1
|
Samson KR, Bashford AR, España RA. Dual Hypocretin Receptor Antagonism Reduces Oxycodone Seeking During Abstinence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.05.647321. [PMID: 40236179 PMCID: PMC11996545 DOI: 10.1101/2025.04.05.647321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
A major barrier in the treatment of opioid use disorder is persistent drug craving during abstinence. While opioid-based medications have been used to treat opioid use disorder for decades, there is an urgent need for novel, non-opioid-based pharmacotherapies. The hypocretin/orexin (hypocretin) system is a promising target for treating opioid use disorder due to its influence on motivation for drugs of abuse through actions on dopamine transmission. We recently showed that intermittent access (IntA) to oxycodone promoted sustained oxycodone seeking and alterations in dopamine transmission during abstinence. In the current studies, we investigated to what extent suvorexant, an FDA-approved dual hypocretin receptor antagonist, reduces oxycodone seeking and restores dopamine function during abstinence. Results indicated that IntA to oxycodone produced sustained cue-induced oxycodone seeking after a 14-day abstinence period, which was associated with reduced dopamine uptake in the nucleus accumbens core as we have previously shown. Treatment with suvorexant 24 h prior to a cue-induced seeking test significantly reduced oxycodone seeking and normalized aberrant dopamine uptake. These findings suggest that targeting hypocretin receptors may be a promising strategy for reducing opioid craving and associated neuroadaptations, thus lowering the risk of relapse.
Collapse
|
2
|
Clark PJ, Migovich VM, Das S, Xi W, Kortagere S, España RA. Hypocretin Receptor 1 Blockade Early in Abstinence Prevents Incubation of Cocaine Seeking and Normalizes Dopamine Transmission. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.30.625912. [PMID: 39651183 PMCID: PMC11623669 DOI: 10.1101/2024.11.30.625912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Abstinence from cocaine use has been shown to elicit a progressive intensification or incubation of cocaine craving/seeking that is posited to contribute to propensity for relapse. While the mechanisms underlying incubation of cocaine seeking remain elusive, considerable evidence suggests that abstinence from cocaine promotes mesolimbic dopamine adaptations that contribute to exaggerated cocaine seeking. Consequently, preventing these dopamine adaptations may reduce incubation of cocaine seeking and thereby reduce the likelihood of relapse. In the present studies, we first examined if incubation of cocaine seeking was associated with aberrant dopamine transmission in the nucleus accumbens after seven days of abstinence from intermittent access to cocaine. Given the extensive evidence that hypocretins/orexins regulate motivation for cocaine, we then examined to what extent hypocretin receptor 1 antagonism on the first day of abstinence prevented incubation of cocaine seeking and dopamine adaptations later in abstinence. Results indicated that abstinence from intermittent access to cocaine engendered robust incubation of cocaine seeking in both female and male rats. We also observed aberrant dopamine transmission, but only in rats that displayed incubation of cocaine seeking. Further, we showed that a single injection of the hypocretin receptor 1 antagonist, RTIOX-276, on the first day of abstinence prevented incubation of cocaine seeking and aberrant dopamine transmission. These findings suggest that hypocretin receptor 1 antagonism may serve as a viable therapeutic for reducing cocaine craving/seeking, thus reducing the likelihood of relapse.
Collapse
|
3
|
Bjorness TE, Greene RW. Orexin-mediated motivated arousal and reward seeking. Peptides 2024; 180:171280. [PMID: 39159833 DOI: 10.1016/j.peptides.2024.171280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/03/2024] [Accepted: 08/05/2024] [Indexed: 08/21/2024]
Abstract
The neuromodulator orexin has been identified as a key factor for motivated arousal including recent evidence that sleep deprivation-induced enhancement of reward behavior is modulated by orexin. While orexin is not necessary for either reward or arousal behavior, orexin neurons' broad projections, ability to sense the internal state of the animal, and high plasticity of signaling in response to natural rewards and drugs of abuse may underlie heightened drug seeking, particularly in a subset of highly motivated reward seekers. As such, orexin receptor antagonists have gained deserved attention for putative use in addiction treatments. Ongoing and future clinical trials are expected to identify individuals most likely to benefit from orexin receptor antagonist treatment to promote abstinence, such as those with concurrent sleep disorders or high craving, while attention to methodological considerations will aid interpretation of the numerous preclinical studies investigating disparate aspects of the role of orexin in reward and arousal.
Collapse
Affiliation(s)
- Theresa E Bjorness
- Research Service, VA North Texas Health Care System, Dallas, TX 75126, USA; Departments of Psychiatry University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA.
| | - Robert W Greene
- Departments of Psychiatry University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA; Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA; International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba 305-8577, Japan
| |
Collapse
|
4
|
Cano CA, Harel BT, Scammell TE. Impaired cognition in narcolepsy: clinical and neurobiological perspectives. Sleep 2024; 47:zsae150. [PMID: 38943485 DOI: 10.1093/sleep/zsae150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/07/2024] [Indexed: 07/01/2024] Open
Abstract
In addition to well-known symptoms such as sleepiness and cataplexy, many people with narcolepsy have impaired cognition, reporting inattention, poor memory, and other concerns. Unfortunately, research on cognition in narcolepsy has been limited. Strong evidence demonstrates difficulties with sustained attention, but evidence for executive dysfunction and impaired memory is mixed. Animal research provides some insights into how loss of the orexin neurons in narcolepsy type 1 may give rise to impaired cognition via dysfunction of the prefrontal cortex, and cholinergic and monoaminergic systems. This paper reviews some of these clinical and preclinical findings, provides a neurobiological framework to understand these deficits, and highlights some of the many key unanswered questions.
Collapse
Affiliation(s)
- Christopher A Cano
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Brian T Harel
- Neuroscience Therapeutic Area Unit, Takeda Development Center Americas Inc., Cambridge, MA, USA
| | - Thomas E Scammell
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| |
Collapse
|
5
|
Esmaili-Shahzade-Ali-Akbari P, Ghaderi A, Sadeghi A, Nejat F, Mehramiz A. The Role of Orexin Receptor Antagonists in Inhibiting Drug Addiction: A Review Article. ADDICTION & HEALTH 2024; 16:130-139. [PMID: 39051042 PMCID: PMC11264478 DOI: 10.34172/ahj.2024.1491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 04/15/2024] [Indexed: 07/27/2024]
Abstract
The orexinergic system and its receptors are involved in many physiological processes. Their functions in energy homeostasis, arousal, cognition, stress processing, endocrine functions, and pain modulation have been investigated. Many studies have shown that the orexinergic system cooperates with the dopaminergic system in the addiction process. Emerging evidence suggests that the orexinergic system can be effective in the induction of drug dependence and tolerance. Therefore, several researches have been conducted on the effect of orexin receptor (OXR) antagonists on reducing tolerance and dependence caused by drug abuse. Due to the significant growth of the studies on the orexinergic system, the current literature was conducted to collect the findings of previous studies on orexin and its receptors in the induction of drug addiction. In addition, cellular and molecular mechanisms of the possible role of orexin in drug tolerance and dependence are discussed. The findings indicate that the administration of OXR antagonists reduces drug dependence. OXR blockers seem to counteract the addictive effects of drugs through multiple mechanisms, such as preventing neuronal adaptation. This review proposes the potential clinical use of OXR antagonists in the treatment of drug dependence.
Collapse
Affiliation(s)
- Peyman Esmaili-Shahzade-Ali-Akbari
- Department of Addiction Studies, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Ghaderi
- Department of Addiction Studies, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Atena Sadeghi
- Department of Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Fatemeh Nejat
- Department of Biology and Health Sciences, Meredith College, Raleigh, North Carolina, USA
| | - Alireza Mehramiz
- Department of Physical Therapy, Faculty of Paramedical and Rehabilitation Science, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Moshrefi F, Farrokhi AM, Fattahi M, Azizbeigi R, Haghparast A. The role of orexin receptors within the CA1 area in the acquisition and expression of methamphetamine place preference. J Psychiatr Res 2024; 172:291-299. [PMID: 38428165 DOI: 10.1016/j.jpsychires.2024.02.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/24/2024] [Indexed: 03/03/2024]
Abstract
Treatment of Methamphetamine (METH) use disorder has become a crucial public health issue. The orexin system manipulation has provided promising evidence to attenuate addictive-like behaviors. This study explored the role of the orexin 1 receptor and orexin 2 receptor (OX1R and OX2R) in the CA1 area of the hippocampal formation in the acquisition and expression of METH-induced place preference. Animals were subjected to bilateral administration of different dosages (1, 3, 10, and 30 nmol/0.5 μl DMSO per side) of a selective OX1R antagonist, SB334867, or selective OX2R antagonist, TCS OX2 29 into the CA1 area throughout the conditioning phase or once on the post-conditioning phase in separate control and experimental groups. Behavioral data revealed that both OX1R (10 nmol; P < 0.01 and 30 nmol; P < 0.001) and OX2R (10 nmol; P < 0.05 and 30 nmol; P < 0.001) antagonism during the conditioning phase could block the formation of METH place preference dose-dependently. In addition, intra-CA1 microinjection of SB334867 on the post-conditioning phase attenuated the expression of METH place preference in a dose-dependent manner (3 nmol; P < 0.05, 10 nmol; P < 0.01 and 30 nmol; P < 0.001) whereas intra-CA1 administration of TCS OX2 29 only at the highest dosage (30 nmol) declined the expression of METH place preference (P < 0.01). It was also indicated that the suppressive effects of orexin receptor blockade on the METH-seeking behavior in the CA1 area were anatomically specific to this area. These findings support the possibility of targeting the orexin system to develop novel and successful pharmacological options for the treatment of METH dependence.
Collapse
Affiliation(s)
- Fazel Moshrefi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Basic Sciences, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| | - Amir Mohammad Farrokhi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neurophysiology Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojdeh Fattahi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ronak Azizbeigi
- Department of Basic Sciences, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran.
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran, Iran; Department of Basic Sciences, Iranian Academy of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Bernstein DL, Lewandowski SI, Besada C, Place D, España RA, Mortensen OV. Inactivation of ERK1/2 Signaling in Dopaminergic Neurons by Map Kinase Phosphatase MKP3 Regulates Dopamine Signaling and Motivation for Cocaine. J Neurosci 2024; 44:e0727232023. [PMID: 38296649 PMCID: PMC10860627 DOI: 10.1523/jneurosci.0727-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 10/27/2023] [Accepted: 11/28/2023] [Indexed: 02/02/2024] Open
Abstract
The mesolimbic dopamine system is a crucial component of reward and reinforcement processing, including the psychotropic effects of drugs of abuse such as cocaine. Drugs of abuse can activate intracellular signaling cascades that engender long-term molecular changes to brain reward circuitry, which can promote further drug use. However, gaps remain about how the activity of these signaling pathways, such as ERK1/2 signaling, can affect cocaine-induced neurochemical plasticity and cocaine-associated behaviors specifically within dopaminergic cells. To enable specific modulation of ERK1/2 signaling in dopaminergic neurons of the ventral tegmental area, we utilize a viral construct that Cre dependently expresses Map kinase phosphatase 3 (MKP3) to reduce the activity of ERK1/2, in combination with transgenic rats that express Cre in tyrosine hydroxylase (TH)-positive cells. Following viral transfection, we found an increase in the surface expression of the dopamine transporter (DAT), a protein associated with the regulation of dopamine signaling, dopamine transmission, and cocaine-associated behavior. We found that inactivation of ERK1/2 reduced post-translational phosphorylation of the DAT, attenuated the ability of cocaine to inhibit the DAT, and decreased motivation for cocaine without affecting associative learning as tested by conditioned place preference. Together, these results indicate that ERK1/2 signaling plays a critical role in shaping the dopamine response to cocaine and may provide additional insights into the function of dopaminergic neurons. Further, these findings lay important groundwork toward the assessment of how signaling pathways and their downstream effectors influence dopamine transmission and could ultimately provide therapeutic targets for treating cocaine use disorders.
