous work. Here, the structure of aeruginosin 525 (AER525), isolated from Aphanizomenon sp. KUCC C2, was characterised based on high-resolution mass spectrometry. This new AER variant shows potent activity against thrombin. It also inhibits trypsin and carboxypeptidase A but has no effect on elastase and chymotrypsin. In terms of the N-terminal residue and biological activity, AER525 displaces some similarity to dysinosins, which belongs to the most potent inhibitors of thrombin among AERs. The findings underline the potential of AER525 as a new anticoagulant agent.
Collapse
Affiliation(s)
- Donata Overlingė
- Marine Research Institute, Klaipėda University, Universiteto av. 17, LT-92294 Klaipėda, Lithuania
| | - Marta Cegłowska
- Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, PL-81712 Sopot, Poland;
| | - Robert Konkel
- Department of Marine Biology and Biotechnology, University of Gdańsk, M. J. Piłsudskiego 46, PL-81378 Gdynia, Poland; (R.K.); (H.M.-M.)
| | - Hanna Mazur-Marzec
- Department of Marine Biology and Biotechnology, University of Gdańsk, M. J. Piłsudskiego 46, PL-81378 Gdynia, Poland; (R.K.); (H.M.-M.)
| |
Collapse
|
3
|
Entfellner E, Baumann KBL, Edwards C, Kurmayer R. High Structural Diversity of Aeruginosins in Bloom-Forming Cyanobacteria of the Genus Planktothrix as a Consequence of Multiple Recombination Events. Mar Drugs 2023; 21:638. [PMID: 38132959 PMCID: PMC10744761 DOI: 10.3390/md21120638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023] Open
Abstract
Many compounds produced by cyanobacteria act as serine protease inhibitors, such as the tetrapeptides aeruginosins (Aer), which are found widely distributed. The structural diversity of Aer is intriguingly high. However, the genetic basis of this remains elusive. In this study, we explored the genetic basis of Aer synthesis among the filamentous cyanobacteria Planktothrix spp. In total, 124 strains, isolated from diverse freshwater waterbodies, have been compared regarding variability within Aer biosynthesis genes and the consequences for structural diversity. The high structural variability could be explained by various recombination processes affecting Aer synthesis, above all, the acquisition of accessory enzymes involved in post synthesis modification of the Aer peptide (e.g., halogenases, glycosyltransferases, sulfotransferases) as well as a large-range recombination of Aer biosynthesis genes, probably transferred from the bloom-forming cyanobacterium Microcystis. The Aer structural composition differed between evolutionary Planktothrix lineages, adapted to either shallow or deep waterbodies of the temperate climatic zone. Thus, for the first time among bloom-forming cyanobacteria, chemical diversification of a peptide family related to eco-evolutionary diversification has been described. It is concluded that various Aer peptides resulting from the recombination event act in chemical defense, possibly as a replacement for microcystins.
Collapse
Affiliation(s)
- Elisabeth Entfellner
- Research Department for Limnology, Universität Innsbruck, Mondseestrasse 9, 5310 Mondsee, Austria; (E.E.); (K.B.L.B.)
| | - Kathrin B. L. Baumann
- Research Department for Limnology, Universität Innsbruck, Mondseestrasse 9, 5310 Mondsee, Austria; (E.E.); (K.B.L.B.)
| | - Christine Edwards
- CyanoSol Research Group, Pharmacy & Life Sciences, Robert Gordon University, Aberdeen AB10 7GJ, UK;
| | - Rainer Kurmayer
- Research Department for Limnology, Universität Innsbruck, Mondseestrasse 9, 5310 Mondsee, Austria; (E.E.); (K.B.L.B.)
