1
|
Reynolds RS, Wilson KR. Unraveling the Meaning of Effective Uptake Coefficients in Multiphase and Aerosol Chemistry. Acc Chem Res 2025; 58:366-374. [PMID: 39804960 DOI: 10.1021/acs.accounts.4c00662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
ConspectusReactions of gas phase molecules with surfaces play key roles in atmospheric and environmental chemistry. Reactive uptake coefficients (γ), the fraction of gas-surface collisions that yield a reaction, are used to quantify the kinetics in these heterogeneous and multiphase systems. Unlike rate coefficients for homogeneous gas- or liquid-phase reactions, uptake coefficients are system- and observation-dependent quantities that depend upon a multitude of underlying elementary steps. As such, uptake coefficients adopt complex scaling behavior with reactant concentrations and other physicochemical properties of the interface, making predictions of γ particularly challenging.Typically, γgas is obtained by measuring the loss rate of a gas-phase molecule above a liquid or solid surface, relative to its collision frequency. By definition, γgas ≤ 1. Highly efficient reactions proceed at or near the gas-surface collision frequency and exhibit values of γgas near unity. Alternatively, heterogeneous kinetics are often measured using the consumption rate of a condensed phase reactant normalized to the gas-surface collision frequency, yielding instead an effective uptake coefficient (γeff). In many cases, γeff and γgas are not equal, yielding additional insights into the nature of the reaction. For example, substantial diffusive limitations in the condensed phase may inhibit reactivity, yielding γeff ≪ γgas. In contrast, γeff > γgas in the presence of condensed phase secondary reactions, with values of γeff often exceeding 1 for the case of radical chain reactions.In this Account, we will discuss how measurements of γeff in aerosol can uniquely reveal the origins of complex physical and chemical behavior in multiphase reactions under laboratory conditions. For example, measurements of the scaling of γeff with shell thickness during the ozonolysis of core-shell aerosol yields insight into the relative transport and reaction time scales of gaseous oxidants, while measurements of γeff, as a function of relative humidity (RH) during OH radical oxidation of hygroscopic citric acid aerosol, highlight the role that mixing times of particle-phase reactants play in determining aerosol reaction kinetics. Additionally, the scaling of γeff with oxidant and trace gas concentrations during the oxidation of long-chain hydrocarbons in aerosols by OH radicals and chlorine atoms provides distinctive signatures of the underlying competition between free radical propagation and termination mechanisms. Finally, it is shown how changes in γeff that are induced by careful selection of the molecular structure of the particle-phase reactant help to identify new reaction pathways, such as alternative mechanisms for lipid peroxidation, and to report on the reaction kinetics of short-lived reactive species, including Criegee Intermediates. Together, these examples will demonstrate how proper experimental design and accurate measurements of an effective uptake coefficient can be used to interrogate the fundamental steps governing complex multiphase reaction mechanisms.
Collapse
Affiliation(s)
- Ryan S Reynolds
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Kevin R Wilson
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
2
|
Lakey PSJ, Shiraiwa M. Kinetic multilayer models for surface chemistry in indoor environments. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024. [PMID: 39526590 DOI: 10.1039/d4em00549j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Multiphase interactions and chemical reactions at indoor surfaces are of particular importance due to their impact on air quality in indoor environments with high surface to volume ratios. Kinetic multilayer models are a powerful tool to simulate various gas-surface interactions including partitioning, diffusion and multiphase chemistry of indoor compounds by treating mass transport and chemical reactions in a number of model layers in the gas and condensed phases with a flux-based approach. We have developed a series of kinetic multilayer models that have been applied to describe multiphase chemistry and interactions indoors. They include the K2-SURF model treating the reversible adsorption of volatile organic compounds on surfaces, the KM-BL model treating diffusion through an indoor surface boundary layer, the KM-FILM model treating organic film formation by multi-layer adsorption and film growth by absorption of indoor compounds, and the KM-SUB-Skin-Clothing model treating reactions of ozone with skin lipids in skin and clothing. We also developed the effective mass accommodation coefficient that can treat surface partitioning by effectively taking into account kinetic limitations of bulk diffusion. In this study we provide detailed instructions and code annotations of these models for the model user. Example sensitivity simulations that investigate the impact of input parameters are presented to help with familiarization to the codes. The user can adapt the codes as required to model experimental and indoor field campaign measurements, can use the codes to gain insights into important reactions and processes, and can extrapolate to new conditions that may not be accessible by measurements.
Collapse
Affiliation(s)
- Pascale S J Lakey
- Department of Chemistry, University of California, Irvine, CA92697, USA.
| | - Manabu Shiraiwa
- Department of Chemistry, University of California, Irvine, CA92697, USA.
| |
Collapse
|
3
|
Zhao R, Li L, Wu Q, Luo W, Zhang Q, Cui C. Spontaneous formation of reactive redox radical species at the interface of gas diffusion electrode. Nat Commun 2024; 15:8367. [PMID: 39333136 PMCID: PMC11436765 DOI: 10.1038/s41467-024-52790-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024] Open
Abstract
The aqueous interface-rich system has been proposed to act as a trigger and a reservoir for reactive radicals, playing a crucial role in chemical reactions. Although much is known about the redox reactivity of water microdroplets at "droplets-in-gas" interfaces, it remains poorly understood for "bubbles-in-water" interfaces that are created by feeding gas through the porous membrane of the gas diffusion electrode. Here we reveal the spontaneous generation of highly reactive redox radical species detected by using electron paramagnetic resonance under such conditions without applying any bias and loading any catalysts. In combination with ultraviolet-visible spectroscopy, the redox feature has been further verified through several probe molecules. Unexpectedly, introducing crown ether allows to isolate and stabilize both water radical cations and hydrated electrons thus substantially increasing redox reactivity. Our finding suggests a reactive microenvironment at the interface of the gas diffusion electrode owing to the coexistence of oxidative and reductive species.