Collapse
Affiliation(s)
- David L Bernstein
- Departments of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102
| | - Stacia I Lewandowski
- Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102
| | - Christina Besada
- Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102
| | - Delaney Place
- Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102
| | - Rodrigo A España
- Departments of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102
| | - Ole V Mortensen
- Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102
| |
Collapse
|
8
|
Zamanirad F, Fattahi M, Amirteymori H, Mousavi Z, Haghparast A. The role of orexin-1 receptors within the ventral tegmental area in the extinction and reinstatement of methamphetamine place preference. Behav Brain Res 2023; 453:114608. [PMID: 37532004 DOI: 10.1016/j.bbr.2023.114608] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 07/25/2023] [Accepted: 07/30/2023] [Indexed: 08/04/2023]
Abstract
Targeting the orexin system has recently been identified as one of the promising options for treating drug addiction. It may be more feasible and achievable if we investigate the accurate function of the orexin system in brain areas implicated in reward and addiction, such as the ventral tegmental area (VTA) by animal reward models. This study investigated the contribution of the orexin system, mainly the orexin-1 receptors (OX1R) in the VTA, in the extinction and reinstatement of methamphetamine (METH) related memories in the conditioned place preference (CPP) model. Animals after the acquisition of METH place preference were subjected to two separate sets of extinction and reinstatement experiments to receive various concentrations of selective OX1R antagonist, SB334867 into the bilateral VTA before extinction sessions (1, 3, and 10 nmol/0.3 μl DMSO per side) or only on the reinstatement phase (3, 10, and 30 nmol/0.3 μl DMSO per side), respectively. Intra-VTA infusion of SB334867 throughout the extinction phase could remarkably facilitate the extinction process and decrease the maintenance of reinforcing effects of METH at the highest dosage (10 nmol; p < 0.0001). Data also indicated a single microinfusion of SB334867 into the VTA before reinstatement of the METH-seeking behavior could considerably prevent the relapse of previously formed reward-context memories (10 nmol; p < 0.01 and 30 nmol; p < 0.001). The present study provided evidence supporting the potential therapeutic effects of the orexin system modulation, specifically in the VTA, on different stages of METH-induced place preference.
Collapse
Affiliation(s)
- Ferdos Zamanirad
- Pharmacology and Toxicology Department, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, the Islamic Republic of Iran
| | - Mojdeh Fattahi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, the Islamic Republic of Iran
| | - Haleh Amirteymori
- Neurophysiology Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, the Islamic Republic of Iran
| | - Zahra Mousavi
- Pharmacology and Toxicology Department, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, the Islamic Republic of Iran
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, the Islamic Republic of Iran; School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran, the Islamic Republic of Iran; Department of Basic Sciences, Iranian Academy of Medical Sciences, Tehran, the Islamic Republic of Iran.
| |
Collapse
|
9
|
Black EM, Samels SB, Xu W, Barson JR, Bass CE, Kortagere S, España RA. Hypocretin / Orexin Receptor 1 Knockdown in GABA or Dopamine Neurons in the Ventral Tegmental Area Differentially Impact Mesolimbic Dopamine and Motivation for Cocaine. ADDICTION NEUROSCIENCE 2023; 7:100104. [PMID: 37854172 PMCID: PMC10583964 DOI: 10.1016/j.addicn.2023.100104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
The hypocretins/orexins (HCRT) have been demonstrated to influence motivation for cocaine through actions on dopamine (DA) transmission. Pharmacological or genetic disruption of the hypocretin receptor 1 (Hcrtr1) reduces cocaine self-administration, blocks reinstatement of cocaine seeking, and decreases conditioned place preference for cocaine. These effects are likely mediated through actions in the ventral tegmental area (VTA) and resulting alterations in DA transmission. For example, HCRT drives VTA DA neuron activity and enhances the effects of cocaine on DA transmission, while disrupting Hcrtr1 attenuates DA responses to cocaine. These findings have led to the perspective that HCRT exerts its effects through Hcrtr1 actions in VTA DA neurons. However, this assumption is complicated by the observation that Hcrtr1 are present on both DA and GABA neurons in the VTA and HCRT drives the activity of both neuronal populations. To address this issue, we selectively knocked down Hcrtr1 on either DA or GABA neurons in the VTA and examined alterations in DA transmission and cocaine self-administration in female and male rats. We found that Hcrtr1 knockdown in DA neurons decreased DA responses to cocaine, increased days to acquire cocaine self-administration, and reduced motivation for cocaine. Although, Hcrtr1 knockdown in GABA neurons enhanced DA responses to cocaine, this manipulation did not affect cocaine self-administration. These observations indicate that while Hcrtr1 on DA versus GABA neurons exert opposing effects on DA transmission, only Hcrtr1 on DA neurons affected acquisition or motivation for cocaine - suggesting a complex interplay between DA transmission and behavior.
Collapse
Affiliation(s)
- Emily M. Black
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129
| | - Shanna B. Samels
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129
| | - Wei Xu
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129
| | - Jessica R. Barson
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129
| | - Caroline E. Bass
- Department of Pharmacology and Toxicology, Jacobs School of Medicine, State University of New York at Buffalo, Buffalo NY 14214
| | - Sandhya Kortagere
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129
| | - Rodrigo A. España
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129
| |
Collapse
|
10
|
Strickland JC, Hatton KW, Hays LR, Rayapati AO, Lile JA, Rush CR, Stoops WW. Use of drug purchase tasks in medications development research: orexin system regulation of cocaine and drug demand. Behav Pharmacol 2023; 34:275-286. [PMID: 37403694 PMCID: PMC10328554 DOI: 10.1097/fbp.0000000000000731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
Commodity purchase tasks provide a useful method for evaluating behavioral economic demand in the human laboratory. Recent research has shown how responding to purchase tasks for blinded drug administration can be used to study abuse liability. This analysis uses data from a human laboratory study to highlight how similar procedures may be particularly useful for understanding momentary changes in drug valuation when screening novel interventions. Eight nontreatment-seeking participants with cocaine use disorder (one with partial data) were enrolled in a cross-over, double-blind, randomized inpatient study. Participants were maintained on the Food and Drug Administration-approved insomnia medication suvorexant (oral; 0, 5, 10, 20 mg/day) in randomized order with experimental sessions completed after at least 3 days of maintenance on each suvorexant dose. Experimental sessions included administration of a sample dose of 0, 10 and 30 mg/70 kg intravenous cocaine. Analyses focused on purchase tasks for the blinded sample dose as well as alcohol, cigarettes and chocolate completed 15 min after the sample dose. As expected based on abuse liability, near zero demand was observed for placebo with dose-related increases in cocaine demand. Suvorexant maintenance increased cocaine demand in a dose-related manner with the greatest increase observed for the 10 mg/kg cocaine dose. Increased demand under suvorexant maintenance was also observed for alcohol. No effect of cocaine administration was observed for alcohol, cigarette, or chocolate demand. These data support the validity of demand procedures for measuring blinded drug demand. Findings also parallel self-administration data from this study by showing increases in cocaine use motivation under suvorexant maintenance.
Collapse
Affiliation(s)
- Justin C Strickland
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Kevin W Hatton
- Department of Anesthesiology, University of Kentucky College of Medicine
| | - Lon R Hays
- Department of Psychiatry, University of Kentucky College of Medicine
| | - Abner O Rayapati
- Department of Psychiatry, University of Kentucky College of Medicine
| | - Joshua A Lile
- Department of Psychiatry, University of Kentucky College of Medicine
- Department of Behavioral Science, University of Kentucky College of Medicine
- Department of Psychology, University of Kentucky College of Arts and Sciences
| | - Craig R Rush
- Department of Psychiatry, University of Kentucky College of Medicine
- Department of Behavioral Science, University of Kentucky College of Medicine
- Department of Psychology, University of Kentucky College of Arts and Sciences
| | - William W Stoops
- Department of Psychiatry, University of Kentucky College of Medicine
- Department of Behavioral Science, University of Kentucky College of Medicine
- Department of Psychology, University of Kentucky College of Arts and Sciences
- Center on Drug and Alcohol Research, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| |
Collapse
|
11
|
Jin R, Sun S, Hu Y, Zhang H, Sun X. Neuropeptides Modulate Feeding via the Dopamine Reward Pathway. Neurochem Res 2023:10.1007/s11064-023-03954-4. [PMID: 37233918 DOI: 10.1007/s11064-023-03954-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023]
Abstract
Dopamine (DA) is a catecholamine neurotransmitter widely distributed in the central nervous system. It participates in various physiological functions, such as feeding, anxiety, fear, sleeping and arousal. The regulation of feeding is exceptionally complex, involving energy homeostasis and reward motivation. The reward system comprises the ventral tegmental area (VTA), nucleus accumbens (NAc), hypothalamus, and limbic system. This paper illustrates the detailed mechanisms of eight typical orexigenic and anorexic neuropeptides that regulate food intake through the reward system. According to recent literature, neuropeptides released from the hypothalamus and other brain regions regulate reward feeding predominantly through dopaminergic neurons projecting from the VTA to the NAc. In addition, their effect on the dopaminergic system is mediated by the prefrontal cortex, paraventricular thalamus, laterodorsal tegmental area, amygdala, and complex neural circuits. Research on neuropeptides involved in reward feeding can help identify more targets to treat diseases with metabolic disorders, such as obesity.
Collapse
Affiliation(s)
- Ruijie Jin
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
- Department of Clinical Medicine, Medical College, Qingdao University, Qingdao, China
| | - Shanbin Sun
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
- Department of Clinical Medicine, Medical College, Qingdao University, Qingdao, China
| | - Yang Hu
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
- Department of Clinical Medicine, Medical College, Qingdao University, Qingdao, China
| | - Hongfei Zhang
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
- Department of Clinical Medicine, Medical College, Qingdao University, Qingdao, China
| | - Xiangrong Sun
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China.
| |
Collapse
|
12
|
Ten-Blanco M, Flores Á, Cristino L, Pereda-Pérez I, Berrendero F. Targeting the orexin/hypocretin system for the treatment of neuropsychiatric and neurodegenerative diseases: from animal to clinical studies. Front Neuroendocrinol 2023; 69:101066. [PMID: 37015302 DOI: 10.1016/j.yfrne.2023.101066] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/15/2023] [Accepted: 03/30/2023] [Indexed: 04/06/2023]
Abstract
Orexins (also known as hypocretins) are neuropeptides located exclusively in hypothalamic neurons that have extensive projections throughout the central nervous system and bind two different G protein-coupled receptors (OX1R and OX2R). Since its discovery in 1998, the orexin system has gained the interest of the scientific community as a potential therapeutic target for the treatment of different pathological conditions. Considering previous basic science research, a dual orexin receptor antagonist, suvorexant, was the first orexin agent to be approved by the US Food and Drug Administration to treat insomnia. In this review, we discuss and update the main preclinical and human studies involving the orexin system with several psychiatric and neurodegenerative diseases. This system constitutes a nice example of how basic scientific research driven by curiosity can be the best route to the generation of new and powerful pharmacological treatments.
Collapse
Affiliation(s)
- Marc Ten-Blanco
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - África Flores
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, Neurosciences Institute, University of Barcelona and Bellvitge University Hospital-IDIBELL, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Luigia Cristino
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Pozzuoli, Italy
| | - Inmaculada Pereda-Pérez
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Fernando Berrendero
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223 Pozuelo de Alarcón, Madrid, Spain.
| |
Collapse
|
13
|
Beckenstrom AC, Coloma PM, Dawson GR, Finlayson AK, Malik A, Post A, Steiner MA, Potenza MN. Use of experimental medicine approaches for the development of novel psychiatric treatments based on orexin receptor modulation. Neurosci Biobehav Rev 2023; 147:105107. [PMID: 36828161 PMCID: PMC10165155 DOI: 10.1016/j.neubiorev.2023.105107] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/08/2023] [Accepted: 02/18/2023] [Indexed: 02/25/2023]
Abstract
Despite progress in understanding the pathological mechanisms underlying psychiatric disorders, translation from animal models into clinical use remains a significant bottleneck. Preclinical studies have implicated the orexin neuropeptide system as a potential target for psychiatric disorders through its role in regulating emotional, cognitive, and behavioral processes. Clinical studies are investigating orexin modulation in addiction and mood disorders. Here we review performance-outcome measures (POMs) arising from experimental medicine research methods which may show promise as markers of efficacy of orexin receptor modulators in humans. POMs provide objective measures of brain function, complementing patient-reported or clinician-observed symptom evaluation, and aid the translation from preclinical to clinical research. Significant challenges include the development, validation, and operationalization of these measures. We suggest that collaborative networks comprising clinical practitioners, academics, individuals working in the pharmaceutical industry, drug regulators, patients, patient advocacy groups, and other relevant stakeholders may provide infrastructure to facilitate validation of experimental medicine approaches in translational research and in the implementation of these approaches in real-world clinical practice.
