1
|
Rosado-Quiñones AM, Colón-Lorenzo EE, Pala ZR, Bosch J, Kudyba K, Kudyba H, Leed SE, Roncal N, Baerga-Ortiz A, Roche-Lima A, Gerena Y, Fidock DA, Roth A, Vega-Rodríguez J, Serrano AE. Novel hydrazone compounds with broad-spectrum antiplasmodial activity and synergistic interactions with antimalarial drugs. Antimicrob Agents Chemother 2024; 68:e0164323. [PMID: 38639491 PMCID: PMC11620517 DOI: 10.1128/aac.01643-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/20/2024] [Indexed: 04/20/2024] Open
Abstract
The development of novel antiplasmodial compounds with broad-spectrum activity against different stages of Plasmodium parasites is crucial to prevent malaria disease and parasite transmission. This study evaluated the antiplasmodial activity of seven novel hydrazone compounds (referred to as CB compounds: CB-27, CB-41, CB-50, CB-53, CB-58, CB-59, and CB-61) against multiple stages of Plasmodium parasites. All CB compounds inhibited blood stage proliferation of drug-resistant or sensitive strains of Plasmodium falciparum in the low micromolar to nanomolar range. Interestingly, CB-41 exhibited prophylactic activity against hypnozoites and liver schizonts in Plasmodium cynomolgi, a primate model for Plasmodium vivax. Four CB compounds (CB-27, CB-41, CB-53, and CB-61) inhibited P. falciparum oocyst formation in mosquitoes, and five CB compounds (CB-27, CB-41, CB-53, CB-58, and CB-61) hindered the in vitro development of Plasmodium berghei ookinetes. The CB compounds did not inhibit the activation of P. berghei female and male gametocytes in vitro. Isobologram assays demonstrated synergistic interactions between CB-61 and the FDA-approved antimalarial drugs, clindamycin and halofantrine. Testing of six CB compounds showed no inhibition of Plasmodium glutathione S-transferase as a putative target and no cytotoxicity in HepG2 liver cells. CB compounds are promising candidates for further development as antimalarial drugs against multidrug-resistant parasites, which could also prevent malaria transmission.
Collapse
Affiliation(s)
- Angélica M. Rosado-Quiñones
- Department of Microbiology and Medical Zoology, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
| | - Emilee E. Colón-Lorenzo
- Department of Microbiology and Medical Zoology, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
| | - Zarna Rajeshkumar Pala
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Jürgen Bosch
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio, USA
- InterRayBio, LLC, Cleveland, Ohio, USA
| | - Karl Kudyba
- Department of Drug Discovery, Experimental Therapeutics Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Heather Kudyba
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Susan E. Leed
- Department of Drug Discovery, Experimental Therapeutics Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Norma Roncal
- Department of Drug Discovery, Experimental Therapeutics Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Abel Baerga-Ortiz
- Department of Biochemistry, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
| | - Abiel Roche-Lima
- RCMI Program, Medical Science Campus, University of Puerto Rico, San Juan, Puerto Rico
| | - Yamil Gerena
- Department of Pharmacology and Toxicology, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
| | - David A. Fidock
- Department of Microbiology and Immunology, Columbia University, New York, New York, USA
- Division of Infectious Diseases, Department of Medicine, Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Medical Center, New York, New York, USA
| | - Alison Roth
- Department of Drug Discovery, Experimental Therapeutics Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Joel Vega-Rodríguez
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Adelfa E. Serrano
- Department of Microbiology and Medical Zoology, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
| |
Collapse
|
2
|
García JS, Puertas-Martín S, Redondo JL, Moreno JJ, Ortigosa PM. Improving drug discovery through parallelism. THE JOURNAL OF SUPERCOMPUTING 2023; 79:9538-9557. [PMID: 36687309 PMCID: PMC9842220 DOI: 10.1007/s11227-022-05014-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Compound identification in ligand-based virtual screening is limited by two key issues: the quality and the time needed to obtain predictions. In this sense, we designed OptiPharm, an algorithm that obtained excellent results in improving the sequential methods in the literature. In this work, we go a step further and propose its parallelization. Specifically, we propose a two-layer parallelization. Firstly, an automation of the molecule distribution process between the available nodes in a cluster, and secondly, a parallelization of the internal methods (initialization, reproduction, selection and optimization). This new software, called pOptiPharm, aims to improve the quality of predictions and reduce experimentation time. As the results show, the performance of the proposed methods is good. It can find better solutions than the sequential OptiPharm, all while reducing its computation time almost proportionally to the number of processing units considered.
Collapse
Affiliation(s)
- Jerónimo S. García
- Supercomputing - Algorithms Research Group (SAL), Agrifood Campus of International Excellence, University of Almería, Carretera Sacramento s/n, La Cañada de San Urbano, 04120 Almería, Spain
| | - Savíns Puertas-Martín
- Supercomputing - Algorithms Research Group (SAL), Agrifood Campus of International Excellence, University of Almería, Carretera Sacramento s/n, La Cañada de San Urbano, 04120 Almería, Spain
- Information School, University of Sheffield, 221, Portobello Street, Sheffield, S1 4DP United Kingdom
| | - Juana L. Redondo
- Supercomputing - Algorithms Research Group (SAL), Agrifood Campus of International Excellence, University of Almería, Carretera Sacramento s/n, La Cañada de San Urbano, 04120 Almería, Spain
| | - Juan José Moreno
- Supercomputing - Algorithms Research Group (SAL), Agrifood Campus of International Excellence, University of Almería, Carretera Sacramento s/n, La Cañada de San Urbano, 04120 Almería, Spain
| | - Pilar M. Ortigosa
- Supercomputing - Algorithms Research Group (SAL), Agrifood Campus of International Excellence, University of Almería, Carretera Sacramento s/n, La Cañada de San Urbano, 04120 Almería, Spain
| |
Collapse
|
3
|
Ferrández MR, Puertas-Martín S, Redondo JL, Pérez-Sánchez H, Ortigosa PM. A two-layer mono-objective algorithm based on guided optimization to reduce the computational cost in virtual screening. Sci Rep 2022; 12:12769. [PMID: 35896716 PMCID: PMC9326156 DOI: 10.1038/s41598-022-16913-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 07/18/2022] [Indexed: 11/09/2022] Open
Abstract
Virtual screening methods focus on searching molecules with similar properties to a given compound. Molecule databases are made up of large numbers of compounds and are constantly increasing. Therefore, fast and efficient methodologies and tools have to be designed to explore them quickly. In this context, ligand-based virtual screening methods are a well-known and helpful tool. These methods focus on searching for the most similar molecules in a database to a reference one. In this work, we propose a new tool called 2L-GO-Pharm, which requires less computational effort than OptiPharm, an efficient and robust piece of software recently proposed in the literature. The new-implemented tool maintains or improves the quality of the solutions found by OptiPharm, and achieves it by considerably reducing the number of evaluations needed. Some of the strengths that help 2L-GO-Pharm enhance searchability are the reduction of the search space dimension and the introduction of some circular limits for the angular variables. Furthermore, to ensure a trade-off between exploration and exploitation of the search space, it implements a two-layer strategy and a guided search procedure combined with a convergence test on the rotation axis. The performance of 2L-GO-Pharm has been tested by considering two different descriptors, i.e. shape similarity and electrostatic potential. The results show that it saves up to 87.5 million evaluations per query molecule.
