1
|
Kawai S, Moriga K, Nirdnoy W, Hara R, Ogawa J, Katsuyama Y, Ohnishi Y. Identification of Two Distinct Stereoselective Lysine 5-Hydroxylases by Genome Mining Based on Alazopeptin Biosynthetic Enzymes. Chemistry 2025; 31:e202404790. [PMID: 39960436 PMCID: PMC11973848 DOI: 10.1002/chem.202404790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 02/17/2025] [Indexed: 03/01/2025]
Abstract
Enzymes that catalyze regioselective and stereoselective hydroxylation of amino acids are useful tools for the synthesis of pharmaceuticals. AzpK is an unprecedented lysine 5-hydroxylase that is involved in alazopeptin biosynthesis, although its enzymatic activity has not been confirmed in vitro. Here, we identified two α-ketoglutarate/Fe2+-dependent dioxygenases in Actinosynnema mirum and Pseudomonas psychrotolerans (Am_AzpK2 and Pp_AzpK2, respectively) as lysine 5-hydroxylases, using genome mining based on the alazopeptin biosynthetic gene cluster. Interestingly, Am_AzpK2 and Pp_AzpK2 synthesized different isomers, (2S,5S)- and (2S,5R)-5-hydroxylysine, respectively. We also identified two AzpJ homologs as the dehydrogenases that specifically recognize the hydroxy groups of (2S,5S)- and (2S,5R)-5-hydroxylysine to synthesize a keto group. These dehydrogenases were shown to be useful tools for characterizing the stereochemistry of 5-hydroxylysine and evaluating the activity of lysine 5-hydroxylases. Furthermore, we identified three lysine 5-hydroxylases that synthesize (2S,5S)-5-hydroxylysine and four lysine 5-hydroxylases that synthesize (2S,5R)-5-hydroxylysine from the genome database. Genome scanning based on lysine 5-hydroxylases indicated the presence of undiscovered natural products with 5-hydroxylysine moieties. In conclusion, this study provides a fundamental technology for the stereoselective production of 5-hydroxylysine. Further analysis of the stereoselective lysine 5-hydroxylases would reveal how nature establishes highly stereoselective hydroxylation.
Collapse
Affiliation(s)
- Seiji Kawai
- Department of BiotechnologyGraduate School of Agricultural and Life Sciences, TheUniversity of Tokyo1-1-1 Yayoi, Bunkyo-kuTokyo113-8657Japan
| | - Kota Moriga
- Department of BiotechnologyGraduate School of Agricultural and Life Sciences, TheUniversity of Tokyo1-1-1 Yayoi, Bunkyo-kuTokyo113-8657Japan
| | - Warawadee Nirdnoy
- Division of Applied Life SciencesGraduate School of AgricultureKyoto UniversityKitashirakawa-oiwakecho, Sakyo-kuKyoto606-8502Japan
| | - Ryotaro Hara
- Division of Applied Life SciencesGraduate School of AgricultureKyoto UniversityKitashirakawa-oiwakecho, Sakyo-kuKyoto606-8502Japan
| | - Jun Ogawa
- Division of Applied Life SciencesGraduate School of AgricultureKyoto UniversityKitashirakawa-oiwakecho, Sakyo-kuKyoto606-8502Japan
| | - Yohei Katsuyama
- Department of BiotechnologyGraduate School of Agricultural and Life Sciences, TheUniversity of Tokyo1-1-1 Yayoi, Bunkyo-kuTokyo113-8657Japan
- Collaborative Research Institute for Innovative Microbiology, TheUniversity of Tokyo, Bunkyo-kuTokyo113-8657Japan
| | - Yasuo Ohnishi
- Department of BiotechnologyGraduate School of Agricultural and Life Sciences, TheUniversity of Tokyo1-1-1 Yayoi, Bunkyo-kuTokyo113-8657Japan
- Collaborative Research Institute for Innovative Microbiology, TheUniversity of Tokyo, Bunkyo-kuTokyo113-8657Japan
| |
Collapse
|
2
|
Guo J, Cui J, Xun M, Zhang W, Xian M, Zhang R. Constructing Genetically Engineered Escherichia coli for De Novo Production of L-Threo-3-Hydroxyaspartic Acid. Appl Biochem Biotechnol 2025:10.1007/s12010-025-05224-1. [PMID: 40120046 DOI: 10.1007/s12010-025-05224-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2025] [Indexed: 03/25/2025]
Abstract
L-threo-3-hydroxyaspartic acid (L-THA) is a non-proteinogenic amino acid that has garnered significant attention due to its diverse biological activities. However, the synthesis of L-THA through enzymatic and whole-cell catalysis requires the expensive substrate L-aspartic acid or L-asparagine, and co-substrate α-ketoglutarate, which limits their large-scale application. Here, this is the first report of engineering E. coli as a cell factory for de novo production of L-THA from glucose by fermentation. Firstly, the asnO gene encoding asparagine hydroxylases from Streptomyces coelicolor was heterologously expressed in E. coli to yield the L-THA producing strain. The formation and configuration of L-THA were characterized by LC-MS and HPLC after FDAA derivatization. Secondly, the pathway genes aspC and asnB, which encode aspartate aminotransferase and asparagine synthase, respectively, were overexpressed to enhance L-THA titer from 49.9 to 90.84 mg/L. Thirdly, the efforts were made to improve the key precursor L-aspartic acid pool by overexpressing the aspartase encoding gene aspA and knocking out aspartate kinase (AK) III encoding gene lysC. The best strain CC03 was obtained and L-THA titer reached 278.3 mg/L in a shake flask, representing an approximately 5.6-fold increase compared to the original strain. Ultimately, 2.87 g/L L-THA was obtained after 32 h fed-batch fermentation. This research underscores the potential use of E. coli fermentation as a feasible platform for de novo biosynthesis of L-THA from glucose, which is amenable to industrial application.
Collapse
Affiliation(s)
- Jing Guo
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.
- Shandong Energy Institute, Qingdao, 266101, China.
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China.
| | - Jiayi Cui
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Mingyue Xun
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Wencheng Zhang
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Mo Xian
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Rubing Zhang
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.
- Shandong Energy Institute, Qingdao, 266101, China.
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China.
| |
Collapse
|
3
|
Cao Y, Hay S, de Visser SP. An Active Site Tyr Residue Guides the Regioselectivity of Lysine Hydroxylation by Nonheme Iron Lysine-4-hydroxylase Enzymes through Proton-Coupled Electron Transfer. J Am Chem Soc 2024; 146:11726-11739. [PMID: 38636166 PMCID: PMC11066847 DOI: 10.1021/jacs.3c14574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/05/2024] [Accepted: 04/05/2024] [Indexed: 04/20/2024]
Abstract
Lysine dioxygenase (KDO) is an important enzyme in human physiology involved in bioprocesses that trigger collagen cross-linking and blood pressure control. There are several KDOs in nature; however, little is known about the factors that govern the regio- and stereoselectivity of these enzymes. To understand how KDOs can selectively hydroxylate their substrate, we did a comprehensive computational study into the mechanisms and features of 4-lysine dioxygenase. In particular, we selected a snapshot from the MD simulation on KDO5 and created large QM cluster models (A, B, and C) containing 297, 312, and 407 atoms, respectively. The largest model predicts regioselectivity that matches experimental observation with rate-determining hydrogen atom abstraction from the C4-H position, followed by fast OH rebound to form 4-hydroxylysine products. The calculations show that in model C, the dipole moment is positioned along the C4-H bond of the substrate and, therefore, the electrostatic and electric field perturbations of the protein assist the enzyme in creating C4-H hydroxylation selectivity. Furthermore, an active site Tyr233 residue is identified that reacts through proton-coupled electron transfer akin to the axial Trp residue in cytochrome c peroxidase. Thus, upon formation of the iron(IV)-oxo species in the catalytic cycle, the Tyr233 phenol loses a proton to the nearby Asp179 residue, while at the same time, an electron is transferred to the iron to create an iron(III)-oxo active species. This charged tyrosyl residue directs the dipole moment along the C4-H bond of the substrate and guides the selectivity to the C4-hydroxylation of the substrate.
Collapse
Affiliation(s)
- Yuanxin Cao
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Sam Hay
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Sam P. de Visser
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
- Department
of Chemical Engineering, The University
of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
4
|
Feng Y, Jiang Y, Chen X, Zhu L, Xue H, Wu M, Yang L, Yu H, Lin J. Improving the production of carbamoyltobramycin by an industrial Streptoalloteichus tenebrarius through metabolic engineering. Appl Microbiol Biotechnol 2024; 108:304. [PMID: 38643456 PMCID: PMC11033246 DOI: 10.1007/s00253-024-13141-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/29/2024] [Accepted: 04/04/2024] [Indexed: 04/22/2024]
Abstract
Tobramycin is an essential and extensively used broad-spectrum aminoglycoside antibiotic obtained through alkaline hydrolysis of carbamoyltobramycin, one of the fermentation products of Streptoalloteichus tenebrarius. To simplify the composition of fermentation products from industrial strain, the main byproduct apramycin was blocked by gene disruption and constructed a mutant mainly producing carbamoyltobramycin. The generation of antibiotics is significantly affected by the secondary metabolism of actinomycetes which could be controlled by modifying the pathway-specific regulatory proteins within the cluster. Within the tobramycin biosynthesis cluster, a transcriptional regulatory factor TobR belonging to the Lrp/AsnC family was identified. Based on the sequence and structural characteristics, tobR might encode a pathway-specific transcriptional regulatory factor during biosynthesis. Knockout and overexpression strains of tobR were constructed to investigate its role in carbamoyltobramycin production. Results showed that knockout of TobR increased carbamoyltobramycin biosynthesis by 22.35%, whereas its overexpression decreased carbamoyltobramycin production by 10.23%. In vitro electrophoretic mobility shift assay (EMSA) experiments confirmed that TobR interacts with DNA at the adjacent tobO promoter position. Strains overexpressing tobO with ermEp* promoter exhibited 36.36% increase, and tobO with kasOp* promoter exhibited 22.84% increase in carbamoyltobramycin titer. When the overexpressing of tobO and the knockout of tobR were combined, the production of carbamoyltobramycin was further enhanced. In the shake-flask fermentation, the titer reached 3.76 g/L, which was 42.42% higher than that of starting strain. Understanding the role of Lrp/AsnC family transcription regulators would be useful for other antibiotic biosynthesis in other actinomycetes. KEY POINTS: • The transcriptional regulator TobR belonging to the Lrp/AsnC family was identified. • An oxygenase TobO was identified within the tobramycin biosynthesis cluster. • TobO and TobR have significant effects on the synthesis of carbamoyltobramycin.