| |
Collapse
|
4
|
Heinilä LMP, Jokela J, Ahmed MN, Wahlsten M, Kumar S, Hrouzek P, Permi P, Koistinen H, Fewer DP, Sivonen K. Discovery of varlaxins, new aeruginosin-type inhibitors of human trypsins. Org Biomol Chem 2022; 20:2681-2692. [PMID: 35293909 DOI: 10.1039/d1ob02454j] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Low-molecular weight natural products display vast structural diversity and have played a key role in the development of novel therapeutics. Here we report the discovery of novel members of the aeruginosin family of natural products, which we named varlaxins. The chemical structures of varlaxins 1046A and 1022A were determined using a combination of mass spectrometry, analysis of one- and two-dimensional NMR spectra, and HPLC analysis of Marfey's derivatives. These analyses revealed that varlaxins 1046A and 1022A are composed of the following moieties: 2-O-methylglyceric acid 3-O-sulfate, isoleucine, 2-carboxy-6-hydroxyoctahydroindole (Choi), and a terminal arginine derivative. Varlaxins 1046A and 1022A differ in the cyclization of this arginine moiety. Interestingly, an unusual α-D-glucopyranose moiety derivatized with two 4-hydroxyphenylacetic acid residues was bound to Choi, a structure not previously reported for other members of the aeruginosin family. We sequenced the complete genome of Nostoc sp. UHCC 0870 and identified the putative 36 kb varlaxin biosynthetic gene cluster. Bioinformatics analysis confirmed that varlaxins belong to the aeruginosin family of natural products. Varlaxins 1046A and 1022A strongly inhibited the three human trypsin isoenzymes with IC50 of 0.62-3.6 nM and 97-230 nM, respectively, including a prometastatic trypsin-3, which is a therapeutically relevant target in several types of cancer. These results substantially broaden the genetic and chemical diversity of the aeruginosin family and provide evidence that the aeruginosin family is a source of strong inhibitors of human serine proteases.
Collapse
Affiliation(s)
- L M P Heinilä
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland.
| | - J Jokela
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland.
| | - M N Ahmed
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland. .,Department of Clinical Chemistry, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - M Wahlsten
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland.
| | - S Kumar
- Laboratory of Algal Biotechnology-Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czech Republic
| | - P Hrouzek
- Laboratory of Algal Biotechnology-Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czech Republic
| | - P Permi
- Department of Chemistry, University of Jyväskylä, Jyväskylä, Finland.,Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - H Koistinen
- Department of Clinical Chemistry, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - D P Fewer
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland.
| | - K Sivonen
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
5
|
Darcel L, Das S, Bonnard I, Banaigs B, Inguimbert N. Thirtieth Anniversary of the Discovery of Laxaphycins. Intriguing Peptides Keeping a Part of Their Mystery. Mar Drugs 2021; 19:md19090473. [PMID: 34564135 PMCID: PMC8471579 DOI: 10.3390/md19090473] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/16/2021] [Accepted: 08/20/2021] [Indexed: 12/27/2022] Open
Abstract
Lipopeptides are a class of compounds generally produced by microorganisms through hybrid biosynthetic pathways involving non-ribosomal peptide synthase and a polyketyl synthase. Cyanobacterial-produced laxaphycins are examples of this family of compounds that have expanded over the past three decades. These compounds benefit from technological advances helping in their synthesis and characterization, as well as in deciphering their biosynthesis. The present article attempts to summarize most of the articles that have been published on laxaphycins. The current knowledge on the ecological role of these complex sets of compounds will also be examined.
Collapse
|
6
|
Heinilä LMP, Fewer DP, Jokela JK, Wahlsten M, Ouyang X, Permi P, Jortikka A, Sivonen K. The structure and biosynthesis of heinamides A1-A3 and B1-B5, antifungal members of the laxaphycin lipopeptide family. Org Biomol Chem 2021; 19:5577-5588. [PMID: 34085692 DOI: 10.1039/d1ob00772f] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Laxaphycins are a family of cyclic lipopeptides with synergistic antifungal and antiproliferative activities. They are produced by multiple cyanobacterial genera and comprise two sets of structurally unrelated 11- and 12-residue macrocyclic lipopeptides. Here, we report the discovery of new antifungal laxaphycins from Nostoc sp. UHCC 0702, which we name heinamides, through antimicrobial bioactivity screening. We characterized the chemical structures of eight heinamide structural variants A1-A3 and B1-B5. These variants contain the rare non-proteinogenic amino acids 3-hydroxy-4-methylproline, 4-hydroxyproline, 3-hydroxy-d-leucine, dehydrobutyrine, 5-hydroxyl β-amino octanoic acid, and O-carbamoyl-homoserine. We obtained an 8.6-Mb complete genome sequence from Nostoc sp. UHCC 0702 and identified the 93 kb heinamide biosynthetic gene cluster. The structurally distinct heinamides A1-A3 and B1-B5 variants are synthesized using an unusual branching biosynthetic pathway. The heinamide biosynthetic pathway also encodes several enzymes that supply non-proteinogenic amino acids to the heinamide synthetase. Through heterologous expression, we showed that (2S,4R)-4-hydroxy-l-proline is supplied through the action of a novel enzyme LxaN, which hydroxylates l-proline. 11- and 12-residue heinamides have the characteristic synergistic activity of laxaphycins against Aspergillus flavus FBCC 2467. Structural and genetic information of heinamides may prove useful in future discovery of natural products and drug development.