Collapse
Affiliation(s)
- Miriam R Ferrández
- Supercomputing-Algorithms Research Group (SAL), Agrifood Campus of International Excellence, University of Almería, Carretera Sacramento s/n, La Cañada de San Urbano, 04120, Almería, Spain.
| | - Savíns Puertas-Martín
- Supercomputing-Algorithms Research Group (SAL), Agrifood Campus of International Excellence, University of Almería, Carretera Sacramento s/n, La Cañada de San Urbano, 04120, Almería, Spain
| | - Juana L Redondo
- Supercomputing-Algorithms Research Group (SAL), Agrifood Campus of International Excellence, University of Almería, Carretera Sacramento s/n, La Cañada de San Urbano, 04120, Almería, Spain.
| | - Horacio Pérez-Sánchez
- Structural Bioinformatics and High Performance Computing Research Group (BIO-HPC), HiTech Innovation Hub, Universidad Católica San Antonio De Murcia (UCAM), Campus de los Jerónimos, 30107, Murcia, Spain
| | - Pilar M Ortigosa
- Supercomputing-Algorithms Research Group (SAL), Agrifood Campus of International Excellence, University of Almería, Carretera Sacramento s/n, La Cañada de San Urbano, 04120, Almería, Spain
| |
Collapse
|
4
|
Szilágyi K, Flachner B, Hajdú I, Szaszkó M, Dobi K, Lőrincz Z, Cseh S, Dormán G. Rapid Identification of Potential Drug Candidates from Multi-Million Compounds' Repositories. Combination of 2D Similarity Search with 3D Ligand/Structure Based Methods and In Vitro Screening. Molecules 2021; 26:5593. [PMID: 34577064 PMCID: PMC8468386 DOI: 10.3390/molecules26185593] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/10/2021] [Accepted: 09/11/2021] [Indexed: 12/23/2022] Open
Abstract
Rapid in silico selection of target focused libraries from commercial repositories is an attractive and cost-effective approach in early drug discovery. If structures of active compounds are available, rapid 2D similarity search can be performed on multimillion compounds' databases. This approach can be combined with physico-chemical parameter and diversity filtering, bioisosteric replacements, and fragment-based approaches for performing a first round biological screening. Our objectives were to investigate the combination of 2D similarity search with various 3D ligand and structure-based methods for hit expansion and validation, in order to increase the hit rate and novelty. In the present account, six case studies are described and the efficiency of mixing is evaluated. While sequentially combined 2D/3D similarity approach increases the hit rate significantly, sequential combination of 2D similarity with pharmacophore model or 3D docking enriched the resulting focused library with novel chemotypes. Parallel integrated approaches allowed the comparison of the various 2D and 3D methods and revealed that 2D similarity-based and 3D ligand and structure-based techniques are often complementary, and their combinations represent a powerful synergy. Finally, the lessons we learnt including the advantages and pitfalls of the described approaches are discussed.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - György Dormán
- TargetEx Ltd., Madách I. u. 31/2, 2120 Dunakeszi, Hungary; (K.S.); (B.F.); (I.H.); (M.S.); (K.D.); (Z.L.); (S.C.)
| |
Collapse
|
5
|
Yang W, Wang K, Wu H, Shao H, Chen H, Zhu J. Peptide scaffold‐derived peptidomimetic farnesyltransferase inhibitors. J CHIN CHEM SOC-TAIP 2021. [DOI: 10.1002/jccs.202100037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Wei Yang
- Department of Infectious Diseases, Taizhou Hospital Zhejiang University Taizhou China
| | - Kuifeng Wang
- Department of Infectious Diseases, Taizhou Hospital Zhejiang University Taizhou China
| | - Hongwei Wu
- Department of Infectious Diseases Affiliated Taizhou Hospital of Wenzhou Medical University Taizhou China
| | - Hui Shao
- Department of Infectious Diseases, Taizhou Hospital Zhejiang University Taizhou China
| | - Huazhong Chen
- Department of Infectious Diseases, Taizhou Hospital Zhejiang University Taizhou China
| | - Jiansheng Zhu
- Department of Infectious Diseases, Taizhou Hospital Zhejiang University Taizhou China
| |
Collapse
|
6
|
Jiang Z, Xu J, Yan A, Wang L. A comprehensive comparative assessment of 3D molecular similarity tools in ligand-based virtual screening. Brief Bioinform 2021; 22:6304389. [PMID: 34151363 DOI: 10.1093/bib/bbab231] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 05/10/2021] [Accepted: 05/27/2021] [Indexed: 12/19/2022] Open
Abstract
Three-dimensional (3D) molecular similarity, one major ligand-based virtual screening (VS) method, has been widely used in the drug discovery process. A variety of 3D molecular similarity tools have been developed in recent decades. In this study, we assessed a panel of 15 3D molecular similarity programs against the DUD-E and LIT-PCBA datasets, including commercial ROCS and Phase, in terms of screening power and scaffold-hopping power. The results revealed that (1) SHAFTS, LS-align, Phase Shape_Pharm and LIGSIFT showed the best VS capability in terms of screening power. Some 3D similarity tools available to academia can yield relatively better VS performance than commercial ROCS and Phase software. (2) Current 3D similarity VS tools exhibit a considerable ability to capture actives with new chemotypes in terms of scaffold hopping. (3) Multiple conformers relative to single conformations will generally improve VS performance for most 3D similarity tools, with marginal improvement observed in area under the receiving operator characteristic curve values, enrichment factor in the top 1% and hit rate in the top 1% values showed larger improvement. Moreover, redundancy and complementarity analyses of hit lists from different query seeds and different 3D similarity VS tools showed that the combination of different query seeds and/or different 3D similarity tools in VS campaigns retrieved more (and more diverse) active molecules. These findings provide useful information for guiding choices of the optimal 3D molecular similarity tools for VS practices and designing possible combination strategies to discover more diverse active compounds.