Collapse
Affiliation(s)
- Yun Feng
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Yiqi Jiang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Xutong Chen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Li Zhu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Hailong Xue
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Mianbin Wu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Lirong Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311200, China
| | - Haoran Yu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China.
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311200, China.
| | - Jianping Lin
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
5
|
Zhou L, Awakawa T, Ushimaru R, Kanaida M, Abe I. Characterization of Aziridine-Forming α-Ketoglutarate-Dependent Oxygenase in l-Isovaline Biosynthesis. Org Lett 2024; 26:724-727. [PMID: 38227980 DOI: 10.1021/acs.orglett.3c04185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
l-Isovaline biosynthesis by TqaLFM-ti from Tolypocladium inflatum was demonstrated in vitro. The biochemical analysis of the α-ketoglutarate-dependent oxygenase TqaL-ti revealed that it produces (2S,3S)-3-ethyl-3-methylaziridine-2-carboxylic acid from l-isoleucine, thus exhibiting a stereoselectivity different from those of the reported homologues. Remarkably, a single mutation on I295 in TqaL-ti completely exchanged its stereoselectivity to produce the C-3 stereoisomer. TqaFM-ti generates d-isovaline from (2S,3R)-aziridine-2-carboxylic acid, suggesting that the stereochemistry of the TqaL product defines that of isovaline.
Collapse
Affiliation(s)
- Lu Zhou
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
- RIKEN Center for Sustainable Resource Science, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan
| | - Takayoshi Awakawa
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
- RIKEN Center for Sustainable Resource Science, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan
| | - Richiro Ushimaru
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Masahiro Kanaida
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
6
|
Zwick CR, Renata H. Overview of Amino Acid Modifications by Iron- and α-Ketoglutarate-Dependent Enzymes. ACS Catal 2023. [DOI: 10.1021/acscatal.3c00424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
7
|
Zhang S, Chen Y, Zhu J, Lu Q, Cryle MJ, Zhang Y, Yan F. Structural diversity, biosynthesis, and biological functions of lipopeptides from Streptomyces. Nat Prod Rep 2023; 40:557-594. [PMID: 36484454 DOI: 10.1039/d2np00044j] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Covering: up to 2022Streptomyces are ubiquitous in terrestrial and marine environments, where they display a fascinating metabolic diversity. As a result, these bacteria are a prolific source of active natural products. One important class of these natural products is the nonribosomal lipopeptides, which have diverse biological activities and play important roles in the lifestyle of Streptomyces. The importance of this class is highlighted by the use of related antibiotics in the clinic, such as daptomycin (tradename Cubicin). By virtue of recent advances spanning chemistry and biology, significant progress has been made in biosynthetic studies on the lipopeptide antibiotics produced by Streptomyces. This review will serve as a comprehensive guide for researchers working in this multidisciplinary field, providing a summary of recent progress regarding the investigation of lipopeptides from Streptomyces. In particular, we highlight the structures, properties, biosynthetic mechanisms, chemical and chemoenzymatic synthesis, and biological functions of lipopeptides. In addition, the application of genome mining techniques to Streptomyces that have led to the discovery of many novel lipopeptides is discussed, further demonstrating the potential of lipopeptides from Streptomyces for future development in modern medicine.
Collapse
Affiliation(s)
- Songya Zhang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yunliang Chen
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
- The Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 1000050, China.
| | - Jing Zhu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Qiujie Lu
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
| | - Max J Cryle
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800 Australia
- EMBL Australia, Monash University, Clayton, Victoria, 3800 Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Monash University, Clayton, Victoria, 3800 Australia
| | - Youming Zhang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
| | - Fu Yan
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
| |
Collapse
|
8
|
Tao H, Abe I. Oxidative modification of free-standing amino acids by Fe(II)/αKG-dependent oxygenases. ENGINEERING MICROBIOLOGY 2023; 3:100062. [PMID: 39628521 PMCID: PMC11611013 DOI: 10.1016/j.engmic.2022.100062] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 12/06/2024]
Abstract
Fe(II)/α-ketoglutarate (αKG)-dependent oxygenases catalyze the oxidative modification of various molecules, from DNA, RNA, and proteins to primary and secondary metabolites. They also catalyze a variety of biochemical reactions, including hydroxylation, halogenation, desaturation, epoxidation, cyclization, peroxidation, epimerization, and rearrangement. Given the versatile catalytic capability of such oxygenases, numerous studies have been conducted to characterize their functions and elucidate their structure-function relationships over the past few decades. Amino acids, particularly nonproteinogenic amino acids, are considered as important building blocks for chemical synthesis and components for natural product biosynthesis. In addition, the Fe(II)/αKG-dependent oxygenase superfamily includes important enzymes for generating amino acid derivatives, as they efficiently modify various free-standing amino acids. The recent discovery of new Fe(II)/αKG-dependent oxygenases and the repurposing of known enzymes in this superfamily have promoted the generation of useful amino acid derivatives. Therefore, this study will focus on the recent progress achieved from 2019 to 2022 to provide a clear view of the mechanism by which these enzymes have expanded the repertoire of free amino acid oxidative modifications.
Collapse
Affiliation(s)
- Hui Tao
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
9
|
Guan J, Lu Y, Dai Z, Zhao S, Xu Y, Nie Y. R97 at "Handlebar" Binding Mode in Active Pocket Plays an Important Role in Fe(II)/α-Ketoglutaric Acid-Dependent Dioxygenase cis-P3H-Mediated Selective Synthesis of (2S,3R)-3-Hydroxypipecolic Acid. Molecules 2023; 28:molecules28041854. [PMID: 36838840 PMCID: PMC9968057 DOI: 10.3390/molecules28041854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
Pipecolic acid (Pip) and its derivative hydroxypipecolic acids, such as (2S,3R)-3-hydroxypipecolic acid (cis-3-L-HyPip), are components of many natural and synthetic bioactive molecules. Fe(II)/α-ketoglutaric acid (Fe(II)/2-OG)-dependent dioxygenases can catalyze the hydroxylation of pipecolic acid. However, the available enzymes with desired activity and selectivity are limited. Herein, we compare the possible candidates in the Fe(II)/2-OG-dependent dioxygenase family, and cis-P3H is selected for potentially catalyzing selective hydroxylation of L-Pip. cis-P3H was further engineered to increase its catalytic efficiency toward L-Pip. By analyzing the structural confirmation and residue composition in substrate-binding pocket, a "handlebar" mode of molecular interactions is proposed. Using molecular docking, virtual mutation analysis, and dynamic simulations, R97, E112, L57, and G282 were identified as the key residues for subsequent site-directed saturation mutagenesis of cis-P3H. Consequently, the variant R97M showed an increased catalytic efficiency toward L-Pip. In this study, the kcat/Km value of the positive mutant R97M was about 1.83-fold that of the wild type. The mutation R97M would break the salt bridge between R97 and L-Pip and weaken the positive-positive interaction between R97 and R95. Therefore, the force on the amino and carboxyl groups of L-Pip was lightly balanced, allowing the molecule to be stabilized in the active pocket. These results provide a potential way of improving cis-P3H catalytic activity through rational protein engineering.
Collapse
Affiliation(s)
- Jiaojiao Guan
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yilei Lu
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Zixuan Dai
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Songyin Zhao
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yan Xu
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yao Nie
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
- Suqian Industrial Technology Research Institute of Jiangnan University, Suqian 223814, China
- Correspondence:
| |
Collapse
|
10
|
Papadopoulou A, Meyer F, Buller RM. Engineering Fe(II)/α-Ketoglutarate-Dependent Halogenases and Desaturases. Biochemistry 2023; 62:229-240. [PMID: 35446547 DOI: 10.1021/acs.biochem.2c00115] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Fe(II)/α-ketoglutarate-dependent dioxygenases (α-KGDs) are widespread enzymes in aerobic biology and serve a remarkable array of biological functions, including roles in collagen biosynthesis, plant and animal development, transcriptional regulation, nucleic acid modification, and secondary metabolite biosynthesis. This functional diversity is reflected in the enzymes' catalytic flexibility as α-KGDs can catalyze an intriguing set of synthetically valuable reactions, such as hydroxylations, halogenations, and desaturations, capturing the interest of scientists across disciplines. Mechanistically, all α-KGDs are understood to follow a similar activation pathway to generate a substrate radical, yet how individual members of the enzyme family direct this key intermediate toward the different reaction outcomes remains elusive, triggering structural, computational, spectroscopic, kinetic, and enzyme engineering studies. In this Perspective, we will highlight how first enzyme and substrate engineering examples suggest that the chemical reaction pathway within α-KGDs can be intentionally tailored using rational design principles. We will delineate the structural and mechanistic investigations of the reprogrammed enzymes and how they begin to inform about the enzymes' structure-function relationships that determine chemoselectivity. Application of this knowledge in future enzyme and substrate engineering campaigns will lead to the development of powerful C-H activation catalysts for chemical synthesis.
