1
|
Tagkalidou N, Stevanović M, Romero-Alfano I, Elizalde-Velázquez GA, Herrera-Vázquez SE, Prats E, Gómez-Canela C, Gómez-Oliván LM, Raldúa D. Motor and Non-Motor Effects of Acute MPTP in Adult Zebrafish: Insights into Parkinson's Disease. Int J Mol Sci 2025; 26:1674. [PMID: 40004138 PMCID: PMC11855887 DOI: 10.3390/ijms26041674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/11/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025] Open
Abstract
Parkinson's disease (PD), the second most common neurodegenerative disorder, is characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta, leading to motor and non-motor symptoms. The neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) has been extensively used in different animal species to develop chemical models of PD. This study aimed to evaluate the effects of acute exposure to MPTP (3 × 150 mg/kg, intraperitoneally) on adult zebrafish by assessing the neurochemical, transcriptional, and motor changes associated with PD pathogenesis. MPTP treatment resulted in a significant decrease in brain catecholamines, including dopamine, norepinephrine, and normetanephrine. Additionally, a trend towards decreased levels of dopamine precursors (tyrosine and L-DOPA) and degradation products (3-MT and DOPAC) was also observed, although these changes were not statistically significant. Gene expression analysis showed the downregulation of dbh, while the expression of other genes involved in catecholamine metabolism (th1, th2, mao, comtb) and transport (slc6a3 and slc18a2) remained unaltered, suggesting a lack of dopaminergic neuron degeneration. Behavioral assessments revealed that MPTP-exposed zebrafish exhibited reduced motor activity, consistent with the observed decrease in dopamine levels. In contrast, the kinematic parameters of sharp turning were unaffected. A significant impairment in the sensorimotor gating of the ASR was detected in the MPTP-treated fish, consistent with psychosis. Despite dopamine depletion and behavioral impairments, the absence of neurodegeneration and some hallmark PD motor symptoms suggests limitations in the validity of this model for fully recapitulating PD pathology. Further studies are needed to refine the use of MPTP in zebrafish PD models.
Collapse
Affiliation(s)
- Niki Tagkalidou
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona, 18, 08034 Barcelona, Spain;
| | - Marija Stevanović
- Institute of Pesticides and Environmental Protection, Banatska 31b, 11080 Belgrade, Serbia;
| | - Irene Romero-Alfano
- Department of Analytical and Applied Chemistry, School of Engineering, Institut Químic de Sarrià-Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain; (I.R.-A.); (C.G.-C.)
| | - Gustavo Axel Elizalde-Velázquez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma Del Estado de México, Paseo Colón Intersección Paseo Tollocan, Colonia Residencial Colón, Toluca CP 50120, Estado de México, Mexico; (G.A.E.-V.); (S.E.H.-V.); (L.M.G.-O.)
| | - Selene Elizabeth Herrera-Vázquez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma Del Estado de México, Paseo Colón Intersección Paseo Tollocan, Colonia Residencial Colón, Toluca CP 50120, Estado de México, Mexico; (G.A.E.-V.); (S.E.H.-V.); (L.M.G.-O.)
| | - Eva Prats
- Research and Development Center (CID-CSIC), Jordi Girona, 18, 08034 Barcelona, Spain;
| | - Cristian Gómez-Canela
- Department of Analytical and Applied Chemistry, School of Engineering, Institut Químic de Sarrià-Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain; (I.R.-A.); (C.G.-C.)
| | - Leobardo Manuel Gómez-Oliván
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma Del Estado de México, Paseo Colón Intersección Paseo Tollocan, Colonia Residencial Colón, Toluca CP 50120, Estado de México, Mexico; (G.A.E.-V.); (S.E.H.-V.); (L.M.G.-O.)
| | - Demetrio Raldúa
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona, 18, 08034 Barcelona, Spain;
| |
Collapse
|
2
|
Katola FO, Adana MY, Olajide OA. Inhibition of neuroinflammation and neuronal damage by the selective non-steroidal ERβ agonist AC-186. Inflamm Res 2024; 73:2109-2121. [PMID: 39361032 PMCID: PMC11632062 DOI: 10.1007/s00011-024-01952-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/17/2024] [Accepted: 09/25/2024] [Indexed: 12/11/2024] Open
Abstract
BACKGROUND AC-186 (4-[4-4-Difluoro-1-(2-fluorophenyl) cyclohexyl] phenol) is a neuroprotective non-steroidal selective oestrogen receptor modulator. This study investigated whether inhibition of neuroinflammation contributed to neuroprotective activity of this compound. METHODS BV-2 microglia were treated with AC-186 (0.65-5 μM) prior to stimulation with LPS (100 ng/mL). Levels of pro-inflammatory mediators and proteins were then evaluated. RESULTS Treatment of LPS-activated BV-2 microglia with AC-186 resulted in significant (p < 0.05) reduction in TNFα, IL-6, NO, PGE2, iNOS and COX-2. Further investigations showed that AC-186 decreased LPS-induced elevated levels of phospho-p65, phospho-IκBα and acetyl-p65 proteins, while blocking DNA binding and luciferase activity of NF-κB. AC-186 induced significant (p < 0.05) increase in protein expression of ERβ, while enhancing ERE luciferase activity in BV-2 cells. Effects of the compound on oestrogen signalling in the microglia was confirmed in knockdown experiments which revealed a loss of anti-inflammatory activity following transfection with ERβ siRNA. In vitro neuroprotective activity of AC-186 was demonstrated by inhibition of activated microglia-mediated damage to HT-22 neurons. CONCLUSIONS This study established that AC-186 produces NF-κB-mediated anti-inflammatory activity, which is proposed as a contributory mechanism involved in its neuroprotective actions. It is suggested that the anti-inflammatory activity of this compound is linked to its agonist effect on ERβ.
