1
|
White KA, Kim BN. Quantifying neurotransmitter secretion at single-vesicle resolution using high-density complementary metal-oxide-semiconductor electrode array. Nat Commun 2021; 12:431. [PMID: 33462204 PMCID: PMC7813837 DOI: 10.1038/s41467-020-20267-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 11/17/2020] [Indexed: 11/21/2022] Open
Abstract
Neuronal exocytosis facilitates the propagation of information through the nervous system pertaining to bodily function, memory, and emotions. Using amperometry, the sub-millisecond dynamics of exocytosis can be monitored and the modulation of exocytosis due to drug treatment or neurodegenerative diseases can be studied. Traditional single-cell amperometry is a powerful technique for studying the molecular mechanisms of exocytosis, but it is both costly and labor-intensive to accumulate statistically significant data. To surmount these limitations, we have developed a silicon-based electrode array with 1024 on-chip electrodes that measures oxidative signal in 0.1 millisecond intervals. Using the developed device, we are able to capture the modulation of exocytosis due to Parkinson's disease treatment (L-Dopa), with statistical significance, within 30 total minutes of recording. The validation study proves our device's capability to accelerate the study of many pharmaceutical treatments for various neurodegenerative disorders that affect neurotransmitter secretion to a matter of minutes.
Collapse
Affiliation(s)
- Kevin A White
- Department of Electrical and Computer Engineering, University of Central Florida, Orlando, FL, 32827, USA
| | - Brian N Kim
- Department of Electrical and Computer Engineering, University of Central Florida, Orlando, FL, 32827, USA.
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA.
| |
Collapse
|
2
|
Soucy JR, Bindas AJ, Koppes AN, Koppes RA. Instrumented Microphysiological Systems for Real-Time Measurement and Manipulation of Cellular Electrochemical Processes. iScience 2019; 21:521-548. [PMID: 31715497 PMCID: PMC6849363 DOI: 10.1016/j.isci.2019.10.052] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/17/2019] [Accepted: 10/24/2019] [Indexed: 12/17/2022] Open
Abstract
Recent advancements in electronic materials and subsequent surface modifications have facilitated real-time measurements of cellular processes far beyond traditional passive recordings of neurons and muscle cells. Specifically, the functionalization of conductive materials with ligand-binding aptamers has permitted the utilization of traditional electronic materials for bioelectronic sensing. Further, microfabrication techniques have better allowed microfluidic devices to recapitulate the physiological and pathological conditions of complex tissues and organs in vitro or microphysiological systems (MPS). The convergence of these models with advances in biological/biomedical microelectromechanical systems (BioMEMS) instrumentation has rapidly bolstered a wide array of bioelectronic platforms for real-time cellular analytics. In this review, we provide an overview of the sensing techniques that are relevant to MPS development and highlight the different organ systems to integrate instrumentation for measurement and manipulation of cellular function. Special attention is given to how instrumented MPS can disrupt the drug development and fundamental mechanistic discovery processes.
Collapse
Affiliation(s)
- Jonathan R Soucy
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
| | - Adam J Bindas
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
| | - Abigail N Koppes
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA; Department of Biology, Northeastern University, Boston, MA 02115, USA
| | - Ryan A Koppes
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
3
|
Gillis KD, Liu XA, Marcantoni A, Carabelli V. Electrochemical measurement of quantal exocytosis using microchips. Pflugers Arch 2017; 470:97-112. [PMID: 28866728 DOI: 10.1007/s00424-017-2063-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 08/21/2017] [Accepted: 08/23/2017] [Indexed: 01/30/2023]
Abstract
Carbon-fiber electrodes (CFEs) are the gold standard for quantifying the release of oxidizable neurotransmitters from single vesicles and single cells. Over the last 15 years, microfabricated devices have emerged as alternatives to CFEs that offer the possibility of higher throughput, subcellular spatial resolution of exocytosis, and integration with other techniques for probing exocytosis including microfluidic cell handling and solution exchange, optical imaging and stimulation, and electrophysiological recording and stimulation. Here we review progress in developing electrochemical electrode devices capable of resolving quantal exocytosis that are fabricated using photolithography.