Collapse
Affiliation(s)
- Amy C Beckenstrom
- P1vital Ltd, Manor House, Howbery Business Park, Wallingford OX10 8BA, UK.
| | - Preciosa M Coloma
- Idorsia Pharmaceuticals Ltd, Hegenheimermattweg 91, Allschwil 4123, Switzerland
| | - Gerard R Dawson
- P1vital Ltd, Manor House, Howbery Business Park, Wallingford OX10 8BA, UK
| | - Ailidh K Finlayson
- P1vital Ltd, Manor House, Howbery Business Park, Wallingford OX10 8BA, UK; Department of Psychology, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Asad Malik
- P1vital Ltd, Manor House, Howbery Business Park, Wallingford OX10 8BA, UK
| | - Anke Post
- Corlieve Therapeutics, Swiss Innovation Park, Hegenheimermattweg 167A, 4123 Allschwil, Switzerland
| | | | - Marc N Potenza
- Departments of Psychiatry and Neuroscience and the Child Study Center, Yale School of Medicine, 1 Church Street, Room 726, New Haven, CT 06510, USA; Connecticut Mental Health Center, 34 Park Street, New Haven, CT 06519, USA; Connecticut Council on Problem Gambling, Wethersfield, CT, USA; The Wu Tsai Institute, Yale University, 100 College St, New Haven, CT 06510, USA
| |
Collapse
|
14
|
Guo R, Vaughan DT, Rojo ALA, Huang YH. Sleep-mediated regulation of reward circuits: implications in substance use disorders. Neuropsychopharmacology 2023; 48:61-78. [PMID: 35710601 PMCID: PMC9700806 DOI: 10.1038/s41386-022-01356-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/22/2022] [Accepted: 05/27/2022] [Indexed: 12/11/2022]
Abstract
Our modern society suffers from both pervasive sleep loss and substance abuse-what may be the indications for sleep on substance use disorders (SUDs), and could sleep contribute to the individual variations in SUDs? Decades of research in sleep as well as in motivated behaviors have laid the foundation for us to begin to answer these questions. This review is intended to critically summarize the circuit, cellular, and molecular mechanisms by which sleep influences reward function, and to reveal critical challenges for future studies. The review also suggests that improving sleep quality may serve as complementary therapeutics for treating SUDs, and that formulating sleep metrics may be useful for predicting individual susceptibility to SUDs and other reward-associated psychiatric diseases.
Collapse
Affiliation(s)
- Rong Guo
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA
- Allen Institute, Seattle, WA, 98109, USA
| | - Dylan Thomas Vaughan
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA
- The Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA, USA
| | - Ana Lourdes Almeida Rojo
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA
- The Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA, USA
| | - Yanhua H Huang
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA.
- The Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
15
|
Stoops WW, Strickland JC, Hatton KW, Hays LR, Rayapati AO, Lile JA, Rush CR. Suvorexant maintenance enhances the reinforcing but not subjective and physiological effects of intravenous cocaine in humans. Pharmacol Biochem Behav 2022; 220:173466. [PMID: 36152876 PMCID: PMC9588557 DOI: 10.1016/j.pbb.2022.173466] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/19/2022] [Accepted: 09/19/2022] [Indexed: 10/14/2022]
Abstract
Preclinical research has sought to understand the role of the orexin system in cocaine addiction given the connection between orexin producing cells in the lateral hypothalamus and brain limbic areas. Exogenous administration of orexin peptides increased cocaine self-administration whereas selective orexin-1 receptor antagonists reduced cocaine self-administration in non-human animals. The first clinically available orexin antagonist, suvorexant (a dual orexin-1 and orexin-2 receptor antagonist), attenuated motivation for cocaine and cocaine conditioned place preference, as well as cocaine-associated impulsive responding, in rodents. This study aimed to translate those preclinical findings and determine whether suvorexant maintenance altered the pharmacodynamic effects of cocaine in humans. Seven non-treatment seeking subjects with cocaine use disorder completed this within-subject human laboratory study, and a partial data set was obtained from one additional subject. Subjects were maintained for at least three days on 0, 5, 10 and 20 mg oral suvorexant administered at 2230 h daily in random order. Subjects completed experimental sessions in which cocaine self-administration of 0, 10 and 30 mg/70 kg of intravenous cocaine was evaluated on a concurrent progressive ratio drug versus money choice task. Subjective and physiological effects of cocaine were also determined. Cocaine functioned as a reinforcer and produced prototypic dose-related subjective and physiological effects (e.g., increased ratings of "Stimulated" and heart rate). Suvorexant (10, 20 mg) increased self-administration of 10 mg/70 kg cocaine and decreased oral temperature but did not significantly alter any other effects of cocaine. Future research may seek to evaluate the effects of orexin-1 selective antagonists in combination with cocaine.
Collapse
Affiliation(s)
- William W Stoops
- Department of Behavioral Science, University of Kentucky College of Medicine, 1100 Veterans Drive, Medical Behavioral Science Building, Lexington, KY 40536-0086, USA; Department of Psychiatry, University of Kentucky College of Medicine, 245 Fountain Court, Lexington, KY 40509-1810, USA; Department of Psychology, University of Kentucky College of Arts and Sciences, 171 Funkhouser Drive, Lexington, KY 40506-0044, USA; Center on Drug and Alcohol Research, University of Kentucky College of Medicine, 845 Angliana Avenue, Lexington, KY 40508, USA.
| | - Justin C Strickland
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 5510 Nathan Shock Drive, Baltimore, MD 21224, USA
| | - Kevin W Hatton
- Department of Anesthesiology, University of Kentucky College of Medicine, 800 Rose Street, Lexington, KY 40536, USA
| | - Lon R Hays
- Department of Psychiatry, University of Kentucky College of Medicine, 245 Fountain Court, Lexington, KY 40509-1810, USA
| | - Abner O Rayapati
- Department of Psychiatry, University of Kentucky College of Medicine, 245 Fountain Court, Lexington, KY 40509-1810, USA
| | - Joshua A Lile
- Department of Behavioral Science, University of Kentucky College of Medicine, 1100 Veterans Drive, Medical Behavioral Science Building, Lexington, KY 40536-0086, USA; Department of Psychiatry, University of Kentucky College of Medicine, 245 Fountain Court, Lexington, KY 40509-1810, USA; Department of Psychology, University of Kentucky College of Arts and Sciences, 171 Funkhouser Drive, Lexington, KY 40506-0044, USA
| | - Craig R Rush
- Department of Behavioral Science, University of Kentucky College of Medicine, 1100 Veterans Drive, Medical Behavioral Science Building, Lexington, KY 40536-0086, USA; Department of Psychiatry, University of Kentucky College of Medicine, 245 Fountain Court, Lexington, KY 40509-1810, USA; Department of Psychology, University of Kentucky College of Arts and Sciences, 171 Funkhouser Drive, Lexington, KY 40506-0044, USA
| |
Collapse
|
16
|
Aldridge GM, Zarin TA, Brandner AJ, George O, Gilpin NW, Repunte-Canonigo V, Sanna PP, Koob GF, Vendruscolo LF, Schmeichel BE. Effects of single and dual hypocretin-receptor blockade or knockdown of hypocretin projections to the central amygdala on alcohol drinking in dependent male rats. ADDICTION NEUROSCIENCE 2022; 3:100028. [PMID: 35965958 PMCID: PMC9365098 DOI: 10.1016/j.addicn.2022.100028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Hypocretin/Orexin (HCRT) is a neuropeptide that is associated with both stress and reward systems in humans and rodents. The different contributions of signaling at hypocretin-receptor 1 (HCRT-R1) and hypocretin-receptor 2 (HCRT-R2) to compulsive alcohol drinking are not yet fully understood. Thus, the current studies used pharmacological and viral-mediated targeting of HCRT to determine participation in compulsive alcohol drinking and measured HCRT-receptor mRNA expression in the extended amygdala of both alcohol-dependent and non-dependent male rats. Rats were made dependent through chronic intermittent exposure to alcohol vapor and were tested for the acute effect of HCRT-R1-selective (SB-408124; SB-R1), HCRT-R2-selective (NBI-80713; NB-R2), or dual HCRT-R1/2 (NBI-87571; NB-R1/2) antagonism on alcohol intake. NB-R2 and NB-R1/2 antagonists each dose-dependently decreased overall alcohol drinking in alcohol-dependent rats, whereas, SB-R1 decreased alcohol drinking in both alcohol-dependent and non-dependent rats at the highest dose (30 mg/kg). SB-R1, NB-R2, and NB-R1/2 treatment did not significantly affect water drinking in either alcohol-dependent or non-dependent rats. Additional PCR analyses revealed a significant decrease in Hcrtr1 mRNA expression within the central amygdala (CeA) of dependent rats under acute withdrawal conditions compared to nondependent rats. Lastly, a shRNA-encoding adeno-associated viral vector with retrograde function was used to knockdown HCRT in CeA-projecting neurons from the lateral hypothalamus (LH). LH-CeA HCRT knockdown significantly attenuated alcohol self-administration in alcohol-dependent rats. These observations suggest that HCRT signaling in the CeA is necessary for alcohol-seeking behavior during dependence. Together, these data highlight a role for both HCRT-R1 and -R2 in dependent alcohol-seeking behavior.
Collapse
Affiliation(s)
- Gabriel M. Aldridge
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
| | - Tyler A. Zarin
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
| | - Adam J. Brandner
- Integrative Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Olivier George
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
- Department of Psychiatry, School of Medicine, University of California, San Diego, San Diego, CA, USA
| | - Nicholas W. Gilpin
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Vez Repunte-Canonigo
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, United States
| | - Pietro P. Sanna
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, United States
| | - George F. Koob
- Integrative Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| | - Leandro F. Vendruscolo
- Integrative Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| | - Brooke E. Schmeichel
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
- Integrative Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
17
|
Yamamoto H, Nagumo Y, Ishikawa Y, Irukayama-Tomobe Y, Namekawa Y, Nemoto T, Tanaka H, Takahashi G, Tokuda A, Saitoh T, Nagase H, Funato H, Yanagisawa M. OX2R-selective orexin agonism is sufficient to ameliorate cataplexy and sleep/wake fragmentation without inducing drug-seeking behavior in mouse model of narcolepsy. PLoS One 2022; 17:e0271901. [PMID: 35867683 PMCID: PMC9307173 DOI: 10.1371/journal.pone.0271901] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 07/08/2022] [Indexed: 11/18/2022] Open
Abstract
Acquired loss of hypothalamic orexin (hypocretin)-producing neurons causes the chronic sleep disorder narcolepsy-cataplexy. Orexin replacement therapy using orexin receptor agonists is expected as a mechanistic treatment for narcolepsy. Orexins act on two receptor subtypes, OX1R and OX2R, the latter being more strongly implicated in sleep/wake regulation. However, it has been unclear whether the activation of only OX2R, or both OX1R and OX2R, is required to replace the endogenous orexin functions in the brain. In the present study, we examined whether the selective activation of OX2R is sufficient to rescue the phenotype of cataplexy and sleep/wake fragmentation in orexin knockout mice. Intracerebroventricular [Ala11, D-Leu15]-orexin-B, a peptidic OX2R-selective agonist, selectively activated OX2R-expressing histaminergic neurons in vivo, whereas intracerebroventricular orexin-A, an OX1R/OX2R non-selective agonist, additionally activated OX1R-positive noradrenergic neurons in vivo. Administration of [Ala11, D-Leu15]-orexin-B extended wake time, reduced state transition frequency between wake and NREM sleep, and reduced the number of cataplexy-like episodes, to the same degree as compared with orexin-A. Furthermore, intracerebroventricular orexin-A but not [Ala11, D-Leu15]-orexin-B induced drug-seeking behaviors in a dose-dependent manner in wild-type mice, suggesting that OX2R-selective agonism has a lower propensity for reinforcing/drug-seeking effects. Collectively, these findings provide a proof-of-concept for safer mechanistic treatment of narcolepsy-cataplexy through OX2R-selective agonism.
Collapse
Affiliation(s)
- Hikari Yamamoto
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yasuyuki Nagumo
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yukiko Ishikawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yoko Irukayama-Tomobe
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yukiko Namekawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Tsuyoshi Nemoto
- School of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hiromu Tanaka
- School of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Genki Takahashi
- School of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Akihisa Tokuda
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Tsuyoshi Saitoh
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hiroshi Nagase
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hiromasa Funato
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
- Department of Anatomy, Faculty of Medicine, Toho University, Ota-ku, Tokyo, Japan
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas
- Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Ibaraki, Japan
- R&D Center for Frontiers of MIRAI in Policy and Technology, University of Tsukuba, Tsukuba, Ibaraki, Japan
- * E-mail:
| |
Collapse
|
18
|
Matzeu A, Martin-Fardon R. Understanding the Role of Orexin Neuropeptides in Drug Addiction: Preclinical Studies and Translational Value. Front Behav Neurosci 2022; 15:787595. [PMID: 35126069 PMCID: PMC8811192 DOI: 10.3389/fnbeh.2021.787595] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/29/2021] [Indexed: 12/22/2022] Open
Abstract
Orexins (also known as hypocretins) are neuropeptides that participate in the regulation of energy metabolism, homeostasis, sleep, feeding, stress responses, arousal, and reward. Particularly relevant to the scope of the present review is the involvement of the orexin system in brain mechanisms that regulate motivation, especially highly motivated behavior, arousal, and stress, making it an ideal target for studying addiction and discovering treatments. Drug abuse and misuse are thought to induce maladaptive changes in the orexin system, and these changes might promote and maintain uncontrolled drug intake and contribute to relapse. Dysfunctional changes in this neuropeptidergic system that are caused by drug use might also be responsible for alterations of feeding behavior and the sleep-wake cycle that are commonly disrupted in subjects with substance use disorder. Drug addiction has often been associated with an increase in activity of the orexin system, suggesting that orexin receptor antagonists may be a promising pharmacological treatment for substance use disorder. Substantial evidence has shown that single orexin receptor antagonists that are specific to either orexin receptor 1 or 2 can be beneficial against drug intake and relapse. Interest in the efficacy of dual orexin receptor antagonists, which were primarily developed to treat insomnia, has grown in the field of drug addiction. Treatments that target the orexin system may be a promising strategy to reduce drug intake, mitigate relapse vulnerability, and restore “normal” physiological functions, including feeding and sleep. The present review discusses preclinical and clinical evidence of the involvement of orexins in drug addiction and possible beneficial pharmacotherapeutic effects of orexin receptor antagonists to treat substance use disorder.