Collapse
Affiliation(s)
- Folashade O Katola
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield, HD1 3DH, UK
- Current Address: Peter O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Misturah Y Adana
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield, HD1 3DH, UK
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Olumayokun A Olajide
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield, HD1 3DH, UK.
| |
Collapse
|
3
|
Rymbai E, Sugumar D, Chakkittukandiyil A, Kothandan R, Selvaraj D. Molecular insights into the potential effects of selective estrogen receptor β agonists in Alzheimer's and Parkinson's diseases. Cell Biochem Funct 2024; 42:e4014. [PMID: 38616346 DOI: 10.1002/cbf.4014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/19/2024] [Accepted: 04/03/2024] [Indexed: 04/16/2024]
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) are the most common neurodegenerative disorders. Pathologically, AD and PD are characterized by the accumulation of misfolded proteins. Hence, they are also called as proteinopathy diseases. Gender is considered as one of the risk factors in both diseases. Estrogens are widely accepted to be neuroprotective in several neurodegenerative disorders. Estrogens can be produced in the central nervous system, where they are called as neurosteroids. Estrogens mediate their neuroprotective action mainly through their actions on estrogen receptor alpha (ERα) and estrogen receptor beta (ERβ). However, ERα is mainly involved in the growth and development of the primary and secondary sexual organs in females. Hence, the activation of ERα is associated with undesired side effects such as gynecomastia and increase in the risk of breast cancer, thromboembolism, and feminization. Therefore, selective activation of ERβ is often considered to be safer. In this review, we explore the role of ERβ in regulating the expression and functions of AD- and PD-associated genes. Additionally, we discuss the association of these genes with the amyloid-beta peptide (Aβ) and α-synuclein mediated toxicity. Ultimately, we established a correlation between the importance of ERβ activation and the process underlying ERβ's neuroprotective mechanisms in AD and PD.
Collapse
Affiliation(s)
- Emdormi Rymbai
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Tamil Nadu, India
| | - Deepa Sugumar
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Tamil Nadu, India
| | - Amritha Chakkittukandiyil
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Tamil Nadu, India
| | - Ram Kothandan
- Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, Tamil Nadu, India
| | - Divakar Selvaraj
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Tamil Nadu, India
| |
Collapse
|
4
|
Rymbai E, Sugumar D, Chakkittukandiyil A, Kothandan R, Selvaraj J, Selvaraj D. The identification of cianidanol as a selective estrogen receptor beta agonist and evaluation of its neuroprotective effects on Parkinson's disease models. Life Sci 2023; 333:122144. [PMID: 37797687 DOI: 10.1016/j.lfs.2023.122144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/30/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023]
Abstract
AIM The present study aims to identify selective estrogen receptor beta (ERβ) agonists and to evaluate the neuroprotective mechanism in Parkinson's disease (PD) models. MAIN METHODS In-silico studies were carried out using Maestro and GROMACS. Neuroprotective activity and apoptosis were evaluated using cytotoxicity assay and flow cytometry respectively. Gene expression studies were carried out by reverse transcription polymerase chain reaction. Motor and cognitive functions were assessed by actophotometer, rotarod, catalepsy, and elevated plus maze. The neuronal population in the substantia nigra and striatum of rats was assessed by hematoxylin and eosin staining. KEY FINDINGS Cianidanol was identified as a selective ERβ agonist through virtual screening. The cianidanol-ERβ complex is stable during the 200 ns simulation and was able to retain the interactions with key amino acid residues. Cianidanol (25 μM) prevents neuronal toxicity and apoptosis induced by rotenone in differentiated SH-SY5Y cells. Additionally, cianidanol (25 μM) increases the expression of ERβ, cathepsin D, and Nrf2 transcripts. The neuroprotective effects of cianidanol (25 μM) were reversed in the presence of a selective ERβ antagonist. In this study, we found that selective activation of ERβ could decrease the transcription of α-synuclein gene. Additionally, cianidanol (10, 20, 30 mg/kg, oral) improves the motor and cognitive deficit in rats induced by rotenone. SIGNIFICANCE Cianidanol shows neuroprotective action in PD models and has the potential to serve as a novel therapeutic agent for the treatment of PD.
Collapse
Affiliation(s)
- Emdormi Rymbai
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Deepa Sugumar
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Amritha Chakkittukandiyil
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Ram Kothandan
- Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, Tamil Nadu, India
| | - Jubie Selvaraj
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Divakar Selvaraj
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India.
| |
Collapse
|
5
|
Anticancer or carcinogenic? The role of estrogen receptor β in breast cancer progression. Pharmacol Ther 2023; 242:108350. [PMID: 36690079 DOI: 10.1016/j.pharmthera.2023.108350] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/06/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
Estrogen receptor β (ERβ) is closely related to breast cancer (BC) progression. Traditional concepts regard ERβ as a tumor suppressor. As studies show the carcinogenic effect of ERβ, some people have come to a new conclusion that ERβ serves as a tumor suppressor in estrogen receptor α (ERα)-positive breast cancer, while it is a carcinogen in ERα-negative breast cancer. However, we re-examine the role of ERβ and find this conclusion to be misleading based on the last decade's research. A large number of studies have shown that ERβ plays an anticancer role in both ERα-positive and ERα-negative breast cancers, and its carcinogenicity does not depend solely on the presence of ERα. Herein, we review the anticancer and oncogenic effects of ERβ on breast cancer progression in the past ten years, discuss the mechanism respectively, analyze the main reasons for the inconsistency and update ERβ selective ligand library. We believe a detailed and continuously updated review will help correct the one-sided understanding of ERβ, promoting ERβ-targeted breast cancer therapy.
Collapse
|
6
|
Voskuhl R, Itoh Y. The X factor in neurodegeneration. J Exp Med 2022; 219:e20211488. [PMID: 36331399 PMCID: PMC9641640 DOI: 10.1084/jem.20211488] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/22/2022] [Accepted: 10/12/2022] [Indexed: 07/25/2023] Open
Abstract
Given the aging population, it is important to better understand neurodegeneration in aging healthy people and to address the increasing incidence of neurodegenerative diseases. It is imperative to apply novel strategies to identify neuroprotective therapeutics. The study of sex differences in neurodegeneration can reveal new candidate treatment targets tailored for women and men. Sex chromosome effects on neurodegeneration remain understudied and represent a promising frontier for discovery. Here, we will review sex differences in neurodegeneration, focusing on the study of sex chromosome effects in the context of declining levels of sex hormones during aging.
Collapse
Affiliation(s)
- Rhonda Voskuhl
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Yuichiro Itoh
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| |
Collapse
|
7
|
Willems S, Zaienne D, Merk D. Targeting Nuclear Receptors in Neurodegeneration and Neuroinflammation. J Med Chem 2021; 64:9592-9638. [PMID: 34251209 DOI: 10.1021/acs.jmedchem.1c00186] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nuclear receptors, also known as ligand-activated transcription factors, regulate gene expression upon ligand signals and present as attractive therapeutic targets especially in chronic diseases. Despite the therapeutic relevance of some nuclear receptors in various pathologies, their potential in neurodegeneration and neuroinflammation is insufficiently established. This perspective gathers preclinical and clinical data for a potential role of individual nuclear receptors as future targets in Alzheimer's disease, Parkinson's disease, and multiple sclerosis, and concomitantly evaluates the level of medicinal chemistry targeting these proteins. Considerable evidence suggests the high promise of ligand-activated transcription factors to counteract neurodegenerative diseases with a particularly high potential of several orphan nuclear receptors. However, potent tools are lacking for orphan receptors, and limited central nervous system exposure or insufficient selectivity also compromises the suitability of well-studied nuclear receptor ligands for functional studies. Medicinal chemistry efforts are needed to develop dedicated high-quality tool compounds for the therapeutic validation of nuclear receptors in neurodegenerative pathologies.