Collapse
Affiliation(s)
- Ruijuan Zhao
- Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Lei Li
- Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Qianbao Wu
- Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Wei Luo
- Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Qiu Zhang
- Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Chunhua Cui
- Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| |
Collapse
|
4
|
Moon S, Limmer DT. Enhanced ClNO 2 Formation at the Interface of Sea-Salt Aerosol. J Phys Chem Lett 2024; 15:9466-9473. [PMID: 39254177 DOI: 10.1021/acs.jpclett.4c02289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
The reactive uptake of N2O5 on sea-spray aerosol plays a key role in regulating the NOx concentration in the troposphere. Despite numerous field and laboratory studies, a microscopic understanding of its heterogeneous reactivity remains unclear. Here, we use molecular simulation and theory to elucidate the chlorination of N2O5 to form ClNO2, the primary reactive channel within sea-spray aerosol. We find that the formation of ClNO2 is markedly enhanced at the air-water interface due to the stabilization of the charge-delocalized transition state, as evident from the formulation of bimolecular rate theory in heterogeneous environments. We explore the consequences of the enhanced interfacial reactivity in the uptake of N2O5 using numerical solutions of molecular reaction-diffusion equations as well as their analytical approximations. Our results suggest that the current interpretation of aerosol branching ratios needs to be revisited.
Collapse
Affiliation(s)
- Seokjin Moon
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - David T Limmer
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Kavli Energy NanoScience Institute, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
5
|
Gangwar N, Gangwar C, Sarkar J. A review on template-assisted approaches & self assembly of nanomaterials at liquid/liquid interface. Heliyon 2024; 10:e36810. [PMID: 39263084 PMCID: PMC11387549 DOI: 10.1016/j.heliyon.2024.e36810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 08/09/2024] [Accepted: 08/22/2024] [Indexed: 09/13/2024] Open
Abstract
In recent times, nanomaterials (NMs) have gained significant attention for their unique properties and wide-ranging applications. This increased interest has driven research aimed at developing more efficient synthetic approaches in the fields of material science. Moreover, today's increasing demand for materials underscores the need for innovative technologies that can effectively scale up production to meet these growing needs. Hence, this review is primarily delve deeply into the template-assisted method i.e., an advance bottom-up approach for NMs synthesis. Furthermore, this review emphasizes to explore the advancements in soft template-based synthetic strategies for nanostructured materials as it provides high control on morphology and size. Therefore, this review specifically organized around on providing an in-depth discussion of the liquid/liquid interface-assisted soft template method, applications, and the factors affecting liquid/liquid interface for NMs synthesis. These key points are instrumental in driving advancements, highlighting the ongoing need for further enhancement and refinement of smart technologies. Finally, we conclude the review by describing the challenges and future perspectives of the liquid/liquid-assisted approach for NMs designing.
Collapse
Affiliation(s)
- Nisha Gangwar
- Department of Chemistry, University of Lucknow, Lucknow, 226007, U.P., India
| | - Chinky Gangwar
- Department of Chemistry, University of Lucknow, Lucknow, 226007, U.P., India
- Department of Chemistry, B.S.N.V.P.G. College (KKV), Lucknow, 226001, U.P., India
| | - Joy Sarkar
- Department of Chemistry, University of Lucknow, Lucknow, 226007, U.P., India
| |
Collapse
|
6
|
Zeng M, Wilson KR. Evaluating Possible Formation Mechanisms of Criegee Intermediates during the Heterogeneous Autoxidation of Squalene. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11587-11595. [PMID: 38900151 DOI: 10.1021/acs.est.4c02590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Organic molecules in the environment oxidatively degrade by a variety of free radical, microbial, and biogeochemical pathways. A significant pathway is heterogeneous autoxidation, in which degradation occurs via a network of carbon and oxygen centered free radicals. Recently, we found evidence for a new heterogeneous autoxidation mechanism of squalene that is initiated by hydroxyl (OH) radical addition to a carbon-carbon double bond and apparently propagated through pathways involving Criegee Intermediates (CI) produced from β-hydroxy peroxy radicals (β-OH-RO2•). It remains unclear, however, exactly how CI are formed from β-OH-RO2•, which could occur by a unimolecular or bimolecular pathway. Combining kinetic models and multiphase OH oxidation measurements of squalene, we evaluate the kinetic viability of three mechanistic scenarios. Scenario 1 assumes that CI are formed by the unimolecular bond scission of β-OH-RO2•, whereas Scenarios 2 and 3 test bimolecular pathways of β-OH-RO2• to yield CI. Scenario 1 best replicates the entire experimental data set, which includes effective uptake coefficients vs [OH] as well as the formation kinetics of the major products (i.e., aldehydes and secondary ozonides). Although the unimolecular pathway appears to be kinetically viable, future high-level theory is needed to fully explain the mechanistic relationship between CI and β-OH-RO2• in the condensed phase.
Collapse
Affiliation(s)
- Meirong Zeng
- College of Smart Energy, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Kevin R Wilson
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
7
|
Li J, Guo H, Li J. Energy- and Angle-Resolved Scattering of Ne from Dodecane Liquid Surfaces: Theory Corroborating Experiment. J Phys Chem Lett 2024; 15:5824-5830. [PMID: 38787404 DOI: 10.1021/acs.jpclett.4c00994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Motivated by recent experimental work by the Neumark group, we present here an all-atom molecular dynamics study of Ne scattering from a dodecane liquid surface with the objective of elucidating the fundamental aspects of gas-liquid dynamics. Using a fine-tuned force field, the GPU-accelerated simulations reproduced semiquantitatively the energy- and angle-resolved experimental results. The branching ratio between the impulsive scattering (IS) and thermal desorption (TD) channels exhibits a clear correlation with the incidence energy (Ei) and angle. Ne atoms with lower Ei values are more likely to be trapped, yielding an increased TD ratio. For a given Ei, a large incidence angle led to a higher IS ratio. The energy transfer between Ne atoms and liquid dodecane was found to be more sensitive to the deflection angle than to the incidence or reflection angle. With an increasing deflection angle, the fractional energy loss increases, suggesting that more kinetic energy is transferred to the liquid.