Collapse
Affiliation(s)
- Zhenla Jiang
- South China University of Technology, Guangzhou 510006, China
| | - Jianrong Xu
- Shanghai Jiao Tong University School of Medicine and Shanghai University of Traditional Chinese Medicine, Guangzhou 510006, China
| | - Aixia Yan
- Beijing University of Chemical Technology, Guangzhou 510006, China
| | - Ling Wang
- South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
7
|
Zarnecka J, Lukac I, Messham SJ, Hussin A, Coppola F, Enoch SJ, Dossetter AG, Griffen EJ, Leach AG. Mapping Ligand-Shape Space for Protein-Ligand Systems: Distinguishing Key-in-Lock and Hand-in-Glove Proteins. J Chem Inf Model 2021; 61:1859-1874. [PMID: 33755448 DOI: 10.1021/acs.jcim.1c00089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Many of the recently developed methods to study the shape of molecules permit one conformation of one molecule to be compared to another conformation of the same or a different molecule: a relative shape. Other methods provide an absolute description of the shape of a conformation that does not rely on comparisons or overlays. Any absolute description of shape can be used to generate a self-organizing map (shape map) that places all molecular shapes relative to one another; in the studies reported here, the shape fingerprint and ultrafast shape recognition methods are employed to create such maps. In the shape maps, molecules that are near one another have similar shapes, and the maps for the 102 targets in the DUD-E set have been generated. By examining the distribution of actives in comparison with their physical-property-matched decoys, we show that the proteins of key-in-lock type (relatively rigid receptor and ligand) can be distinguished from those that are more of a hand-in-glove type (more flexible receptor and ligand). These are linked to known differences in protein flexibility and binding-site size.
Collapse
Affiliation(s)
- Joanna Zarnecka
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool L3 3AF, U.K
| | - Iva Lukac
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool L3 3AF, U.K
| | - Stephen J Messham
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool L3 3AF, U.K
| | - Alhusein Hussin
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool L3 3AF, U.K
| | - Francesco Coppola
- Division of Pharmacy and Optometry, School of Health Sciences, University of Manchester, Stopford Building, Oxford Road, Manchester M13 9PT, U.K
| | - Steven J Enoch
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool L3 3AF, U.K
| | | | - Edward J Griffen
- MedChemica Limited, Biohub, Mereside, Alderley Park, Macclesfield SK10 4TG, U.K
| | - Andrew G Leach
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool L3 3AF, U.K.,MedChemica Limited, Biohub, Mereside, Alderley Park, Macclesfield SK10 4TG, U.K.,Division of Pharmacy and Optometry, School of Health Sciences, University of Manchester, Stopford Building, Oxford Road, Manchester M13 9PT, U.K
| |
Collapse
|
8
|
Abu-Saleh AAAA, Awad IE, Yadav A, Poirier RA. Discovery of potent inhibitors for SARS-CoV-2's main protease by ligand-based/structure-based virtual screening, MD simulations, and binding energy calculations. Phys Chem Chem Phys 2020; 22:23099-23106. [PMID: 33025993 DOI: 10.1039/d0cp04326e] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
COVID-19 has caused lockdowns all over the world in early 2020, as a global pandemic. Both theoretical and experimental efforts are seeking to find an effective treatment to suppress the virus. In silico drug design can play a vital role in identifying promising drug candidates against COVID-19. Herein, we focused on the main protease of SARS-CoV-2 that has crucial biological functions in the virus. We performed a ligand-based virtual screening followed by a docking screening for testing approved drugs and bioactive compounds listed in the DrugBank and ChEMBL databases. The top 8 docking results were advanced to all-atom MD simulations to study the relative stability of the protein-ligand interactions. MD simulations support that the catalytic residue, His41, has a neutral side chain with a protonated delta position. An absolute binding energy (ΔG) of -42 kJ mol-1 for the protein-ligand (Mpro-N3) complex has been calculated using the potential-of-mean-force (geometrical) approach. Furthermore, the relative binding energies were computed for the top docking results. Our results suggest several promising approved and bioactive inhibitors of SARS-CoV-2 Mpro as follows: a bioactive compound, ChEMBL275592, which has the best MM/GBSA binding energy; the second-best compound, montelukast, is an approved drug used in the treatment of asthma and allergic rhinitis; the third-best compound, ChEMBL288347, is a bioactive compound. Bromocriptine and saquinavir are other approved drugs that also demonstrate stability in the active site of Mpro, albeit their relative binding energies are low compared to the N3 inhibitor. This study provides useful insights into de novo protein design and novel inhibitor development, which could reduce the cost and time required for the discovery of a potent drug to combat SARS-CoV-2.
Collapse
|
9
|
Prosser K, Stokes RW, Cohen SM. Evaluation of 3-Dimensionality in Approved and Experimental Drug Space. ACS Med Chem Lett 2020; 11:1292-1298. [PMID: 32551014 PMCID: PMC7294711 DOI: 10.1021/acsmedchemlett.0c00121] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/18/2020] [Indexed: 11/28/2022] Open
Abstract
The 3-dimensional (3D) structure of therapeutics and other bioactive molecules is an important factor in determining the strength and selectivity of their protein-ligand interactions. Previous efforts have considered the strain introduced and tolerated through conformational changes induced upon protein binding. Herein, we present an analysis of 3-dimentionality for energy-minimized structures from the DrugBank and ligands bound to proteins identified in the Protein Data Bank (PDB). This analysis reveals that the majority of molecules found in both the DrugBank and the PDB tend toward linearity and planarity, with few molecules having highly 3D conformations. Decidedly 3D geometries have been historically difficult to achieve, likely due to the synthetic challenge of making 3D organic molecules, and other considerations, such as adherence to the 'rule-of-five'. This has resulted in the dominance of planar and/or linear topologies of the molecules described here. Strategies to address the generally flat nature of these data sets are explored, including the use of 3D organic fragments and inorganic scaffolds as a means of accessing privileged 3D space. This work highlights the potential utility of libraries with greater 3D topological diversity so that the importance of molecular shape to biological behavior can be more fully understood in drug discovery campaigns.