Collapse
Affiliation(s)
- Sabine Willems
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| | - Daniel Zaienne
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| | - Daniel Merk
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| |
Collapse
|
8
|
Parkinson's disease in women: Mechanisms underlying sex differences. Eur J Pharmacol 2021; 895:173862. [PMID: 33450279 DOI: 10.1016/j.ejphar.2021.173862] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/10/2020] [Accepted: 01/07/2021] [Indexed: 12/11/2022]
Abstract
Parkinson's disease is a neurodegenerative disease which is associated with different motor, cognitive and mood-related problems. Though it has been established that Parkinson's disease is less prevalent in women in comparison to men, the differences tend to diminish with the advancing age. Different genetic, hormonal, neuroendocrinal and molecular players contribute towards the differences in the Parkinson's disease pathogenesis. Furthermore, data available with respect to the therapeutic management of Parkinson's disease in females is limited; women often tend to suffer more from the side effects of the currently available drugs. The present review highlights the sex-specific differences which play a role in the manifestation of these symptoms and side effects of the currently available therapeutic strategies. We have also discussed the current and upcoming therapeutic strategies which are in the clinical trials such as adenosine 2A (A2A) receptor antagonists, estrogen replacement therapy, α-synuclein targeting vaccines and antibodies, Botulinum toxin A, Fas-associated factor-1 (FAF-1) inhibitors, thiazolidinediones, 5-HT1A receptor agonists, dopamine D1/D5 receptor agonists, Glucagon-like peptide 1 (GLP-1) analogues and certain plant based principles for the treatment of Parkinson's disease in women.
Collapse
|
9
|
Zarate SM, Pandey G, Chilukuri S, Garcia JA, Cude B, Storey S, Salem NA, Bancroft EA, Hook M, Srinivasan R. Cytisine is neuroprotective in female but not male 6-hydroxydopamine lesioned parkinsonian mice and acts in combination with 17-β-estradiol to inhibit apoptotic endoplasmic reticulum stress in dopaminergic neurons. J Neurochem 2021; 157:710-726. [PMID: 33354763 DOI: 10.1111/jnc.15282] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 11/11/2020] [Accepted: 12/21/2020] [Indexed: 12/16/2022]
Abstract
Apoptotic endoplasmic reticulum (ER) stress is a major mechanism for dopaminergic (DA) loss in Parkinson's disease (PD). We assessed if low doses of the partial α4β2 nicotinic acetylcholine receptor agonist, cytisine attenuates apoptotic ER stress and exerts neuroprotection in substantia nigra pars compacta (SNc) DA neurons. Alternate day intraperitoneal injections of 0.2 mg/kg cytisine were administered to female and male mice with 6-hydroxydopamine (6-OHDA) lesions in the dorsolateral striatum, which caused unilateral degeneration of SNc DA neurons. Cytisine attenuated 6-OHDA-induced PD-related behaviors in female, but not in male mice. We also found significant reductions in tyrosine hydroxylase (TH) loss within the lesioned SNc of female, but not male mice. In contrast to female mice, DA neurons within the lesioned SNc of male mice showed a cytisine-induced pathological increase in the nuclear translocation of the pro-apoptotic ER stress protein, C/EBP homologous protein (CHOP). To assess the role of estrogen in cytisine neuroprotection in female mice, we exposed primary mouse DA cultures to either 10 nM 17-β-estradiol and 200 nM cytisine or 10 nM 17-β-estradiol alone. 17-β-estradiol reduced expression of CHOP, whereas cytisine exposure reduced 6-OHDA-mediated nuclear translocation of two other ER stress proteins, activating transcription factor 6 and x-box-binding protein 1, but not CHOP. Taken together, these data show that cytisine and 17-β-estradiol work in combination to inhibit all three arms (activating transcription factor 6, x-box-binding protein 1, and CHOP) of apoptotic ER stress signaling in DA neurons, which can explain the neuroprotective effect of low-dose cytisine in female mice.
Collapse
Affiliation(s)
- Sara M Zarate
- Department of Neuroscience & Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, TX, USA
| | - Gauri Pandey
- Department of Neuroscience & Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, TX, USA
| | - Sunanda Chilukuri
- Department of Neuroscience & Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, TX, USA
| | - Jose A Garcia
- Department of Neuroscience & Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, TX, USA
| | - Brittany Cude
- Department of Neuroscience & Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, TX, USA
| | - Shannon Storey
- Department of Neuroscience & Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, TX, USA
| | - Nihal A Salem
- Department of Neuroscience & Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, TX, USA.,Texas A&M Institute for Neuroscience (TAMIN), College Station, TX, USA
| | - Eric A Bancroft
- Department of Neuroscience & Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, TX, USA
| | - Michelle Hook
- Department of Neuroscience & Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, TX, USA.,Texas A&M Institute for Neuroscience (TAMIN), College Station, TX, USA
| | - Rahul Srinivasan
- Department of Neuroscience & Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, TX, USA.,Texas A&M Institute for Neuroscience (TAMIN), College Station, TX, USA
| |
Collapse
|
10
|
Selective Estrogen Receptor β Agonists: a Therapeutic Approach for HIV-1 Associated Neurocognitive Disorders. J Neuroimmune Pharmacol 2019; 15:264-279. [PMID: 31858373 PMCID: PMC7266801 DOI: 10.1007/s11481-019-09900-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 12/09/2019] [Indexed: 12/17/2022]
Abstract