Collapse
Affiliation(s)
- Kevin D Gillis
- Department of Bioengineering, University of Missouri, Columbia, MO, USA.
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA.
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA.
| | - Xin A Liu
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| | - Andrea Marcantoni
- Department of Drug Science and "NIS" Inter-departmental Centre, University of Torino, Torino, Italy
| | - Valentina Carabelli
- Department of Drug Science and "NIS" Inter-departmental Centre, University of Torino, Torino, Italy
| |
Collapse
|
4
|
Wang L, Xu SW, Xu HR, Song YL, Liu JT, Luo JP, Cai XX. Spatio-temporally resolved measurement of quantal exocytosis from single cells using microelectrode array modified with poly l-lysine and poly dopamine. CHINESE CHEM LETT 2016. [DOI: 10.1016/j.cclet.2016.01.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
5
|
Amatore C, Delacotte J, Guille-Collignon M, Lemaître F. Vesicular exocytosis and microdevices - microelectrode arrays. Analyst 2016; 140:3687-95. [PMID: 25803190 DOI: 10.1039/c4an01932f] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Among all the analytical techniques capable of monitoring exocytosis in real time at the single cell level, electrochemistry (particularly amperometry at a constant potential) using ultramicroelectrodes has been demonstrated to be an important and convenient tool for more than two decades. Indeed, because the electrochemical sensor is located in the close vicinity of the emitting cell ("artificial synapse" configuration), much data can be gathered from the whole cell activity (secretion frequency) to the individual vesicular release (duration, fluxes or amount of molecules released) with an excellent sensitivity. However, such a single cell analysis and its intrinsic benefits are at the expense of the spatial resolution and/or the number of experiments. The quite recent development of microdevices/microsystems (and mainly the microelectrode arrays (MEAs)) offers in some way a complementary approach either by combining spectroscopy-microscopy or by implementing a multianalysis. Such developments are described and discussed in the present review over the 2005-2014 period.
Collapse
Affiliation(s)
- Christian Amatore
- Ecole Normale Supérieure-PSL Research University, Département de Chimie, Sorbonne Universités - UPMC Univ Paris 06, CNRS UMR 8640 PASTEUR, 24, rue Lhomond, 75005 Paris, France.
| | | | | | | |
Collapse
|
6
|
Yao J, Liu XA, Gillis KD. Two approaches for addressing electrochemical electrode arrays with reduced external connections. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2015; 7:5760-5766. [PMID: 27293487 PMCID: PMC4898061 DOI: 10.1039/c5ay00229j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Although patterning hundreds or thousands of electrochemical electrodes on lab-on-a-chip devices is straightforward and cost-effective using photolithography, easily making connections between hundreds of electrodes and external amplifiers remains a bottleneck. Here we describe two electrode addressing approaches using multiple fluid compartments that can potentially reduce the number of external connections by ~100-fold. The first approach enables all compartments on the device to be filled with solution at the same time, and then each fluid compartment is sequentially electrically activated to make the measurements. The second approach achieves lower measurement noise by sequentially filling recording chambers with solution. We propose an equivalent circuit to explain measurement noise in these recording configurations and demonstrate application of the approaches to measure quantal exocytosis from individual cells. A principle advantage of using these approaches is that they reduce the fraction of the microchip area that needs to be dedicated to making external connections and therefore reduces the cost per working electrode.