Collapse
Affiliation(s)
- Kathleen
E. Prosser
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Ryjul W. Stokes
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Seth M. Cohen
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
10
|
Singh N, Chaput L, Villoutreix BO. Virtual screening web servers: designing chemical probes and drug candidates in the cyberspace. Brief Bioinform 2020; 22:1790-1818. [PMID: 32187356 PMCID: PMC7986591 DOI: 10.1093/bib/bbaa034] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The interplay between life sciences and advancing technology drives a continuous cycle of chemical data growth; these data are most often stored in open or partially open databases. In parallel, many different types of algorithms are being developed to manipulate these chemical objects and associated bioactivity data. Virtual screening methods are among the most popular computational approaches in pharmaceutical research. Today, user-friendly web-based tools are available to help scientists perform virtual screening experiments. This article provides an overview of internet resources enabling and supporting chemical biology and early drug discovery with a main emphasis on web servers dedicated to virtual ligand screening and small-molecule docking. This survey first introduces some key concepts and then presents recent and easily accessible virtual screening and related target-fishing tools as well as briefly discusses case studies enabled by some of these web services. Notwithstanding further improvements, already available web-based tools not only contribute to the design of bioactive molecules and assist drug repositioning but also help to generate new ideas and explore different hypotheses in a timely fashion while contributing to teaching in the field of drug development.
Collapse
Affiliation(s)
- Natesh Singh
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 Drugs and Molecules for Living Systems, F-59000 Lille, France
| | - Ludovic Chaput
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 Drugs and Molecules for Living Systems, F-59000 Lille, France
| | - Bruno O Villoutreix
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 Drugs and Molecules for Living Systems, F-59000 Lille, France
| |
Collapse
|
11
|
Lovrics A, Pape VFS, Szisz D, Kalászi A, Heffeter P, Magyar C, Szakács G. Identifying new topoisomerase II poison scaffolds by combining publicly available toxicity data and 2D/3D-based virtual screening. J Cheminform 2019; 11:67. [PMID: 33430961 PMCID: PMC6842385 DOI: 10.1186/s13321-019-0390-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/23/2019] [Indexed: 01/17/2023] Open
Abstract
Molecular descriptor (2D) and three dimensional (3D) shape based similarity methods are widely used in ligand based virtual drug design. In the present study pairwise structure comparisons among a set of 4858 DTP compounds tested in the NCI60 tumor cell line anticancer drug screen were computed using chemical hashed fingerprints and 3D molecule shapes to calculate 2D and 3D similarities, respectively. Additionally, pairwise biological activity similarities were calculated by correlating the 60 element vectors of pGI50 values corresponding to the cytotoxicity of the compounds across the NCI60 panel. Subsequently, we compared the power of 2D and 3D structural similarity metrics to predict the toxicity pattern of compounds. We found that while the positive predictive value and sensitivity of 3D and molecular descriptor based approaches to predict biological activity are similar, a subset of molecule pairs yielded contradictory results. By simultaneously requiring similarity of biological activities and 3D shapes, and dissimilarity of molecular descriptor based comparisons, we identify pairs of scaffold hopping candidates displaying characteristic core structural changes such as heteroatom/heterocycle change and ring closure. Attempts to discover scaffold hopping candidates of mitoxantrone recovered known Topoisomerase II (Top2) inhibitors, and also predicted new, previously unknown chemotypes possessing in vitro Top2 inhibitory activity.![]()
Collapse
Affiliation(s)
- Anna Lovrics
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, 1117, Hungary
| | - Veronika F S Pape
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, 1117, Hungary.,Department of Physiology, Semmelweis University, Faculty of Medicine, Budapest, 1094, Hungary
| | - Dániel Szisz
- ChemAxon Ltd., Graphisoft park, Záhony u. 7, Budapest, 1031, Hungary
| | - Adrián Kalászi
- ChemAxon Ltd., Graphisoft park, Záhony u. 7, Budapest, 1031, Hungary
| | - Petra Heffeter
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090, Vienna, Austria
| | - Csaba Magyar
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, 1117, Hungary
| | - Gergely Szakács
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, 1117, Hungary. .,Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090, Vienna, Austria.
| |
Collapse
|
12
|
Banegas-Luna AJ, Cerón-Carrasco JP, Puertas-Martín S, Pérez-Sánchez H. BRUSELAS: HPC Generic and Customizable Software Architecture for 3D Ligand-Based Virtual Screening of Large Molecular Databases. J Chem Inf Model 2019; 59:2805-2817. [DOI: 10.1021/acs.jcim.9b00279] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Antonio J. Banegas-Luna
- Bioinformatics and High Performance Computing Research Group (BIO-HPC), Computer Engineering Department, Universidad Católica San Antonio de Murcia (UCAM), Campus de los Jerónimos s/n, 30107 Murcia, Spain
| | - José P. Cerón-Carrasco
- Bioinformatics and High Performance Computing Research Group (BIO-HPC), Computer Engineering Department, Universidad Católica San Antonio de Murcia (UCAM), Campus de los Jerónimos s/n, 30107 Murcia, Spain
| | - Savíns Puertas-Martín
- Supercomputing - Algorithms Research Group (SAL), Department of Informatics, University of Almería, Agrifood Campus of International Excellence, ceiA3, Almería, 04120, Spain
| | - Horacio Pérez-Sánchez
- Bioinformatics and High Performance Computing Research Group (BIO-HPC), Computer Engineering Department, Universidad Católica San Antonio de Murcia (UCAM), Campus de los Jerónimos s/n, 30107 Murcia, Spain
| |
Collapse
|
13
|
Kumar A, Zhang KYJ. Advances in the Development of Shape Similarity Methods and Their Application in Drug Discovery. Front Chem 2018; 6:315. [PMID: 30090808 PMCID: PMC6068280 DOI: 10.3389/fchem.2018.00315] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/09/2018] [Indexed: 12/21/2022] Open
Abstract
Molecular similarity is a key concept in drug discovery. It is based on the assumption that structurally similar molecules frequently have similar properties. Assessment of similarity between small molecules has been highly effective in the discovery and development of various drugs. Especially, two-dimensional (2D) similarity approaches have been quite popular due to their simplicity, accuracy and efficiency. Recently, the focus has been shifted toward the development of methods involving the representation and comparison of three-dimensional (3D) conformation of small molecules. Among the 3D similarity methods, evaluation of shape similarity is now gaining attention for its application not only in virtual screening but also in molecular target prediction, drug repurposing and scaffold hopping. A wide range of methods have been developed to describe molecular shape and to determine the shape similarity between small molecules. The most widely used methods include atom distance-based methods, surface-based approaches such as spherical harmonics and 3D Zernike descriptors, atom-centered Gaussian overlay based representations. Several of these methods demonstrated excellent virtual screening performance not only retrospectively but also prospectively. In addition to methods assessing the similarity between small molecules, shape similarity approaches have been developed to compare shapes of protein structures and binding pockets. Additionally, shape comparisons between atomic models and 3D density maps allowed the fitting of atomic models into cryo-electron microscopy maps. This review aims to summarize the methodological advances in shape similarity assessment highlighting advantages, disadvantages and their application in drug discovery.