Collapse
Affiliation(s)
| | - David Peter Fewer
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland.
| | - Jouni Kalevi Jokela
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland.
| | - Matti Wahlsten
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland.
| | - Xiaodan Ouyang
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland.
| | - Perttu Permi
- Department of Chemistry, University of Jyväskylä, Jyväskylä, Finland and Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Anna Jortikka
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland.
| | - Kaarina Sivonen
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
7
|
Zervou SK, Moschandreou K, Paraskevopoulou A, Christophoridis C, Grigoriadou E, Kaloudis T, Triantis TM, Tsiaoussi V, Hiskia A. Cyanobacterial Toxins and Peptides in Lake Vegoritis, Greece. Toxins (Basel) 2021; 13:toxins13060394. [PMID: 34205997 PMCID: PMC8230288 DOI: 10.3390/toxins13060394] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 01/13/2023] Open
Abstract
Cyanotoxins (CTs) produced by cyanobacteria in surface freshwater are a major threat for public health and aquatic ecosystems. Cyanobacteria can also produce a wide variety of other understudied bioactive metabolites such as oligopeptides microginins (MGs), aeruginosins (AERs), aeruginosamides (AEGs) and anabaenopeptins (APs). This study reports on the co-occurrence of CTs and cyanopeptides (CPs) in Lake Vegoritis, Greece and presents their variant-specific profiles obtained during 3-years of monitoring (2018–2020). Fifteen CTs (cylindrospermopsin (CYN), anatoxin (ATX), nodularin (NOD), and 12 microcystins (MCs)) and ten CPs (3 APs, 4 MGs, 2 AERs and aeruginosamide (AEG A)) were targeted using an extended and validated LC-MS/MS protocol for the simultaneous determination of multi-class CTs and CPs. Results showed the presence of MCs (MC-LR, MC-RR, MC-YR, dmMC-LR, dmMC-RR, MC-HtyR, and MC-HilR) and CYN at concentrations of <1 μg/L, with MC-LR (79%) and CYN (71%) being the most frequently occurring. Anabaenopeptins B (AP B) and F (AP F) were detected in almost all samples and microginin T1 (MG T1) was the most abundant CP, reaching 47.0 μg/L. This is the first report of the co-occurrence of CTs and CPs in Lake Vegoritis, which is used for irrigation, fishing and recreational activities. The findings support the need for further investigations of the occurrence of CTs and the less studied cyanobacterial metabolites in lakes, to promote risk assessment with relevance to human exposure.
Collapse
Affiliation(s)
- Sevasti-Kiriaki Zervou
- Laboratory of Photo-Catalytic Processes and Environmental Chemistry, Institute of Nanoscience & Nanotechnology, National Center for Scientific Research “Demokritos”, Patriarchou Grigoriou E & 27 Neapoleos Str, 15310 Agia Paraskevi, Athens, Greece; (S.-K.Z.); (A.P.); (C.C.); (T.K.); (T.M.T.)
| | - Kimon Moschandreou
- The Goulandris Natural History Museum—Greek Biotope/Wetland Centre, 14th km Thessaloniki-Mihaniona, Thermi P.O. Box 60394, 57001 Thessaloniki, Greece; (K.M.); (V.T.)
| | - Aikaterina Paraskevopoulou
- Laboratory of Photo-Catalytic Processes and Environmental Chemistry, Institute of Nanoscience & Nanotechnology, National Center for Scientific Research “Demokritos”, Patriarchou Grigoriou E & 27 Neapoleos Str, 15310 Agia Paraskevi, Athens, Greece; (S.-K.Z.); (A.P.); (C.C.); (T.K.); (T.M.T.)