Collapse
Affiliation(s)
- J. Yao
- Department of Bioengineering, University of Missouri, Columbia, Missouri, 65201
- Dalton Cardiovascular Research Center, Columbia, Missouri, USA
| | - X. A. Liu
- Dalton Cardiovascular Research Center, Columbia, Missouri, USA
| | - K. D. Gillis
- Department of Bioengineering, University of Missouri, Columbia, Missouri, 65201
- Dalton Cardiovascular Research Center, Columbia, Missouri, USA
- Department of Medical Pharmocology and Physiology, University of Missouri, Columbia, Missouri, 65201
| |
Collapse
|
7
|
Wang L, Xu H, Song Y, Luo J, Wei W, Xu S, Cai X. Highly sensitive detection of quantal dopamine secretion from pheochromocytoma cells using neural microelectrode array electrodeposited with polypyrrole graphene. ACS APPLIED MATERIALS & INTERFACES 2015; 7:7619-7626. [PMID: 25804204 DOI: 10.1021/acsami.5b00035] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
For the measurement of events of dopamine (DA) release as well as the coordinating neurotransmission in the nerve system, a neural microelectrode array (nMEA) electrodeposited directionally with polypyrrole graphene (PG) nanocomposites was fabricated. The deposited graphene significantly increased the surface area of working electrode, which led to the nMEA (with diameter of 20 μm) with excellent selectivity and sensitivity to DA. Furthermore, PG film modification exhibited low detection limit (4 nM, S/N = 3.21), high sensitivity, and good linearity in the presence of ascorbic acid (e.g., 13933.12 μA mM(-1) cm(-2) in the range of 0.8-10 μM). In particular, the nMEA combined with the patch-clamp system was used to detect quantized DA release from pheochromocytoma cells under 100 mM K(+) stimulation. The nMEA that integrates 60 microelectrodes is novel for detecting a large number of samples simultaneously, which has potential for neural communication research.
Collapse
Affiliation(s)
- Li Wang
- †State Key Laboratory of Transducer Technology, Institute of Electronics Chinese Academy of Sciences, Beijing 100190, China
- ‡University of Chinese Academy of Sciences, Beijing 100190, China
| | - Huiren Xu
- †State Key Laboratory of Transducer Technology, Institute of Electronics Chinese Academy of Sciences, Beijing 100190, China
- ‡University of Chinese Academy of Sciences, Beijing 100190, China
| | - Yilin Song
- †State Key Laboratory of Transducer Technology, Institute of Electronics Chinese Academy of Sciences, Beijing 100190, China
| | - Jinping Luo
- †State Key Laboratory of Transducer Technology, Institute of Electronics Chinese Academy of Sciences, Beijing 100190, China
| | - Wenjing Wei
- †State Key Laboratory of Transducer Technology, Institute of Electronics Chinese Academy of Sciences, Beijing 100190, China
- ‡University of Chinese Academy of Sciences, Beijing 100190, China
| | - Shengwei Xu
- †State Key Laboratory of Transducer Technology, Institute of Electronics Chinese Academy of Sciences, Beijing 100190, China
| | - Xinxia Cai
- †State Key Laboratory of Transducer Technology, Institute of Electronics Chinese Academy of Sciences, Beijing 100190, China
- ‡University of Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
8
|
Wang L, Xu H, Song Y, Luo J, Xu S, Zhang S, Liu J, Cai X. Carbon fiber ultramicrodic electrode electrodeposited with over-oxidized polypyrrole for amperometric detection of vesicular exocytosis from pheochromocytoma cell. SENSORS 2015; 15:868-79. [PMID: 25569759 PMCID: PMC4327054 DOI: 10.3390/s150100868] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 12/24/2014] [Indexed: 11/22/2022]
Abstract
Vesicular exocytosis is ubiquitous, but it is difficult to detect within the cells' communication mechanism. For this purpose, a 2 μm ultramicrodic carbon fiber electrode was fabricated in this work based on electrodeposition with over-oxidized polypyrrole nanoparticle (PPyox-CFE), which was applied successfully for real-time monitoring of quantal exocytosis from individual pheochromocytoma (PC12) cells. PPyox-CFE was evaluated by dopamine (DA) solutions through cyclic voltammetry and amperometry electrochemical methods, and results revealed that PPyox-CFE improved the detection limit of DA. In particular, the sensitivity of DA was improved to 24.55 μA·μM−1·μm−2 using the PPyox-CFE. The ultramicrodic electrode combined with the patch-clamp system was used to detect vesicular exocytosis of DA from individual PC12 cells with 60 mM K+ stimulation. A total of 287 spikes released from 7 PC12 cells were statistically analyzed. The current amplitude (Imax) and the released charge (Q) of the amperometric spikes from the DA release by a stimulated PC12 cell is 45.1 ± 12.5 pA and 0.18 ± 0.04 pC, respectively. Furthermore, on average ∼562,000 molecules were released in each vesicular exocytosis. PPyox-CFE, with its capability of detecting vesicular exocytosis, has potential application in neuron communication research.