Collapse
|
19
|
Reisi P, Imanpour V. The effect of orexin-2 and endocannabinoid-1 antagonists on neuronal activity of hippocampal CA1 pyramidal neurons in response to tramadol in rats. Adv Biomed Res 2022; 11:26. [PMID: 35720213 PMCID: PMC9201222 DOI: 10.4103/abr.abr_65_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/03/2021] [Accepted: 06/26/2021] [Indexed: 11/17/2022] Open
Abstract
Background: CA1, as a major structure involved in learning and memory, has been shown to be affected by tramadol addiction. Both orexin and endocannabinoid receptors express in CA1 and play an important role in drug dependency. The aim of this study was to evaluate the modulatory effects of orexin-2 (OX2R) and endocannabinoid-1 (CB1R) receptors on neuronal activity in CA1, in response to tramadol in rats. Materials and Methods: Male Wistar rats were divided into 8 groups (n = 6–7); saline-dimethyl sulfoxide (DMSO), tramadol-DMSO, saline-TCS-OX2-29, saline-AM251, tramadol-TCS-OX2-29, tramadol-AM251, saline-TCS-OX2-29-AM251, tramadol-TCS-OX2-29-AM251. Tramadol was injected intraperitoneally, and then, AM251 (1 nmol/0.3 μL), CB1R antagonist and TCS-OX2-29 (1 nmol/0.3 μL), OX2R antagonist, were microinjected individually or concurrently into the CA1. Using in vivo extracellular single-unit recording, the firing of CA1 pyramidal neurons was investigated. Results: Tramadol decreased neuronal activity in CA1 (P < 0.01) but increased it after micro-injection of DMSO. TCS-OX2-29 increased neuronal activity in saline group (P < 0.05) but decreased it in tramadol group. AM251 had no effect on saline group but decreased neuronal activity in tramadol group (P < 0.05). Concurrent micro-injection of TCS-OX2-29 and AM251 had no effect on saline group but decreased neuronal activity in tramadol group (P < 0.05). Conclusions: Our findings suggest that neural activity in CA1 is rapidly affected by acute use of tramadol, and some of these effects may be induced through the endocannabinoid and orexin systems. Thus, the function of endocannabinoid and orexin systems in CA1 may play a role in tramadol addiction.
Collapse
|
20
|
Sleep dysregulation in binge eating disorder and "food addiction": the orexin (hypocretin) system as a potential neurobiological link. Neuropsychopharmacology 2021; 46:2051-2061. [PMID: 34145404 PMCID: PMC8505614 DOI: 10.1038/s41386-021-01052-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 12/12/2022]
Abstract
It has been proposed that binge eating reflects a pathological compulsion driven by the "addictive" properties of foods. Proponents of this argument highlight the large degree of phenomenological and diagnostic overlap between binge eating disorder (BED) and substance use disorders (SUDs), including loss of control over how much is consumed and repeated unsuccessful attempts to abstain from consumption, as well as commonalities in brain structures involved in food and drug craving. To date, very little attention has been given to an additional behavioral symptom that BED shares with SUDs-sleep dysregulation-and the extent to which this may contribute to the pathophysiology of BED. Here, we review studies examining sleep outcomes in patients with BED, which collectively point to a heightened incidence of sleep abnormalities in BED. We identify the orexin (hypocretin) system as a potential neurobiological link between compulsive eating and sleep dysregulation in BED, and provide a comprehensive update on the evidence linking this system to these processes. Finally, drawing on evidence from the SUD literature indicating that the orexin system exhibits significant plasticity in response to drugs of abuse, we hypothesize that chronic palatable food consumption likewise increases orexin system activity, resulting in dysregulated sleep/wake patterns. Poor sleep, in turn, is predicted to exacerbate binge eating, contributing to a cycle of uncontrolled food consumption. By extension, we suggest that pharmacotherapies normalizing orexin signaling, which are currently being trialed for the treatment of SUDs, might also have utility in the clinical management of BED.
Collapse
|
21
|
Asakura S, Shiotani M, Gauvin DV, Fujiwara A, Ueno T, Bower N, Beuckmann CT, Moline M. Nonclinical evaluation of abuse liability of the dual orexin receptor antagonist lemborexant. Regul Toxicol Pharmacol 2021; 127:105053. [PMID: 34619288 DOI: 10.1016/j.yrtph.2021.105053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/20/2021] [Accepted: 09/29/2021] [Indexed: 11/29/2022]
Abstract
Lemborexant is a dual orexin receptor antagonist (DORA) approved in multiple countries including the United States, Japan, Canada and Australia for the treatment of adults with insomnia. As required for marketing approval of new compounds with central nervous system activity with sedating effects, the abuse potential of lemborexant was assessed in accordance with regulatory guidelines, which included three nonclinical studies. These assessments comprised physical dependence and drug discrimination studies in rats and a self-administration study in rhesus monkeys. There was no evidence of withdrawal signs following abrupt drug discontinuation, indicating that lemborexant does not induce physical dependence. In the drug discrimination study, lemborexant at doses up to 1000 mg/kg administered orally did not cross-generalize to the zolpidem training stimulus, although another DORA included in the same experiment, suvorexant, showed partial generalization with zolpidem. In rhesus monkeys, lemborexant treatment did not induce any gross behavioral changes, and there was no increase in self-administration rates compared with control, indicative of a lack of reinforcing effects of lemborexant. Collectively, these nonclinical studies support the position that lemborexant, which has been placed in Schedule IV by the United States Drug Enforcement Administration, has a low risk of abuse in humans.
Collapse
Affiliation(s)
| | | | - David V Gauvin
- MPI Research (A Charles River Company), Mattawan, MI, USA
| | | | | | | | | | | |
Collapse
|
22
|
Individual differences in dopamine uptake in the dorsomedial striatum prior to cocaine exposure predict motivation for cocaine in male rats. Neuropsychopharmacology 2021; 46:1757-1767. [PMID: 33953341 PMCID: PMC8357974 DOI: 10.1038/s41386-021-01009-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/27/2021] [Accepted: 03/31/2021] [Indexed: 11/08/2022]
Abstract
A major theme of addiction research has focused on the neural substrates of individual differences in the risk for addiction; however, little is known about how vulnerable populations differ from those that are relatively protected. Here, we prospectively measured dopamine (DA) neurotransmission prior to cocaine exposure to predict the onset and course of cocaine use. Using in vivo voltammetry, we first generated baseline profiles of DA release and uptake in the dorsomedial striatum (DMS) and nucleus accumbens of drug-naïve male rats prior to exposing them to cocaine using conditioned place preference (CPP) or operant self-administration. We found that the innate rate of DA uptake in the DMS strongly predicted motivation for cocaine and drug-primed reinstatement, but not CPP, responding when "price" was low, or extinction. We then assessed the impact of baseline variations in DA uptake on cocaine potency in the DMS using ex vivo voltammetry in naïve rats and in rats with DA transporter (DAT) knockdown. DA uptake in the DMS of naïve rats predicted the neurochemical response to cocaine, such that rats with innately faster rates of DA uptake demonstrated higher cocaine potency at the DAT and rats with DAT knockdown displayed reduced potency compared to controls. Together, these data demonstrate that inherent variability in DA uptake in the DMS predicts the behavioral response to cocaine, potentially by altering the apparent potency of cocaine.
Collapse
|
23
|
Fragale JE, James MH, Avila JA, Spaeth AM, Aurora RN, Langleben D, Aston-Jones G. The Insomnia-Addiction Positive Feedback Loop: Role of the Orexin System. FRONTIERS OF NEUROLOGY AND NEUROSCIENCE 2021; 45:117-127. [PMID: 34052815 PMCID: PMC8324012 DOI: 10.1159/000514965] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 02/02/2021] [Indexed: 01/06/2023]
Abstract
Significant sleep impairments often accompany substance use disorders (SUDs). Sleep disturbances in SUD patients are associated with poor clinical outcomes and treatment adherence, emphasizing the importance of normalizing sleep when treating SUDs. Orexins (hypocretins) are neuropeptides exclusively produced by neurons in the posterior hypothalamus that regulate various behavioral and physiological processes, including sleep-wakefulness and motivated drug taking. Given its dual role in sleep and addiction, the orexin system represents a promising therapeutic target for treating SUDs and their comorbid sleep deficits. Here, we review the literature on the role of the orexin system in sleep and drug addiction and discuss the therapeutic potential of orexin receptor antagonists for SUDs. We argue that orexin receptor antagonists may be effective therapeutics for treating addiction because they target orexin's regulation of sleep (top-down) and motivation (bottom-up) pathways.
Collapse
Affiliation(s)
- Jennifer E Fragale
- Brain Health Institute, Rutgers Biomedical Health Sciences, Rutgers University, Piscataway, New Jersey, USA
| | - Morgan H James
- Brain Health Institute, Rutgers Biomedical Health Sciences, Rutgers University, Piscataway, New Jersey, USA
| | - Jorge A Avila
- Brain Health Institute, Rutgers Biomedical Health Sciences, Rutgers University, Piscataway, New Jersey, USA
| | - Andrea M Spaeth
- Department of Kinesiology and Health, Rutgers University, New Brunswick, New Jersey, USA
| | - R Nisha Aurora
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, USA
| | - Daniel Langleben
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Gary Aston-Jones
- Brain Health Institute, Rutgers Biomedical Health Sciences, Rutgers University, Piscataway, New Jersey, USA
| |
Collapse
|
24
|
Barr JL, Zhao P, Brailoiu GC, Brailoiu E. Choline-Sigma-1R as an Additional Mechanism for Potentiation of Orexin by Cocaine. Int J Mol Sci 2021; 22:5160. [PMID: 34068146 PMCID: PMC8152999 DOI: 10.3390/ijms22105160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/09/2021] [Accepted: 05/11/2021] [Indexed: 12/27/2022] Open
Abstract
Orexin A, an endogenous peptide involved in several functions including reward, acts via activation of orexin receptors OX1 and OX2, Gq-coupled GPCRs. We examined the effect of a selective OX1 agonist, OXA (17-33) on cytosolic calcium concentration, [Ca2+]i, in neurons of nucleus accumbens, an important area in the reward circuit. OXA (17-33) increased [Ca2+]i in a dose-dependent manner; the effect was prevented by SB-334867, a selective OX1 receptors antagonist. In Ca2+-free saline, the OXA (17-33)-induced increase in [Ca2+]i was not affected by pretreatment with bafilomycin A1, an endo-lysosomal calcium disrupter, but was blocked by 2-APB and xestospongin C, antagonists of inositol-1,4,5-trisphosphate (IP3) receptors. Pretreatment with VU0155056, PLD inhibitor, or BD-1047 and NE-100, Sigma-1R antagonists, reduced the [Ca2+]i response elicited by OXA (17-33). Cocaine potentiated the increase in [Ca2+]i by OXA (17-33); the potentiation was abolished by Sigma-1R antagonists. Our results support an additional signaling mechanism for orexin A-OX1 via choline-Sigma-1R and a critical role for Sigma-1R in the cocaine-orexin A interaction in nucleus accumbens neurons.