Collapse
Affiliation(s)
- Junhong Li
- School of Chemistry and Chemical Engineering and Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing 401331, China
| | - Hua Guo
- Department of Chemistry and Chemical Biology, Center for Computational Chemistry, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Jun Li
- School of Chemistry and Chemical Engineering and Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing 401331, China
| |
Collapse
|
8
|
Gleichweit MJ, Azizbaig Mohajer M, Borgeaud Dit Avocat DP, Divéky ME, David G, Signorell R. Unexpected concentration dependence of the mass accommodation coefficient of water on aqueous triethylene glycol droplets. Phys Chem Chem Phys 2024; 26:16296-16308. [PMID: 38804833 PMCID: PMC11154172 DOI: 10.1039/d4cp00966e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024]
Abstract
The mass accommodation coefficient αM of water on aqueous triethylene glycol droplets was determined for water mole fractions in the range xmol = 0.1-0.93 and temperatures between 21 and 26 °C from modulated Mie scattering measurement on single optically-trapped droplets in combination with a kinetic multilayer model. αM reaches minimum values around 0.005 at a critical water concentration of xmol = 0.38, and increases with decreasing water content to a value of ≈0.1 for almost pure triethylene glycol droplets, essentially independent of the temperature. Above xmol = 0.38, αM first increases with increasing water content and then stabilises at a value of ≈0.1 at the lowest temperatures, while at the highest temperature its value remains around 0.005. We analysed the unexpected concentration and temperature dependence with a previously proposed two-step model for mass accommodation which provides concentration and temperature-dependent activation enthalpies and entropies. We suggest that the unexpected minimum in αM at intermediate water concentrations might arise from a more or less saturated hydrogen-bond network that forms at the droplet surface.
Collapse
Affiliation(s)
- Michael J Gleichweit
- Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland.
| | | | | | - Matúš E Divéky
- Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland.
| | - Grégory David
- Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland.
| | - Ruth Signorell
- Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland.
| |
Collapse
|
9
|
Polley K, Wilson KR, Limmer DT. On the Statistical Mechanics of Mass Accommodation at Liquid-Vapor Interfaces. J Phys Chem B 2024; 128:4148-4157. [PMID: 38652843 DOI: 10.1021/acs.jpcb.4c00899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
We propose a framework for describing the dynamics associated with the adsorption of small molecules to liquid-vapor interfaces using an intermediate resolution between traditional continuum theories that are bereft of molecular detail and molecular dynamics simulations that are replete with them. In particular, we develop an effective single particle equation of motion capable of describing the physical processes that determine thermal and mass accommodation probabilities. The effective equation is parametrized with quantities that vary through space away from the liquid-vapor interface. Of particular importance in describing the early time dynamics is the spatially dependent friction, for which we propose a numerical scheme to evaluate from molecular simulation. Taken together with potentials of mean force computable with importance sampling methods, we illustrate how to compute the mass accommodation coefficient and residence time distribution. Throughout, we highlight the case of ozone adsorption in aqueous solutions and its dependence on electrolyte composition.
Collapse
Affiliation(s)
- Kritanjan Polley
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Kevin R Wilson
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - David T Limmer
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Kavli Energy NanoScience Institute, Berkeley, California 94720, United States
| |
Collapse
|
10
|
Stapelmann K, Gershman S, Miller V. Plasma-liquid interactions in the presence of organic matter-A perspective. JOURNAL OF APPLIED PHYSICS 2024; 135:160901. [PMID: 38681528 PMCID: PMC11055635 DOI: 10.1063/5.0203125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/12/2024] [Indexed: 05/01/2024]
Abstract
As investigations in the biomedical applications of plasma advance, a demand for describing safe and efficacious delivery of plasma is emerging. It is quite clear that not all plasmas are "equal" for all applications. This Perspective discusses limitations of the existing parameters used to define plasma in context of the need for the "right plasma" at the "right dose" for each "disease system." The validity of results extrapolated from in vitro studies to preclinical and clinical applications is discussed. We make a case for studying the whole system as a single unit, in situ. Furthermore, we argue that while plasma-generated chemical species are the proposed key effectors in biological systems, the contribution of physical effectors (electric fields, surface charging, dielectric properties of target, changes in gap electric fields, etc.) must not be ignored.
Collapse
Affiliation(s)
- Katharina Stapelmann
- Department of Nuclear Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Sophia Gershman
- Princeton Plasma Physics Laboratory, Princeton, New Jersey 08540, USA
| | - Vandana Miller
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129, USA
| |
Collapse
|
11
|
Fang YG, Tang B, Yuan C, Wan Z, Zhao L, Zhu S, Francisco JS, Zhu C, Fang WH. Mechanistic insight into the competition between interfacial and bulk reactions in microdroplets through N 2O 5 ammonolysis and hydrolysis. Nat Commun 2024; 15:2347. [PMID: 38491022 PMCID: PMC10943240 DOI: 10.1038/s41467-024-46674-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 02/28/2024] [Indexed: 03/18/2024] Open
Abstract
Reactive uptake of dinitrogen pentaoxide (N2O5) into aqueous aerosols is a major loss channel for NOx in the troposphere; however, a quantitative understanding of the uptake mechanism is lacking. Herein, a computational chemistry strategy is developed employing high-level quantum chemical methods; the method offers detailed molecular insight into the hydrolysis and ammonolysis mechanisms of N2O5 in microdroplets. Specifically, our calculations estimate the bulk and interfacial hydrolysis rates to be (2.3 ± 1.6) × 10-3 and (6.3 ± 4.2) × 10-7 ns-1, respectively, and ammonolysis competes with hydrolysis at NH3 concentrations above 1.9 × 10-4 mol L-1. The slow interfacial hydrolysis rate suggests that interfacial processes have negligible effect on the hydrolysis of N2O5 in liquid water. In contrast, N2O5 ammonolysis in liquid water is dominated by interfacial processes due to the high interfacial ammonolysis rate. Our findings and strategy are applicable to high-chemical complexity microdroplets.