The persistence of HIV-1 associated neurocognitive disorders (HAND) in the post-cART era, afflicting between 40 and 70% of HIV-1 seropositive individuals, supports a critical need for the development of adjunctive therapeutic treatments. Selective estrogen receptor β agonists, including S-Equol (SE), have been implicated as potential therapeutic targets for the treatment of neurocognitive disorders. In the present study, the therapeutic efficacy of 0.2 mg SE for the treatment of HAND was assessed to address two key questions in the HIV-1 transgenic (Tg) rat. First, does SE exhibit robust therapeutic efficacy when treatment is initiated relatively early (i.e., between 2 and 3 months of age) in the course of viral protein exposure? Second, does the therapeutic utility of SE generalize across multiple neurocognitive domains? Treatment with SE enhanced preattentive processes and stimulus-response learning to the level of controls in all (i.e., 100%) HIV-1 Tg animals. For sustained and selective attention, statistically significant effects were not observed in the overall analyses (Control: Placebo, n = 10, SE, n = 10; HIV-1 Tg: Placebo, n = 10, SE, n = 10). However, given our a priori hypothesis, subsequent analyses were conducted, revealing enhanced sustained and selective attention, approximating controls, in a subset (i.e., 50%, n = 5 and 80%, n = 8, respectively) of HIV-1 Tg animals treated with SE. Thus, the therapeutic efficacy of SE is greater when treatment is initiated relatively early in the course of viral protein exposure and generalizes across neurocognitive domains, supporting an adjunctive therapeutic for HAND in the post-cART era. HIV-1 transgenic (Tg) and control animals were treated with either 0.2 mg S-Equol (SE) or placebo between 2 and 3 months of age (Control: Placebo, n = 10, SE, n = 10; HIV-1 Tg: Placebo, n = 10, SE, n = 10). Neurocognitive assessments, tapping preattentive processes, stimulus response learning, sustained attention and selective attention, were conducted to evaluate the utility of SE as a therapeutic for HIV-1 associated neurocognitive disorders (HAND). Planned comparisons between HIV-1 Tg and control animals treated with placebo were utilized to establish a genotype effect, revealing prominent neurocognitive impairments (NCI) in the HIV-1 Tg rat across all domains. Furthermore, to establish the utility of SE, HIV-1 Tg animals treated with SE were compared to control animals treated with placebo. Treatment with 0.2 mg SE ameliorated NCI, to levels that were indistinguishable from controls, in at least a subset (i.e., 50–100%) of HIV-1 Tg animals. Thus, SE supports an efficacious, adjunctive therapeutic for HAND. ![]()
Collapse
|
11
|
Azcoitia I, Barreto GE, Garcia-Segura LM. Molecular mechanisms and cellular events involved in the neuroprotective actions of estradiol. Analysis of sex differences. Front Neuroendocrinol 2019; 55:100787. [PMID: 31513774 DOI: 10.1016/j.yfrne.2019.100787] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/27/2019] [Accepted: 09/07/2019] [Indexed: 12/12/2022]
Abstract
Estradiol, either from peripheral or central origin, activates multiple molecular neuroprotective and neuroreparative responses that, being mediated by estrogen receptors or by estrogen receptor independent mechanisms, are initiated at the membrane, the cytoplasm or the cell nucleus of neural cells. Estrogen-dependent signaling regulates a variety of cellular events, such as intracellular Ca2+ levels, mitochondrial respiratory capacity, ATP production, mitochondrial membrane potential, autophagy and apoptosis. In turn, these molecular and cellular actions of estradiol are integrated by neurons and non-neuronal cells to generate different tissue protective responses, decreasing blood-brain barrier permeability, oxidative stress, neuroinflammation and excitotoxicity and promoting synaptic plasticity, axonal growth, neurogenesis, remyelination and neuroregeneration. Recent findings indicate that the neuroprotective and neuroreparative actions of estradiol are different in males and females and further research is necessary to fully elucidate the causes for this sex difference.
Collapse
Affiliation(s)
- Iñigo Azcoitia
- Department of Cell Biology, Faculty of Biology, Universidad Complutense de Madrid, 28040 Madrid, Spain; Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludables (CIBERFES), Instituto de Salud Carlos III, Avenida Monforte de Lemos, 3-5, 28029 Madrid, Spain.
| | - George E Barreto
- Department of Biological Sciences, School of Natural Sciences, University of Limerick, Limerick, Ireland.
| | - Luis M Garcia-Segura
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludables (CIBERFES), Instituto de Salud Carlos III, Avenida Monforte de Lemos, 3-5, 28029 Madrid, Spain; Instituto Cajal, CSIC, Avenida Doctor Arce 37, 28002 Madrid, Spain.
| |
Collapse
|
12
|
Moran LM, McLaurin KA, Booze RM, Mactutus CF. Neurorestoration of Sustained Attention in a Model of HIV-1 Associated Neurocognitive Disorders. Front Behav Neurosci 2019; 13:169. [PMID: 31447657 PMCID: PMC6691343 DOI: 10.3389/fnbeh.2019.00169] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 07/12/2019] [Indexed: 12/26/2022] Open
Abstract
Due to the sustained prevalence of human immunodeficiency virus (HIV)-1 associated neurocognitive disorders (HAND) in the post-combination antiretroviral therapy (cART) era, as well as the increased prevalence of older HIV-1 seropositive individuals, there is a critical need to develop adjunctive therapeutics targeted at preserving and/or restoring neurocognitive function. To address this knowledge gap, the present study examined the utility of S-Equol (SE), a phytoestrogen produced by gut microbiota, as an innovative therapeutic strategy. A signal detection operant task with varying signal durations (1,000, 500, 100 ms) was utilized to assess sustained attention in HIV-1 transgenic (Tg) and control animals. During the signal detection pretest assessment, HIV-1 Tg animals displayed profound deficits in stimulus-response learning and sustained attention relative to control animals. Subsequently, between 6 and 8 months of age, HIV-1 Tg and control animals were treated with a daily oral dose of either placebo or SE (0.05, 0.1, 0.2 mg) and a posttest assessment was conducted in the signal detection operant task with varying signal durations. In HIV-1 Tg animals, a linear decrease in the number of misses at 100 ms was observed as SE dose increased, suggesting a dose response with the most effective dose at 0.2 mg SE, approximating controls. Comparison of the number of misses across signal durations at the pretest and posttest revealed a preservation of neurocognitive function in HIV-1 Tg animals treated with 0.2 mg SE; an effect that was in sharp contrast to the neurocognitive decline observed in HIV-1 Tg animals treated with placebo. The results support the utility of 0.2 mg SE as a potential efficacious neuroprotective and/or neurorestorative therapeutic for sustained attention, in the absence of any adverse peripheral effects, in the HIV-1 Tg rat. Thus, the present study highlights the critical need for further in vivo studies to elucidate the full potential and generalizability of phytoestrogen treatment for HAND.