Collapse
Affiliation(s)
- Jeffrey L. Barr
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA; (J.L.B.); (P.Z.)
| | - Pingwei Zhao
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA; (J.L.B.); (P.Z.)
| | - G. Cristina Brailoiu
- Department of Pharmaceutical Sciences, Jefferson College of Pharmacy, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| | - Eugen Brailoiu
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA; (J.L.B.); (P.Z.)
| |
Collapse
|
25
|
Fragale JE, James MH, Aston‐Jones G. Intermittent self-administration of fentanyl induces a multifaceted addiction state associated with persistent changes in the orexin system. Addict Biol 2021; 26:e12946. [PMID: 32798290 DOI: 10.1111/adb.12946] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/10/2020] [Accepted: 07/11/2020] [Indexed: 12/14/2022]
Abstract
The orexin (hypocretin) system plays a critical role in motivated drug taking. Cocaine self-administration with the intermittent access (IntA) procedure produces a robust addiction-like state that is orexin-dependent. Here, we sought to determine the role of the orexin system in opioid addiction using IntA self-administration of fentanyl. Different groups of male rats were either given continuous access in 1-h period (short access [ShA]), 6-h period (long access [LgA]), or IntA (5 min of access separated by 25 min of no access for 6 h) to fentanyl for 14 days. IntA produced a greater escalation of fentanyl intake, increased motivation for fentanyl on a behavioral economics task, persistent drug seeking during abstinence, and stronger cue-induced reinstatement compared with rats given ShA or LgA. We found that addiction behaviors induced by IntA to fentanyl were reversed by the orexin-1 receptor antagonist SB-334867. IntA to fentanyl was also associated with a persistent increase in the number of orexin neurons. Together, these results indicate that the IntA model is a useful tool in the study of opioid addiction and that the orexin system is critical for the maintenance of addiction behaviors induced by IntA self-administration of fentanyl.
Collapse
Affiliation(s)
- Jennifer E. Fragale
- Brain Health Institute Rutgers University and Rutgers Biomedical and Health Sciences Piscataway New Jersey USA
| | - Morgan H. James
- Brain Health Institute Rutgers University and Rutgers Biomedical and Health Sciences Piscataway New Jersey USA
- Florey Institute of Neuroscience and Mental Health University of Melbourne Melbourne Victoria Australia
| | - Gary Aston‐Jones
- Brain Health Institute Rutgers University and Rutgers Biomedical and Health Sciences Piscataway New Jersey USA
| |
Collapse
|
26
|
Bjorness TE, Greene RW. Interaction between cocaine use and sleep behavior: A comprehensive review of cocaine's disrupting influence on sleep behavior and sleep disruptions influence on reward seeking. Pharmacol Biochem Behav 2021; 206:173194. [PMID: 33940055 DOI: 10.1016/j.pbb.2021.173194] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 04/20/2021] [Accepted: 04/27/2021] [Indexed: 12/21/2022]
Abstract
Dopamine, orexin (hypocretin), and adenosine systems have dual roles in reward and sleep/arousal suggesting possible mechanisms whereby drugs of abuse may influence both reward and sleep/arousal. While considerable variability exists across studies, drugs of abuse such as cocaine induce an acute sleep loss followed by an immediate recovery pattern that is consistent with a normal response to loss of sleep. Under more chronic cocaine exposure conditions, an abnormal recovery pattern is expressed that includes a retention of sleep disturbance under withdrawal and into abstinence conditions. Conversely, experimentally induced sleep disturbance can increase cocaine seeking. Thus, complementary, sleep-related therapeutic approaches may deserve further consideration along with development of non-human models to better characterize sleep disturbance-reward seeking interactions across drug experience.
Collapse
Affiliation(s)
- Theresa E Bjorness
- Research Service, VA North Texas Health Care System, Dallas, TX 75126, USA; Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA.
| | - Robert W Greene
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA; Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA; International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba, 305-8577, Japan
| |
Collapse
|
27
|
Alonso IP, Pino JA, Kortagere S, Torres GE, España RA. Dopamine transporter function fluctuates across sleep/wake state: potential impact for addiction. Neuropsychopharmacology 2021; 46:699-708. [PMID: 33032296 PMCID: PMC8026992 DOI: 10.1038/s41386-020-00879-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 09/13/2020] [Accepted: 09/15/2020] [Indexed: 12/20/2022]
Abstract
The dopamine transporter (DAT) has been implicated in a variety of arousal-related processes including the regulation of motor activity, learning, motivated behavior, psychostimulant abuse, and, more recently, sleep/wake state. We previously demonstrated that DAT uptake regulates fluctuations in extracellular dopamine (DA) in the striatum across the light/dark cycle with DA levels at their highest during the dark phase and lowest during the light phase. Despite this evidence, whether fluctuations in DA uptake across the light/dark cycle are associated with changes in sleep/wake has not been tested. To address this, we employed a combination of sleep/wake recordings, fast scan cyclic voltammetry, and western blotting to examine whether sleep/wake state and/or light/dark phase impact DA terminal neurotransmission in male rats. Further, we assessed whether variations in plasma membrane DAT levels and/or phosphorylation of the threonine 53 site on the DAT accounts for fluctuations in DA neurotransmission. Given the extensive evidence indicating that psychostimulants increase DA through interactions with the DAT, we also examined to what degree the effects of cocaine at inhibiting the DAT vary across sleep/wake state. Results demonstrated a significant association between individual sleep/wake states and DA terminal neurotransmission, with higher DA uptake rate, increased phosphorylation of the DAT, and enhanced cocaine potency observed after periods of sleep. These findings suggest that sleep/wake state influences DA neurotransmission in a manner that is likely to impact a host of DA-dependent processes including a variety of neuropsychiatric disorders.
Collapse
Affiliation(s)
- I. P. Alonso
- grid.166341.70000 0001 2181 3113Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129 USA
| | - J. A. Pino
- grid.440631.40000 0001 2228 7602Departamento de Medicina, Facultad de Medicina, Universidad de Atacama, 1532502 Copiapó, Chile
| | - S. Kortagere
- grid.166341.70000 0001 2181 3113Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129 USA
| | - G. E. Torres
- grid.254250.40000 0001 2264 7145Department of Molecular, Cellular & Biomedical Sciences, CUNY School of Medicine at the City College of New York, New York, NY 10031 USA
| | - R. A. España
- grid.166341.70000 0001 2181 3113Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129 USA
| |
Collapse
|
28
|
Drug addiction co-morbidity with alcohol: Neurobiological insights. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 157:409-472. [PMID: 33648675 DOI: 10.1016/bs.irn.2020.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Addiction is a chronic disorder that consists of a three-stage cycle of binge/intoxication, withdrawal/negative affect, and preoccupation/anticipation. These stages involve, respectively, neuroadaptations in brain circuits involved in incentive salience and habit formation, stress surfeit and reward deficit, and executive function. Much research on addiction focuses on the neurobiology underlying single drug use. However, alcohol use disorder (AUD) can be co-morbid with substance use disorder (SUD), called dual dependence. The limited epidemiological data on dual dependence indicates that there is a large population of individuals suffering from addiction who are dependent on more than one drug and/or alcohol, yet dual dependence remains understudied in addiction research. Here, we review neurobiological data on neurotransmitter and neuropeptide systems that are known to contribute to addiction pathology and how the involvement of these systems is consistent or divergent across drug classes. In particular, we highlight the dopamine, opioid, corticotropin-releasing factor, norepinephrine, hypocretin/orexin, glucocorticoid, neuroimmune signaling, endocannabinoid, glutamate, and GABA systems. We also discuss the limited research on these systems in dual dependence. Collectively, these studies demonstrate that the use of multiple drugs can produce neuroadaptations that are distinct from single drug use. Further investigation into the neurobiology of dual dependence is necessary to develop effective treatments for addiction to multiple drugs.
Collapse
|
29
|
Morales-Mulia S, Magdaleno-Madrigal VM, Nicolini H, Genis-Mendoza A, Morales-Mulia M. Orexin-A up-regulates dopamine D2 receptor and mRNA in the nucleus accumbens Shell. Mol Biol Rep 2020; 47:9689-9697. [PMID: 33170427 DOI: 10.1007/s11033-020-05979-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 11/03/2020] [Indexed: 01/11/2023]
Abstract
Orexins-A (OrxA) and -B (OrxB) neuropeptides are synthesized by a group of neurons located in the lateral hypothalamus and adjacent perifornical area, which send their projections to the mesolimbic dopaminergic (DAergic) system including ventral tegmental area and nucleus accumbens (NAc), where orexin receptors are expressed. NAc plays a central role in reward-seeking behavior and drug abuse. NAc-neurons express dopamine-1 (D1R) and dopamine-2 (D2R) receptors. Orexins bind to their two cognate G-protein-coupled receptors, orexin-receptor type-1 (Orx1R) and type-2 (Orx2R). Orexin receptor signaling is involved in behaviors such as motivation and addiction. Orexin-containing neurons modulate DAergic activity that is key in synaptic plasticity induced by addictive drugs. However, the effect of OrxA on expression and content of DAergic receptors in NAc is unknown. The purpose of this study was to investigate whether OrxA can alter gene expression and protein levels of D1R/D2R in NAc. Gene expression was evaluated by real-time PCR analysis and protein levels by western blot in rats. The results show that intracerebroventricular (i.c.v.) injection of OrxA increases both gene transcription and protein content of D2R but fails to modify D1R. This effect was also confirmed with OrxA infusion in NAc/Shell. Our results demonstrate for the first time that OrxA induces up-regulation of gene and protein of D2R in NAc. These findings support the hypothesis that OrxA modulates the DAergic transmission and this may serve to understand how orexin signaling enhances DA responses at baseline conditions and in response to psychostimulants.
Collapse
Affiliation(s)
- Sandra Morales-Mulia
- Departamento de Biología Celular, Facultad de Ciencias, UNAM, Mexico, DF, Mexico
| | | | - Humberto Nicolini
- Laboratory of Genomics of Psychiatric Diseases, Neurodegenerative and Addictions, National Institute of Genomic Medicine, Mexico, Mexico
| | - Alma Genis-Mendoza
- Laboratory of Genomics of Psychiatric Diseases, Neurodegenerative and Addictions, National Institute of Genomic Medicine, Mexico, Mexico.,Hospital Psiquiátrico Infantil "Dr. Juan N. Navarro" Psychiatric Attention Services, Mexico, Mexico
| | - Marcela Morales-Mulia
- Bases Moleculares de las Adicciones, Subdirección de Investigaciones Clínicas, INPRFM, Calzada México-Xochimilco 101, San Lorenzo Huipulco, Tlalpan, 14370, Mexico, DF, Mexico.
| |
Collapse
|
30
|
Lee J, Raycraft L, Johnson AW. The dynamic regulation of appetitive behavior through lateral hypothalamic orexin and melanin concentrating hormone expressing cells. Physiol Behav 2020; 229:113234. [PMID: 33130035 DOI: 10.1016/j.physbeh.2020.113234] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 02/07/2023]
Abstract
The lateral hypothalamic area (LHA) is a heterogeneous brain structure extensively studied for its potent role in regulating energy balance. The anatomical and molecular diversity of the LHA permits the orchestration of responses to energy sensing cues from the brain and periphery. Two of the primary cell populations within the LHA associated with integration of this information are Orexin (ORX) and Melanin Concentrating Hormone (MCH). While both of these non-overlapping populations exhibit orexigenic properties, the activities of these two systems support feeding behavior through contrasting mechanisms. We describe the anatomical and functional properties as well as interaction with other neuropeptides and brain reward and hedonic systems. Specific outputs relating to arousal, food seeking, feeding, and metabolism are coordinated through these mechanisms. We then discuss how both the ORX and MCH systems harmonize in a divergent yet overall cooperative manner to orchestrate feeding behavior through transitions between various appetitive states, and thus offer novel insights into LHA allostatic control of appetite.
Collapse
Affiliation(s)
| | | | - Alexander W Johnson
- Department of Psychology; Neuroscience Program, Michigan State University, East Lansing.
| |
Collapse
|
31
|
James MH, Fragale JE, O'Connor SL, Zimmer BA, Aston-Jones G. The orexin (hypocretin) neuropeptide system is a target for novel therapeutics to treat cocaine use disorder with alcohol coabuse. Neuropharmacology 2020; 183:108359. [PMID: 33091458 DOI: 10.1016/j.neuropharm.2020.108359] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/05/2020] [Accepted: 10/15/2020] [Indexed: 12/14/2022]
Abstract
An estimated 50-90% of individuals with cocaine use disorder (CUD) also report using alcohol. Cocaine users report coabusing alcohol to 'self-medicate' against the negative emotional side effects of the cocaine 'crash', including the onset of anxiety. Thus, pharmaceutical strategies to treat CUD would ideally reduce the motivational properties of cocaine, alcohol, and their combination, as well as reduce the onset of anxiety during drug withdrawal. The hypothalamic orexin (hypocretin) neuropeptide system offers a promising target, as orexin neurons are critically involved in activating behavioral and physiological states to respond to both positive and negative motivators. Here, we seek to describe studies demonstrating efficacy of orexin receptor antagonists in reducing cocaine, alcohol- and stress-related behaviors, but note that these studies have largely focused on each of these phenomena in isolation. For orexin-based compounds to be viable in the clinical setting, we argue that it is imperative that their efficacy be tested in animal models that account for polysubstance use patterns. To begin to examine this, we present new data showing that rats' preferred level of cocaine intake is significantly increased following chronic homecage access to alcohol. We also report that cocaine intake and motivation are reduced by a selective orexin-1 receptor antagonist when rats have a history of cocaine + alcohol, but not a limited history of cocaine alone. In light of these proof-of-principle data, we outline what we believe to be the key priorities going forward with respect to further examining the orexin system in models of polysubstance use. This article is part of the special issue on Neurocircuitry Modulating Drug and Alcohol Abuse.