Collapse
Affiliation(s)
- Athena Papadopoulou
- Competence Center for Biocatalysis, Zurich University of Applied Sciences, Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland
| | - Fabian Meyer
- Competence Center for Biocatalysis, Zurich University of Applied Sciences, Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland
| | - Rebecca M Buller
- Competence Center for Biocatalysis, Zurich University of Applied Sciences, Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland
| |
Collapse
|
11
|
Tao H, Ushimaru R, Awakawa T, Mori T, Uchiyama M, Abe I. Stereoselectivity and Substrate Specificity of the Fe(II)/α-Ketoglutarate-Dependent Oxygenase TqaL. J Am Chem Soc 2022; 144:21512-21520. [DOI: 10.1021/jacs.2c08116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Hui Tao
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Richiro Ushimaru
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo 113-0033, Japan
- ACT-X, Japan Science and Technology Agency (JST), Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Takayoshi Awakawa
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo 113-0033, Japan
- RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Takahiro Mori
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo 113-0033, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| | - Masanobu Uchiyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
- Research Initiative for Supra-Materials (RISM), Shinshu University, Ueda 386-8567, Japan
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
12
|
Wu L, An J, Jing X, Chen CC, Dai L, Xu Y, Liu W, Guo RT, Nie Y. Molecular Insights into the Regioselectivity of the Fe(II)/2-Ketoglutarate-Dependent Dioxygenase-Catalyzed C–H Hydroxylation of Amino Acids. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lunjie Wu
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jianhong An
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Ophthalmology and Optometry, and Eye Hospital, Wenzhou Medical University, State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang 325000, China
| | - Xiaoran Jing
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Chun-Chi Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Longhai Dai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Yan Xu
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Weidong Liu
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Rey-Ting Guo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Yao Nie
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
- Suqian Industrial Technology Research Institute of Jiangnan University, Suqian, Jiangsu 223814, China
| |
Collapse
|
13
|
Chen H, Zhong L, Zhou H, Sun T, Zhong G, Tu Q, Zhuang Y, Bai X, Wang X, Xu J, Xia L, Shen Y, Zhang Y, Bian X. Biosynthesis of Glidomides and Elucidation of Different Mechanisms for Formation of β-OH Amino Acid Building Blocks. Angew Chem Int Ed Engl 2022; 61:e202203591. [PMID: 35689369 DOI: 10.1002/anie.202203591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Indexed: 11/06/2022]
Abstract
Nonribosomal peptide synthetases (NRPSs) can incorporate nonproteinogenic amino acids into peptidyl backbones to increase structural diversity. Genome mining of Schlegelella brevitalea led to the identification of a class of linear lipoheptapeptides, glidomides, featuring two unusual residues: threo-β-OH-L-His and threo-β-OH-D-Asp. The β-hydroxylation of Asp and His is catalyzed by the nonheme FeII /α-ketoglutarate-dependent β-hydroxylases GlmD and GlmF, respectively. GlmD independently catalyzes the hydroxylation of L-Asp to primarily produce threo-β-OH-L-Asp on the thiolation domain, and then undergoes epimerization to form threo-β-OH-D-Asp in the final products. However, β-hydroxylation of His requires the concerted action of GlmF and the interface (I) domain, a novel condensation domain family clade. The key sites of I domain for interaction with GlmF were identified, suggesting that the mechanism for hydroxylation of His depends on the collaboration between hydroxylase and NRPS.
Collapse
Affiliation(s)
- Hanna Chen
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Lin Zhong
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.,Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Haibo Zhou
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Tao Sun
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Guannan Zhong
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Qiang Tu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.,Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yan Zhuang
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Xianping Bai
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Xingyan Wang
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Jiaying Xu
- Hunan Provincial Key Laboratory of Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Liqiu Xia
- Hunan Provincial Key Laboratory of Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Yuemao Shen
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Youming Zhang
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.,Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xiaoying Bian
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| |
Collapse
|
14
|
Chen H, Zhong L, Zhou H, Sun T, Zhong G, Tu Q, Zhuang Y, Bai X, Wang X, Xu J, Xia L, Shen Y, Zhang Y, Bian X. Biosynthesis of Glidomides and Elucidation of Different Mechanisms for Formation of β‐OH Amino Acid Building Blocks. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hanna Chen
- Helmholtz International Lab for Anti-infectives Shandong University-Helmholtz Institute of Biotechnology State Key Laboratory of Microbial Technology Shandong University Qingdao Shandong 266237 China
| | - Lin Zhong
- CAS Key Laboratory of Quantitative Engineering Biology Shenzhen Institute of Synthetic Biology Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
- Faculty of Synthetic Biology Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
| | - Haibo Zhou
- Helmholtz International Lab for Anti-infectives Shandong University-Helmholtz Institute of Biotechnology State Key Laboratory of Microbial Technology Shandong University Qingdao Shandong 266237 China
| | - Tao Sun
- Helmholtz International Lab for Anti-infectives Shandong University-Helmholtz Institute of Biotechnology State Key Laboratory of Microbial Technology Shandong University Qingdao Shandong 266237 China
| | - Guannan Zhong
- Helmholtz International Lab for Anti-infectives Shandong University-Helmholtz Institute of Biotechnology State Key Laboratory of Microbial Technology Shandong University Qingdao Shandong 266237 China
| | - Qiang Tu
- CAS Key Laboratory of Quantitative Engineering Biology Shenzhen Institute of Synthetic Biology Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
- Faculty of Synthetic Biology Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
| | - Yan Zhuang
- Helmholtz International Lab for Anti-infectives Shandong University-Helmholtz Institute of Biotechnology State Key Laboratory of Microbial Technology Shandong University Qingdao Shandong 266237 China
| | - Xianping Bai
- Helmholtz International Lab for Anti-infectives Shandong University-Helmholtz Institute of Biotechnology State Key Laboratory of Microbial Technology Shandong University Qingdao Shandong 266237 China
| | - Xingyan Wang
- Helmholtz International Lab for Anti-infectives Shandong University-Helmholtz Institute of Biotechnology State Key Laboratory of Microbial Technology Shandong University Qingdao Shandong 266237 China
| | - Jiaying Xu
- Hunan Provincial Key Laboratory of Microbial Molecular Biology State Key Laboratory of Developmental Biology of Freshwater Fish College of Life Science Hunan Normal University Changsha 410081 China
| | - Liqiu Xia
- Hunan Provincial Key Laboratory of Microbial Molecular Biology State Key Laboratory of Developmental Biology of Freshwater Fish College of Life Science Hunan Normal University Changsha 410081 China
| | - Yuemao Shen
- Helmholtz International Lab for Anti-infectives Shandong University-Helmholtz Institute of Biotechnology State Key Laboratory of Microbial Technology Shandong University Qingdao Shandong 266237 China
| | - Youming Zhang
- Helmholtz International Lab for Anti-infectives Shandong University-Helmholtz Institute of Biotechnology State Key Laboratory of Microbial Technology Shandong University Qingdao Shandong 266237 China
- CAS Key Laboratory of Quantitative Engineering Biology Shenzhen Institute of Synthetic Biology Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
- Faculty of Synthetic Biology Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
| | - Xiaoying Bian
- Helmholtz International Lab for Anti-infectives Shandong University-Helmholtz Institute of Biotechnology State Key Laboratory of Microbial Technology Shandong University Qingdao Shandong 266237 China
| |
Collapse
|
15
|
Wenski SL, Thiengmag S, Helfrich EJ. Complex peptide natural products: Biosynthetic principles, challenges and opportunities for pathway engineering. Synth Syst Biotechnol 2022; 7:631-647. [PMID: 35224231 PMCID: PMC8842026 DOI: 10.1016/j.synbio.2022.01.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 01/03/2023] Open
Abstract
Complex peptide natural products exhibit diverse biological functions and a wide range of physico-chemical properties. As a result, many peptides have entered the clinics for various applications. Two main routes for the biosynthesis of complex peptides have evolved in nature: ribosomally synthesized and post-translationally modified peptide (RiPP) biosynthetic pathways and non-ribosomal peptide synthetases (NRPSs). Insights into both bioorthogonal peptide biosynthetic strategies led to the establishment of universal principles for each of the two routes. These universal rules can be leveraged for the targeted identification of novel peptide biosynthetic blueprints in genome sequences and used for the rational engineering of biosynthetic pathways to produce non-natural peptides. In this review, we contrast the key principles of both biosynthetic routes and compare the different biochemical strategies to install the most frequently encountered peptide modifications. In addition, the influence of the fundamentally different biosynthetic principles on past, current and future engineering approaches is illustrated. Despite the different biosynthetic principles of both peptide biosynthetic routes, the arsenal of characterized peptide modifications encountered in RiPP and NRPS systems is largely overlapping. The continuous expansion of the biocatalytic toolbox of peptide modifying enzymes for both routes paves the way towards the production of complex tailor-made peptides and opens up the possibility to produce NRPS-derived peptides using the ribosomal route and vice versa.
Collapse
Affiliation(s)
- Sebastian L. Wenski
- Institute for Molecular Bio Science, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
- LOEWE Center for Translational Biodiversity Genomics (TBG), 60325, Frankfurt am Main, Germany
| | - Sirinthra Thiengmag
- Institute for Molecular Bio Science, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
- LOEWE Center for Translational Biodiversity Genomics (TBG), 60325, Frankfurt am Main, Germany
| | - Eric J.N. Helfrich
- Institute for Molecular Bio Science, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
- LOEWE Center for Translational Biodiversity Genomics (TBG), 60325, Frankfurt am Main, Germany
| |
Collapse
|
16
|
Metabolic engineering of Corynebacterium glutamicum for de novo production of 3-hydroxycadaverine. CURRENT RESEARCH IN BIOTECHNOLOGY 2022. [DOI: 10.1016/j.crbiot.2021.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
17
|
Darcel L, Das S, Bonnard I, Banaigs B, Inguimbert N. Thirtieth Anniversary of the Discovery of Laxaphycins. Intriguing Peptides Keeping a Part of Their Mystery. Mar Drugs 2021; 19:md19090473. [PMID: 34564135 PMCID: PMC8471579 DOI: 10.3390/md19090473] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/16/2021] [Accepted: 08/20/2021] [Indexed: 12/27/2022] Open
Abstract
Lipopeptides are a class of compounds generally produced by microorganisms through hybrid biosynthetic pathways involving non-ribosomal peptide synthase and a polyketyl synthase. Cyanobacterial-produced laxaphycins are examples of this family of compounds that have expanded over the past three decades. These compounds benefit from technological advances helping in their synthesis and characterization, as well as in deciphering their biosynthesis. The present article attempts to summarize most of the articles that have been published on laxaphycins. The current knowledge on the ecological role of these complex sets of compounds will also be examined.