Collapse
Affiliation(s)
- Ye-Guang Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, P. R. China
- Laboratory of Theoretical and Computational Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Centre for Excellence in Nanoscience, National Centre for Nanoscience and Technology, Beijing, P. R. China
| | - Bo Tang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, P. R. China
| | - Chang Yuan
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, P. R. China
| | - Zhengyi Wan
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - Lei Zhao
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, P. R. China
| | - Shuang Zhu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, P. R. China
| | - Joseph S Francisco
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA.
| | - Chongqin Zhu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, P. R. China.
| | - Wei-Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, P. R. China
| |
Collapse
|
12
|
Takahashi M, Nakatsuka R, Kutsuna S, Shirai Y, Sugawa S. Mineralization of Poly(vinyl alcohol) by Ozone Microbubbles under a Wide Range of pH Conditions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:15215-15221. [PMID: 37851539 DOI: 10.1021/acs.langmuir.3c01838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Poly(vinyl alcohol) (PVA) is a well-known recalcitrant pollutant that threatens ecological systems and human health. In this study, ozone-microbubble treatment was evaluated as a physicochemical method to mineralize PVA in solution for wastewater treatment. Microbubbles are very small bubbles (<50 μm in diameter) and shrink in water because of the rapid dissolution of the interior gas. Ozone microbubbles were generated by a hybrid microbubble generator in PVA solutions with pH conditions of 2, 7, and 10. Ordinary ozone bubbling was also performed as control tests. The change in the total-organic-carbon content was measured to evaluate the efficiency of the system for wastewater treatment. Ordinary ozone bubbling was not able to mineralize aqueous PVA solutions under nonalkaline conditions, and approximately 30% of the total organic carbon remained at pH 2 and 7. Conversely, ozone microbubbles effectively mineralized PVA in aqueous solution to almost 0% in total organic carbon regardless of the pH condition. Effective mineralization of PVA, a recalcitrant organic chemical, demonstrates the potential of ozone-microbubble systems for physicochemical wastewater treatment.
Collapse
Affiliation(s)
- Masayoshi Takahashi
- New Industry Creation Hatchery Center, Tohoku University, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Ryo Nakatsuka
- Department of Mechanical Science and Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino 275-0016, Japan
| | - Shuzo Kutsuna
- Environment Management Research Institute, National Institute of Advanced Industrial Science and Technology, 16-1 Onogawa, Tsukuba 305-8569, Japan
| | - Yasuyuki Shirai
- New Industry Creation Hatchery Center, Tohoku University, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Shigetoshi Sugawa
- New Industry Creation Hatchery Center, Tohoku University, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| |
Collapse
|
13
|
Pandey PK, Chandra A. Mechanism, Kinetics, and Potential of Mean Force of Evaporation of Water from Aqueous Sodium Chloride Solutions of Varying Concentrations. J Phys Chem B 2023; 127:4602-4612. [PMID: 37163726 DOI: 10.1021/acs.jpcb.2c09004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The mechanism, kinetics, and potential of mean force of evaporation of water from aqueous NaCl solutions are investigated through both unbiased molecular dynamics simulations and also biased simulations using the umbrella sampling method. The results are obtained for aqueous solutions of three different NaCl concentrations ranging from 0.6 to 6.0 m and also for pure water. The rate of evaporation is found to decrease in the presence of ions. It is found that the process of evaporation of a surface water molecule from ionic solutions can be triggered through its collision with another water or chloride ion. Such collisions provide the additional kinetic energy that is required for evaporation. However, when the collision takes place with a Cl- ion, the evaporation of the escaping water also involves a collision with water in the vicinity of the ion at the same time along with the ion-water collision. These two collisions together provide the required kinetic energy for escape of the evaporating water molecule. Thus, the mechanism of evaporation process of ionic solutions can be more complex than that of pure water. The potential of mean force (PMF) of evaporation is found to be positive and it increases with increasing ion concentration. Also, no barrier in the PMF is found to be present for the condensation of water from vapor phase to the surfaces of the solutions. A detailed analysis of the unsuccessful evaporation attempts by surface water molecules is also made in the current study.