Collapse
Affiliation(s)
- Morgan H James
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University and Rutgers Biomedical Health Sciences, Piscataway, NJ, USA; Brain Health Institute, Rutgers University and Rutgers Biomedical and Health Sciences, Piscataway, NJ, USA; Florey Institute of Neuroscience and Mental Health, University of Melbourne, VIC, Australia
| | - Jennifer E Fragale
- Brain Health Institute, Rutgers University and Rutgers Biomedical and Health Sciences, Piscataway, NJ, USA
| | - Shayna L O'Connor
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University and Rutgers Biomedical Health Sciences, Piscataway, NJ, USA; Brain Health Institute, Rutgers University and Rutgers Biomedical and Health Sciences, Piscataway, NJ, USA
| | - Benjamin A Zimmer
- Brain Health Institute, Rutgers University and Rutgers Biomedical and Health Sciences, Piscataway, NJ, USA
| | - Gary Aston-Jones
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University and Rutgers Biomedical Health Sciences, Piscataway, NJ, USA; Brain Health Institute, Rutgers University and Rutgers Biomedical and Health Sciences, Piscataway, NJ, USA.
| |
Collapse
|
32
|
Khosrowabadi E, Karimi-Haghighi S, Jamali S, Haghparast A. Differential Roles of Intra-accumbal Orexin Receptors in Acquisition and Expression of Methamphetamine-Induced Conditioned Place Preference in the Rats. Neurochem Res 2020; 45:2230-2241. [DOI: 10.1007/s11064-020-03084-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/21/2020] [Accepted: 07/02/2020] [Indexed: 12/26/2022]
|
33
|
Pantazis CB, James MH, Bentzley BS, Aston‐Jones G. The number of lateral hypothalamus orexin/hypocretin neurons contributes to individual differences in cocaine demand. Addict Biol 2020; 25:e12795. [PMID: 31297913 DOI: 10.1111/adb.12795] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/25/2019] [Accepted: 05/22/2019] [Indexed: 12/11/2022]
Abstract
Lateral hypothalamus (LH) orexin neuron signaling has been implicated in the motivation to seek and take drugs of abuse. The number of LH orexin neurons has been shown to be upregulated with exposure to drugs of abuse. We sought to determine if the number of LH orexin neurons related to individual differences in motivation (demand) for cocaine in our behavioral economics (BE) paradigm, and whether knockdown of these cells predicted changes in economic demand. We quantified LH orexin cell numbers in animals immediately following our BE paradigm, as well as after a 2-week period of abstinence, to relate the number of LH orexin cells to economic demand for cocaine. We also knocked down LH orexin expression with an orexin morpholino antisense to determine how reduced orexin numbers impacted cocaine demand. We found that animals with greater baseline motivation for cocaine (lower demand elasticity) had more LH orexin neurons. Following a 2-week abstinence from cocaine, the number of LH orexin neurons predicted economic demand for cocaine prior to abstinence, indicating that orexin expression is a persistent marker for demand. Reducing LH orexin cell numbers with antisense decreased motivation for cocaine (increased demand elasticity) without affecting baseline consumption. In addition, the number of spared LH orexin neurons after antisense treatment correlated with individual motivation for cocaine. These studies point to a role for the endogenous number of LH orexin neurons in individual differences in motivation for cocaine.
Collapse
Affiliation(s)
- Caroline B. Pantazis
- Brain Health Institute Rutgers University/Rutgers Biomedical and Health Sciences Piscataway New Jersey USA
| | - Morgan H. James
- Brain Health Institute Rutgers University/Rutgers Biomedical and Health Sciences Piscataway New Jersey USA
- Florey Institute for Neuroscience and Mental Health Parkville Australia
| | - Brandon S. Bentzley
- Department of Psychiatry and Behavioral Sciences Stanford University Stanford California USA
| | - Gary Aston‐Jones
- Brain Health Institute Rutgers University/Rutgers Biomedical and Health Sciences Piscataway New Jersey USA
| |
Collapse
|
34
|
Li T, Xu W, Ouyang J, Lu X, Sherchan P, Lenahan C, Irio G, Zhang JH, Zhao J, Zhang Y, Tang J. Orexin A alleviates neuroinflammation via OXR2/CaMKKβ/AMPK signaling pathway after ICH in mice. J Neuroinflammation 2020; 17:187. [PMID: 32539736 PMCID: PMC7294616 DOI: 10.1186/s12974-020-01841-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 05/14/2020] [Indexed: 02/07/2023] Open
Abstract
Background Orexins are two neuropeptides (orexin A, OXA; orexin B, OXB) secreted mainly from the lateral hypothalamus, which exert a wide range of physiological effects by activating two types of receptors (orexin receptor 1, OXR1; orexin receptor 2, OXR2). OXA has equal affinity for OXR1 and OXR2, whereas OXB binds preferentially to OXR2. OXA rapidly crosses the blood-brain barrier by simple diffusion. Many studies have reported OXA’s protective effect on neurological diseases via regulating inflammatory response which is also a fundamental pathological process in intracerebral hemorrhage (ICH). However, neuroprotective mechanisms of OXA have not been explored in ICH. Methods ICH models were established using stereotactic injection of autologous arterial blood into the right basal ganglia of male CD-1 mice. Exogenous OXA was administered intranasally; CaMKKβ inhibitor (STO-609), OXR1 antagonist (SB-334867), and OXR2 antagonist (JNJ-10397049) were administered intraperitoneally. Neurobehavioral tests, hematoma volume, and brain water content were evaluated after ICH. Western blot and ELISA were utilized to evaluate downstream mechanisms. Results OXA, OXR1, and OXR2 were expressed moderately in microglia and astrocytes and abundantly in neurons. Expression of OXA decreased whereas OXR1 and OXR2 increased after ICH. OXA treatment significantly improved not only short-term but also long-term neurofunctional outcomes and reduced brain edema in ipsilateral hemisphere. OXA administration upregulated p-CaMKKβ, p-AMPK, and anti-inflammatory cytokines while downregulated p-NFκB and pro-inflammatory cytokines after ICH; this effect was reversed by STO-609 or JNJ-10397049 but not SB-334867. Conclusions OXA improved neurofunctional outcomes and mitigated brain edema after ICH, possibly through alleviating neuroinflammation via OXR2/CaMKKβ/AMPK pathway.
Collapse
Affiliation(s)
- Tao Li
- Department of Neurosurgery, The First People's Hospital of Yunnan Province (Kunhua Hospital/The Affiliated Hospital of Kunming University of Science and Technology), Yunnan, 650032, China.,Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, 11041 Campus St, Loma Linda, CA, 92354, USA.,Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang, 310009, Hangzhou, China
| | - Weilin Xu
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, 11041 Campus St, Loma Linda, CA, 92354, USA.,Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang, 310009, Hangzhou, China
| | - Jinsong Ouyang
- Department of Neurosurgery, The First People's Hospital of Yunnan Province (Kunhua Hospital/The Affiliated Hospital of Kunming University of Science and Technology), Yunnan, 650032, China
| | - Xiaoyang Lu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang, 310009, Hangzhou, China
| | - Prativa Sherchan
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, 11041 Campus St, Loma Linda, CA, 92354, USA
| | - Cameron Lenahan
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, 11041 Campus St, Loma Linda, CA, 92354, USA.,Burrell College of Osteopathic Medicine, 3501 Arrowhead Dr, Las Cruces, NM, 88001, USA
| | - Giselle Irio
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, 11041 Campus St, Loma Linda, CA, 92354, USA.,Burrell College of Osteopathic Medicine, 3501 Arrowhead Dr, Las Cruces, NM, 88001, USA
| | - John H Zhang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, 11041 Campus St, Loma Linda, CA, 92354, USA
| | - Jianhua Zhao
- Department of Neurosurgery, The First People's Hospital of Yunnan Province (Kunhua Hospital/The Affiliated Hospital of Kunming University of Science and Technology), Yunnan, 650032, China
| | - Yongfa Zhang
- Department of Neurosurgery, The First People's Hospital of Yunnan Province (Kunhua Hospital/The Affiliated Hospital of Kunming University of Science and Technology), Yunnan, 650032, China.
| | - Jiping Tang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, 11041 Campus St, Loma Linda, CA, 92354, USA.
| |
Collapse
|
35
|
Han Y, Yuan K, Zheng Y, Lu L. Orexin Receptor Antagonists as Emerging Treatments for Psychiatric Disorders. Neurosci Bull 2020; 36:432-448. [PMID: 31782044 PMCID: PMC7142186 DOI: 10.1007/s12264-019-00447-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 09/27/2019] [Indexed: 12/12/2022] Open
Abstract
Orexins comprise two neuropeptides produced by orexin neurons in the lateral hypothalamus and are released by extensive projections of these neurons throughout the central nervous system. Orexins bind and activate their associated G protein-coupled orexin type 1 receptors (OX1Rs) and OX2Rs and act on numerous physiological processes, such as sleep-wake regulation, feeding, reward, emotion, and motivation. Research on the development of orexin receptor antagonists has dramatically increased with the approval of suvorexant for the treatment of primary insomnia. In the present review, we discuss recent findings on the involvement of the orexin system in the pathophysiology of psychiatric disorders, including sleep disorders, depression, anxiety, and drug addiction. We discuss the actions of orexin receptor antagonists, including selective OX1R antagonists (SORA1s), selective OX2R antagonists (SORA2s), and dual OX1/2R antagonists (DORAs), in the treatment of these disorders based on both preclinical and clinical evidence. SORA2s and DORAs have more pronounced efficacy in the treatment of sleep disorders, whereas SORA1s may be promising for the treatment of anxiety and drug addiction. We also discuss potential challenges and opportunities for the application of orexin receptor antagonists to clinical interventions.
Collapse
Affiliation(s)
- Ying Han
- National Institute of Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, 100191, China
| | - Kai Yuan
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
- Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Yongbo Zheng
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Lin Lu
- National Institute of Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, 100191, China.
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China.
- Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China.
| |
Collapse
|
36
|
Simmons SJ, Gentile TA. Cocaine abuse and midbrain circuits: Functional anatomy of hypocretin/orexin transmission and therapeutic prospect. Brain Res 2020; 1731:146164. [PMID: 30796894 PMCID: PMC6702109 DOI: 10.1016/j.brainres.2019.02.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 01/09/2019] [Accepted: 02/12/2019] [Indexed: 12/18/2022]
Abstract
Cocaine abuse remains a pervasive public health problem, and treatments thus far have proven ineffective for long-term abstinence maintenance. Intensive research on the neurobiology underlying drug abuse has led to the consideration of many candidate transmitter systems to target for intervention. Among these, the hypocretin/orexin (hcrt/ox) neuropeptide system holds largely untapped yet clinically viable therapeutic potential. Hcrt/ox originates from the hypothalamus and projects widely across the mammalian central nervous system to produce neuroexcitatory actions via two excitatory G-protein coupled receptor subtypes. Functionally, hcrt/ox promotes arousal/wakefulness and facilitates energy homeostasis. In the early 2000s, hcrt/ox transmission was shown to underlie mating behavior in male rats suggesting a novel role in reward-seeking. Soon thereafter, hcrt/ox neurons were shown to respond to drug-associated stimuli, and hcrt/ox transmission was found to facilitate motivated responding for intravenous cocaine. Notably, blocking hcrt/ox transmission using systemic or site-directed pharmacological antagonists markedly reduced motivated drug-taking as well as drug-seeking in tests of relapse. This review will unfold the current state of knowledge implicating hcrt/ox receptor transmission in the context of cocaine abuse and provide detailed background on animal models and underlying midbrain circuits. Specifically, attention will be paid to the mesoaccumbens, tegmental, habenular, pallidal and preoptic circuits. The review will conclude with discussion of recent preclinical studies assessing utility of suvorexant - the first and only FDA-approved hcrt/ox receptor antagonist - against cocaine-associated behaviors.