Collapse
|
18
|
Enzymatic Synthesis of l- threo-β-Hydroxy-α-Amino Acids via Asymmetric Hydroxylation Using 2-Oxoglutarate-Dependent Hydroxylase from Sulfobacillus thermotolerans Y0017. Appl Environ Microbiol 2021; 87:e0133521. [PMID: 34347519 DOI: 10.1128/aem.01335-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
β-Hydroxy-α-amino acids are useful compounds for pharmaceutical development. Enzymatic synthesis of β-hydroxy-α-amino acids has attracted considerable interest as a selective, sustainable, and environmentally benign process. In this study, we identified a novel amino acid hydroxylase, AEP14369, from Sulfobacillus thermotolerans Y0017, which is included in a previously constructed CAS-like superfamily protein library, to widen the variety of amino acid hydroxylases. The detailed structures determined by nuclear magnetic resonance and X-ray crystallography analysis of the enzymatically produced compounds revealed that AEP14369 catalyzed threo-β-selective hydroxylation of l-His and l-Gln in a 2-oxoglutarate-dependent manner. Furthermore, the production of l-threo-β-hydroxy-His and l-threo-β-hydroxy-Gln was achieved using Escherichia coli expressing the gene encoding AEP14369 as a whole-cell biocatalyst. Under optimized reaction conditions, 137 mM (23.4 g L-1) l-threo-β-hydroxy-His and 150 mM l-threo-β-hydroxy-Gln (24.3 g L-1) were obtained, indicating that the enzyme is applicable for preparative-scale production. AEP14369, an l-His/l-Gln threo-β-hydroxylase, increases the availability of 2-oxoglutarate-dependent hydroxylase and opens the way for the practical production of β-hydroxy-α-amino acids in the future. The amino acids produced in this study would also contribute to the structural diversification of pharmaceuticals that affect important bioactivities. Importance Owing to an increasing concern for sustainability, enzymatic approaches for producing industrially useful compounds have attracted considerable attention as a powerful complement to chemical synthesis for environment-friendly synthesis. In this study, we developed a bioproduction method for β-hydroxy-α-amino acid synthesis using a newly discovered enzyme. AEP14369 from the moderate thermophilic bacterium Sulfobacillus thermotolerans Y0017 catalyzed the hydroxylation of l-His and l-Gln in a regioselective and stereoselective fashion. Furthermore, we biotechnologically synthesized both l-threo-β-hydroxy-His and l-threo-β-hydroxy-Gln with a titer of over 20 g L-1 through whole-cell bioconversion using recombinant Escherichia coli cells. As β-hydroxy-α-amino acids are important compounds for pharmaceutical development, this achievement would facilitate future sustainable and economical industrial applications.
Collapse
|
19
|
Heinilä LMP, Fewer DP, Jokela JK, Wahlsten M, Jortikka A, Sivonen K. Shared PKS Module in Biosynthesis of Synergistic Laxaphycins. Front Microbiol 2020; 11:578878. [PMID: 33042096 PMCID: PMC7524897 DOI: 10.3389/fmicb.2020.578878] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 08/17/2020] [Indexed: 12/13/2022] Open
Abstract
Cyanobacteria produce a wide range of lipopeptides that exhibit potent membrane-disrupting activities. Laxaphycins consist of two families of structurally distinct macrocyclic lipopeptides that act in a synergistic manner to produce antifungal and antiproliferative activities. Laxaphycins are produced by range of cyanobacteria but their biosynthetic origins remain unclear. Here, we identified the biosynthetic pathways responsible for the biosynthesis of the laxaphycins produced by Scytonema hofmannii PCC 7110. We show that these laxaphycins, called scytocyclamides, are produced by this cyanobacterium and are encoded in a single biosynthetic gene cluster with shared polyketide synthase enzymes initiating two distinct non-ribosomal peptide synthetase pathways. The unusual mechanism of shared enzymes synthesizing two distinct types of products may aid future research in identifying and expressing natural product biosynthetic pathways and in expanding the known biosynthetic logic of this important family of natural products.
Collapse
Affiliation(s)
| | - David P Fewer
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Jouni Kalevi Jokela
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Matti Wahlsten
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Anna Jortikka
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Kaarina Sivonen
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| |
Collapse
|
20
|
2-Ketoglutarate-Generated In Vitro Enzymatic Biosystem Facilitates Fe(II)/2-Ketoglutarate-Dependent Dioxygenase-Mediated C-H Bond Oxidation for (2 s,3 r,4 s)-4-Hydroxyisoleucine Synthesis. Int J Mol Sci 2020; 21:ijms21155347. [PMID: 32731373 PMCID: PMC7432852 DOI: 10.3390/ijms21155347] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 11/17/2022] Open
Abstract
Fe(II)/2-ketoglutarate-dependent dioxygenase (Fe(II)/2-KG DO)-mediated hydroxylation is a critical type of C-H bond functionalization for synthesizing hydroxy amino acids used as pharmaceutical raw materials and precursors. However, DO activity requires 2-ketoglutarate (2-KG), lack of which reduces the efficiency of Fe(II)/2-KG DO-mediated hydroxylation. Here, we conducted multi-enzymatic syntheses of hydroxy amino acids. Using (2s,3r,4s)-4-hydroxyisoleucine (4-HIL) as a model product, we coupled regio- and stereo-selective hydroxylation of l-Ile by the dioxygenase IDO with 2-KG generation from readily available l-Glu by l-glutamate oxidase (LGOX) and catalase (CAT). In the one-pot system, H2O2 significantly inhibited IDO activity and elevated Fe2+ concentrations of severely repressed LGOX. A sequential cascade reaction was preferable to a single-step process as CAT in the former system hydrolyzed H2O2. We obtained 465 mM 4-HIL at 93% yield in the two-step system. Moreover, this process facilitated C-H hydroxylation of several hydrophobic aliphatic amino acids to produce hydroxy amino acids, and C-H sulfoxidation of sulfur-containing l-amino acids to yield l-amino acid sulfoxides. Thus, we constructed an efficient cascade reaction to produce 4-HIL by providing prerequisite 2-KG from cheap and plentiful l-Glu and developed a strategy for creating enzymatic systems catalyzing 2-KG-dependent reactions in sustainable bioprocesses that synthesize other functional compounds.
Collapse
|
21
|
Karas JA, Carter GP, Howden BP, Turner AM, Paulin OKA, Swarbrick JD, Baker MA, Li J, Velkov T. Structure–Activity Relationships of Daptomycin Lipopeptides. J Med Chem 2020; 63:13266-13290. [DOI: 10.1021/acs.jmedchem.0c00780] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- John A. Karas
- Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Glen P. Carter
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Benjamin P. Howden
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Adrianna M. Turner
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Olivia K. A. Paulin
- Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - James D. Swarbrick
- Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Mark. A. Baker
- Priority Research Centre in Reproductive Science, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Jian Li
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Tony Velkov
- Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
22
|
Song W, Chen X, Wu J, Xu J, Zhang W, Liu J, Chen J, Liu L. Biocatalytic derivatization of proteinogenic amino acids for fine chemicals. Biotechnol Adv 2020; 40:107496. [DOI: 10.1016/j.biotechadv.2019.107496] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 11/13/2019] [Accepted: 11/18/2019] [Indexed: 01/09/2023]
|
23
|
Hara R, Kino K. Enzymatic reactions and microorganisms producing the various isomers of hydroxyproline. Appl Microbiol Biotechnol 2020; 104:4771-4779. [PMID: 32291491 DOI: 10.1007/s00253-020-10603-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/24/2020] [Accepted: 04/01/2020] [Indexed: 02/06/2023]
Abstract
Hydroxyproline is an industrially important compound with applications in the pharmaceutical, nutrition, and cosmetic industries. trans-4-Hydroxy-L-proline is recognized as the most abundant of the eight possible isomers (hydroxy group at C-3 or C-4, cis- or trans-configuration, and L- or D-form). However, little attention has been paid to the rare isomers, probably due to their limited availability. This mini-review provides an overview of recent advances in microbial and enzymatic processes to develop practical production strategies for various hydroxyprolines. Here, we introduce three screening strategies, namely, activity-, sequence-, and metabolite-based approaches, allowing identification of diverse proline-hydroxylating enzymes with different product specificities. All naturally occurring hydroxyproline isomers can be produced by using suitable hydroxylases in a highly regio- and stereo-selective manner. Furthermore, crystal structures of relevant hydroxylases provide much insight into their functional roles. Since hydroxylases acting on free L-proline belong to the 2-oxoglutarate-dependent dioxygenase superfamily, cellular metabolism of Escherichia coli coupled with a hydroxylase is a valuable source of 2-oxoglutarate, which is indispensable as a co-substrate in L-proline hydroxylation. Further, microbial hydroxyproline 2-epimerase may serve as a highly adaptable tool to convert L-hydroxyproline into D-hydroxyproline. KEY POINTS: • Proline hydroxylases serve as powerful tools for selectivel-proline hydroxylation. • Engineered Escherichia coli are a robust platform for hydroxyproline production. • Hydroxyproline epimerase convertsl-hydroxyproline intod-hydroxyproline.
Collapse
Affiliation(s)
- Ryotaro Hara
- Research Institute for Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo, 169-8555, Japan.,Laboratory of Industrial Microbiology, Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Kuniki Kino
- Research Institute for Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo, 169-8555, Japan. .,Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo, 169-8555, Japan.
| |
Collapse
|
24
|
Zwick CR, Sosa MB, Renata H. Characterization of a Citrulline 4-Hydroxylase from Nonribosomal Peptide GE81112 Biosynthesis and Engineering of Its Substrate Specificity for the Chemoenzymatic Synthesis of Enduracididine. Angew Chem Int Ed Engl 2019; 58:18854-18858. [PMID: 31610076 PMCID: PMC6917913 DOI: 10.1002/anie.201910659] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/06/2019] [Indexed: 12/15/2022]
Abstract
The GE81112 tetrapeptides are a small family of unusual nonribosomal peptide congeners with potent inhibitory activity against prokaryotic translation initiation. With the exception of the 3-hydroxy-l-pipecolic acid unit, little is known about the biosynthetic origins of the non-proteinogenic amino acid monomers of the natural product family. Here, we elucidate the biogenesis of the 4-hydroxy-l-citrulline unit and establish the role of an iron- and α-ketoglutarate-dependent enzyme (Fe/αKG) in the pathway. Homology modelling and sequence alignment analysis further facilitate the rational engineering of this enzyme to become a specific 4-arginine hydroxylase. We subsequently demonstrate the utility of this engineered enzyme in the synthesis of a dipeptide fragment of the antibiotic enduracidin. This work highlights the value of applying a bioinformatics-guided approach in the discovery of novel enzymes and engineering of new catalytic activity into existing ones.