Collapse
Affiliation(s)
- Prashant Kumar Pandey
- Department of Chemistry, Indian Institute of Technology Kanpur, Uttar Pradesh, India 208016
| | - Amalendu Chandra
- Department of Chemistry, Indian Institute of Technology Kanpur, Uttar Pradesh, India 208016
| |
Collapse
|
14
|
Nesbitt DJ, Zolot AM, Roscioli JR, Ryazanov M. Nonequilibrium Scattering/Evaporation Dynamics at the Gas-Liquid Interface: Wetted Wheels, Self-Assembled Monolayers, and Liquid Microjets. Acc Chem Res 2023; 56:700-711. [PMID: 36848588 DOI: 10.1021/acs.accounts.2c00823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
ConspectusWe often teach or are taught in our freshman courses that there are three phases of matter─gas, liquid and solid─where the ordering reflects increasing complexity and strength of interaction between the molecular constituents. But arguably there is also a fascinating additional "phase" of matter associated with the microscopically thin interface (<10 molecules thick) between the gas and liquid, which is still poorly understood and yet plays a crucial role in fields ranging from chemistry of the marine boundary layer and atmospheric chemistry of aerosols to the passage of O2 and CO2 through alveolar sacs in our lungs. The work in this Account provides insights into three challenging new directions for the field, each embracing a rovibronically quantum-state-resolved perspective. Specifically, we exploit the powerful tools of chemical physics and laser spectroscopy to pose two fundamental questions. (i) At the microscopic level, do molecules in all internal quantum-states (e.g., vibrational, rotational, electronic) colliding with the interface "stick" with unit probability? (ii) Can reactive, scattering, and/or evaporating molecules at the gas-liquid interface avoid collisions with other species and thereby be observed in a truly "nascent" collision-free distribution of internal degrees of freedom? To help address these questions, we present studies in three different areas: (i) reactive scattering dynamics of F atoms with wetted-wheel gas-liquid interfaces, (ii) inelastic scattering of HCl from self-assembled monolayers (SAMs) via resonance-enhanced photoionization (REMPI)/velocity map imaging (VMI) methods, and (iii) quantum-state-resolved evaporation dynamics of NO at the gas-water interface. As a recurring theme, we find that molecular projectiles reactively, inelastically, or evaporatively scatter from the gas-liquid interface into internal quantum-state distributions substantially out of equilibrium with respect to the bulk liquid temperatures (TS). By detailed balance considerations, the data unambiguously indicate that even simple molecules exhibit rovibronic state dependences to how they "stick" to and eventually solvate into the gas-liquid interface. Such results serve to underscore the importance of quantum mechanics and nonequilibrium thermodynamics in energy transfer and chemical reactions at the gas-liquid interface. This nonequilibrium behavior may well make this rapidly emergent field of chemical dynamics at gas-liquid interfaces more complicated but even more interesting targets for further experimental/theoretical exploration.
Collapse
Affiliation(s)
- David J Nesbitt
- JILA, National Institute of Standards and Technology and University of Colorado, Boulder, Colorado 80309, United States
- Department of Physics, University of Colorado, Boulder, Colorado 80309, United States
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - Alex M Zolot
- Quantinuum, 303 S. Technology Ct., Broomfield, Colorado 80021, United States
| | - Joseph R Roscioli
- Aerodyne Research, Inc., 45 Manning Rd., Billerica, Massachusetts 01821, United States
| | - Mikhail Ryazanov
- JILA, National Institute of Standards and Technology and University of Colorado, Boulder, Colorado 80309, United States
| |
Collapse
|
15
|
Kaur R, Sadtchenko V. Mass Accommodation of Water on Ice at Environmentally Relevant Temperatures: Insights from Fast Scanning Calorimetry. J Phys Chem Lett 2022; 13:11112-11117. [PMID: 36441956 DOI: 10.1021/acs.jpclett.2c02712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Using a conceptually simple, quasi-adiabatic, fast scanning calorimetry technique, we have investigated the sublimation kinetics of ice films with thicknesses ranging from 14 to 400 nm at environmentally relevant temperatures, between 223 and 268 K. The technique enables accurate determination of ice sublimation rates into vacuum under the conditions of free molecular flow during rapid yet quasistatic heating. The measured sublimation fluxes yield the vapor pressure of the ice samples, which is indistinguishable from that derived from experiments under near-equilibrium conditions. Thus, in agreement with the microscopic reversibility principle, we conclude that the mass accommodation coefficient of water by ice is unity and temperature-independent in the temperature range of the studies. We discuss these findings in the context of current computational and theoretical research into the chemistry and physics of aqueous interfaces.
Collapse
Affiliation(s)
- Rinipal Kaur
- Department of Chemistry, The George Washington University, Washington, D.C.20052, United States
| | - Vlad Sadtchenko
- Department of Chemistry, The George Washington University, Washington, D.C.20052, United States
| |
Collapse
|
16
|
Gao XF, Nathanson GM. Exploring Gas-Liquid Reactions with Microjets: Lessons We Are Learning. Acc Chem Res 2022; 55:3294-3302. [PMID: 36378763 DOI: 10.1021/acs.accounts.2c00602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Liquid water is all around us: at the beach, in a cloud, from a faucet, inside a spray tower, covering our lungs. It is fascinating to imagine what happens to a reactive gas molecule as it approaches the surface of water in these examples. Some incoming molecules may first be deflected away after colliding with an evaporating water molecule. Those that do strike surface H2O or other surface species may bounce directly off or become momentarily trapped through hydrogen bonding or other attractive forces. The adsorbed gas molecule can then desorb immediately or instead dissolve, passing through the interfacial region and into the bulk, perhaps diffusing back to the surface and evaporating before reacting. Alternatively, it may react with solute or water molecules in the interfacial or bulk regions, and a reaction intermediate or the final product may then desorb into the gas phase. Building a "blow by blow" picture of these pathways is challenging for vacuum-based techniques because of the high vapor pressure of water. In particular, collisions within the thick vapor cloud created by evaporating molecules just above the surface scramble the trajectories and internal states of the gaseous target molecules, hindering construction of gas-liquid reaction mechanisms at the atomic scale that we strive to map out.The introduction of the microjet in 1988 by Faubel, Schlemmer, and Toennies opened up entirely new possibilities. Their inspired solution seems so simple: narrow the end of a glass tube to a diameter smaller than the mean free path of the vapor molecules and then push the liquid through the tube at speeds of a car on a highway. The narrow liquid stream creates a sparse vapor cloud, with water molecules spaced far enough apart that they and the reactant gases interact, at most, weakly. Experimentalists, however, confront a host of challenges: nozzle clogging, unstable jetting, searching for vacuum-compatible solutions, measuring low signal levels, and teasing out artifacts because the slender jet is the smallest surface in the vacuum chamber. In this Account, we describe lessons that we are learning as we explore gases (DCl, (HCOOH)2, N2O5) reacting with water molecules and solute ions in the near-interfacial region of these fast-flowing aqueous microjets.