Collapse
Affiliation(s)
| | - Kam Y. J. Zhang
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, Yokohama, Japan
| |
Collapse
|
14
|
Hajdú I, Kardos J, Major B, Fabó G, Lőrincz Z, Cseh S, Dormán G. Inhibition of the LOX enzyme family members with old and new ligands. Selectivity analysis revisited. Bioorg Med Chem Lett 2018; 28:3113-3118. [PMID: 30098867 DOI: 10.1016/j.bmcl.2018.07.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 06/25/2018] [Accepted: 07/02/2018] [Indexed: 01/08/2023]
Abstract
Lysyl oxidase (LOX) enzymes as potential drug targets maintain constant attention in the therapy of fibrosis, cancer and metastasis. In order to measure the inhibitory activity of small molecules on the LOX enzyme family members a fluorometric activity screening method was developed. During assay validation, previously reported non-selective small inhibitor molecules (BAPN, MCP-1, thiram, disulfiram) were investigated on all of the major LOX enzymes. We confirmed that MCP-1, thiram, disulfiram are in fact pan-inhibitors, while BAPN inhibits only LOX-like enzymes (preferably LOX-like-protein-2, LOXL2) in contrast to the previous reports. We measured the LOX inhibitory profile of a small targeted library generated by 2D ligand-based chemoinformatics methods. Ten hits (10.4% hit rate) were identified, and the compounds showed distinct activity profiles. Potential inhibitors were also identified for LOX-like-protein-3 (LOXL3) and LOX-like-protein-4 (LOXL4), that are considered as emerging drug targets in the therapy of melanoma and gastric cancer.
Collapse
Affiliation(s)
- István Hajdú
- TargetEx Ltd., Madách Imre utca 31/2, H-2120 Dunakeszi, Hungary; Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
| | - József Kardos
- Department of Biochemistry, Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary
| | - Balázs Major
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
| | - Gabriella Fabó
- TargetEx Ltd., Madách Imre utca 31/2, H-2120 Dunakeszi, Hungary
| | - Zsolt Lőrincz
- TargetEx Ltd., Madách Imre utca 31/2, H-2120 Dunakeszi, Hungary
| | - Sándor Cseh
- TargetEx Ltd., Madách Imre utca 31/2, H-2120 Dunakeszi, Hungary
| | - György Dormán
- TargetEx Ltd., Madách Imre utca 31/2, H-2120 Dunakeszi, Hungary.
| |
Collapse
|
15
|
Bencsik P, Kupai K, Görbe A, Kenyeres É, Varga ZV, Pálóczi J, Gáspár R, Kovács L, Weber L, Takács F, Hajdú I, Fabó G, Cseh S, Barna L, Csont T, Csonka C, Dormán G, Ferdinandy P. Development of Matrix Metalloproteinase-2 Inhibitors for Cardioprotection. Front Pharmacol 2018; 9:296. [PMID: 29674965 PMCID: PMC5896266 DOI: 10.3389/fphar.2018.00296] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/14/2018] [Indexed: 12/14/2022] Open
Abstract
The objective of our present study is to develop novel inhibitors for MMP-2 for acute cardioprotection. In a series of pilot studies, novel substituted carboxylic acid derivatives were synthesized based on imidazole and thiazole scaffolds and then tested in a screeening cascade for MMP inhibition. We found that the MMP-inhibiting effects of imidazole and thiazole carboxylic acid-based compounds are superior in efficacy in comparison to the conventional hydroxamic acid derivatives of the same molecules. Based on these results, a 568-membered focused library of imidazole and thiazole compounds was generated in silico and then the library members were docked to the 3D model of MMP-2 followed by an in vitro medium throughput screening (MTS) based on a fluorescent assay employing MMP-2 catalytic domain. Altogether 45 compounds showed a docking score of >70, from which 30 compounds were successfully synthesized. Based on the MMP-2 inhibitory tests using gelatin zymography, 7 compounds were then selected and tested in neonatal rat cardiac myocytes subjected to simulated I/R injury. Six compounds showed significant cardio-cytoprotecion and the most effective compound (MMPI-1154) significantly decreased infarct size when applied at 1 μM in an ex vivo model for acute myocardial infarction. This is the first demonstration that imidazole and thiazole carboxylic acid-based compounds are more efficacious MMP-2 inhibitor than their hydroxamic acid derivatives. MMPI-1154 is a promising novel cardio-cytoprotective imidazole-carboxylic acid MMP-2 inhibitor lead candidate for the treatment of acute myocardial infarction.
Collapse
Affiliation(s)
- Péter Bencsik
- Cardiovascular Research Group, Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary.,Pharmahungary Group, Szeged, Hungary
| | - Krisztina Kupai
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Anikó Görbe
- Cardiovascular Research Group, Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary.,Pharmahungary Group, Szeged, Hungary
| | - Éva Kenyeres
- Cardiovascular Research Group, Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary.,Pharmahungary Group, Szeged, Hungary
| | - Zoltán V Varga
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - János Pálóczi
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Renáta Gáspár
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | | | | | | | - István Hajdú
- Targetex Biosciences, Dunakeszi, Hungary.,Research Centre for Natural Sciences, Institute of Enzymology, Hungarian Academy of Sciences, Budapest, Hungary
| | | | | | - László Barna
- Research Centre for Natural Sciences, Institute of Enzymology, Hungarian Academy of Sciences, Budapest, Hungary.,Microscopy Center at IEM HAS, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Tamás Csont
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Csaba Csonka
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | | | - Péter Ferdinandy
- Pharmahungary Group, Szeged, Hungary.,Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| |
Collapse
|
16
|
Kumar R, Jade D, Gupta D. A novel identification approach for discovery of 5-HydroxyTriptamine 2A antagonists: combination of 2D/3D similarity screening, molecular docking and molecular dynamics. J Biomol Struct Dyn 2018; 37:931-943. [PMID: 29468945 DOI: 10.1080/07391102.2018.1444509] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
5-HydroxyTriptamine 2A antagonists are potential targets for treatment of various cerebrovascular and cardiovascular disorders. In this study, we have developed and performed a unique screening pipeline for filtering ZINC database compounds on the basis of similarities to known antagonists to determine novel small molecule antagonists of 5-HydroxyTriptamine 2A. The screening pipeline is based on 2D similarity, 3D dissimilarity and a combination of 2D/3D similarity. The shortlisted compounds were docked to a 5-HydroxyTriptamine 2A homology-based model, and complexes with low binding energies (287 complexes) were selected for molecular dynamics (MD) simulations in a lipid bilayer. The MD simulations of the shortlisted compounds in complex with 5-HydroxyTriptamine 2A confirmed the stability of the complexes and revealed novel interaction insights. The receptor residues S239, N343, S242, S159, Y370 and D155 predominantly participate in hydrogen bonding. π-π stacking is observed in F339, F340, F234, W151 and W336, whereas hydrophobic interactions are observed amongst V156, F339, F234, V362, V366, F340, V235, I152 and W151. The known and potential antagonists shortlisted by us have similar overlapping molecular interaction patterns. The 287 potential 5-HydroxyTriptamine 2A antagonists may be experimentally verified.