Collapse
Affiliation(s)
- Christian R. Zwick
- Department of Chemistry The Scripps Research Institute 130 Scripps Way, Jupiter, FL 33458
| | - Max B. Sosa
- Department of Chemistry The Scripps Research Institute 130 Scripps Way, Jupiter, FL 33458
| | - Hans Renata
- Department of Chemistry The Scripps Research Institute 130 Scripps Way, Jupiter, FL 33458
| |
Collapse
|
25
|
Zwick CR, Sosa MB, Renata H. Characterization of a Citrulline 4‐Hydroxylase from Nonribosomal Peptide GE81112 Biosynthesis and Engineering of Its Substrate Specificity for the Chemoenzymatic Synthesis of Enduracididine. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201910659] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Christian R. Zwick
- Department of ChemistryThe Scripps Research Institute 130 Scripps Way Jupiter FL 33458 USA
| | - Max B. Sosa
- Department of ChemistryThe Scripps Research Institute 130 Scripps Way Jupiter FL 33458 USA
| | - Hans Renata
- Department of ChemistryThe Scripps Research Institute 130 Scripps Way Jupiter FL 33458 USA
| |
Collapse
|
26
|
Pfeffer I, Brewitz L, Krojer T, Jensen SA, Kochan GT, Kershaw NJ, Hewitson KS, McNeill LA, Kramer H, Münzel M, Hopkinson RJ, Oppermann U, Handford PA, McDonough MA, Schofield CJ. Aspartate/asparagine-β-hydroxylase crystal structures reveal an unexpected epidermal growth factor-like domain substrate disulfide pattern. Nat Commun 2019; 10:4910. [PMID: 31659163 PMCID: PMC6817910 DOI: 10.1038/s41467-019-12711-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/26/2019] [Indexed: 01/18/2023] Open
Abstract
AspH is an endoplasmic reticulum (ER) membrane-anchored 2-oxoglutarate oxygenase whose C-terminal oxygenase and tetratricopeptide repeat (TPR) domains present in the ER lumen. AspH catalyses hydroxylation of asparaginyl- and aspartyl-residues in epidermal growth factor-like domains (EGFDs). Here we report crystal structures of human AspH, with and without substrate, that reveal substantial conformational changes of the oxygenase and TPR domains during substrate binding. Fe(II)-binding by AspH is unusual, employing only two Fe(II)-binding ligands (His679/His725). Most EGFD structures adopt an established fold with a conserved Cys1–3, 2–4, 5–6 disulfide bonding pattern; an unexpected Cys3–4 disulfide bonding pattern is observed in AspH-EGFD substrate complexes, the catalytic relevance of which is supported by studies involving stable cyclic peptide substrate analogues and by effects of Ca(II) ions on activity. The results have implications for EGFD disulfide pattern processing in the ER and will enable medicinal chemistry efforts targeting human 2OG oxygenases. AspH catalyses hydroxylation of asparagine and aspartate residues in epidermal growth factor-like domains (EGFDs). Here, the authors present crystal structures of AspH with and without substrates and show that AspH uses EFGD substrates with a non-canonical disulfide pattern.
Collapse
Affiliation(s)
- Inga Pfeffer
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | - Lennart Brewitz
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | - Tobias Krojer
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Headington, OX3 7DQ, UK
| | - Sacha A Jensen
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Grazyna T Kochan
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Headington, OX3 7DQ, UK
| | - Nadia J Kershaw
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | - Kirsty S Hewitson
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | - Luke A McNeill
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | - Holger Kramer
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK
| | - Martin Münzel
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | - Richard J Hopkinson
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | - Udo Oppermann
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Headington, OX3 7DQ, UK.,NDORMS, Botnar Research Centre, University of Oxford, Old Road, Oxford, OX3 7LD, UK
| | - Penny A Handford
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Michael A McDonough
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | | |
Collapse
|
27
|
Genomic analysis of siderophore β-hydroxylases reveals divergent stereocontrol and expands the condensation domain family. Proc Natl Acad Sci U S A 2019; 116:19805-19814. [PMID: 31527229 DOI: 10.1073/pnas.1903161116] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Genome mining of biosynthetic pathways streamlines discovery of secondary metabolites but can leave ambiguities in the predicted structures, which must be rectified experimentally. Through coupling the reactivity predicted by biosynthetic gene clusters with verified structures, the origin of the β-hydroxyaspartic acid diastereomers in siderophores is reported herein. Two functional subtypes of nonheme Fe(II)/α-ketoglutarate-dependent aspartyl β-hydroxylases are identified in siderophore biosynthetic gene clusters, which differ in genomic organization-existing either as fused domains (IβHAsp) at the carboxyl terminus of a nonribosomal peptide synthetase (NRPS) or as stand-alone enzymes (TβHAsp)-and each directs opposite stereoselectivity of Asp β-hydroxylation. The predictive power of this subtype delineation is confirmed by the stereochemical characterization of β-OHAsp residues in pyoverdine GB-1, delftibactin, histicorrugatin, and cupriachelin. The l-threo (2S, 3S) β-OHAsp residues of alterobactin arise from hydroxylation by the β-hydroxylase domain integrated into NRPS AltH, while l-erythro (2S, 3R) β-OHAsp in delftibactin arises from the stand-alone β-hydroxylase DelD. Cupriachelin contains both l-threo and l-erythro β-OHAsp, consistent with the presence of both types of β-hydroxylases in the biosynthetic gene cluster. A third subtype of nonheme Fe(II)/α-ketoglutarate-dependent enzymes (IβHHis) hydroxylates histidyl residues with l-threo stereospecificity. A previously undescribed, noncanonical member of the NRPS condensation domain superfamily is identified, named the interface domain, which is proposed to position the β-hydroxylase and the NRPS-bound amino acid prior to hydroxylation. Through mapping characterized β-OHAsp diastereomers to the phylogenetic tree of siderophore β-hydroxylases, methods to predict β-OHAsp stereochemistry in silico are realized.
Collapse
|
28
|
Affiliation(s)
- Braden Kralt
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Ryan Moreira
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Michael Palmer
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Scott D. Taylor
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
29
|
Dunham NP, Del Río Pantoja JM, Zhang B, Rajakovich LJ, Allen BD, Krebs C, Boal AK, Bollinger JM. Hydrogen Donation but not Abstraction by a Tyrosine (Y68) during Endoperoxide Installation by Verruculogen Synthase (FtmOx1). J Am Chem Soc 2019; 141:9964-9979. [PMID: 31117657 PMCID: PMC6901024 DOI: 10.1021/jacs.9b03567] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Hydrogen-atom transfer (HAT) from a substrate carbon to an iron(IV)-oxo (ferryl) intermediate initiates a diverse array of enzymatic transformations. For outcomes other than hydroxylation, coupling of the resultant carbon radical and hydroxo ligand (oxygen rebound) must generally be averted. A recent study of FtmOx1, a fungal iron(II)- and 2-(oxo)glutarate-dependent oxygenase that installs the endoperoxide of verruculogen by adding O2 between carbons 21 and 27 of fumitremorgin B, posited that tyrosine (Tyr or Y) 224 serves as HAT intermediary to separate the C21 radical (C21•) and Fe(III)-OH HAT products and prevent rebound. Our reinvestigation of the FtmOx1 mechanism revealed, instead, direct HAT from C21 to the ferryl complex and surprisingly competitive rebound. The C21-hydroxylated (rebound) product, which undergoes deprenylation, predominates when low [O2] slows C21•-O2 coupling in the next step of the endoperoxidation pathway. This pathway culminates with addition of the C21-O-O• peroxyl adduct to olefinic C27 followed by HAT to the C26• from a Tyr. The last step results in sequential accumulation of Tyr radicals, which are suppressed without detriment to turnover by inclusion of the reductant, ascorbate. Replacement of each of four candidates for the proximal C26 H• donor (including Y224) with phenylalanine (F) revealed that only the Y68F variant (i) fails to accumulate the first Tyr• and (ii) makes an altered major product, identifying Y68 as the donor. The implied proximities of C21 to the iron cofactor and C26 to Y68 support a new docking model of the enzyme-substrate complex that is consistent with all available data.
Collapse
Affiliation(s)
- Noah P. Dunham
- Department of Biochemistry and Molecular Biology, The
Pennsylvania State University, University Park, PA 16802
- Present Address: Division of Chemistry and Chemical
Engineering, California Institute of Technology, Pasadena, CA 91125
| | - José M. Del Río Pantoja
- Department of Biochemistry and Molecular Biology, The
Pennsylvania State University, University Park, PA 16802
- Present Address: Department of Chemistry and Chemical
Biology, Harvard University, Cambridge, MA 02138
| | - Bo Zhang
- Department of Chemistry, The Pennsylvania State University,
University Park, PA 16802
- Present Address: Renewable Energy Group, Inc., 600 Gateway
Blvd, South San Francisco, CA 94080
| | - Lauren J. Rajakovich
- Department of Biochemistry and Molecular Biology, The
Pennsylvania State University, University Park, PA 16802
- Present Address: Department of Chemistry and Chemical
Biology, Harvard University, Cambridge, MA 02138
| | - Benjamin D. Allen
- The Huck Institutes for Life Sciences, The Pennsylvania
State University, University Park, PA 16802
| | - Carsten Krebs
- Department of Biochemistry and Molecular Biology, The
Pennsylvania State University, University Park, PA 16802
- Department of Chemistry, The Pennsylvania State University,
University Park, PA 16802
| | - Amie K. Boal
- Department of Biochemistry and Molecular Biology, The
Pennsylvania State University, University Park, PA 16802
- Department of Chemistry, The Pennsylvania State University,
University Park, PA 16802
| | - J. Martin Bollinger
- Department of Biochemistry and Molecular Biology, The
Pennsylvania State University, University Park, PA 16802
- Department of Chemistry, The Pennsylvania State University,
University Park, PA 16802
| |
Collapse
|
30
|
Wu C, Shang Z, Lemetre C, Ternei MA, Brady SF. Cadasides, Calcium-Dependent Acidic Lipopeptides from the Soil Metagenome That Are Active against Multidrug-Resistant Bacteria. J Am Chem Soc 2019; 141:3910-3919. [PMID: 30735616 PMCID: PMC6592427 DOI: 10.1021/jacs.8b12087] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The growing threat of antibiotic resistance necessitates the discovery of antibiotics that are active against resistant pathogens. Calcium-dependent antibiotics are a small family of structurally diverse acidic lipopeptides assembled by nonribosomal peptide synthetases (NRPSs) that are known to display various modes of action against antibiotic-resistant pathogens. Here we use NRPS adenylation (AD) domain sequencing to guide the identification, recovery, and cloning of the cde biosynthetic gene cluster from a soil metagenome. Heterologous expression of the cde biosynthetic gene cluster led to the production of cadasides A (1) and B (2), a subfamily of acidic lipopeptides that is distinct from previously characterized calcium-dependent antibiotics in terms of both overall structure and acidic residue rich peptide core. The cadasides inhibit the growth of multidrug-resistant Gram-positive pathogens by disrupting cell wall biosynthesis in the presence of high concentrations of calcium. Interestingly, sequencing of AD domains from diverse soils revealed that sequences predicted to arise from cadaside-like gene clusters are predominantly found in soils containing high levels of calcium carbonate.