Collapse
Affiliation(s)
- Steven J Simmons
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA; Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA.
| | - Taylor A Gentile
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| |
Collapse
|
37
|
Li SB, de Lecea L. The hypocretin (orexin) system: from a neural circuitry perspective. Neuropharmacology 2020; 167:107993. [PMID: 32135427 DOI: 10.1016/j.neuropharm.2020.107993] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/23/2020] [Accepted: 02/05/2020] [Indexed: 12/11/2022]
Abstract
Hypocretin/orexin neurons are distributed restrictively in the hypothalamus, a brain region known to orchestrate diverse functions including sleep, reward processing, food intake, thermogenesis, and mood. Since the hypocretins/orexins were discovered more than two decades ago, extensive studies have accumulated concrete evidence showing the pivotal role of hypocretin/orexin in diverse neural modulation. New method of viral-mediated tracing system offers the possibility to map the monosynaptic inputs and detailed anatomical connectivity of Hcrt neurons. With the development of powerful research techniques including optogenetics, fiber-photometry, cell-type/pathway specific manipulation and neuronal activity monitoring, as well as single-cell RNA sequencing, the details of how hypocretinergic system execute functional modulation of various behaviors are coming to light. In this review, we focus on the function of neural pathways from hypocretin neurons to target brain regions. Anatomical and functional inputs to hypocretin neurons are also discussed. We further briefly summarize the development of pharmaceutical compounds targeting hypocretin signaling. This article is part of the special issue on Neuropeptides.
Collapse
Affiliation(s)
- Shi-Bin Li
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 1201 Welch Road, Stanford, CA, 94305, USA.
| | - Luis de Lecea
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 1201 Welch Road, Stanford, CA, 94305, USA.
| |
Collapse
|
38
|
Kakizaki M, Tsuneoka Y, Takase K, Kim SJ, Choi J, Ikkyu A, Abe M, Sakimura K, Yanagisawa M, Funato H. Differential Roles of Each Orexin Receptor Signaling in Obesity. iScience 2019; 20:1-13. [PMID: 31546102 PMCID: PMC6817686 DOI: 10.1016/j.isci.2019.09.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/04/2019] [Accepted: 09/03/2019] [Indexed: 02/04/2023] Open
Abstract
Orexins are hypothalamic neuropeptides that regulate feeding, energy expenditure, and sleep. Although orexin-deficient mice are susceptible to obesity, little is known about the roles of the orexin receptors in long-term energy metabolism. Here, we performed the metabolic characterization of orexin receptor-deficient mice. Ox1r-deficient mice were resistant to diet-induced obesity, and their food intake was similar between chow and high-fat food. Ox2r-deficient mice exhibited less energy expenditure than wild-type mice when fed a high-fat diet. Neither Ox1r-deficient nor Ox2r-deficient mice showed body weight gain similar to orexin-deficient mice. Although the presence of a running wheel suppressed diet-induced obesity in wild-type mice, the effect was weaker in orexin neuron-ablated mice. Finally, we did not detect abnormalities in brown adipose tissues of orexin-deficient mice. Thus, each orexin receptor signaling has a unique role in energy metabolism, and orexin neurons are involved in the interactive effect of diet and exercise on body weight gain. Food intakes of Ox1r-deficient mice are similar between chow and high-fat food Ox2r-deficient mice exhibit less energy expenditure when fed a high-fat diet Orexin neurons are involved in the interactive effect of diet and exercise Orexin-deficient mice have normal brown adipose tissue
Collapse
Affiliation(s)
- Miyo Kakizaki
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Yousuke Tsuneoka
- Department of Anatomy, Faculty of Medicine, Toho University, Ota-ku, Tokyo 143-8540, Japan
| | - Kenkichi Takase
- Department of Anatomy, Faculty of Medicine, Toho University, Ota-ku, Tokyo 143-8540, Japan; Laboratory of Psychology, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan
| | - Staci J Kim
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Jinhwan Choi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Aya Ikkyu
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Manabu Abe
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan; Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Kenji Sakimura
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan; Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, 305-8575 Ibaraki, Japan; Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Hiromasa Funato
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Department of Anatomy, Faculty of Medicine, Toho University, Ota-ku, Tokyo 143-8540, Japan.
| |
Collapse
|
39
|
Orexin-A promotes EEG changes but fails to induce anxiety in rats. Behav Brain Res 2019; 361:26-31. [DOI: 10.1016/j.bbr.2018.12.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/03/2018] [Accepted: 12/20/2018] [Indexed: 11/19/2022]
|
40
|
Schmeichel BE, Matzeu A, Koebel P, Vendruscolo LF, Sidhu H, Shahryari R, Kieffer BL, Koob GF, Martin-Fardon R, Contet C. Knockdown of hypocretin attenuates extended access of cocaine self-administration in rats. Neuropsychopharmacology 2018; 43:2373-2382. [PMID: 29703996 PMCID: PMC6180106 DOI: 10.1038/s41386-018-0054-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 03/06/2018] [Accepted: 03/07/2018] [Indexed: 12/22/2022]
Abstract
The hypocretin/orexin (HCRT) neuropeptide system regulates feeding, arousal state, stress responses, and reward, especially under conditions of enhanced motivational relevance. In particular, HCRT neurotransmission facilitates drug-seeking behavior in circumstances that demand increased effort and/or motivation to take the drug. The present study used a shRNA-encoding adeno-associated viral vector to knockdown Hcrt expression throughout the dorsal hypothalamus in adult rats and determine the role of HCRT in cocaine self-administration. Chronic Hcrt silencing did not impact cocaine self-administration under short-access conditions, but robustly attenuated cocaine intake under extended access conditions, a model that mimics key features of compulsive cocaine taking. In addition, Hcrt silencing decreased motivation for both cocaine and a highly palatable food reward (i.e., sweetened condensed milk; SCM) under a progressive ratio schedule of reinforcement, but did not alter responding for SCM under a fixed ratio schedule. Importantly, Hcrt silencing did not affect food or water consumption, and had no consequence for general measures of arousal and stress reactivity. At the molecular level, chronic Hcrt knockdown reduced the number of neurons expressing dynorphin (DYN), and to a smaller extent melanin-concentrating hormone (MCH), in the dorsal hypothalamus. These original findings support the hypothesis that HCRT neurotransmission promotes operant responding for both drug and non-drug rewards, preferentially under conditions requiring a high degree of motivation. Furthermore, the current study provides compelling evidence for the involvement of the HCRT system in cocaine self-administration also under low-effort conditions in rats allowed extended access, possibly via functional interactions with DYN and MCH signaling.
Collapse
Affiliation(s)
- Brooke E Schmeichel
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, 92037, USA.
- Neurobiology of Addiction Section, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, 21224, USA.
| | - Alessandra Matzeu
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Pascale Koebel
- Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, 67404, France
| | - Leandro F Vendruscolo
- Neurobiology of Addiction Section, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, 21224, USA
| | - Harpreet Sidhu
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Roxana Shahryari
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Brigitte L Kieffer
- Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, 67404, France
- Douglas Institute Research Centre, McGill University, Montréal, QC, Canada
| | - George F Koob
- Neurobiology of Addiction Section, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, 21224, USA
| | - Rémi Martin-Fardon
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Candice Contet
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, 92037, USA
| |
Collapse
|
41
|
Simmons SJ, Leyrer-Jackson JM, Oliver CF, Hicks C, Muschamp JW, Rawls SM, Olive MF. DARK Classics in Chemical Neuroscience: Cathinone-Derived Psychostimulants. ACS Chem Neurosci 2018; 9:2379-2394. [PMID: 29714473 DOI: 10.1021/acschemneuro.8b00147] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Cathinone is a plant alkaloid found in khat leaves of perennial shrubs grown in East Africa. Similar to cocaine, cathinone elicits psychostimulant effects which are in part attributed to its amphetamine-like structure. Around 2010, home laboratories began altering the parent structure of cathinone to synthesize derivatives with mechanisms of action, potencies, and pharmacokinetics permitting high abuse potential and toxicity. These "synthetic cathinones" include 4-methylmethcathinone (mephedrone), 3,4-methylenedioxypyrovalerone (MDPV), and the empathogenic agent 3,4-methylenedioxymethcathinone (methylone) which collectively gained international popularity following aggressive online marketing as well as availability in various retail outlets. Case reports made clear the health risks associated with these agents and, in 2012, the Drug Enforcement Agency of the United States placed a series of synthetic cathinones on Schedule I under emergency order. Mechanistically, cathinone and synthetic derivatives work by augmenting monoamine transmission through release facilitation and/or presynaptic transport inhibition. Animal studies confirm the rewarding and reinforcing properties of synthetic cathinones by utilizing self-administration, place conditioning, and intracranial self-stimulation assays and additionally show persistent neuropathological features which demonstrate a clear need to better understand this class of drugs. This Review will thus detail (i) historical context of cathinone use and the rise of "dark" synthetic derivatives, (ii) structural features and mechanisms of synthetic cathinones, (iii) behavioral effects observed clinically and in animals under controlled laboratory conditions, and (iv) neurotransmitters and circuits that may be targeted to manage synthetic cathinone abuse in humans.
Collapse
Affiliation(s)
- Steven J. Simmons
- Center for Substance Abuse Research (CSAR), Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania 19140, United States
| | | | - Chicora F. Oliver
- Center for Substance Abuse Research (CSAR), Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania 19140, United States
| | - Callum Hicks
- Center for Substance Abuse Research (CSAR), Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania 19140, United States
| | - John W. Muschamp
- Center for Substance Abuse Research (CSAR), Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania 19140, United States
| | - Scott M. Rawls
- Center for Substance Abuse Research (CSAR), Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania 19140, United States
| | - M. Foster Olive
- Department of Psychology, Arizona State University, Tempe, Arizona 85281, United States
| |
Collapse
|
42
|
Abstract
The neuropeptides orexins are important in regulating the neurobiological systems that respond to stressful stimuli. Furthermore, orexins are known to play a role many of the phenotypes associated with stress-related mental illness such as changes in cognition, sleep-wake states, and appetite. Interestingly, orexins are altered in stress-related psychiatric disorders such as Major Depressive Disorder and Anxiety Disorders. Thus, orexins may be a potential target for treatment of these disorders. In this review, we will focus on what is known about the role of orexins in acute and repeated stress, in stress-induced phenotypes relevant to psychiatric illness in preclinical models, and in stress-related psychiatric illness in humans. We will also briefly discuss how orexins may contribute to sex differences in the stress response and subsequent phenotypes relevant to mental health, as many stress-related psychiatric disorders are twice as prevalent in women.
Collapse
|
43
|
Nevárez N, de Lecea L. Recent advances in understanding the roles of hypocretin/orexin in arousal, affect, and motivation. F1000Res 2018; 7. [PMID: 30254737 PMCID: PMC6127742 DOI: 10.12688/f1000research.15097.1] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/24/2018] [Indexed: 12/11/2022] Open
Abstract
The hypocretins (Hcrts) are two alternatively spliced neuropeptides (Hcrt1/Ox-A and Hcrt2/Ox-B) that are synthesized exclusively in the hypothalamus. Data collected in the 20 years since their discovery have supported the view that the Hcrts play a broad role in the control of arousal with a particularly important role in the maintenance of wakefulness and sleep-to-wake transitions. While this latter point has received an overwhelming amount of research attention, a growing literature has begun to broaden our understanding of the many diverse roles that the Hcrts play in physiology and behavior. Here, we review recent advances in the neurobiology of Hcrt in three sections. We begin by surveying findings on Hcrt function within normal sleep/wake states as well as situations of aberrant sleep (that is, narcolepsy). In the second section, we discuss research establishing a role for Hcrt in mood and affect (that is, anxiety, stress, and motivation). Finally, in the third section, we briefly discuss future directions for the field and place an emphasis on analytical modeling of Hcrt neural activity. We hope that the data discussed here provide a broad overview of recent progress in the field and make clear the diversity of roles played by these neuromodulators.