Collapse
Key Words
- , tanimoto coefficient
- 2D similarity
- 2D, two-dimensional space
- 2D/3D screening
- 3D similarity
- 3D, three-dimensional space
- 5HT
- 5HT, 5-HydroxyTryptamine
- ADHD, attention deficit hyperactivity disorders
- BLAST, basic local alignment search tool
- CNS, central nervous system
- Cl ions, chloride ions
- DOPE, discrete optimized protein energy
- G-protein coupled receptor
- GPCRs, G protein-coupled receptors
- HB, hydrogen bond
- HBA, hydrogen bond acceptors
- HBD, hydrogen bond donors
- JC virus, John Cunningham virus
- Ki, equilibrium dissociation constant for the ligand
- LBVS, ligand-based virtual screening
- MD, molecular dynamic
- MSD, mean square displacement
- MW, molecular weight
- NHB, number of hydrogen bonds
- OCD, obsessive compulsive disorder
- P5/P95, percentile calculation
- PAINS, Pan assay interference compounds
- PDB, protein data bank
- PLIP, protein–ligand interaction profiler
- PME, Particle Mesh Ewald
- PNS, peripheral nervous system
- POPC, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine
- RMSD, root mean square deviation
- RMSF, root mean square fluctuations
- Rg, radius of gyration
- SASA, solvent accessible surface area
- SCA, stochastic clustering algorithm
- SD, steepest descent
- SDF, structure data file
- SPC, single point charge
- SPD, simple point charge
- SSE, secondary structure elements
- Sn-1/sn-2, Stereospecific number
- TM, Transmembrane
- TPSA, topological polar surface area
- drug discovery
- fs, femtosecond
- kJ/mol, kilo Joule per mol
- kcal/mol, kilocalorie per mole sn-1
- ligand-based virtual screening
- nm, nanomolar
- ns, nanosecond
- Å Ångström
- β2-AR, β2 adrenergic receptor
- μM, micromolar
Collapse
Affiliation(s)
- Rakesh Kumar
- a Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology (ICGEB) , Aruna Asaf Ali Marg, New Delhi 110067 , India
| | - Dhananjay Jade
- a Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology (ICGEB) , Aruna Asaf Ali Marg, New Delhi 110067 , India
| | - Dinesh Gupta
- a Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology (ICGEB) , Aruna Asaf Ali Marg, New Delhi 110067 , India
| |
Collapse
|
17
|
Peptide Scaffold-Based Discovery of Nonpeptide Natural Medicines to Target PI3K p85 SH2 Domain. Int J Pept Res Ther 2017. [DOI: 10.1007/s10989-017-9591-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
18
|
Abstract
Drug discovery is a multidisciplinary and multivariate optimization endeavor. As such, in silico screening tools have gained considerable importance to archive, analyze and exploit the vast and ever-increasing amount of experimental data generated throughout the process. The current review will focus on the computer-aided prediction of the numerous properties that need to be controlled during the discovery of a preliminary hit and its promotion to a viable clinical candidate. It does not pretend to the almost impossible task of an exhaustive report but will highlight a few key points that need to be collectively addressed both by chemists and biologists to fuel the drug discovery pipeline with innovative and safe drug candidates.
Collapse
Affiliation(s)
- Didier Rognan
- Laboratoire d'Innovation Thérapeutique, UMR 7200 CNRS-Université de Strasbourg, 74 route du Rhin, 67400 Illkirch, France.
| |
Collapse
|
19
|
Mathew MD, Mathew ND, Miller A, Simpson M, Au V, Garland S, Gestin M, Edgley ML, Flibotte S, Balgi A, Chiang J, Giaever G, Dean P, Tung A, Roberge M, Roskelley C, Forge T, Nislow C, Moerman D. Using C. elegans Forward and Reverse Genetics to Identify New Compounds with Anthelmintic Activity. PLoS Negl Trop Dis 2016; 10:e0005058. [PMID: 27755544 PMCID: PMC5068747 DOI: 10.1371/journal.pntd.0005058] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 09/20/2016] [Indexed: 12/03/2022] Open
Abstract
Background The lack of new anthelmintic agents is of growing concern because it affects human health and our food supply, as both livestock and plants are affected. Two principal factors contribute to this problem. First, nematode resistance to anthelmintic drugs is increasing worldwide and second, many effective nematicides pose environmental hazards. In this paper we address this problem by deploying a high throughput screening platform for anthelmintic drug discovery using the nematode Caenorhabditis elegans as a surrogate for infectious nematodes. This method offers the possibility of identifying new anthelmintics in a cost-effective and timely manner. Methods/Principal findings Using our high throughput screening platform we have identified 14 new potential anthelmintics by screening more than 26,000 compounds from the Chembridge and Maybridge chemical libraries. Using phylogenetic profiling we identified a subset of the 14 compounds as potential anthelmintics based on the relative sensitivity of C. elegans when compared to yeast and mammalian cells in culture. We showed that a subset of these compounds might employ mechanisms distinct from currently used anthelmintics by testing diverse drug resistant strains of C. elegans. One of these newly identified compounds targets mitochondrial complex II, and we used structural analysis of the target to suggest how differential binding of this compound may account for its different effects in nematodes versus mammalian cells. Conclusions/Significance The challenge of anthelmintic drug discovery is exacerbated by several factors; including, 1) the biochemical similarity between host and parasite genomes, 2) the geographic location of parasitic nematodes and 3) the rapid development of resistance. Accordingly, an approach that can screen large compound collections rapidly is required. C. elegans as a surrogate parasite offers the ability to screen compounds rapidly and, equally importantly, with specificity, thus reducing the potential toxicity of these compounds to the host and the environment. We believe this approach will help to replenish the pipeline of potential nematicides. With over two billion people infected and many billions of dollars of lost crops annually, nematode infections are a serious problem for human health and for agricultural production. While there are drugs to treat infections, many pockets of parasites have been identified worldwide that are developing immunity to the standard treatment regimen. In this study we describe a strategy using the model organism C. elegans as a surrogate parasite to identify several new chemical compounds that may offer additional treatments for infection. We demonstrate how to use our platform to identify compounds that are specific in their effect to nematodes and are not simply biocides. We also show through genetic and molecular analysis in this organism that we can quickly identify the mode of action of any new compound. Most critically, we show that a compound first identified in a free-living nematode, Caenorhabditis elegans, is also effective on a parasitic nematode, Meloidogyne hapla. With this result and considering the level of sequence conservation across much of the nematode phyla we believe our strategy can be more widely applied to find new anthelmintics.