| | - Christophoros Christophoridis
- Laboratory of Photo-Catalytic Processes and Environmental Chemistry, Institute of Nanoscience & Nanotechnology, National Center for Scientific Research “Demokritos”, Patriarchou Grigoriou E & 27 Neapoleos Str, 15310 Agia Paraskevi, Athens, Greece; (S.-K.Z.); (A.P.); (C.C.); (T.K.); (T.M.T.)
| | - Elpida Grigoriadou
- Water Resources Management Agency of West Macedonia, 50100 Kozani, Decentralized Administration of Epirus—Western Macedonia, Greece;
| | - Triantafyllos Kaloudis
- Laboratory of Photo-Catalytic Processes and Environmental Chemistry, Institute of Nanoscience & Nanotechnology, National Center for Scientific Research “Demokritos”, Patriarchou Grigoriou E & 27 Neapoleos Str, 15310 Agia Paraskevi, Athens, Greece; (S.-K.Z.); (A.P.); (C.C.); (T.K.); (T.M.T.)
| | - Theodoros M. Triantis
- Laboratory of Photo-Catalytic Processes and Environmental Chemistry, Institute of Nanoscience & Nanotechnology, National Center for Scientific Research “Demokritos”, Patriarchou Grigoriou E & 27 Neapoleos Str, 15310 Agia Paraskevi, Athens, Greece; (S.-K.Z.); (A.P.); (C.C.); (T.K.); (T.M.T.)
| | - Vasiliki Tsiaoussi
- The Goulandris Natural History Museum—Greek Biotope/Wetland Centre, 14th km Thessaloniki-Mihaniona, Thermi P.O. Box 60394, 57001 Thessaloniki, Greece; (K.M.); (V.T.)
| | - Anastasia Hiskia
- Laboratory of Photo-Catalytic Processes and Environmental Chemistry, Institute of Nanoscience & Nanotechnology, National Center for Scientific Research “Demokritos”, Patriarchou Grigoriou E & 27 Neapoleos Str, 15310 Agia Paraskevi, Athens, Greece; (S.-K.Z.); (A.P.); (C.C.); (T.K.); (T.M.T.)
- Correspondence:
| |
Collapse
|
8
|
Lage S, Mazur-Marzec H, Gorokhova E. Competitive interactions as a mechanism for chemical diversity maintenance in Nodularia spumigena. Sci Rep 2021; 11:8970. [PMID: 33903638 PMCID: PMC8076297 DOI: 10.1038/s41598-021-88361-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 04/12/2021] [Indexed: 02/06/2023] Open
Abstract
Nodularia spumigena is a bloom-forming diazotrophic cyanobacterium inhabiting brackish waters worldwide. This species produces non-ribosomal peptides (NRPs), including the hepatotoxin nodularin, often referred to as cyanotoxin. Several known classes of NRPs have various biological activities, although their modes of action are poorly understood. In the Baltic N. spumigena, there is a high NRP chemodiversity among strains, allowing their grouping in specific chemotypes and subgroups. Therefore, it is relevant to ask whether the NRP production is affected by intraspecific interactions between the co-existing strains. Using a novel approach that combines culture technique and liquid chromatography-tandem mass spectrometry for the NRP analysis, we examined N. spumigena strains under mono- and co-culture conditions. The test strains were selected to represent N. spumigena belonging to the same or different chemotype subgroups. In this setup, we observed physiological and metabolic responses in the test strains grown without cell contact. The changes in NRP levels to co-culture conditions were conserved within a chemotype subgroup but different between the subgroups. Our results suggest that intraspecific interactions may promote a chemical diversity in N. spumigena population, with higher NRP production compared to a single-strain population. Studying allelochemical signalling in this cyanobacterium is crucial for understanding toxicity mechanisms and plankton community interactions in the Baltic Sea and other aquatic systems experiencing regular blooms.