Collapse
Affiliation(s)
- Natalie Nevárez
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, California, USA
| | - Luis de Lecea
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, California, USA
| |
Collapse
|
44
|
Bernstein DL, Badve PS, Barson JR, Bass CE, España RA. Hypocretin receptor 1 knockdown in the ventral tegmental area attenuates mesolimbic dopamine signaling and reduces motivation for cocaine. Addict Biol 2018; 23:1032-1045. [PMID: 28971565 DOI: 10.1111/adb.12553] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 08/01/2017] [Accepted: 08/03/2017] [Indexed: 01/24/2023]
Abstract
The hypocretin receptor 1 (HCRTr1) is a critical participant in the regulation of motivated behavior. Previous observations demonstrate that acute pharmacological blockade of HCRTr1 disrupts dopamine (DA) signaling and the motivation for cocaine when delivered systemically or directly into the ventral tegmental area (VTA). To further examine the involvement of HCRTr1 in regulating reward and reinforcement processing, we employed an adeno-associated virus to express a short hairpin RNA designed to knock down HCRTr1. We injected virus into the VTA and examined the effects of HCRTr1 knockdown on cocaine self-administration and DA signaling in the nucleus accumbens (NAc) core. We determined that the viral approach was effective at reducing HCRTr1 expression without affecting the expression of hypocretin receptor 2 or DA-related mRNAs. We next examined the effects of HCRTr1 knockdown on cocaine self-administration, observing delayed acquisition under a fixed-ratio schedule and reduced motivation for cocaine under a progressive ratio schedule. These effects did not appear to be associated with alterations in sleep/wake activity. Using fast-scan cyclic voltammetry, we then examined whether HCRTr1 knockdown alters DA signaling dynamics in the NAc core. We observed reduced DA release and slower uptake rate as well as attenuated cocaine-induced DA uptake inhibition in rats with knockdown of HCRTr1. These observations indicate that HCRTr1 within the VTA influence the motivation for cocaine, likely via alterations in DA signaling in the NAc.
Collapse
Affiliation(s)
- David L. Bernstein
- Department of Neurobiology and Anatomy; Drexel University College of Medicine; Philadelphia PA USA
| | - Preeti S. Badve
- Department of Neurobiology and Anatomy; Drexel University College of Medicine; Philadelphia PA USA
| | - Jessica R. Barson
- Department of Neurobiology and Anatomy; Drexel University College of Medicine; Philadelphia PA USA
| | - Caroline E. Bass
- Department of Pharmacology and Toxicology, Jacobs School of Medicine; State University of New York at Buffalo; Buffalo NY USA
| | - Rodrigo A. España
- Department of Neurobiology and Anatomy; Drexel University College of Medicine; Philadelphia PA USA
| |
Collapse
|
45
|
Perrey DA, Zhang Y. Therapeutics development for addiction: Orexin-1 receptor antagonists. Brain Res 2018; 1731:145922. [PMID: 30148984 DOI: 10.1016/j.brainres.2018.08.025] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/21/2018] [Accepted: 08/23/2018] [Indexed: 12/12/2022]
Abstract
The orexin system includes the neuropeptides orexin A and B and the cognate receptors of orexin-1 (OX1) and -2 (OX2) and has been indicated in a number of important physiological processes. It is generally accepted that the OX1 receptor is mainly involved in motivation and reward and the OX2 receptor in the modulation of sleep/wake cycle and energy homeostasis. A variety of OX1 selective antagonists (1-SORAs) have been disclosed in the literature and some of them have been evaluated as potential therapeutics for addiction treatment. In this review we summarize all OX1 antagonists reported thus far based on their core structure. Several dual orexin receptor antagonists (DORAs) and OX2 selective antagonist (2-SORAs) have also been recently evaluated in reward and addiction models. While DORAs may seem pharmacologically advantageous for alcohol addiction given the recent findings on the OX2 receptor in reward and alcohol consumption, 1-SORAs are the better options for other drugs of addiction such as cocaine due to the absence of the sedative effects inherently associated with dual antagonists.
Collapse
Affiliation(s)
- David A Perrey
- Research Triangle Institute, Research Triangle Park, NC 27709, USA
| | - Yanan Zhang
- Research Triangle Institute, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
46
|
Hypocretin receptor 1 involvement in cocaine-associated behavior: Therapeutic potential and novel mechanistic insights. Brain Res 2018; 1731:145894. [PMID: 30071195 DOI: 10.1016/j.brainres.2018.07.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/05/2018] [Accepted: 07/12/2018] [Indexed: 12/28/2022]
Abstract
Since its discovery in 1998, the hypocretin/orexin system has been identified as a critical modulator of behavior. Through interactions with dopamine neurons of the ventral tegmental area, this system is poised to regulate motivation for drug rewards by impacting dopamine neurotransmission in target structures including the nucleus accumbens. Across numerous experiments, we and others have identified a critical influence of hypocretin receptor 1 in mediating the behavioral and physiological effects of cocaine which positions this receptor as a potential target for the treatment of cocaine addiction. Here we discuss evidence for hypocretin receptor 1 involvement in driving cocaine-associated behavior and how hypocretin receptor 1 in the ventral tegmental area are critical for supporting dopamine neuron activity and dopamine neurotransmission. We then present new data supporting the novel hypothesis that in addition to exerting acute actions on dopamine systems, pharmacological hypocretin manipulations also produce lasting adaptations to dopamine terminals that impact sensitivity to cocaine, and ultimately, future behavior.
Collapse
|
47
|
Wang C, Wang Q, Ji B, Pan Y, Xu C, Cheng B, Bai B, Chen J. The Orexin/Receptor System: Molecular Mechanism and Therapeutic Potential for Neurological Diseases. Front Mol Neurosci 2018; 11:220. [PMID: 30002617 PMCID: PMC6031739 DOI: 10.3389/fnmol.2018.00220] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/06/2018] [Indexed: 12/25/2022] Open
Abstract
Orexins, also known as hypocretins, are two neuropeptides secreted from orexin-containing neurons, mainly in the lateral hypothalamus (LH). Orexins orchestrate their effects by binding and activating two G-protein–coupled receptors (GPCRs), orexin receptor type 1 (OX1R) and type 2 (OX2R). Orexin/receptor pathways play vital regulatory roles in many physiological processes, especially feeding behavior, sleep–wake rhythm, reward and addiction and energy balance. Furthermore several reports showed that orexin/receptor pathways are involved in pathological processes of neurological diseases such as narcolepsy, depression, ischemic stroke, drug addiction and Alzheimer’s disease (AD). This review article summarizes the expression patterns, physiological functions and potential molecular mechanisms of the orexin/receptor system in neurological diseases, providing an overall framework for considering these pathways from the standpoints of basic research and clinical treatment of neurological diseases.
Collapse
Affiliation(s)
- Chunmei Wang
- Neurobiology Key Laboratory of Jining Medical University in Colleges of Shandong, Jining Medical University, Jining, China
| | - Qinqin Wang
- Neurobiology Key Laboratory of Jining Medical University in Colleges of Shandong, Jining Medical University, Jining, China
| | - Bingyuan Ji
- Neurobiology Key Laboratory of Jining Medical University in Colleges of Shandong, Jining Medical University, Jining, China
| | - Yanyou Pan
- Neurobiology Key Laboratory of Jining Medical University in Colleges of Shandong, Jining Medical University, Jining, China
| | - Chao Xu
- Neurobiology Key Laboratory of Jining Medical University in Colleges of Shandong, Jining Medical University, Jining, China
| | - Baohua Cheng
- Neurobiology Key Laboratory of Jining Medical University in Colleges of Shandong, Jining Medical University, Jining, China
| | - Bo Bai
- Neurobiology Key Laboratory of Jining Medical University in Colleges of Shandong, Jining Medical University, Jining, China
| | - Jing Chen
- Neurobiology Key Laboratory of Jining Medical University in Colleges of Shandong, Jining Medical University, Jining, China.,Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
48
|
Moorman DE. The hypocretin/orexin system as a target for excessive motivation in alcohol use disorders. Psychopharmacology (Berl) 2018; 235:1663-1680. [PMID: 29508004 PMCID: PMC5949267 DOI: 10.1007/s00213-018-4871-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 02/20/2018] [Indexed: 12/17/2022]
Abstract
The hypocretin/orexin (ORX) system has been repeatedly demonstrated to regulate motivation for drugs of abuse, including alcohol. In particular, ORX seems to be critically involved in highly motivated behaviors, as is observed in high-seeking individuals in a population, in the seeking of highly palatable substances, and in models of dependence. It seems logical that this system could be considered as a potential target for treatment for addiction, particularly alcohol addiction, as ORX pharmacological manipulations significantly reduce drinking. However, the ORX system also plays a role in a wide range of other behaviors, emotions, and physiological functions and is disrupted in a number of non-dependence-associated disorders. It is therefore important to consider how the ORX system might be optimally targeted for potential treatment for alcohol use disorders either in combination with or separate from its role in other functions or diseases. This review will focus on the role of ORX in alcohol-associated behaviors and whether and how this system could be targeted to treat alcohol use disorders while avoiding impacts on other ORX-relevant functions. A brief overview of the ORX system will be followed by a discussion of some of the factors that makes it particularly intriguing as a target for alcohol addiction treatment, a consideration of some potential challenges associated with targeting this system and, finally, some future directions to optimize new treatments.
Collapse
Affiliation(s)
- David E Moorman
- Department of Psychological and Brain Sciences, Neuroscience and Behavior Graduate Program, University of Massachusetts Amherst, 528 Tobin Hall, 135 Hicks Way, Amherst, MA, 01003, USA.
| |
Collapse
|
49
|
Gentile TA, Simmons SJ, Watson MN, Connelly KL, Brailoiu E, Zhang Y, Muschamp JW. Effects of Suvorexant, a Dual Orexin/Hypocretin Receptor Antagonist, on Impulsive Behavior Associated with Cocaine. Neuropsychopharmacology 2018; 43:1001-1009. [PMID: 28741623 PMCID: PMC5854790 DOI: 10.1038/npp.2017.158] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 07/10/2017] [Accepted: 07/16/2017] [Indexed: 11/09/2022]
Abstract
Hypothalamic hypocretin (orexin) peptides mediate arousal, attention, and reward processing. Fibers containing orexins project to brain structures that govern motivated behavior, including the ventral tegmental area (VTA). A number of psychiatric conditions, including attention deficit hyperactivity disorder (ADHD) and substance use disorders, are characterized by deficits in impulse control, however the relationship between orexin and impulsive behavior is incompletely characterized. The effects of systemic or centrally administered orexin receptor (OXR) antagonists on measures of impulsive-like behavior in rats were evaluated using the five-choice serial reaction time task (5-CSRTT) and delay discounting procedures. These paradigms were also used to test the capacity of OXR antagonists to attenuate acute cocaine-evoked impulsivity. Finally, immunohistochemistry and calcium imaging were used to assess potential cellular mechanisms by which OXR blockade may influence motor impulsivity. Suvorexant, a dual (OX1/2R) orexin receptor antagonist, reduced cocaine-evoked premature responses in 5-CSRTT when administered systemically or directly into VTA. Neither suvorexant nor OX1R- or OX2R-selective compounds (SB334867 or TCS-OX2-29, respectively) altered delay discounting. Finally, suvorexant did not alter Fos-immunoreactivity within tyrosine hydroxylase-immunolabeled neurons of VTA, but did attenuate cocaine- and orexin-induced increases in calcium transient amplitude within neurons of VTA. Results from the present studies suggest potential therapeutic utility of OXR antagonists in reducing psychostimulant-induced motor impulsivity. These findings also support the view that orexin transmission is closely involved in executive function in normal and pathological conditions.
Collapse
Affiliation(s)
- Taylor A Gentile
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Steven J Simmons
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Mia N Watson
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Krista L Connelly
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Eugen Brailoiu
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Yanan Zhang
- Research Triangle Institute, Research Triangle Park, NC, USA
| | - John W Muschamp
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA,Center for Substance Abuse Research, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street – MERB 849, Philadelphia, PA, 19140, USA, Tel: +1 215 707 8089, Fax: +1 215 707 6661, E-mail:
| |
Collapse
|
50
|
Lee DJ, Elias GJB, Lozano AM. Neuromodulation for the treatment of eating disorders and obesity. Ther Adv Psychopharmacol 2018; 8:73-92. [PMID: 29399320 PMCID: PMC5788100 DOI: 10.1177/2045125317743435] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 10/24/2017] [Indexed: 12/25/2022] Open
Abstract
Eating disorders and obesity adversely affect individuals both medically and psychologically, leading to reduced life expectancy and poor quality of life. While there exist a number of treatments for anorexia, morbid obesity and bulimia, many patients do not respond favorably to current behavioral, medical or bariatric surgical management. Neuromodulation has been postulated as a potential treatment for eating disorders and obesity. In particular, deep brain stimulation and transcranial non-invasive brain stimulation have been studied for these indications across a variety of brain targets. Here, we review the neurobiology behind eating and eating disorders as well as the current status of preclinical and clinical neuromodulation trials for eating disorders and obesity.
Collapse
Affiliation(s)
- Darrin J Lee
- Division of Neurosurgery, Toronto Western Hospital, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Gavin J B Elias
- Division of Neurosurgery, Toronto Western Hospital, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Andres M Lozano
- Division of Neurosurgery, Toronto Western Hospital, Department of Surgery, University of Toronto, 399 Bathurst St., West Wing 4-431, Toronto, ON M5T 2S8, Canada
| |
Collapse
|