Collapse
Affiliation(s)
- Mark D. Mathew
- Department of Zoology and Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Neal D. Mathew
- Department of Zoology and Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Angela Miller
- Department of Zoology and Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mike Simpson
- Department of Zoology and Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Vinci Au
- Department of Zoology and Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Stephanie Garland
- Department of Zoology and Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Mark L. Edgley
- Department of Zoology and Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Stephane Flibotte
- Department of Zoology and Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Aruna Balgi
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jennifer Chiang
- Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Guri Giaever
- Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Pamela Dean
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Audrey Tung
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, British Columbia, Canada
| | - Michel Roberge
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Calvin Roskelley
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Tom Forge
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, British Columbia, Canada
| | - Corey Nislow
- Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Donald Moerman
- Department of Zoology and Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
20
|
Yang Y, Zhan J, Zhou Y. SPOT‐Ligand: Fast and effective structure‐based virtual screening by binding homology search according to ligand and receptor similarity. J Comput Chem 2016; 37:1734-9. [DOI: 10.1002/jcc.24380] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 01/12/2016] [Accepted: 03/05/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Yuedong Yang
- Institute for Glycomics and School of Information and Communication TechnologyGriffith UniversityParklands DrSouthport QLD4222 Australia
| | - Jian Zhan
- Institute for Glycomics and School of Information and Communication TechnologyGriffith UniversityParklands DrSouthport QLD4222 Australia
| | - Yaoqi Zhou
- Institute for Glycomics and School of Information and Communication TechnologyGriffith UniversityParklands DrSouthport QLD4222 Australia
| |
Collapse
|
21
|
Kumar A, Zhang KYJ. Application of Shape Similarity in Pose Selection and Virtual Screening in CSARdock2014 Exercise. J Chem Inf Model 2015; 56:965-73. [PMID: 26247231 DOI: 10.1021/acs.jcim.5b00279] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
To evaluate the applicability of shape similarity in docking-based pose selection and virtual screening, we participated in the CSARdock2014 benchmark exercise for identifying the correct docking pose of inhibitors targeting factor XA, spleen tyrosine kinase, and tRNA methyltransferase. This exercise provides a valuable opportunity for researchers to test their docking programs, methods, and protocols in a blind testing environment. In the CSARdock2014 benchmark exercise, we have implemented an approach that uses ligand 3D shape similarity to facilitate docking-based pose selection and virtual screening. We showed here that ligand 3D shape similarity between bound poses could be used to identify the native-like pose from an ensemble of docking-generated poses. Our method correctly identified the native pose as the top-ranking pose for 73% of test cases in a blind testing environment. Moreover, the pose selection results also revealed an excellent correlation between ligand 3D shape similarity scores and RMSD to X-ray crystal structure ligand. In the virtual screening exercise, the average RMSD for our pose prediction was found to be 1.02 Å, and it was one of the top performances achieved in CSARdock2014 benchmark exercise. Furthermore, the inclusion of shape similarity improved virtual screening performance of docking-based scoring and ranking. The coefficient of determination (r(2)) between experimental activities and docking scores for 276 spleen tyrosine kinase inhibitors was found to be 0.365 but reached 0.614 when the ligand 3D shape similarity was included.
Collapse
Affiliation(s)
- Ashutosh Kumar
- Structural Bioinformatics Team, Center for Life Science Technologies, RIKEN , 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Kam Y J Zhang
- Structural Bioinformatics Team, Center for Life Science Technologies, RIKEN , 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
22
|
Li BYS, Yeung LF, Ko KT. Indefinite kernel ridge regression and its application on QSAR modelling. Neurocomputing 2015. [DOI: 10.1016/j.neucom.2015.01.060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
23
|
Nantasenamat C, Prachayasittikul V. Maximizing computational tools for successful drug discovery. Expert Opin Drug Discov 2015; 10:321-9. [PMID: 25693813 DOI: 10.1517/17460441.2015.1016497] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Drug discovery is an iterative cycle of identifying promising hits followed by lead optimization via bioisosteric replacements. In the search for compounds affording good bioactivity, equal importance should also be placed on achieving those with favorable pharmacokinetic properties. Thus, the balance and realization of both key properties is an intricate problem that requires great caution. In this editorial, the authors explore the available computational tools in the context of the extant of big data that has borne out via advents of the Omics revolution. As such, the selection of appropriate computational tools for analyzing the vast number of chemical libraries, target proteins and interactomes is the first step toward maximizing the chance for success. However, in order to realize this, it is also necessary to have a solid foundation on the big concepts of drug discovery as well as knowing which tools are available in order to give drug discovery scientists the best opportunity.