Collapse
Affiliation(s)
- Landhing M Moran
- Program in Behavioral Neuroscience, Department of Psychology, University of South Carolina, Columbia, SC, United States
| | - Kristen A McLaurin
- Program in Behavioral Neuroscience, Department of Psychology, University of South Carolina, Columbia, SC, United States
| | - Rosemarie M Booze
- Program in Behavioral Neuroscience, Department of Psychology, University of South Carolina, Columbia, SC, United States
| | - Charles F Mactutus
- Program in Behavioral Neuroscience, Department of Psychology, University of South Carolina, Columbia, SC, United States
| |
Collapse
|
13
|
Kim WS, Shalit ZA, Nguyen SM, Schoepke E, Eastman A, Burris TP, Gaur AB, Micalizio GC. A synthesis strategy for tetracyclic terpenoids leads to agonists of ERβ. Nat Commun 2019; 10:2448. [PMID: 31164645 PMCID: PMC6547701 DOI: 10.1038/s41467-019-10415-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 05/08/2019] [Indexed: 02/07/2023] Open
Abstract
Natural product and natural product-like molecules continue to be important for the development of pharmaceutical agents, as molecules in this class play a vital role in the pipeline for new therapeutics. Among these, tetracyclic terpenoids are privileged, with >100 being FDA-approved drugs. Despite this significant pharmaceutical success, there remain considerable limitations to broad medicinal exploitation of the class due to lingering scientific challenges associated with compound availability. Here, we report a concise asymmetric route to forging natural and unnatural (enantiomeric) C19 and C20 tetracyclic terpenoid skeletons suitable to drive medicinal exploration. While efforts have been focused on establishing the chemical science, early investigations reveal that the emerging chemical technology can deliver compositions of matter that are potent and selective agonists of the estrogen receptor beta, and that are selectively cytotoxic in two different glioblastoma cell lines (U251 and U87). Many natural-product like drugs have a tetracyclic terpenoid core. Here, the authors developed a synthesis of triterpene-like tetracyclic systems, and apply this method to the preparation of a number of enantiomeric compounds, two of which are very selective ligands for estrogen receptor beta
Collapse
Affiliation(s)
- Wan Shin Kim
- Dartmouth College, Department of Chemistry, Burke Laboratory, Hanover, NH, 03755, USA
| | - Zachary A Shalit
- Dartmouth College, Department of Chemistry, Burke Laboratory, Hanover, NH, 03755, USA
| | - Sidney M Nguyen
- Dartmouth College, Geisel School of Medicine, Department of Neurology, Lebanon, NH, 03756, USA
| | - Emmalie Schoepke
- Center for Clinical Pharmacology, Washington University School of Medicine and St. Louis College of Pharmacy, St. Louis, MO, 63110, USA
| | - Alan Eastman
- Dartmouth College, Geisel School of Medicine, Department of Molecular and Systems Biology, Lebanon, NH, 03756, USA
| | - Thomas P Burris
- Center for Clinical Pharmacology, Washington University School of Medicine and St. Louis College of Pharmacy, St. Louis, MO, 63110, USA
| | - Arti B Gaur
- Dartmouth College, Geisel School of Medicine, Department of Neurology, Lebanon, NH, 03756, USA.
| | - Glenn C Micalizio
- Dartmouth College, Department of Chemistry, Burke Laboratory, Hanover, NH, 03755, USA.
| |
Collapse
|
14
|
Kim RY, Mangu D, Hoffman AS, Kavosh R, Jung E, Itoh N, Voskuhl R. Oestrogen receptor β ligand acts on CD11c+ cells to mediate protection in experimental autoimmune encephalomyelitis. Brain 2019; 141:132-147. [PMID: 29228214 PMCID: PMC5837360 DOI: 10.1093/brain/awx315] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 10/14/2017] [Indexed: 11/12/2022] Open
Abstract
Oestrogen treatments are neuroprotective in a variety of neurodegenerative disease models. Selective oestrogen receptor modifiers are needed to optimize beneficial effects while minimizing adverse effects to achieve neuroprotection in chronic diseases. Oestrogen receptor beta (ERβ) ligands are potential candidates. In the multiple sclerosis model chronic experimental autoimmune encephalomyelitis, ERβ-ligand treatment is neuroprotective, but mechanisms underlying this neuroprotection remain unclear. Specifically, whether there are direct effects of ERβ-ligand on CD11c+ microglia, myeloid dendritic cells or macrophages in vivo during disease is unknown. Here, we generated mice with ERβ deleted from CD11c+ cells to show direct effects of ERβ-ligand treatment in vivo on these cells to mediate neuroprotection during experimental autoimmune encephalomyelitis. Further, we use bone marrow chimeras to show that ERβ in peripherally derived myeloid cells, not resident microglia, are the CD11c+ cells mediating this protection. CD11c+ dendritic cell and macrophages isolated from the central nervous system of wild-type experimental autoimmune encephalomyelitis mice treated with ERβ-ligand expressed less iNOS and T-bet, but more IL-10, and this treatment effect was lost in mice with specific deletion of ERβ in CD11c+ cells. Also, we extend previous reports of ERβ-ligand’s ability to enhance remyelination through a direct effect on oligodendrocytes by showing that the immunomodulatory effect of ERβ-ligand acting on CD11c+ cells is necessary to permit the maturation of oligodendrocytes. Together these results demonstrate that targeting ERβ signalling pathways in CD11c+ myeloid cells is a novel strategy for regulation of the innate immune system in neurodegenerative diseases. To our knowledge, this is the first report showing how direct effects of a candidate neuroprotective treatment on two distinct cell lineages (bone marrow derived myeloid cells and oligodendrocytes) can have complementary neuroprotective effects in vivo.awx315media15688130498001.
Collapse
Affiliation(s)
- Roy Y Kim
- Multiple Sclerosis Program, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.,Molecular, Cellular and Integrative Physiology Ph.D. Program, University of California, Los Angeles, CA 90095, USA
| | - Darian Mangu
- Multiple Sclerosis Program, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Alexandria S Hoffman
- Multiple Sclerosis Program, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Rojan Kavosh
- Multiple Sclerosis Program, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Eunice Jung
- Multiple Sclerosis Program, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Noriko Itoh
- Multiple Sclerosis Program, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Rhonda Voskuhl
- Multiple Sclerosis Program, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
15
|
Wai H, Du K, Anesini J, Kim WS, Eastman A, Micalizio GC. Synthesis and Discovery of Estra-1,3,5(10),6,8-pentaene-2,16α-diol. Org Lett 2018; 20:6220-6224. [PMID: 30221523 PMCID: PMC6415968 DOI: 10.1021/acs.orglett.8b02689] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A metallacycle-centered approach to the assembly of partially aromatic synthetic steroids was investigated as a means to prepare a boutique collection of unique steroidal agents. The synthesis and discovery of estra-1,3,5(10),6,8-pentaene-2,16α-diol (VII) is described, along with structure-activity relationships related to its cytotoxic properties. Overall, VII was found to have a GI50 = 0.2 μg/mL (∼800 nM) in MDA-MB-231 human breast cancer cells, be an efficacious estrogen receptor agonist with potency for ERβ > ERα (ERβ EC50 = 21 nM), possess selective affinity to the cdc-2-like kinase CLK4 (Kd = 350 nM), and be phenotypically related to paclitaxel by an unbiased panel assessment.