Collapse
Affiliation(s)
- Xiao-Fei Gao
- Department of Chemistry, University of Wisconsin─Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Gilbert M Nathanson
- Department of Chemistry, University of Wisconsin─Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
17
|
Wilson KR, Prophet AM, Willis MD. A Kinetic Model for Predicting Trace Gas Uptake and Reaction. J Phys Chem A 2022; 126:7291-7308. [PMID: 36170058 DOI: 10.1021/acs.jpca.2c03559] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A model is developed to describe trace gas uptake and reaction with applications to aerosols and microdroplets. Gas uptake by the liquid is formulated as a coupled equilibria that links gas, surface, and bulk regions of the droplet or solution. Previously, this framework was used in explicit stochastic reaction-diffusion simulations to predict the reactive uptake kinetics of ozone with droplets containing aqueous aconitic acid, maleic acid, and sodium nitrite. With the use of prior data and simulation results, a new equation for the uptake coefficient is derived, which accounts for both surface and bulk reactions. Lambert W functions are used to obtain closed form solutions to the integrated rate laws for the multiphase kinetics; similar to previous expressions that describe Michaelis-Menten enzyme kinetics. Together these equations couple interface and bulk processes over a wide range of conditions and do not require many of the limiting assumptions needed to apply resistor model formulations to explain trace gas uptake and reaction.
Collapse
Affiliation(s)
- Kevin R Wilson
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Alexander M Prophet
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Megan D Willis
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523 United States
| |
Collapse
|
18
|
Afzalifar A, Shields GC, Fowler VR, Ras RHA. Probing the Free Energy of Small Water Clusters: Revisiting Classical Nucleation Theory. J Phys Chem Lett 2022; 13:8038-8046. [PMID: 35993823 PMCID: PMC9442792 DOI: 10.1021/acs.jpclett.2c01361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
By addressing the defects in classical nucleation theory (CNT), we develop an approach for extracting the free energy of small water clusters from nucleation rate experiments without any assumptions about the form of the cluster free energy. For temperatures higher than ∼250 K, the extracted free energies from experimental data points indicate that their ratio to the free energies predicted by CNT exhibits nonmonotonic behavior as the cluster size changes. We show that this ratio increases from almost zero for monomers and passes through (at least) one maximum before approaching one for large clusters. For temperatures lower than ∼250 K, the behavior of the ratio between extracted energies and CNT's prediction changes; it increases with cluster size, but it remains below one for almost all of the experimental data points. We also applied a state-of-the-art quantum mechanics model to calculate free energies of water clusters (2-14 molecules); the results support the observed change in behavior based on temperature, albeit for temperatures above and below ∼298 K. We compared two different model chemistries, DLPNO-CCSD(T)/CBS//ωB97xD/6-31++G** and G3, against each other and the experimental value for formation of the water dimer.
Collapse
Affiliation(s)
- Ali Afzalifar
- Department
of Applied Physics, Aalto University School
of Science, Puumiehenkuja 2, 02150 Espoo, P.O. Box 15100, Aalto FI-00076, Finland
| | - George C. Shields
- Department
of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| | - Vance R. Fowler
- Department
of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| | - Robin H. A. Ras
- Department
of Applied Physics, Aalto University School
of Science, Puumiehenkuja 2, 02150 Espoo, P.O. Box 15100, Aalto FI-00076, Finland
- Department
of Bioproducts and Biosystems, Aalto University
School of Chemical Engineering, P.O.
Box 16000, Aalto FI-00076, Finland
| |
Collapse
|
19
|
Willis MD, Wilson KR. Coupled Interfacial and Bulk Kinetics Govern the Timescales of Multiphase Ozonolysis Reactions. J Phys Chem A 2022; 126:4991-5010. [PMID: 35863113 DOI: 10.1021/acs.jpca.2c03059] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Chemical transformations in aerosols impact the lifetime of particle phase species, the fate of atmospheric pollutants, and both climate- and health-relevant aerosol properties. Timescales for multiphase reactions of ozone in atmospheric aqueous phases are governed by coupled kinetic processes between the gas phase, the particle interface, and its bulk, which respond dynamically to reactive consumption of O3. However, models of atmospheric aerosol reactivity often do not account for the coupled nature of multiphase processes. To examine these dynamics, we use new and prior experimental observations of aqueous droplet reaction kinetics, including three systems with a range of surface affinities and ozonolysis rate coefficients (trans-aconitic acid (C6H6O6), maleic acid (C4H4O4), and sodium nitrite (NaNO2)). Using literature rate coefficients and thermodynamic properties, we constrain a simple two-compartment stochastic kinetic model which resolves the interface from the particle bulk and represents O3 partitioning, diffusion, and reaction as a coupled kinetic system. Our kinetic model accurately predicts decay kinetics across all three systems, demonstrating that both the thermodynamic properties of O3 and the coupled kinetic and diffusion processes are key to making accurate predictions. An enhanced concentration of adsorbed O3, compared to gas and bulk phases is rapidly maintained and remains constant even as O3 is consumed by reaction. Multiphase systems dynamically seek to achieve equilibrium in response to reactive O3 loss, but this is hampered at solute concentrations relevant to aqueous aerosol by the rate of O3 arrival in the bulk by diffusion. As a result, bulk-phase O3 becomes depleted from its Henry's law solubility. This bulk-phase O3 depletion limits reaction timescales for relatively slow-reacting organic solutes with low interfacial affinity (i.e., trans-aconitic and maleic acids, with krxn ≈ 103-104 M-1 s-1), which is in contrast to fast-reacting solutes with higher surface affinity (i.e., nitrite, with krxn ≈ 105 M-1 s-1) where surface reactions strongly impact the observed decay kinetics.