Collapse
Affiliation(s)
- Li Wang
- State Key Laboratory of Transducer Technology, Institute of Electronics Chinese Academy of Sciences, Beijing 100190, China.
| | - Huiren Xu
- State Key Laboratory of Transducer Technology, Institute of Electronics Chinese Academy of Sciences, Beijing 100190, China.
| | - Yilin Song
- State Key Laboratory of Transducer Technology, Institute of Electronics Chinese Academy of Sciences, Beijing 100190, China.
| | - Jinping Luo
- State Key Laboratory of Transducer Technology, Institute of Electronics Chinese Academy of Sciences, Beijing 100190, China.
| | - Shengwei Xu
- State Key Laboratory of Transducer Technology, Institute of Electronics Chinese Academy of Sciences, Beijing 100190, China.
| | - Song Zhang
- State Key Laboratory of Transducer Technology, Institute of Electronics Chinese Academy of Sciences, Beijing 100190, China.
| | - Juntao Liu
- State Key Laboratory of Transducer Technology, Institute of Electronics Chinese Academy of Sciences, Beijing 100190, China.
| | - Xinxia Cai
- State Key Laboratory of Transducer Technology, Institute of Electronics Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
9
|
Lemaître F, Guille Collignon M, Amatore C. Recent advances in Electrochemical Detection of Exocytosis. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2014.02.059] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
10
|
Gosso S, Turturici M, Franchino C, Colombo E, Pasquarelli A, Carbone E, Carabelli V. Heterogeneous distribution of exocytotic microdomains in adrenal chromaffin cells resolved by high-density diamond ultra-microelectrode arrays. J Physiol 2014; 592:3215-30. [PMID: 24879870 DOI: 10.1113/jphysiol.2014.274951] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Here we describe the ability of a high-density diamond microelectrode array targeted to resolve multi-site detection of fast exocytotic events from single cells. The array consists of nine boron-doped nanocrystalline diamond ultra-microelectrodes (9-Ch NCD-UMEA) radially distributed within a circular area of the dimensions of a single cell. The device can be operated in voltammetric or chronoamperometric configuration. Sensitivity to catecholamines, tested by dose-response calibrations, set the lowest detectable concentration of adrenaline to ∼5 μm. Catecholamine release from bovine or mouse chromaffin cells could be triggered by electrical stimulation or external KCl-enriched solutions. Spikes detected from the cell apex using carbon fibre microelectrodes showed an excellent correspondence with events measured at the bottom of the cell by the 9-Ch NCD-UMEA, confirming the ability of the array to resolve single quantal secretory events. Subcellular localization of exocytosis was provided by assigning each quantal event to one of the nine channels based on its location. The resulting mapping highlights the heterogeneous distribution of secretory activity in cell microdomains of 12-27 μm2. In bovine chromaffin cells, secretion was highly heterogeneous with zones of high and medium activity in 54% of the cell surface and zones of low or no activity in the remainder. The 'non-active' ('silent') zones covered 24% of the total and persisted for 6-8 min, indicating stable location. The 9-Ch NCD-UMEA therefore appears suitable for investigating the microdomain organization of neurosecretion with high spatial resolution.