Collapse
Affiliation(s)
- HtooTint Wai
- Department of Chemistry, Dartmouth College, Burke Laboratory, Hanover, NH 03756
| | - Kang Du
- Department of Chemistry, Dartmouth College, Burke Laboratory, Hanover, NH 03756
| | - Jason Anesini
- Department of Chemistry, Dartmouth College, Burke Laboratory, Hanover, NH 03756
| | - Wan Shin Kim
- Department of Chemistry, Dartmouth College, Burke Laboratory, Hanover, NH 03756
| | - Alan Eastman
- Geisel School of Medicine, Dartmouth College, Lebanon, NH 03755
| | - Glenn C. Micalizio
- Department of Chemistry, Dartmouth College, Burke Laboratory, Hanover, NH 03756
| |
Collapse
|
16
|
Jurado-Coronel JC, Cabezas R, Ávila Rodríguez MF, Echeverria V, García-Segura LM, Barreto GE. Sex differences in Parkinson's disease: Features on clinical symptoms, treatment outcome, sexual hormones and genetics. Front Neuroendocrinol 2018; 50:18-30. [PMID: 28974386 DOI: 10.1016/j.yfrne.2017.09.002] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 09/12/2017] [Accepted: 09/29/2017] [Indexed: 01/14/2023]
Abstract
Parkinson's disease (PD) is the second most frequent age-related neurodegenerative disorder. Sex is an important factor in the development of PD, as reflected by the fact that it is more common in men than in women by an approximate ratio of 2:1. Our hypothesis is that differences in PD among men and women are highly determined by sex-dependent differences in the nigrostriatal dopaminergic system, which arise from environmental, hormonal and genetic influences. Sex hormones, specifically estrogens, influence PD pathogenesis and might play an important role in PD differences between men and women. The objective of this review was to discuss the PD physiopathology and point out sex differences in nigrostriatal degeneration, symptoms, genetics, responsiveness to treatments and biochemical and molecular mechanisms among patients suffering from this disease. Finally, we discuss the role estrogens may have on PD sex differences.
Collapse
Affiliation(s)
- Juan Camilo Jurado-Coronel
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - Ricardo Cabezas
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | | | - Valentina Echeverria
- Universidad San Sebastián, Fac. Cs de la Salud, Lientur 1457, Concepción, 4080871, Chile; Research & Development Service, Bay Pines VA Healthcare System, Bay Pines, FL 33744, USA
| | - Luis Miguel García-Segura
- Instituto Cajal, CSIC, Madrid, Spain; CIBER de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia; Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile.
| |
Collapse
|
17
|
|
18
|
Itoh N, Kim R, Peng M, DiFilippo E, Johnsonbaugh H, MacKenzie-Graham A, Voskuhl RR. Bedside to bench to bedside research: Estrogen receptor beta ligand as a candidate neuroprotective treatment for multiple sclerosis. J Neuroimmunol 2016; 304:63-71. [PMID: 27771018 DOI: 10.1016/j.jneuroim.2016.09.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 09/28/2016] [Indexed: 12/16/2022]
Abstract
Protective effects of pregnancy during MS have led to clinical trials of estriol, the pregnancy estrogen, in MS. Since estriol binds to estrogen receptor (ER) beta, ER beta ligand could represent a "next generation estriol" treatment. Here, ER beta ligand treatment was protective in EAE in both sexes and across genetic backgrounds. Neuroprotection was shown in spinal cord, sparing myelin and axons, and in brain, sparing neurons and synapses. Longitudinal in vivo MRIs showed decreased brain atrophy in cerebral cortex gray matter and cerebellum during EAE. Investigation of ER beta ligand as a neuroprotective treatment for MS is warranted.
Collapse
Affiliation(s)
- Noriko Itoh
- Department of Neurology, University of California, Los Angeles, David Geffen School of Medicine, USA
| | - Roy Kim
- Department of Neurology, University of California, Los Angeles, David Geffen School of Medicine, USA
| | - Mavis Peng
- Department of Neurology, University of California, Los Angeles, David Geffen School of Medicine, USA
| | - Emma DiFilippo
- Department of Neurology, University of California, Los Angeles, David Geffen School of Medicine, USA
| | - Hadley Johnsonbaugh
- Department of Neurology, University of California, Los Angeles, David Geffen School of Medicine, USA
| | - Allan MacKenzie-Graham
- Department of Neurology, University of California, Los Angeles, David Geffen School of Medicine, USA
| | - Rhonda R Voskuhl
- Department of Neurology, University of California, Los Angeles, David Geffen School of Medicine, USA.
| |
Collapse
|
19
|
Ma JN, McFarland K, Olsson R, Burstein ES. Estrogen Receptor Beta Selective Agonists as Agents to Treat Chemotherapeutic-Induced Neuropathic Pain. ACS Chem Neurosci 2016; 7:1180-7. [PMID: 27456785 DOI: 10.1021/acschemneuro.6b00183] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Chemotherapy-induced neuropathic pain (CINP) remains a major unmet medical need. Estrogen receptor beta (ERβ)-selective agonists represent a novel strategy for treating CINP because they are neuroprotective and may also have anticancer activity. We confirmed that ERβ-selective agonists have antiallodynic effects in the spinal nerve ligation model of neuropathic pain. We then showed that structurally diverse ERβ-selective agonists also relieved allodynia in CINP caused by taxol, oxaliplatin, and vincristine. These effects were receptor subtype specific and mediated by ERβ receptors as ERα-selective and nonselective estrogen agonists were inactive, a mixture of an ERβ and ERα agonist was inactive, and ERβ-selective antagonists blocked the effects of the ERβ-selective agonists. The efficacy and potency of ERβ-agonists was greater in male rats than females. To address the possibility that AC-186 might stimulate proliferation of cancers, rendering it unsuitable for treating CINP, we evaluated proliferative effects of AC-186 on prostate cancer cells and found it inhibited growth (LNCaP cells) or had no effect (PC3 cells) on these cells. Thus, ERβ-selective agonists exhibit potential for treating CINP.