Collapse
Affiliation(s)
- Chanin Nantasenamat
- Mahidol University, Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology , 10700 Bangkok , Thailand
| | | |
Collapse
|
24
|
Awale M, Jin X, Reymond JL. Stereoselective virtual screening of the ZINC database using atom pair 3D-fingerprints. J Cheminform 2015; 7:3. [PMID: 25750664 PMCID: PMC4352573 DOI: 10.1186/s13321-014-0051-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 12/19/2014] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Tools to explore large compound databases in search for analogs of query molecules provide a strategically important support in drug discovery to help identify available analogs of any given reference or hit compound by ligand based virtual screening (LBVS). We recently showed that large databases can be formatted for very fast searching with various 2D-fingerprints using the city-block distance as similarity measure, in particular a 2D-atom pair fingerprint (APfp) and the related category extended atom pair fingerprint (Xfp) which efficiently encode molecular shape and pharmacophores, but do not perceive stereochemistry. Here we investigated related 3D-atom pair fingerprints to enable rapid stereoselective searches in the ZINC database (23.2 million 3D structures). RESULTS Molecular fingerprints counting atom pairs at increasing through-space distance intervals were designed using either all atoms (16-bit 3DAPfp) or different atom categories (80-bit 3DXfp). These 3D-fingerprints retrieved molecular shape and pharmacophore analogs (defined by OpenEye ROCS scoring functions) of 110,000 compounds from the Cambridge Structural Database with equal or better accuracy than the 2D-fingerprints APfp and Xfp, and showed comparable performance in recovering actives from decoys in the DUD database. LBVS by 3DXfp or 3DAPfp similarity was stereoselective and gave very different analogs when starting from different diastereomers of the same chiral drug. Results were also different from LBVS with the parent 2D-fingerprints Xfp or APfp. 3D- and 2D-fingerprints also gave very different results in LBVS of folded molecules where through-space distances between atom pairs are much shorter than topological distances. CONCLUSIONS 3DAPfp and 3DXfp are suitable for stereoselective searches for shape and pharmacophore analogs of query molecules in large databases. Web-browsers for searching ZINC by 3DAPfp and 3DXfp similarity are accessible at www.gdb.unibe.ch and should provide useful assistance to drug discovery projects. Graphical abstractAtom pair fingerprints based on through-space distances (3DAPfp) provide better shape encoding than atom pair fingerprints based on topological distances (APfp) as measured by the recovery of ROCS shape analogs by fp similarity.
Collapse
Affiliation(s)
- Mahendra Awale
- Department of Chemistry and Biochemistry, University of Berne, Freiestrasse 3, 3012 Berne, Switzerland
| | - Xian Jin
- Department of Chemistry and Biochemistry, University of Berne, Freiestrasse 3, 3012 Berne, Switzerland
| | - Jean-Louis Reymond
- Department of Chemistry and Biochemistry, University of Berne, Freiestrasse 3, 3012 Berne, Switzerland
| |
Collapse
|
25
|
Li GB, Yang LL, Yuan Y, Zou J, Cao Y, Yang SY, Xiang R, Xiang M. Virtual screening in small molecule discovery for epigenetic targets. Methods 2015; 71:158-66. [DOI: 10.1016/j.ymeth.2014.11.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 10/27/2014] [Accepted: 11/14/2014] [Indexed: 12/31/2022] Open
|
26
|
Awale M, Reymond JL. Atom Pair 2D-Fingerprints Perceive 3D-Molecular Shape and Pharmacophores for Very Fast Virtual Screening of ZINC and GDB-17. J Chem Inf Model 2014; 54:1892-907. [DOI: 10.1021/ci500232g] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Mahendra Awale
- Department of Chemistry and
Biochemistry, University of Berne, Freiestrasse 3, 3012 Berne Switzerland
| | - Jean-Louis Reymond
- Department of Chemistry and
Biochemistry, University of Berne, Freiestrasse 3, 3012 Berne Switzerland
| |
Collapse
|
27
|
Dobi K, Hajdú I, Flachner B, Fabó G, Szaszkó M, Bognár M, Magyar C, Simon I, Szisz D, Lőrincz Z, Cseh S, Dormán G. Combination of 2D/3D ligand-based similarity search in rapid virtual screening from multimillion compound repositories. Selection and biological evaluation of potential PDE4 and PDE5 inhibitors. Molecules 2014; 19:7008-39. [PMID: 24879613 PMCID: PMC6270928 DOI: 10.3390/molecules19067008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 05/21/2014] [Accepted: 05/22/2014] [Indexed: 11/22/2022] Open
Abstract
Rapid in silico selection of target focused libraries from commercial repositories is an attractive and cost effective approach. If structures of active compounds are available rapid 2D similarity search can be performed on multimillion compound databases but the generated library requires further focusing by various 2D/3D chemoinformatics tools. We report here a combination of the 2D approach with a ligand-based 3D method (Screen3D) which applies flexible matching to align reference and target compounds in a dynamic manner and thus to assess their structural and conformational similarity. In the first case study we compared the 2D and 3D similarity scores on an existing dataset derived from the biological evaluation of a PDE5 focused library. Based on the obtained similarity metrices a fusion score was proposed. The fusion score was applied to refine the 2D similarity search in a second case study where we aimed at selecting and evaluating a PDE4B focused library. The application of this fused 2D/3D similarity measure led to an increase of the hit rate from 8.5% (1st round, 47% inhibition at 10 µM) to 28.5% (2nd round at 50% inhibition at 10 µM) and the best two hits had 53 nM inhibitory activities.
Collapse
Affiliation(s)
- Krisztina Dobi
- Targetex Ltd., Kápolna köz 4/a., Dunakeszi 2120, Hungary.
| | - István Hajdú
- Targetex Ltd., Kápolna köz 4/a., Dunakeszi 2120, Hungary.
| | - Beáta Flachner
- Targetex Ltd., Kápolna köz 4/a., Dunakeszi 2120, Hungary.
| | - Gabriella Fabó
- Targetex Ltd., Kápolna köz 4/a., Dunakeszi 2120, Hungary.
| | - Mária Szaszkó
- Targetex Ltd., Kápolna köz 4/a., Dunakeszi 2120, Hungary.
| | - Melinda Bognár
- Targetex Ltd., Kápolna köz 4/a., Dunakeszi 2120, Hungary.
| | - Csaba Magyar
- Institute of Enzymology, Natural Sciences Research Center, Hungarian Academy of Sciences, Magyar Tudósok körútja 2, Budapest 1117, Hungary.
| | - István Simon
- Institute of Enzymology, Natural Sciences Research Center, Hungarian Academy of Sciences, Magyar Tudósok körútja 2, Budapest 1117, Hungary.
| | - Dániel Szisz
- Chemaxon Ltd., Záhony u. 7, Budapest 1038, Hungary.
| | - Zsolt Lőrincz
- Targetex Ltd., Kápolna köz 4/a., Dunakeszi 2120, Hungary.
| | - Sándor Cseh
- Targetex Ltd., Kápolna köz 4/a., Dunakeszi 2120, Hungary.
| | - György Dormán
- Targetex Ltd., Kápolna köz 4/a., Dunakeszi 2120, Hungary.
| |
Collapse
|