Collapse
Affiliation(s)
- Sara Gosso
- Department of Drug Science and Technology, NIS Center, University of Turin, 10125, Turin, Italy
| | - Marco Turturici
- Department of Drug Science and Technology, NIS Center, University of Turin, 10125, Turin, Italy Department of Neuroscience, University of Turin, 10125, Turin, Italy
| | - Claudio Franchino
- Department of Drug Science and Technology, NIS Center, University of Turin, 10125, Turin, Italy
| | - Elisabetta Colombo
- Department of Drug Science and Technology, NIS Center, University of Turin, 10125, Turin, Italy Institute of Electron Devices and Circuits, University of Ulm, 89069, Ulm, Germany
| | - Alberto Pasquarelli
- Institute of Electron Devices and Circuits, University of Ulm, 89069, Ulm, Germany
| | - Emilio Carbone
- Department of Drug Science and Technology, NIS Center, University of Turin, 10125, Turin, Italy
| | - Valentina Carabelli
- Department of Drug Science and Technology, NIS Center, University of Turin, 10125, Turin, Italy
| |
Collapse
|
11
|
Ges IA, Brindley RL, Currie KPM, Baudenbacher FJ. A microfluidic platform for chemical stimulation and real time analysis of catecholamine secretion from neuroendocrine cells. LAB ON A CHIP 2013; 13:4663-73. [PMID: 24126415 PMCID: PMC3892771 DOI: 10.1039/c3lc50779c] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Release of neurotransmitters and hormones by calcium-regulated exocytosis is a fundamental cellular process that is disrupted in a variety of psychiatric, neurological, and endocrine disorders. As such, there is significant interest in targeting neurosecretion for drug and therapeutic development, efforts that will be aided by novel analytical tools and devices that provide mechanistic insight coupled with increased experimental throughput. Here, we report a simple, inexpensive, reusable, microfluidic device designed to analyze catecholamine secretion from small populations of adrenal chromaffin cells in real time, an important neuroendocrine component of the sympathetic nervous system and versatile neurosecretory model. The device is fabricated by replica molding of polydimethylsiloxane (PDMS) using patterned photoresist on silicon wafer as the master. Microfluidic inlet channels lead to an array of U-shaped "cell traps", each capable of immobilizing single or small groups of chromaffin cells. The bottom of the device is a glass slide with patterned thin film platinum electrodes used for electrochemical detection of catecholamines in real time. We demonstrate reliable loading of the device with small populations of chromaffin cells, and perfusion/repetitive stimulation with physiologically relevant secretagogues (carbachol, PACAP, KCl) using the microfluidic network. Evoked catecholamine secretion was reproducible over multiple rounds of stimulation, and graded as expected to different concentrations of secretagogue or removal of extracellular calcium. Overall, we show this microfluidic device can be used to implement complex stimulation paradigms and analyze the amount and kinetics of catecholamine secretion from small populations of neuroendocrine cells in real time.
Collapse
Affiliation(s)
- Igor A Ges
- Dept. of Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, Nashville, TN 37235-1631, USA.
| | | | | | | |
Collapse
|
12
|
Zheng XT, Yu L, Li P, Dong H, Wang Y, Liu Y, Li CM. On-chip investigation of cell-drug interactions. Adv Drug Deliv Rev 2013; 65:1556-74. [PMID: 23428898 DOI: 10.1016/j.addr.2013.02.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 01/23/2013] [Accepted: 02/06/2013] [Indexed: 12/17/2022]
Abstract
Investigation of cell-drug interaction is of great importance in drug discovery but continues to pose significant challenges to develop robust, fast and high-throughput methods for pharmacologically profiling of potential drugs. Recently, cell chips have emerged as a promising technology for drug discovery/delivery, and their miniaturization and flow-through operation significantly reduce sample consumption while dramatically improving the throughput, reliability, resolution and sensitivity. Herein we review various types of miniaturized cell chips used in investigation of cell-drug interactions. The design and fabrication of cell chips including material selection, surface modification, cell trapping/patterning, concentration gradient generation and mimicking of in vivo environment are presented. Recent advances of on-chip investigations of cell-drug interactions, in particular the high-throughput screening, cell sorting, cytotoxicity testing, drug resistance analysis and pharmacological profiling are examined and discussed. It is expected that this survey can provide thoughtful basics and important applications of on-chip investigations of cell-drug interactions, thus greatly promoting research and development interests in this area.