Collapse
Affiliation(s)
- Jian-Nong Ma
- ACADIA Pharmaceuticals Inc., 3611 Valley Center Drive, Ste. 300, San Diego, California 92130, United States
| | - Krista McFarland
- ACADIA Pharmaceuticals Inc., 3611 Valley Center Drive, Ste. 300, San Diego, California 92130, United States
| | - Roger Olsson
- Chemical Biology & Therapeutics, Department of Experimental Medical Science, Lund University, S-221 84 Lund, Sweden
| | - Ethan S. Burstein
- ACADIA Pharmaceuticals Inc., 3611 Valley Center Drive, Ste. 300, San Diego, California 92130, United States
| |
Collapse
|
20
|
Sundén H, Schäfer A, Scheepstra M, Leysen S, Malo M, Ma JN, Burstein ES, Ottmann C, Brunsveld L, Olsson R. Chiral Dihydrobenzofuran Acids Show Potent Retinoid X Receptor–Nuclear Receptor Related 1 Protein Dimer Activation. J Med Chem 2016; 59:1232-8. [DOI: 10.1021/acs.jmedchem.5b01702] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Henrik Sundén
- Department
of Chemistry and Molecular Biology, Medicinal Chemistry, University of Gothenburg, SE-41296 Gothenburg, Sweden
| | - Anja Schäfer
- Department
of Chemistry and Molecular Biology, Medicinal Chemistry, University of Gothenburg, SE-41296 Gothenburg, Sweden
- Department
of Biomedical Engineering and Institute of Complex Molecular Systems,
Laboratory of Chemical Biology, Technische Universiteit Eindhoven, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
| | - Marcel Scheepstra
- Department
of Biomedical Engineering and Institute of Complex Molecular Systems,
Laboratory of Chemical Biology, Technische Universiteit Eindhoven, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
| | - Seppe Leysen
- Department
of Biomedical Engineering and Institute of Complex Molecular Systems,
Laboratory of Chemical Biology, Technische Universiteit Eindhoven, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
| | - Marcus Malo
- Department
of Chemistry and Molecular Biology, Medicinal Chemistry, University of Gothenburg, SE-41296 Gothenburg, Sweden
| | - Jian-Nong Ma
- ACADIA Pharmaceuticals Inc., San Diego, California 92130, United States
| | - Ethan S. Burstein
- ACADIA Pharmaceuticals Inc., San Diego, California 92130, United States
| | - Christian Ottmann
- Department
of Biomedical Engineering and Institute of Complex Molecular Systems,
Laboratory of Chemical Biology, Technische Universiteit Eindhoven, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
| | - Luc Brunsveld
- Department
of Biomedical Engineering and Institute of Complex Molecular Systems,
Laboratory of Chemical Biology, Technische Universiteit Eindhoven, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
| | - Roger Olsson
- Department
of Chemistry and Molecular Biology, Medicinal Chemistry, University of Gothenburg, SE-41296 Gothenburg, Sweden
- ACADIA Pharmaceuticals Inc., San Diego, California 92130, United States
- Chemical Biology & Therapeutics, Department of Experimental Medical Science, Lund University, Sölvegatan 19, BMC DIO, SE-221 84 Lund, Sweden
| |
Collapse
|
21
|
Issy AC, Padovan-Neto FE, Lazzarini M, Bortolanza M, Del-Bel E. Disturbance of sensorimotor filtering in the 6-OHDA rodent model of Parkinson's disease. Life Sci 2015; 125:71-8. [PMID: 25681528 DOI: 10.1016/j.lfs.2015.01.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 01/23/2015] [Accepted: 01/25/2015] [Indexed: 12/22/2022]
Affiliation(s)
- Ana Carolina Issy
- Department of Morphology, Physiology and Basic Pathology, School of Odontology of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil; Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), Ribeirao Preto, SP, Brazil
| | - Fernando E Padovan-Neto
- Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), Ribeirao Preto, SP, Brazil; Department of Neuroscience and Behavior, University of Sao Paulo, Ribeirao Preto Medical School, Ribeirao Preto, SP, Brazil
| | - Marcio Lazzarini
- Department of Morphology, Physiology and Basic Pathology, School of Odontology of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil; Department of Neuroscience and Behavior, University of Sao Paulo, Ribeirao Preto Medical School, Ribeirao Preto, SP, Brazil
| | - Mariza Bortolanza
- Department of Morphology, Physiology and Basic Pathology, School of Odontology of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil; Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), Ribeirao Preto, SP, Brazil
| | - Elaine Del-Bel
- Department of Morphology, Physiology and Basic Pathology, School of Odontology of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil; Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), Ribeirao Preto, SP, Brazil; Department of Neuroscience and Behavior, University of Sao Paulo, Ribeirao Preto Medical School, Ribeirao Preto, SP, Brazil.
| |
Collapse
|
22
|
Segura-Aguilar J, Kostrzewa RM. Neurotoxin mechanisms and processes relevant to Parkinson's disease: an update. Neurotox Res 2015; 27:328-54. [PMID: 25631236 DOI: 10.1007/s12640-015-9519-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 01/13/2015] [Accepted: 01/13/2015] [Indexed: 12/14/2022]
Abstract
The molecular mechanism responsible for degenerative process in the nigrostriatal dopaminergic system in Parkinson's disease (PD) remains unknown. One major advance in this field has been the discovery of several genes associated to familial PD, including alpha synuclein, parkin, LRRK2, etc., thereby providing important insight toward basic research approaches. There is an consensus in neurodegenerative research that mitochon dria dysfunction, protein degradation dysfunction, aggregation of alpha synuclein to neurotoxic oligomers, oxidative and endoplasmic reticulum stress, and neuroinflammation are involved in degeneration of the neuromelanin-containing dopaminergic neurons that are lost in the disease. An update of the mechanisms relating to neurotoxins that are used to produce preclinical models of Parkinson´s disease is presented. 6-Hydroxydopamine, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, and rotenone have been the most wisely used neurotoxins to delve into mechanisms involved in the loss of dopaminergic neurons containing neuromelanin. Neurotoxins generated from dopamine oxidation during neuromelanin formation are likewise reviewed, as this pathway replicates neurotoxin-induced cellular oxidative stress, inactivation of key proteins related to mitochondria and protein degradation dysfunction, and formation of neurotoxic aggregates of alpha synuclein. This survey of neurotoxin modeling-highlighting newer technologies and implicating a variety of processes and pathways related to mechanisms attending PD-is focused on research studies from 2012 to 2014.