Collapse
Affiliation(s)
- Sandra Lage
- grid.10548.380000 0004 1936 9377Department of Environmental Science, Stockholm University, Stockholm, Sweden ,grid.8585.00000 0001 2370 4076Division of Marine Biotechnology, Institute of Oceanography, University of Gdańsk, Gdynia, Poland
| | - Hanna Mazur-Marzec
- grid.8585.00000 0001 2370 4076Division of Marine Biotechnology, Institute of Oceanography, University of Gdańsk, Gdynia, Poland
| | - Elena Gorokhova
- grid.10548.380000 0004 1936 9377Department of Environmental Science, Stockholm University, Stockholm, Sweden
| |
Collapse
|
9
|
Jacinavicius FR, Geraldes V, Crnkovic CM, Delbaje E, Fiore MF, Pinto E. Effect of ultraviolet radiation on the metabolomic profiles of potentially toxic cyanobacteria. FEMS Microbiol Ecol 2021; 97:6006873. [PMID: 33242088 DOI: 10.1093/femsec/fiaa243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 11/24/2020] [Indexed: 11/13/2022] Open
Abstract
Interactions between climate change and ultraviolet radiation (UVR) have a substantial impact on aquatic ecosystems, especially on photosynthetic organisms. To counteract the damaging effects of UVR, cyanobacteria developed adaptive strategies such as the biosynthesis of secondary metabolites. This study aimed to evaluate the effects of UVR on the metabolomic profiles of potentially toxic cyanobacteria. Twelve strains were irradiated with ultraviolet A and ultraviolet B radiation and parabolic aluminized reflector lamps for 3 days, followed by liquid chromatography-tandem mass spectometry (LC-MS/MS) analysis to assess changes in metabolomic profiles. Matrices were used to generate principal component analysis biplots, and molecular networks were obtained using the Global Natural Products platform. Most strains showed significant changes in their metabolomic profiles after UVR exposure. On average, 7% of MS features were shown to be exclusive to metabolomic profiles before UVR exposure, while 9% were unique to metabolomic profiles after UVR exposure. The identified compounds included aeruginosins, spumigins, cyanopeptolins, microginins, namalides, pseudospumigins, anabaenopeptins, mycosporine-like amino acids, nodularins and microcystins. Data showed that cyanobacteria display broad metabolic plasticity upon UVR exposure, including the synthesis and differential expression of a variety of secondary metabolites. This could result in a competitive advantage, supporting cyanobacterial blooms under various UVR light exposures.
Collapse
Affiliation(s)
| | - Vanessa Geraldes
- University of São Paulo, School of Pharmaceutical Sciences, São Paulo-SP, Brazil
| | - Camila M Crnkovic
- University of São Paulo, School of Pharmaceutical Sciences, São Paulo-SP, Brazil
| | - Endrews Delbaje
- University of São Paulo, Centre for Nuclear Energy in Agriculture, Piracicaba-SP, Brazil
| | - Marli F Fiore
- University of São Paulo, Centre for Nuclear Energy in Agriculture, Piracicaba-SP, Brazil
| | - Ernani Pinto
- University of São Paulo, School of Pharmaceutical Sciences, São Paulo-SP, Brazil.,University of São Paulo, Centre for Nuclear Energy in Agriculture, Piracicaba-SP, Brazil
| |
Collapse
|
10
|
Heinilä LMP, Fewer DP, Jokela JK, Wahlsten M, Jortikka A, Sivonen K. Shared PKS Module in Biosynthesis of Synergistic Laxaphycins. Front Microbiol 2020; 11:578878. [PMID: 33042096 PMCID: PMC7524897 DOI: 10.3389/fmicb.2020.578878] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 08/17/2020] [Indexed: 12/13/2022] Open
Abstract
Cyanobacteria produce a wide range of lipopeptides that exhibit potent membrane-disrupting activities. Laxaphycins consist of two families of structurally distinct macrocyclic lipopeptides that act in a synergistic manner to produce antifungal and antiproliferative activities. Laxaphycins are produced by range of cyanobacteria but their biosynthetic origins remain unclear. Here, we identified the biosynthetic pathways responsible for the biosynthesis of the laxaphycins produced by Scytonema hofmannii PCC 7110. We show that these laxaphycins, called scytocyclamides, are produced by this cyanobacterium and are encoded in a single biosynthetic gene cluster with shared polyketide synthase enzymes initiating two distinct non-ribosomal peptide synthetase pathways. The unusual mechanism of shared enzymes synthesizing two distinct types of products may aid future research in identifying and expressing natural product biosynthetic pathways and in expanding the known biosynthetic logic of this important family of natural products.