Collapse
|
13
|
Ghosh J, Liu X, Gillis KD. Electroporation followed by electrochemical measurement of quantal transmitter release from single cells using a patterned microelectrode. LAB ON A CHIP 2013; 13:2083-2090. [PMID: 23598689 PMCID: PMC3698871 DOI: 10.1039/c3lc41324a] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
An electrochemical microelectrode located immediately adjacent to a single neuroendocrine cell can record spikes of amperometric current that result from exocytosis of oxidizable transmitter from individual vesicles, i.e., quantal exocytosis. Here, we report the development of an efficient method where the same electrochemical microelectrode is used to electropermeabilize an adjacent chromaffin cell and then measure the consequent quantal catecholamine release using amperometry. Trains of voltage pulses, 5-7 V in amplitude and 0.1-0.2 ms in duration, were used to reliably trigger release from cells using gold electrodes. Amperometric spikes induced by electropermeabilization had similar areas, peak heights and durations as amperometric spikes elicited by depolarizing high K(+) solutions, therefore release occurs from individual secretory granules. Uptake of trypan blue stain into cells demonstrated that the plasma membrane is permeabilized by the voltage stimulus. Voltage pulses did not degrade the electrochemical sensitivity of the electrodes assayed using a test analyte. Surprisingly, robust quantal release was elicited upon electroporation in the absence of Ca(2+) in the bath solution (0 Ca(2+)/5 mM EGTA). In contrast, electropermeabilization-induced transmitter release required Cl(-) in the bath solution in that bracketed experiments demonstrated a steep dependence of the rate of electropermeabilization-induced transmitter release on [Cl(-)] between 2 and 32 mM. Using the same electrochemical electrode to electroporate and record quantal release of catecholamines from an individual chromaffin cell allows precise timing of the stimulus, stimulation of a single cell at a time, and can be used to load membrane-impermeant substances into a cell.
Collapse
|
14
|
Yakushenko A, Kätelhön E, Wolfrum B. Parallel On-Chip Analysis of Single Vesicle Neurotransmitter Release. Anal Chem 2013; 85:5483-90. [DOI: 10.1021/ac4006183] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Alexey Yakushenko
- Institute of Bioelectronics
(PGI-8/ICS-8) and JARA—Fundamentals of Future Information Technology, Forschungszentrum Jülich, 52425 Jülich,
Germany
| | - Enno Kätelhön
- Institute of Bioelectronics
(PGI-8/ICS-8) and JARA—Fundamentals of Future Information Technology, Forschungszentrum Jülich, 52425 Jülich,
Germany
| | - Bernhard Wolfrum
- Institute of Bioelectronics
(PGI-8/ICS-8) and JARA—Fundamentals of Future Information Technology, Forschungszentrum Jülich, 52425 Jülich,
Germany
- IV. Institute of
Physics, RWTH Aachen University, 52074
Aachen, Germany
| |
Collapse
|
15
|
Microchip-based electrochemical detection for monitoring cellular systems. Anal Bioanal Chem 2013; 405:3013-20. [PMID: 23340999 DOI: 10.1007/s00216-012-6682-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 12/13/2012] [Accepted: 12/19/2012] [Indexed: 01/09/2023]
Abstract
The use of microchip devices to study cellular systems is a rapidly growing research area. There are numerous advantages of using on-chip integrated electrodes to monitor various cellular processes. The purpose of this review is to give examples of advancements in microchip-based cellular analysis, specifically where electrochemistry is used for the detection scheme. These examples include on-chip detection of single-cell quantal exocytosis, electrochemical analysis of intracellular contents, the ability to integrate cell culture/immobilization with electrochemistry, and the use of integrated electrodes to ensure cell confluency in longer-term cell culture experiments. A perspective on future trends in this area is also given.
Collapse
|
16
|
Kim BN, Herbst AD, Kim SJ, Minch BA, Lindau M. Parallel recording of neurotransmitters release from chromaffin cells using a 10×10 CMOS IC potentiostat array with on-chip working electrodes. Biosens Bioelectron 2012; 41:736-44. [PMID: 23084756 DOI: 10.1016/j.bios.2012.09.058] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 09/14/2012] [Accepted: 09/27/2012] [Indexed: 02/06/2023]
Abstract
Neurotransmitter release is modulated by many drugs and molecular manipulations. We present an active CMOS-based electrochemical biosensor array with high throughput capability (100 electrodes) for on-chip amperometric measurement of neurotransmitter release. The high-throughput of the biosensor array will accelerate the data collection needed to determine statistical significance of changes produced under varying conditions, from several weeks to a few hours. The biosensor is designed and fabricated using a combination of CMOS integrated circuit (IC) technology and a photolithography process to incorporate platinum working electrodes on-chip. We demonstrate the operation of an electrode array with integrated high-gain potentiostats and output time-division multiplexing with minimum dead time for readout. The on-chip working electrodes are patterned by conformal deposition of Pt and lift-off photolithography. The conformal deposition method protects the underlying electronic circuits from contact with the electrolyte that covers the electrode array during measurement. The biosensor was validated by simultaneous measurement of amperometric currents from 100 electrodes in response to dopamine injection, which revealed the time course of dopamine diffusion along the surface of the biosensor array. The biosensor simultaneously recorded neurotransmitter release successfully from multiple individual living chromaffin cells. The biosensor was capable of resolving small and fast amperometric spikes reporting release from individual vesicle secretions. We anticipate that this device will accelerate the characterization of the modulation of neurotransmitter secretion from neuronal and endocrine cells by pharmacological and molecular manipulations of the cells.