Collapse
Affiliation(s)
- Megan D Willis
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Kevin R Wilson
- Chemical Sciences Division, Lawrence Berkeley National Lab, Berkeley, California 94720, United States
| |
Collapse
|
20
|
Wang C, Fu L, Yang S, Zheng H, Wang T, Gao J, Su M, Yang J, Wu G, Zhang W, Zhang Z, Li G, Zhang DH, Jiang L, Yang X. Infrared Spectroscopy of Stepwise Hydration Motifs of Sulfur Dioxide. J Phys Chem Lett 2022; 13:5654-5659. [PMID: 35708351 DOI: 10.1021/acs.jpclett.2c01472] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Experimental characterization of microscopic events and behaviors of SO2-H2O interactions is crucial to understanding SO2 atmospheric chemistry but has been proven to be very challenging due to the difficulty in size selection. Here, size-dependent development of SO2 hydrate structure and cluster growth in the SO2(H2O)n (n = 1-16) complexes was probed by infrared spectroscopy based on threshold photoionization using a tunable vacuum ultraviolet free electron laser. Spectral changes with cluster size demonstrate that the sandwich structure initially formed at n = 1 develops into cycle structures with the sulfur and oxygen atoms in a two-dimensional plane (n = 2 and 3) and then into three-dimensional cage structures (n ≥ 4). SO2 is favorably bound to the surface of larger water clusters. These stepwise features of SO2 hydration on various sized water clusters contribute to understanding the reactive sites and electrophilicity of SO2 on cloud droplets, which may have important atmospheric implications for studying the SO2-containing aerosol systems.
Collapse
Affiliation(s)
- Chong Wang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Liangfei Fu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Shuo Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Huijun Zheng
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Tiantong Wang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Jiao Gao
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Mingzhi Su
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Jiayue Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Guorong Wu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Weiqing Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zhaojun Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Gang Li
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Dong H Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Hefei National Laboratory, Hefei 230088, China
| | - Ling Jiang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Hefei National Laboratory, Hefei 230088, China
| | - Xueming Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Hefei National Laboratory, Hefei 230088, China
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
21
|
Cruzeiro VWD, Galib M, Limmer DT, Götz AW. Uptake of N 2O 5 by aqueous aerosol unveiled using chemically accurate many-body potentials. Nat Commun 2022; 13:1266. [PMID: 35273144 PMCID: PMC8913772 DOI: 10.1038/s41467-022-28697-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/28/2022] [Indexed: 11/24/2022] Open
Abstract
The reactive uptake of N2O5 to aqueous aerosol is a major loss channel for nitrogen oxides in the troposphere. Despite its importance, a quantitative picture of the uptake mechanism is missing. Here we use molecular dynamics simulations with a data-driven many-body model of coupled-cluster accuracy to quantify thermodynamics and kinetics of solvation and adsorption of N2O5 in water. The free energy profile highlights that N2O5 is selectively adsorbed to the liquid-vapor interface and weakly solvated. Accommodation into bulk water occurs slowly, competing with evaporation upon adsorption from gas phase. Leveraging the quantitative accuracy of the model, we parameterize and solve a reaction-diffusion equation to determine hydrolysis rates consistent with experimental observations. We find a short reaction-diffusion length, indicating that the uptake is dominated by interfacial features. The parameters deduced here, including solubility, accommodation coefficient, and hydrolysis rate, afford a foundation for which to consider the reactive loss of N2O5 in more complex solutions.
Collapse
Affiliation(s)
- Vinícius Wilian D Cruzeiro
- San Diego Supercomputer Center, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Mirza Galib
- Department of Chemistry, University of California, Berkeley, CA, USA
| | - David T Limmer
- Department of Chemistry, University of California, Berkeley, CA, USA.
- Kavli Energy NanoScience Institute, Berkeley, CA, USA.
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Chemical Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Andreas W Götz
- San Diego Supercomputer Center, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
22
|
Shah V, Jacob DJ, Thackray CP, Wang X, Sunderland EM, Dibble TS, Saiz-Lopez A, Černušák I, Kellö V, Castro PJ, Wu R, Wang C. Improved Mechanistic Model of the Atmospheric Redox Chemistry of Mercury. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:14445-14456. [PMID: 34724789 DOI: 10.1021/acs.est.1c03160] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
We present a new chemical mechanism for Hg0/HgI/HgII atmospheric cycling, including recent laboratory and computational data, and implement it in the GEOS-Chem global atmospheric chemistry model for comparison to observations. Our mechanism includes the oxidation of Hg0 by Br and OH, subsequent oxidation of HgI by ozone and radicals, respeciation of HgII in aerosols and cloud droplets, and speciated HgII photolysis in the gas and aqueous phases. The tropospheric Hg lifetime against deposition in the model is 5.5 months, consistent with observational constraints. The model reproduces the observed global surface Hg0 concentrations and HgII wet deposition fluxes. Br and OH make comparable contributions to global net oxidation of Hg0 to HgII. Ozone is the principal HgI oxidant, enabling the efficient oxidation of Hg0 to HgII by OH. BrHgIIOH and HgII(OH)2, the initial HgII products of Hg0 oxidation, respeciate in aerosols and clouds to organic and inorganic complexes, and volatilize to photostable forms. Reduction of HgII to Hg0 takes place largely through photolysis of aqueous HgII-organic complexes. 71% of model HgII deposition is to the oceans. Major uncertainties for atmospheric Hg chemistry modeling include Br concentrations, stability and reactions of HgI, and speciation and photoreduction of HgII in aerosols and clouds.