Collapse
Affiliation(s)
| | | | - Christophe Lemetre
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, New York, NY 10065
| | - Melinda A. Ternei
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, New York, NY 10065
| | - Sean F. Brady
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, New York, NY 10065
| |
Collapse
|
31
|
Abstract
C–H functionalization is a chemically challenging but highly desirable transformation. 2-oxoglutarate-dependent oxygenases (2OGXs) are remarkably versatile biocatalysts for the activation of C–H bonds. In nature, they have been shown to accept both small and large molecules carrying out a plethora of reactions, including hydroxylations, demethylations, ring formations, rearrangements, desaturations, and halogenations, making them promising candidates for industrial manufacture. In this review, we describe the current status of 2OGX use in biocatalytic applications concentrating on 2OGX-catalyzed oxyfunctionalization of amino acids and synthesis of antibiotics. Looking forward, continued bioinformatic sourcing will help identify additional, practical useful members of this intriguing enzyme family, while enzyme engineering will pave the way to enhance 2OGX reactivity for non-native substrates.
Collapse
|
32
|
Bastard K, Isabet T, Stura EA, Legrand P, Zaparucha A. Structural Studies based on two Lysine Dioxygenases with Distinct Regioselectivity Brings Insights Into Enzyme Specificity within the Clavaminate Synthase-Like Family. Sci Rep 2018; 8:16587. [PMID: 30410048 PMCID: PMC6224419 DOI: 10.1038/s41598-018-34795-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 10/23/2018] [Indexed: 12/19/2022] Open
Abstract
Iron(II)/α-ketoacid-dependent oxygenases (αKAOs) are enzymes that catalyze the oxidation of unactivated C-H bonds, mainly through hydroxylation. Among these, those that are active towards amino-acids and their derivatives are grouped in the Clavaminate Synthase Like (CSL) family. CSL enzymes exhibit high regio- and stereoselectivities with strict substrate specificity. This study reports the structural elucidation of two new regiodivergent members, KDO1 and KDO5, active towards lysine, and the structural and computational analysis of the whole family through modelling and classification of active sites. The structures of KDO1 and KDO5 in complex with their ligands show that one exact position in the active site controls the regioselectivity of the reaction. Our results suggest that the substrate specificity and high stereoselectivity typical of this family is linked to a lid that closes up in order to form a sub-pocket around the side chain of the substrate. This dynamic lid is found throughout the family with varying sequence and length and is associated with a conserved stable dimeric interface. Results from this study could be a starting-point for exploring the functional diversity of the CSL family and direct in vitro screening in the search for new enzymatic activities.
Collapse
Affiliation(s)
- Karine Bastard
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
| | - Tatiana Isabet
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48, 91192, Gif-sur-Yvette, France
| | - Enrico A Stura
- CEA, Institut des Sciences du Vivant Frédéric Joliot, Service d'Ingénierie Moléculaire des Protéines (SIMOPRO), Université Paris-Saclay, Gif-sur-Yvette, 91190, France
| | - Pierre Legrand
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48, 91192, Gif-sur-Yvette, France
| | - Anne Zaparucha
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France.
| |
Collapse
|
33
|
Dunham NP, Mitchell AJ, Del Río Pantoja JM, Krebs C, Bollinger JM, Boal AK. α-Amine Desaturation of d-Arginine by the Iron(II)- and 2-(Oxo)glutarate-Dependent l-Arginine 3-Hydroxylase, VioC. Biochemistry 2018; 57:6479-6488. [PMID: 30403469 DOI: 10.1021/acs.biochem.8b00901] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
When challenged with substrate analogues, iron(II)- and 2-(oxo)glutarate-dependent (Fe/2OG) oxygenases can promote transformations different from those they enact upon their native substrates. We show here that the Fe/2OG enzyme, VioC, which is natively an l-arginine 3-hydroxylase, catalyzes an efficient oxidative deamination of its substrate enantiomer, d-Arg. The reactant complex with d-Arg retains all interactions between enzyme and substrate functional groups, but the required structural adjustments and opposite configuration of C2 position this carbon more optimally than C3 to donate hydrogen (H•) to the ferryl intermediate. The simplest possible mechanism, C2 hydroxylation followed by elimination of ammonia, is inconsistent with the demonstrated solvent origin of the ketone oxygen in the product. Rather, the reaction proceeds via a hydrolytically labile C2-iminium intermediate, demonstrated by its reductive trapping in solution with NaB2H4 to produce racemic [2H]Arg. Of two alternative pathways to the iminium species, C2 hydroxylation followed by dehydration versus direct desaturation, the latter possibility appears to be more likely, because the former mechanism would be expected to result in detectable incorporation of 18O from 18O2. The direct desaturation of a C-N bond implied by this analysis is analogous to that recently posited for the reaction of the l-Arg 4,5-desaturase, NapI, thus lending credence to the prior mechanistic proposal. Such a pathway could also potentially be operant in a subset of reactions catalyzed by Fe/2OG N-demethylases, which have instead been purported to enact C-N bond cleavage by methyl hydroxylation and elimination of formaldehyde.
Collapse
|
34
|
Correia Cordeiro RS, Enoki J, Busch F, Mügge C, Kourist R. Cloning and characterization of a new delta-specific l-leucine dioxygenase from Anabaena variabilis. J Biotechnol 2018; 284:68-74. [DOI: 10.1016/j.jbiotec.2018.07.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 07/26/2018] [Accepted: 07/28/2018] [Indexed: 11/24/2022]
|
35
|
Sun D, Gao D, Xu P, Guo Q, Zhu Z, Cheng X, Bai S, Qin HM, Lu F. A novel l -leucine 5-hydroxylase from Nostoc piscinale unravels unexpected sulfoxidation activity toward l -methionine. Protein Expr Purif 2018; 149:1-6. [DOI: 10.1016/j.pep.2018.04.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/26/2018] [Accepted: 04/13/2018] [Indexed: 01/21/2023]
|
36
|
Li S, Zhang J, Liu Y, Sun G, Deng Z, Sun Y. Direct Genetic and Enzymatic Evidence for Oxidative Cyclization in Hygromycin B Biosynthesis. ACS Chem Biol 2018; 13:2203-2210. [PMID: 29878752 DOI: 10.1021/acschembio.8b00375] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Hygromycin B is an aminoglycoside antibiotic with a structurally distinctive orthoester linkage. Despite its long history of use in industry and in the laboratory, its biosynthesis remains poorly understood. We show here, by in-frame gene deletion in vivo and detailed enzyme characterization in vitro, that formation of the unique orthoester moiety is catalyzed by the α-ketoglutarate- and non-heme iron-dependent oxygenase HygX. In addition, we identify HygF as a glycosyltransferase adding UDP-hexose to 2-deoxystreptamine, HygM as a methyltransferase responsible for N-3 methylation, and HygK as an epimerase. These experimental results and bioinformatic analyses allow a detailed pathway for hygromycin B biosynthesis to be proposed, including the key oxidative cyclization reactions.
Collapse
Affiliation(s)
- Sicong Li
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, People’s Republic of China
| | - Jun Zhang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, People’s Republic of China
| | - Yuanzhen Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, People’s Republic of China
| | - Guo Sun
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, People’s Republic of China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, People’s Republic of China
| | - Yuhui Sun
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, People’s Republic of China
| |
Collapse
|
37
|
Gao SS, Naowarojna N, Cheng R, Liu X, Liu P. Recent examples of α-ketoglutarate-dependent mononuclear non-haem iron enzymes in natural product biosyntheses. Nat Prod Rep 2018; 35:792-837. [PMID: 29932179 PMCID: PMC6093783 DOI: 10.1039/c7np00067g] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Covering: up to 2018 α-Ketoglutarate (αKG, also known as 2-oxoglutarate)-dependent mononuclear non-haem iron (αKG-NHFe) enzymes catalyze a wide range of biochemical reactions, including hydroxylation, ring fragmentation, C-C bond cleavage, epimerization, desaturation, endoperoxidation and heterocycle formation. These enzymes utilize iron(ii) as the metallo-cofactor and αKG as the co-substrate. Herein, we summarize several novel αKG-NHFe enzymes involved in natural product biosyntheses discovered in recent years, including halogenation reactions, amino acid modifications and tailoring reactions in the biosynthesis of terpenes, lipids, fatty acids and phosphonates. We also conducted a survey of the currently available structures of αKG-NHFe enzymes, in which αKG binds to the metallo-centre bidentately through either a proximal- or distal-type binding mode. Future structure-function and structure-reactivity relationship investigations will provide crucial information regarding how activities in this large class of enzymes have been fine-tuned in nature.