Collapse
Affiliation(s)
- Brian N Kim
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA.
| | | | | | | | | |
Collapse
|
17
|
Yao J, Gillis KD. Quantification of noise sources for amperometric measurement of quantal exocytosis using microelectrodes. Analyst 2012; 137:2674-81. [PMID: 22540116 PMCID: PMC4915109 DOI: 10.1039/c2an35157a] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Electrochemical microelectrodes are commonly used to record amperometric spikes of current that result from oxidation of transmitter released from individual vesicles during exocytosis. Whereas the exquisite sensitivity of these measurements is well appreciated, a better understanding of the noise sources that limit the resolution of the technique is needed to guide the design of next-generation devices. We measured the current power spectral density (S(I)) of electrochemical microelectrodes to understand the physical basis of dominant noise sources and to determine how noise varies with the electrode material and geometry. We find that the current noise is thermal in origin in that S(I) is proportional to the real part of the admittance of the electrode. The admittance of microelectrodes is well described by a constant phase element model such that both the real and imaginary admittance increase with frequency raised to a power of 0.84-0.96. Our results demonstrate that the current standard deviation is proportional to the square root of the area of the working electrode, increases ∼linearly with the bandwidth of the recording, and varies with the choice of the electrode material with Au ≈ carbon fiber > nitrogen-doped diamond-like carbon > indium-tin-oxide. Contact between a cell and a microelectrode does not appreciably increase noise. Surface-patterned microchip electrodes can have a noise performance that is superior to that of carbon-fiber microelectrodes of the same area.
Collapse
Affiliation(s)
- Jia Yao
- Department of Biological Engineering, University of Missouri, Columbia, Missouri, 65201, Fax:573 884 4232; Tel: 01 573 882 1475
- 134 Research Park Drive, Dalton Cardiovascular Research Center, Columbia, Missouri, USA
| | - Kevin D. Gillis
- Department of Biological Engineering, University of Missouri, Columbia, Missouri, 65201, Fax:573 884 4232; Tel: 01 573 882 1475
- 134 Research Park Drive, Dalton Cardiovascular Research Center, Columbia, Missouri, USA
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri,65201, USA. Fax:573 884 4232; Tel: 01 573 884 8805
| |
Collapse
|
18
|
Dweik M, Stringer RC, Dastider SG, Wu Y, Almasri M, Barizuddin S. Specific and targeted detection of viable Escherichia coli O157:H7 using a sensitive and reusable impedance biosensor with dose and time response studies. Talanta 2012; 94:84-9. [PMID: 22608418 DOI: 10.1016/j.talanta.2012.02.056] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 02/20/2012] [Accepted: 02/22/2012] [Indexed: 01/18/2023]
Abstract
A gold interdigitated microelectrode (IME) impedance biosensor was fabricated for the detection of viable Escherichia coli O157:H7. This sensor was fabricated using lithography techniques. The surface of the electrode was immobilized with anti-E. coli IgG antibodies. This approach is different from other studies where the change in impedance is measured in terms of growth of bacteria on the electrode, rather then the antibody/antigen bonding. The impedance values were recorded for frequency ranges between 100 Hz and 10 MHz. The working range of the dose response for this device was found to be between 2.5×10(4) CFU ml(-1) and 2.5×10(7) CFU ml(-1). The time response studies indicated that antibody/antigen binding is not a function of time, but can decrease if excess times are allowed for binding. It was observed that the impedance values for 60 min antibody/antigen binding were higher than the impedance values for 120 min binding time. The main advantages of the reported device are that, it provides for both qualitative and quantitative detection in 3h while other impedance sensors reported earlier may take up to 24h for detection. If enrichment steps are required then it may take 3-4 days to infer the results. This sensor can be used to detect different types of bacteria by immobilizing the antigen specific antibody. Most of the sensors are not reusable since they either use enzymes or enrichment steps for detection but this device can be reused, following a cleaning protocol which is easy to follow. Each device was used at least five times. The simplicity of this sensor and the ease of fabrication make this sensor a useful alternate to the microfluidics and enzyme based impedance sensors, which are relatively more difficult to fabricate, need programmable fluidic injection pumps to push the sample through the channel, suffer from limitation of coagulation and are difficult to clean.