Collapse
Affiliation(s)
| | - David P Fewer
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Jouni Kalevi Jokela
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Matti Wahlsten
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Anna Jortikka
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Kaarina Sivonen
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| |
Collapse
|
11
|
Fewer DP, Metsä‐Ketelä M. A pharmaceutical model for the molecular evolution of microbial natural products. FEBS J 2019; 287:1429-1449. [DOI: 10.1111/febs.15129] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/11/2019] [Accepted: 11/05/2019] [Indexed: 12/20/2022]
Affiliation(s)
- David P. Fewer
- Department of Microbiology University of Helsinki Finland
| | | |
Collapse
|
12
|
Synthesis and Evaluation of Spumigin Analogues Library with Thrombin Inhibitory Activity. Mar Drugs 2018; 16:md16110413. [PMID: 30373260 PMCID: PMC6266488 DOI: 10.3390/md16110413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/19/2018] [Accepted: 10/25/2018] [Indexed: 01/10/2023] Open
Abstract
Spumigins are marine natural products derived from cyanobacteria Nodularia spumigena, which mimics the structure of the d-Phe-Pro-Arg sequence and is crucial for binding to the active site of serine proteases thrombin and factor Xa. Biological evaluation of spumigins showed that spumigins with a (2S,4S)-4-methylproline central core represent potential lead compounds for the development of a new structural type of direct thrombin inhibitors. Herein, we represent synthesis and thrombin inhibitory activity of a focused library of spumigins analogues with indoline ring or l-proline as a central core. Novel compounds show additional insight into the structure and biological effects of spumigins. The most active analogue was found to be a derivative containing l-proline central core with low micromolar thrombin inhibitory activity.
Collapse
|
13
|
Komor AJ, Jasniewski AJ, Que L, Lipscomb JD. Diiron monooxygenases in natural product biosynthesis. Nat Prod Rep 2018; 35:646-659. [PMID: 29552683 PMCID: PMC6051903 DOI: 10.1039/c7np00061h] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covering: up to 2017 The participation of non-heme dinuclear iron cluster-containing monooxygenases in natural product biosynthetic pathways has been recognized only recently. At present, two families have been discovered. The archetypal member of the first family, CmlA, catalyzes β-hydroxylation of l-p-aminophenylalanine (l-PAPA) covalently linked to the nonribosomal peptide synthetase (NRPS) CmlP, thereby effecting the first step in the biosynthesis of chloramphenicol by Streptomyces venezuelae. CmlA houses the diiron cluster in a metallo-β-lactamase protein fold instead of the 4-helix bundle fold of nearly every other diiron monooxygenase. CmlA couples O2 activation and substrate hydroxylation via a structural change caused by formation of the l-PAPA-loaded CmlP:CmlA complex. The other new diiron family is typified by two enzymes, AurF and CmlI, which catalyze conversion of aryl-amine substrates to aryl-nitro products with incorporation of oxygen from O2. AurF from Streptomyces thioluteus catalyzes the formation of p-nitrobenzoate from p-aminobenzoate as a precursor to the biostatic compound aureothin, whereas CmlI from S. venezuelae catalyzes the ultimate aryl-amine to aryl-nitro step in chloramphenicol biosynthesis. Both enzymes stabilize a novel type of peroxo-intermediate as the reactive species. The rare 6-electron N-oxygenation reactions of CmlI and AurF involve two progressively oxidized pathway intermediates. The enzymes optimize efficiency by utilizing one of the reaction pathway intermediates as an in situ reductant for the diiron cluster, while simultaneously generating the next pathway intermediate. For CmlI, this reduction allows mid-pathway regeneration of the peroxo intermediate required to complete the biosynthesis. CmlI ensures specificity by carrying out the multistep aryl-amine oxygenation without dissociating intermediate products.