Collapse
Affiliation(s)
- Shu-Shan Gao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | | | - Ronghai Cheng
- Department of Chemistry, Boston University, Boston, MA 02215, USA.
| | - Xueting Liu
- Department of Chemistry, Boston University, Boston, MA 02215, USA. and State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Pinghua Liu
- Department of Chemistry, Boston University, Boston, MA 02215, USA.
| |
Collapse
|
38
|
β-Hydroxyaspartic acid in siderophores: biosynthesis and reactivity. J Biol Inorg Chem 2018; 23:957-967. [DOI: 10.1007/s00775-018-1584-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 06/20/2018] [Indexed: 01/18/2023]
|
39
|
Dunham NP, Chang WC, Mitchell AJ, Martinie RJ, Zhang B, Bergman JA, Rajakovich LJ, Wang B, Silakov A, Krebs C, Boal AK, Bollinger JM. Two Distinct Mechanisms for C-C Desaturation by Iron(II)- and 2-(Oxo)glutarate-Dependent Oxygenases: Importance of α-Heteroatom Assistance. J Am Chem Soc 2018; 140:7116-7126. [PMID: 29708749 PMCID: PMC5999578 DOI: 10.1021/jacs.8b01933] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hydroxylation of aliphatic carbons by nonheme Fe(IV)-oxo (ferryl) complexes proceeds by hydrogen-atom (H•) transfer (HAT) to the ferryl and subsequent coupling between the carbon radical and Fe(III)-coordinated oxygen (termed rebound). Enzymes that use H•-abstracting ferryl complexes for other transformations must either suppress rebound or further process hydroxylated intermediates. For olefin-installing C-C desaturations, it has been proposed that a second HAT to the Fe(III)-OH complex from the carbon α to the radical preempts rebound. Deuterium (2H) at the second site should slow this step, potentially making rebound competitive. Desaturations mediated by two related l-arginine-modifying iron(II)- and 2-(oxo)glutarate-dependent (Fe/2OG) oxygenases behave oppositely in this key test, implicating different mechanisms. NapI, the l-Arg 4,5-desaturase from the naphthyridinomycin biosynthetic pathway, abstracts H• first from C5 but hydroxylates this site (leading to guanidine release) to the same modest extent whether C4 harbors 1H or 2H. By contrast, an unexpected 3,4-desaturation of l-homoarginine (l-hArg) by VioC, the l-Arg 3-hydroxylase from the viomycin biosynthetic pathway, is markedly disfavored relative to C4 hydroxylation when C3 (the second hydrogen donor) harbors 2H. Anchimeric assistance by N6 permits removal of the C4-H as a proton in the NapI reaction, but, with no such assistance possible in the VioC desaturation, a second HAT step (from C3) is required. The close proximity (≤3.5 Å) of both l-hArg carbons to the oxygen ligand in an X-ray crystal structure of VioC harboring a vanadium-based ferryl mimic supports and rationalizes the sequential-HAT mechanism. The results suggest that, although the sequential-HAT mechanism is feasible, its geometric requirements may make competing hydroxylation unavoidable, thus explaining the presence of α-heteroatoms in nearly all native substrates for Fe/2OG desaturases.
Collapse
Affiliation(s)
- Noah P. Dunham
- Department of Biochemistry and Molecular Biology, The Pennsylvania
State University, University Park, PA 16802
| | - Wei-chen Chang
- Department of Chemistry, The Pennsylvania State University,
University Park, PA 16802
| | - Andrew J. Mitchell
- Department of Biochemistry and Molecular Biology, The Pennsylvania
State University, University Park, PA 16802
| | - Ryan J. Martinie
- Department of Chemistry, The Pennsylvania State University,
University Park, PA 16802
| | - Bo Zhang
- Department of Chemistry, The Pennsylvania State University,
University Park, PA 16802
| | - Jonathan A. Bergman
- Department of Biochemistry and Molecular Biology, The Pennsylvania
State University, University Park, PA 16802
| | - Lauren J. Rajakovich
- Department of Biochemistry and Molecular Biology, The Pennsylvania
State University, University Park, PA 16802
| | - Bo Wang
- Department of Chemistry, The Pennsylvania State University,
University Park, PA 16802
| | - Alexey Silakov
- Department of Chemistry, The Pennsylvania State University,
University Park, PA 16802
| | - Carsten Krebs
- Department of Biochemistry and Molecular Biology, The Pennsylvania
State University, University Park, PA 16802
- Department of Chemistry, The Pennsylvania State University,
University Park, PA 16802
| | - Amie K. Boal
- Department of Biochemistry and Molecular Biology, The Pennsylvania
State University, University Park, PA 16802
- Department of Chemistry, The Pennsylvania State University,
University Park, PA 16802
| | - J. Martin Bollinger
- Department of Biochemistry and Molecular Biology, The Pennsylvania
State University, University Park, PA 16802
- Department of Chemistry, The Pennsylvania State University,
University Park, PA 16802
| |
Collapse
|
40
|
Abstract
2-Oxoglutarate (2OG)-dependent oxygenases (2OGXs) catalyze a remarkably diverse range of oxidative reactions. In animals, these comprise hydroxylations and N-demethylations proceeding via hydroxylation; in plants and microbes, they catalyze a wider range including ring formations, rearrangements, desaturations, and halogenations. The catalytic flexibility of 2OGXs is reflected in their biological functions. After pioneering work identified the roles of 2OGXs in collagen biosynthesis, research revealed they also function in plant and animal development, transcriptional regulation, nucleic acid modification/repair, fatty acid metabolism, and secondary metabolite biosynthesis, including of medicinally important antibiotics. In plants, 2OGXs are important agrochemical targets and catalyze herbicide degradation. Human 2OGXs, particularly those regulating transcription, are current therapeutic targets for anemia and cancer. Here, we give an overview of the biochemistry of 2OGXs, providing examples linking to biological function, and outline how knowledge of their enzymology is being exploited in medicine, agrochemistry, and biocatalysis.
Collapse
Affiliation(s)
- Md Saiful Islam
- The Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom;
| | - Thomas M Leissing
- The Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom;
| | - Rasheduzzaman Chowdhury
- The Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom;
| | - Richard J Hopkinson
- The Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom; .,Current affiliation for Richard J. Hopkinson: Leicester Institute of Structural and Chemical Biology and Department of Chemistry, University of Leicester, Leicester LE1 7RH, United Kingdom;
| | - Christopher J Schofield
- The Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom;
| |
Collapse
|
41
|
Discovery of Lysine Hydroxylases in the Clavaminic Acid Synthase-Like Superfamily for Efficient Hydroxylysine Bioproduction. Appl Environ Microbiol 2017; 83:AEM.00693-17. [PMID: 28667106 DOI: 10.1128/aem.00693-17] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 06/22/2017] [Indexed: 01/19/2023] Open
Abstract
Hydroxylation via C-H bond activation in the absence of any harmful oxidizing reagents is technically difficult in modern chemistry. In this work, we attempted to generate pharmaceutically important hydroxylysine from readily available l-lysine with l-lysine hydroxylases from diverse microorganisms. Clavaminic acid synthase-like superfamily gene mining and phylogenetic analysis led to the discovery of six biocatalysts, namely two l-lysine 3S-hydroxylases and four l-lysine 4R-hydroxylases, the latter of which partially matched known hydroxylases. Subsequent characterization of these hydroxylases revealed their capacity for regio- and stereoselective hydroxylation into either C-3 or C-4 positions of l-lysine, yielding (2S,3S)-3-hydroxylysine and (2S,4R)-4-hydroxylysine, respectively. To determine if these factors had industrial application, we performed a preparative production of both hydroxylysines under optimized conditions. For this, recombinant l-lysine hydroxylase-expressing Escherichia coli cells were used as a biocatalyst for l-lysine bioconversion. In batch-scale reactions, 531 mM (86.1 g/liter) (2S,3S)-3-hydroxylysine was produced from 600 mM l-lysine with an 89% molar conversion after a 52-h reaction, and 265 mM (43.0 g/liter) (2S,4R)-4-hydroxylysine was produced from 300 mM l-lysine with a molar conversion of 88% after 24 h. This report demonstrates the highly efficient production of hydroxylysines using lysine hydroxylases, which may contribute to future industrial bioprocess technologies.IMPORTANCE The present study identified six l-lysine hydroxylases belonging to the 2-oxoglutarate-dependent dioxygenase superfamily, although some of them overlapped with known hydroxylases. While the substrate specificity of l-lysine hydroxylases was relatively narrow, we found that (2S,3S)-3-hydroxylysine was hydroxylated by 4R-hydroxylase and (2S,5R)-5-hydroxylysine was hydroxylated by both 3S- and 4R-hydroxylases. Moreover, the l-arginine hydroxylase VioC also hydroxylated l-lysine, albeit to a lesser extent. Further, we also demonstrated the bioconversion of l-lysine into (2S,3S)-3-hydroxylysine and (2S,4R)-4-hydroxylysine on a gram scale under optimized conditions. These findings provide new insights into biocatalytic l-lysine hydroxylation and thus have a great potential for use in manufacturing bioprocesses.
Collapse
|
42
|
Süssmuth RD, Mainz A. Nonribosomal Peptide Synthesis-Principles and Prospects. Angew Chem Int Ed Engl 2017; 56:3770-3821. [PMID: 28323366 DOI: 10.1002/anie.201609079] [Citation(s) in RCA: 615] [Impact Index Per Article: 76.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Indexed: 01/05/2023]
Abstract
Nonribosomal peptide synthetases (NRPSs) are large multienzyme machineries that assemble numerous peptides with large structural and functional diversity. These peptides include more than 20 marketed drugs, such as antibacterials (penicillin, vancomycin), antitumor compounds (bleomycin), and immunosuppressants (cyclosporine). Over the past few decades biochemical and structural biology studies have gained mechanistic insights into the highly complex assembly line of nonribosomal peptides. This Review provides state-of-the-art knowledge on the underlying mechanisms of NRPSs and the variety of their products along with detailed analysis of the challenges for future reprogrammed biosynthesis. Such a reprogramming of NRPSs would immediately spur chances to generate analogues of existing drugs or new compound libraries of otherwise nearly inaccessible compound structures.