Collapse
Affiliation(s)
- Juan Segura-Aguilar
- Molecular and Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Independencia 1027, Casilla, 70000, Santiago 7, Chile,
| | | |
Collapse
|
23
|
Paterni I, Granchi C, Katzenellenbogen JA, Minutolo F. Estrogen receptors alpha (ERα) and beta (ERβ): subtype-selective ligands and clinical potential. Steroids 2014; 90:13-29. [PMID: 24971815 PMCID: PMC4192010 DOI: 10.1016/j.steroids.2014.06.012] [Citation(s) in RCA: 495] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Estrogen receptors alpha (ERα) and beta (ERβ) are nuclear transcription factors that are involved in the regulation of many complex physiological processes in humans. Modulation of these receptors by prospective therapeutic agents is currently being considered for prevention and treatment of a wide variety of pathological conditions, such as, cancer, metabolic and cardiovascular diseases, neurodegeneration, inflammation, and osteoporosis. This review provides an overview and update of compounds that have been recently reported as modulators of ERs, with a particular focus on their potential clinical applications.
Collapse
Affiliation(s)
- Ilaria Paterni
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Carlotta Granchi
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - John A Katzenellenbogen
- Department of Chemistry, University of Illinois, 600 S. Mathews Avenue, Urbana, IL 61801, USA
| | - Filippo Minutolo
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy.
| |
Collapse
|
24
|
Smith KM, Dahodwala N. Sex differences in Parkinson's disease and other movement disorders. Exp Neurol 2014; 259:44-56. [PMID: 24681088 DOI: 10.1016/j.expneurol.2014.03.010] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 03/07/2014] [Accepted: 03/19/2014] [Indexed: 12/29/2022]
Abstract
Movement disorders including Parkinson's disease (PD), Huntington's disease (HD), chorea, tics, and Tourette's syndrome (TS) display sex differences in disease susceptibility, disease pathogenesis, and clinical presentation. PD is more common in males than in females. Epidemiologic studies suggest that exposure to endogenous and exogenous estrogen contributes to these sex differences. There is extensive evidence that estrogen prevents dopaminergic neuron depletion induced by neurotoxins in PD animal models and therefore is neuroprotective. Estrogen may also decrease the efficacy of other neuroprotective substances such as caffeine in females but not males. Sex chromosomes can exert effects independent of sex steroid hormones on the development and maintenance of the dopamine system. As a result of hormone, chromosome and other unknown effects, there are sexual dimorphisms in the basal ganglia, and at the molecular levels in dopaminergic neurons that may lead to distinct mechanisms of pathogenesis in males and females. In this review, we summarize the evidence that estrogen and selective estrogen receptor modulators are neuroprotective in PD and discuss potential mechanisms of action. We also briefly review how sex differences in basal ganglia function and dopaminergic pathways may impact HD, chorea, and tics/Tourette's syndrome. Further understanding of these sex differences may lead to novel therapeutic strategies for prevention and treatment of these diseases.
Collapse
Affiliation(s)
- Kara M Smith
- Parkinson's Disease and Movement Disorders Center, 330 S. 9th St, 2nd Floor, Philadelphia, PA 19107, USA.
| | - Nabila Dahodwala
- Parkinson's Disease and Movement Disorders Center, 330 S. 9th St, 2nd Floor, Philadelphia, PA 19107, USA
| |
Collapse
|
25
|
Madinier A, Wieloch T, Olsson R, Ruscher K. Impact of estrogen receptor beta activation on functional recovery after experimental stroke. Behav Brain Res 2014; 261:282-8. [DOI: 10.1016/j.bbr.2013.12.046] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 12/17/2013] [Accepted: 12/21/2013] [Indexed: 10/25/2022]
|
26
|
George S, Petit GH, Gouras GK, Brundin P, Olsson R. Nonsteroidal selective androgen receptor modulators and selective estrogen receptor β agonists moderate cognitive deficits and amyloid-β levels in a mouse model of Alzheimer's disease. ACS Chem Neurosci 2013; 4:1537-48. [PMID: 24020966 DOI: 10.1021/cn400133s] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Decreases of the sex steroids, testosterone and estrogen, are associated with increased risk of Alzheimer's disease. Testosterone and estrogen supplementation improves cognitive deficits in animal models of Alzheimer's disease. Sex hormones play a role in the regulation of amyloid-β via induction of the amyloid-β degrading enzymes neprilysin and insulin-degrading enzyme. To mimic the effect of dihydrotestosterone (DHT), we administered a selective androgen receptor agonist, ACP-105, alone and in combination with the selective estrogen receptor β (ERβ) agonist AC-186 to male gonadectomized triple transgenic mice. We assessed long-term spatial memory in the Morris water maze, spontaneous locomotion, and anxiety-like behavior in the open field and in the elevated plus maze. We found that ACP-105 given alone decreases anxiety-like behavior. Furthermore, when ACP-105 is administered in combination with AC-186, they increase the amyloid-β degrading enzymes neprilysin and insulin-degrading enzyme and decrease amyloid-β levels in the brain as well as improve cognition. Interestingly, the androgen receptor level in the brain was increased by chronic treatment with the same combination treatment, ACP-105 and AC-186, not seen with DHT or ACP-105 alone. Based on these results, the beneficial effect of the selective ERβ agonist as a potential therapeutic for Alzheimer's disease warrants further investigation.
Collapse
Affiliation(s)
- Sonia George
- Neuronal Survival
Unit, Department of Experimental Medical Science, Wallenberg Neuroscience
Center, Lund University, Lund S-22184, Sweden
- Chemical Biology & Therapeutics, Department of Experimental Medical Science, Lund University, Lund S-22184, Sweden
| | - Géraldine H. Petit
- Neuronal Survival
Unit, Department of Experimental Medical Science, Wallenberg Neuroscience
Center, Lund University, Lund S-22184, Sweden
| | - Gunnar K. Gouras
- Experimental Dementia Research Unit, Department
of Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, Lund S-22184, Sweden
| | - Patrik Brundin
- Neuronal Survival
Unit, Department of Experimental Medical Science, Wallenberg Neuroscience
Center, Lund University, Lund S-22184, Sweden
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand
Rapids, Michigan 49503, United States
| | - Roger Olsson
- Chemical Biology & Therapeutics, Department of Experimental Medical Science, Lund University, Lund S-22184, Sweden
- ACADIA Pharmaceuticals Inc, San Diego, California 92121, United States
| |
Collapse
|
27
|
Sauvée C, Schäfer A, Sundén H, Ma JN, Gustavsson AL, Burstein ES, Olsson R. The A-CD analogue of 16β,17α-estriol is a potent and highly selective estrogen receptor β agonist. MEDCHEMCOMM 2013. [DOI: 10.1039/c3md00194f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|