Collapse
Affiliation(s)
- Anna J Komor
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | - Andrew J Jasniewski
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | - Lawrence Que
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | - John D Lipscomb
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| |
Collapse
|
14
|
Cegłowska M, Toruńska-Sitarz A, Kowalewska G, Mazur-Marzec H. Specific Chemical and Genetic Markers Revealed a Thousands-Year Presence of Toxic Nodularia spumigena in the Baltic Sea. Mar Drugs 2018; 16:md16040116. [PMID: 29617355 PMCID: PMC5923403 DOI: 10.3390/md16040116] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 03/29/2018] [Accepted: 04/03/2018] [Indexed: 01/07/2023] Open
Abstract
In the Baltic Sea, diazotrophic cyanobacteria have been present for thousands of years, over the whole brackish water phase of the ecosystem. However, our knowledge about the species composition of the cyanobacterial community is limited to the last several decades. In the current study, the presence of species-specific chemical and genetic markers in deep sediments were analyzed to increase the existing knowledge on the history of toxic Nodularia spumigena blooms in the Baltic Sea. As chemical markers, three cyclic nonribosomal peptides were applied: the hepatotoxic nodularin, which in the sea was detected solely in N. spumigena, and two anabaenopeptins (AP827 and AP883a) characteristic of two different chemotypes of this species. From the same sediment samples, DNA was isolated and the gene involved in biosynthesis of nodularin, as well as the phycocyanin intergenic spacer region (PC-IGS), were amplified. The results of chemical and genetic analyses proved for the first time the thousands-year presence of toxic N. spumigena in the Baltic Sea. They also indicated that through all this time, the same two sub-populations of the species co-existed.
Collapse
Affiliation(s)
- Marta Cegłowska
- Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, PL-81-727 Sopot, Poland.
| | - Anna Toruńska-Sitarz
- Division of Marine Biotechnology, Faculty of Oceanography and Geography, University of Gdańsk, Marszałka J. Płisudskiego 46, PL-81-378 Gdynia, Poland.
| | - Grażyna Kowalewska
- Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, PL-81-727 Sopot, Poland.
| | - Hanna Mazur-Marzec
- Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, PL-81-727 Sopot, Poland.
- Division of Marine Biotechnology, Faculty of Oceanography and Geography, University of Gdańsk, Marszałka J. Płisudskiego 46, PL-81-378 Gdynia, Poland.
| |
Collapse
|
15
|
Jokela J, Heinilä LMP, Shishido TK, Wahlsten M, Fewer DP, Fiore MF, Wang H, Haapaniemi E, Permi P, Sivonen K. Production of High Amounts of Hepatotoxin Nodularin and New Protease Inhibitors Pseudospumigins by the Brazilian Benthic Nostoc sp. CENA543. Front Microbiol 2017; 8:1963. [PMID: 29062311 PMCID: PMC5640712 DOI: 10.3389/fmicb.2017.01963] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 09/25/2017] [Indexed: 01/26/2023] Open
Abstract
Nostoc is a cyanobacterial genus, common in soils and a prolific producer of natural products. This research project aimed to explore and characterize Brazilian cyanobacteria for new bioactive compounds. Here we report the production of hepatotoxins and new protease inhibitors from benthic Nostoc sp. CENA543 isolated from a small, shallow, saline-alkaline lake in the Nhecolândia, Pantanal wetland area in Brazil. Nostoc sp. CENA543 produces exceptionally high amounts of nodularin-R. This is the first free-living Nostoc that produces nodularin at comparable levels as the toxic, bloom-forming, Nodularia spumigena. We also characterized pseudospumigins A-F, which are a novel family of linear tetrapeptides. Pseudospumigins are structurally related to linear tetrapeptide spumigins and aeruginosins both present in N. spumigena but differ in respect to their diagnostic amino acid, which is Ile/Leu/Val in pseudospumigins, Pro/mPro in spumigins, and Choi in aeruginosins. The pseudospumigin gene cluster is more similar to the spumigin biosynthetic gene cluster than the aeruginosin gene cluster. Pseudospumigin A inhibited trypsin (IC50 4.5 μM after 1 h) in a similar manner as spumigin E from N. spumigena but was almost two orders of magnitude less potent. This study identifies another location and environment where the hepatotoxic nodularin has the potential to cause the death of eukaryotic organisms.