Collapse
Affiliation(s)
- Roderich D Süssmuth
- Technische Universität Berlin, Institut für Chemie, Strasse des 17. Juni 124, 10623, Berlin, Germany
| | - Andi Mainz
- Technische Universität Berlin, Institut für Chemie, Strasse des 17. Juni 124, 10623, Berlin, Germany
| |
Collapse
|
43
|
Süssmuth RD, Mainz A. Nicht-ribosomale Peptidsynthese - Prinzipien und Perspektiven. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201609079] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Roderich D. Süssmuth
- Technische Universität Berlin; Institut für Chemie; Straße des 17. Juni 124 10623 Berlin Deutschland
| | - Andi Mainz
- Technische Universität Berlin; Institut für Chemie; Straße des 17. Juni 124 10623 Berlin Deutschland
| |
Collapse
|
44
|
Wu LF, Meng S, Tang GL. Ferrous iron and α-ketoglutarate-dependent dioxygenases in the biosynthesis of microbial natural products. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:453-70. [DOI: 10.1016/j.bbapap.2016.01.012] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 01/22/2016] [Accepted: 01/29/2016] [Indexed: 01/29/2023]
|
45
|
Novel Enzyme Family Found in Filamentous Fungi Catalyzing trans-4-Hydroxylation of L-Pipecolic Acid. Appl Environ Microbiol 2016; 82:2070-2077. [PMID: 26801577 DOI: 10.1128/aem.03764-15] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 01/19/2016] [Indexed: 11/20/2022] Open
Abstract
Hydroxypipecolic acids are bioactive compounds widely distributed in nature and are valuable building blocks for the organic synthesis of pharmaceuticals. We have found a novel hydroxylating enzyme with activity toward L-pipecolic acid (L-Pip) in a filamentous fungus, Fusarium oxysporum c8D. The enzyme L-Pip trans-4-hydroxylase (Pip4H) of F. oxysporum (FoPip4H) belongs to the Fe(II)/α-ketoglutarate-dependent dioxygenase superfamily, catalyzes the regio- and stereoselective hydroxylation of L-Pip, and produces optically pure trans-4-hydroxy-L-pipecolic acid (trans-4-L-HyPip). Amino acid sequence analysis revealed several fungal enzymes homologous with FoPip4H, and five of these also had L-Pip trans-4-hydroxylation activity. In particular, the homologous Pip4H enzyme derived from Aspergillus nidulans FGSC A4 (AnPip4H) had a broader substrate specificity spectrum than other homologues and reacted with the L and D forms of various cyclic and aliphatic amino acids. Using FoPip4H as a biocatalyst, a system for the preparative-scale production of chiral trans-4-L-HyPip was successfully developed. Thus, we report a fungal family of L-Pip hydroxylases and the enzymatic preparation of trans-4-L-HyPip, a bioactive compound and a constituent of secondary metabolites with useful physiological activities.
Collapse
|
46
|
Oxidative cyclizations in orthosomycin biosynthesis expand the known chemistry of an oxygenase superfamily. Proc Natl Acad Sci U S A 2015; 112:11547-52. [PMID: 26240321 DOI: 10.1073/pnas.1500964112] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Orthosomycins are oligosaccharide antibiotics that include avilamycin, everninomicin, and hygromycin B and are hallmarked by a rigidifying interglycosidic spirocyclic ortho-δ-lactone (orthoester) linkage between at least one pair of carbohydrates. A subset of orthosomycins additionally contain a carbohydrate capped by a methylenedioxy bridge. The orthoester linkage is necessary for antibiotic activity but rarely observed in natural products. Orthoester linkage and methylenedioxy bridge biosynthesis require similar oxidative cyclizations adjacent to a sugar ring. We have identified a conserved group of nonheme iron, α-ketoglutarate-dependent oxygenases likely responsible for this chemistry. High-resolution crystal structures of the EvdO1 and EvdO2 oxygenases of everninomicin biosynthesis, the AviO1 oxygenase of avilamycin biosynthesis, and HygX of hygromycin B biosynthesis show how these enzymes accommodate large substrates, a challenge that requires a variation in metal coordination in HygX. Excitingly, the ternary complex of HygX with cosubstrate α-ketoglutarate and putative product hygromycin B identified an orientation of one glycosidic linkage of hygromycin B consistent with metal-catalyzed hydrogen atom abstraction from substrate. These structural results are complemented by gene disruption of the oxygenases evdO1 and evdMO1 from the everninomicin biosynthetic cluster, which demonstrate that functional oxygenase activity is critical for antibiotic production. Our data therefore support a role for these enzymes in the production of key features of the orthosomycin antibiotics.
Collapse
|
47
|
Koketsu K, Shomura Y, Moriwaki K, Hayashi M, Mitsuhashi S, Hara R, Kino K, Higuchi Y. Refined regio- and stereoselective hydroxylation of L-pipecolic acid by protein engineering of L-proline cis-4-hydroxylase based on the X-ray crystal structure. ACS Synth Biol 2015; 4:383-92. [PMID: 25171735 DOI: 10.1021/sb500247a] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Enzymatic regio- and stereoselective hydroxylation are valuable for the production of hydroxylated chiral ingredients. Proline hydroxylases are representative members of the nonheme Fe(2+)/α-ketoglutarate-dependent dioxygenase family. These enzymes catalyze the conversion of L-proline into hydroxy-L-prolines (Hyps). L-Proline cis-4-hydroxylases (cis-P4Hs) from Sinorhizobium meliloti and Mesorhizobium loti catalyze the hydroxylation of L-proline, generating cis-4-hydroxy-L-proline, as well as the hydroxylation of L-pipecolic acid (L-Pip), generating two regioisomers, cis-5-Hypip and cis-3-Hypip. To selectively produce cis-5-Hypip without simultaneous production of two isomers, protein engineering of cis-P4Hs is required. We therefore carried out protein engineering of cis-P4H to facilitate the conversion of the majority of L-Pip into the cis-5-Hypip isomer. We first solved the X-ray crystal structure of cis-P4H in complex with each of L-Pro and L-Pip. Then, we conducted three rounds of directed evolution and successfully created a cis-P4H triple mutant, V97F/V95W/E114G, demonstrating the desired regioselectivity toward cis-5-Hypip.
Collapse
Affiliation(s)
- Kento Koketsu
- Bioprocess
Development Center, Kyowa Hakko Bio Co., Ltd., Tsukuba, Ibaraki 305-0841, Japan
| | - Yasuhito Shomura
- Graduate
School of Life Science, University of Hyogo, Koto 3-2-1, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Kei Moriwaki
- Bioprocess
Development Center, Kyowa Hakko Bio Co., Ltd., Tsukuba, Ibaraki 305-0841, Japan
| | - Mikiro Hayashi
- Bioprocess
Development Center, Kyowa Hakko Bio Co., Ltd., Tsukuba, Ibaraki 305-0841, Japan
| | - Satoshi Mitsuhashi
- Bioprocess
Development Center, Kyowa Hakko Bio Co., Ltd., Tsukuba, Ibaraki 305-0841, Japan
| | - Ryotaro Hara
- Department
of Applied Chemistry, Faculty of Science and Engineering, Waseda University, Ohkubo 3-4-1, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Kuniki Kino
- Department
of Applied Chemistry, Faculty of Science and Engineering, Waseda University, Ohkubo 3-4-1, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Yoshiki Higuchi
- Graduate
School of Life Science, University of Hyogo, Koto 3-2-1, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| |
Collapse
|
48
|
One-Pot Production of L-threo-3-Hydroxyaspartic Acid Using Asparaginase-Deficient Escherichia coli Expressing Asparagine Hydroxylase of Streptomyces coelicolor A3(2). Appl Environ Microbiol 2015; 81:3648-54. [PMID: 25795668 DOI: 10.1128/aem.03963-14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 03/14/2015] [Indexed: 11/20/2022] Open
Abstract
We developed a novel process for efficient synthesis of L-threo-3-hydroxyaspartic acid (L-THA) using microbial hydroxylase and hydrolase. A well-characterized mutant of asparagine hydroxylase (AsnO-D241N) and its homologous enzyme (SCO2693-D246N) were adaptable to the direct hydroxylation of L-aspartic acid; however, the yields were strictly low. Therefore, the highly stable and efficient wild-type asparagine hydroxylases AsnO and SCO2693 were employed to synthesize L-THA. By using these recombinant enzymes, L-THA was obtained by L-asparagine hydroxylation by AsnO followed by amide hydrolysis by asparaginase via 3-hydroxyasparagine. Subsequently, the two-step reaction was adapted to one-pot bioconversion in a test tube. L-THA was obtained in a small amount with a molar yield of 0.076% by using intact Escherichia coli expressing the asnO gene, and thus, two asparaginase-deficient mutants of E. coli were investigated. A remarkably increased L-THA yield of 8.2% was obtained with the asparaginase I-deficient mutant. When the expression level of the asnO gene was enhanced by using the T7 promoter in E. coli instead of the lac promoter, the L-THA yield was significantly increased to 92%. By using a combination of the E. coli asparaginase I-deficient mutant and the T7 expression system, a whole-cell reaction in a jar fermentor was conducted, and consequently, L-THA was successfully obtained from L-asparagine with a maximum yield of 96% in less time than with test tube-scale production. These results indicate that asparagine hydroxylation followed by hydrolysis would be applicable to the efficient production of L-THA.
Collapse
|
49
|
Al Toma RS, Brieke C, Cryle MJ, Süssmuth RD. Structural aspects of phenylglycines, their biosynthesis and occurrence in peptide natural products. Nat Prod Rep 2015; 32:1207-35. [DOI: 10.1039/c5np00025d] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Phenylglycine-type amino acids occur in a wide variety of peptide natural products. Herein structures and properties of these peptides as well as the biosynthetic origin and incorporation of phenylglycines are discussed.
Collapse
Affiliation(s)
| | - Clara Brieke
- Max Planck Institute for Medical Research
- Department of Biomolecular Mechanisms
- 69120 Heidelberg
- Germany
| | - Max J. Cryle
- Max Planck Institute for Medical Research
- Department of Biomolecular Mechanisms
- 69120 Heidelberg
- Germany
| | | |
Collapse
|
50
|
Hibi M, Kasahara T, Kawashima T, Yajima H, Kozono S, Smirnov SV, Kodera T, Sugiyama M, Shimizu S, Yokozeki K, Ogawa J. Multi-Enzymatic Synthesis of Optically Pure β-Hydroxy α-Amino Acids. Adv Synth Catal 2014. [DOI: 10.1002/adsc.201400672] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|