Collapse
Affiliation(s)
- Majed Dweik
- Co-operative Research and Life & Physical Sciences, Lincoln University, Jefferson City, MO 65101, USA
| | | | | | | | | | | |
Collapse
|
19
|
Indium Tin Oxide devices for amperometric detection of vesicular release by single cells. Biophys Chem 2012; 162:14-21. [DOI: 10.1016/j.bpc.2011.12.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 12/09/2011] [Accepted: 12/18/2011] [Indexed: 11/22/2022]
|
20
|
Li LM, Wang W, Zhang SH, Chen SJ, Guo SS, Français O, Cheng JK, Huang WH. Integrated Microdevice for Long-Term Automated Perfusion Culture without Shear Stress and Real-Time Electrochemical Monitoring of Cells. Anal Chem 2011; 83:9524-30. [DOI: 10.1021/ac202302t] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
| | | | | | | | | | - Olivier Français
- SATIE, UMR 8029 CNRS, Ecole Normale Supérieure de Cachan, 61 Avenue du Président Wilson, 94235 Cachan cedex, France
| | | | | |
Collapse
|
21
|
Huang Y, Cai D, Chen P. Micro- and Nanotechnologies for Study of Cell Secretion. Anal Chem 2011; 83:4393-406. [DOI: 10.1021/ac200358b] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Yinxi Huang
- Division of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457
| | - Dong Cai
- Biology Department, Boston College, Boston, Massachusetts 02467, United States
| | - Peng Chen
- Division of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457
| |
Collapse
|
22
|
Liu X, Barizuddin S, Shin W, Mathai CJ, Gangopadhyay S, Gillis KD. Microwell device for targeting single cells to electrochemical microelectrodes for high-throughput amperometric detection of quantal exocytosis. Anal Chem 2011; 83:2445-51. [PMID: 21355543 DOI: 10.1021/ac1033616] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Electrochemical microelectrodes are commonly used to detect spikes of amperometric current that correspond to exocytosis of oxidizable transmitter from individual vesicles, i.e., quantal exocytosis. We are developing transparent multielectrochemical electrode arrays on microchips in order to automate measurement of quantal exocytosis. Here, we report development of an improved device to target individual cells to each microelectrode in an array. Efficient targeting (~75%) is achieved using cell-sized microwell traps fabricated in SU-8 photoresist together with patterning of poly(l-lysine) in register with electrodes to promote cell adhesion. The surface between electrodes is made resistant to cell adhesion using poly(ethylene glycol) in order to facilitate movement of cells to electrode "docking sites". We demonstrate the activity of the electrodes using the test analyte ferricyanide and perform recordings of quantal exocytosis from bovine adrenal chromaffin cells on the device. Multiple cell recordings on a single device demonstrate the consistency of spike measurements, and multiple recordings from the same electrodes demonstrate that the device can be cleaned and reused without degradation of performance. The new device will enable high-throughput studies of quantal exocytosis and may also find application in rapidly screening drugs or toxins for effects on exocytosis.
Collapse
Affiliation(s)
- Xin Liu
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri 65211, USA
| | | | | | | | | | | |
Collapse
|