Collapse
Affiliation(s)
- Jouni Jokela
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Lassi M P Heinilä
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Tânia K Shishido
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Matti Wahlsten
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - David P Fewer
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Marli F Fiore
- Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Hao Wang
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Esa Haapaniemi
- Department of Chemistry, University of Jyväskylä, Helsinki, Finland
| | - Perttu Permi
- Department of Chemistry, University of Jyväskylä, Helsinki, Finland.,Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Helsinki, Finland
| | - Kaarina Sivonen
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
16
|
Abstract
Covering: 2015. Previous review: Nat. Prod. Rep., 2016, 33, 382-431This review covers the literature published in 2015 for marine natural products (MNPs), with 1220 citations (792 for the period January to December 2015) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1340 in 429 papers for 2015), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that lead to the revision of structures or stereochemistries, have been included.
Collapse
Affiliation(s)
- John W Blunt
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Robert A Keyzers
- Centre for Biodiscovery, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Murray H G Munro
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | - Michèle R Prinsep
- Chemistry, School of Science, University of Waikato, Hamilton, New Zealand
| |
Collapse
|
17
|
Mazur-Marzec H, Bertos-Fortis M, Toruńska-Sitarz A, Fidor A, Legrand C. Chemical and Genetic Diversity of Nodularia spumigena from the Baltic Sea. Mar Drugs 2016; 14:md14110209. [PMID: 27834904 PMCID: PMC5128752 DOI: 10.3390/md14110209] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 10/26/2016] [Accepted: 11/02/2016] [Indexed: 12/31/2022] Open
Abstract
Nodularia spumigena is a toxic, filamentous cyanobacterium occurring in brackish waters worldwide, yet forms extensive recurrent blooms in the Baltic Sea. N. spumigena produces several classes of non-ribosomal peptides (NRPs) that are active against several key metabolic enzymes. Previously, strains from geographically distant regions showed distinct NRP metabolic profiles. In this work, conspecific diversity in N. spumigena was studied using chemical and genetic approaches. NRP profiles were determined in 25 N. spumigena strains isolated in different years and from different locations in the Baltic Sea using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Genetic diversity was assessed by targeting the phycocyanin intergenic spacer and flanking regions (cpcBA-IGS). Overall, 14 spumigins, 5 aeruginosins, 2 pseudaeruginosins, 2 nodularins, 36 anabaenopeptins, and one new cyanopeptolin-like peptide were identified among the strains. Seven anabaenopeptins were new structures; one cyanopeptolin-like peptide was discovered in N. spumigena for the first time. Based on NRP profiles and cpcBA-IGS sequences, the strains were grouped into two main clusters without apparent influence of year and location, indicating persistent presence of these two subpopulations in the Baltic Sea. This study is a major step in using chemical profiling to explore conspecific diversity with a higher resolution than with a sole genetic approach.
Collapse
Affiliation(s)
- Hanna Mazur-Marzec
- Department of Marine Biotechnology, University of Gdansk, Marszałka J. Piłusudskiego 46, 81378 Gdynia, Poland.
| | - Mireia Bertos-Fortis
- Department of Biology and Environmental Science, Center of Ecology and Evolution in Microbial Model Systems, Linnaeus University, 39182 Kalmar, Sweden.
| | - Anna Toruńska-Sitarz
- Department of Marine Biotechnology, University of Gdansk, Marszałka J. Piłusudskiego 46, 81378 Gdynia, Poland.
| | - Anna Fidor
- Department of Marine Biotechnology, University of Gdansk, Marszałka J. Piłusudskiego 46, 81378 Gdynia, Poland.
| | - Catherine Legrand
- Department of Biology and Environmental Science, Center of Ecology and Evolution in Microbial Model Systems, Linnaeus University, 39182 Kalmar, Sweden.
| |
Collapse
|
18
|
Berlinck RGS, Romminger S. The chemistry and biology of guanidine natural products. Nat Prod Rep 2016; 33:456-90. [DOI: 10.1039/c5np00108k] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The present review discusses the isolation, structure determination, synthesis, biosynthesis and biological activities of secondary metabolites bearing a guanidine group.
Collapse
Affiliation(s)
| | - Stelamar Romminger
- Instituto de Química de São Carlos
- Universidade de São Paulo
- São Carlos
- Brazil
| |
Collapse
|