Collapse
Affiliation(s)
- Viral Shah
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Daniel J Jacob
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Colin P Thackray
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Xuan Wang
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China
| | - Elsie M Sunderland
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts 02115, United States
| | - Theodore S Dibble
- Department of Chemistry, State University of New York, College of Environmental Science and Forestry, Syracuse, New York 13210, United States
| | - Alfonso Saiz-Lopez
- Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Rocasolano, CSIC, Madrid 28006, Spain
| | - Ivan Černušák
- Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 84215 Bratislava, Slovakia
| | - Vladimir Kellö
- Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 84215 Bratislava, Slovakia
| | - Pedro J Castro
- Department of Chemistry, State University of New York, College of Environmental Science and Forestry, Syracuse, New York 13210, United States
| | - Rongrong Wu
- Department of Physics and Astronomy, Mississippi State University, Starkville, Mississippi 39759, United States
| | - Chuji Wang
- Department of Physics and Astronomy, Mississippi State University, Starkville, Mississippi 39759, United States
| |
Collapse
|
23
|
Baines KH, Nikolić D, Cutts JA, Delitsky ML, Renard JB, Madzunkov SM, Barge LM, Mousis O, Wilson C, Limaye SS, Verdier N. Investigation of Venus Cloud Aerosol and Gas Composition Including Potential Biogenic Materials via an Aerosol-Sampling Instrument Package. ASTROBIOLOGY 2021; 21:1316-1323. [PMID: 33944604 DOI: 10.1089/ast.2021.0001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A lightweight, low-power instrument package to measure, in situ, both (1) the local gaseous environment and (2) the composition and microphysical properties of attendant venusian aerosols is presented. This Aerosol-Sampling Instrument Package (ASIP) would be used to explore cloud chemical and possibly biotic processes on future aerial missions such as multiweek balloon missions and on short-duration (<1 h) probes on Venus and potentially on other cloudy worlds such as Titan, the Ice Giants, and Saturn. A quadrupole ion-trap mass spectrometer (QITMS; Madzunkov and Nikolić, J Am Soc Mass Spectrom 25:1841-1852, 2014) fed alternately by (1) an aerosol separator that injects only aerosols into a vaporizer and mass spectrometer and (2) the pure aerosol-filtered atmosphere, achieves the compositional measurements. Aerosols vaporized <600°C are measured over atomic mass ranges from 2 to 300 AMU at <0.02 AMU resolution, sufficient to measure trace materials, their isotopic ratios, and potential biogenic materials embedded within H2SO4 aerosols, to better than 20% in <300 s for H2SO4 -relative abundances of 2 × 10-9. An integrated lightweight, compact nephelometer/particle-counter determines the number density and particle sizes of the sampled aerosols.
Collapse
Affiliation(s)
- Kevin H Baines
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Dragan Nikolić
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - James A Cutts
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | | | | | - Stojan M Madzunkov
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Laura M Barge
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Olivier Mousis
- Aix Marseille Université, CNRS, CNES, LAM, Marseille, France
| | | | - Sanjay S Limaye
- Space Science and Engineering Center, University of Wisconsin-Madison, Wisconsin, USA
| | | |
Collapse
|
24
|
Zeng M, Wilson KR. Experimental evidence that halogen bonding catalyzes the heterogeneous chlorination of alkenes in submicron liquid droplets. Chem Sci 2021; 12:10455-10466. [PMID: 34447538 PMCID: PMC8356749 DOI: 10.1039/d1sc02662c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/09/2021] [Indexed: 12/21/2022] Open
Abstract
A key challenge in predicting the multiphase chemistry of aerosols and droplets is connecting reaction probabilities, observed in an experiment, with the kinetics of individual elementary steps that control the chemistry that occurs across a gas/liquid interface. Here we report evidence that oxygenated molecules accelerate the heterogeneous reaction rate of chlorine gas with an alkene (squalene, Sqe) in submicron droplets. The effective reaction probability for Sqe is sensitive to both the aerosol composition and gas phase environment. In binary aerosol mixtures with 2-decyl-1-tetradecanol, linoleic acid and oleic acid, Sqe reacts 12-23× more rapidly than in a pure aerosol. In contrast, the reactivity of Sqe is diminished by 3× when mixed with an alkane. Additionally, small oxygenated molecules in the gas phase (water, ethanol, acetone, and acetic acid) accelerate (up to 10×) the heterogeneous chlorination rate of Sqe. The overall reaction mechanism is not altered by the presence of these aerosol and gas phase additives, suggesting instead that they act as catalysts. Since the largest rate acceleration occurs in the presence of oxygenated molecules, we conclude that halogen bonding enhances reactivity by slowing the desorption kinetics of Cl2 at the interface, in a way that is analogous to decreasing temperature. These results highlight the importance of relatively weak interactions in controlling the speed of multiphase reactions important for atmospheric and indoor environments.
Collapse
Affiliation(s)
- Meirong Zeng
- Chemical Sciences Division, Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - Kevin R Wilson
- Chemical Sciences Division, Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| |
Collapse
|
25
|
Alexander WA. Methyl-Cyclohexane Methanol (MCHM) Isomer-Dependent Binding on Amorphous Carbon Surfaces. Molecules 2021; 26:molecules26113411. [PMID: 34200015 PMCID: PMC8200209 DOI: 10.3390/molecules26113411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 11/16/2022] Open
Abstract
In January 2014, over 10,000 gallons of methyl-cyclohexane methanol (MCHM) leaked into the Elk River in West Virginia, in a chemical spill incident that contaminated a large portion of the state’s water supply and left over 300,000 residents without clean water for many days and weeks. Initial efforts to remove MCHM at the treatment plant centered on the use of granulated activated carbon (GAC), which removed some of the chemical from the water, but MCHM levels were not lowered to a “non-detect” status until well after the chemical plume had moved downstream of the intake. Months later, MCHM was again detected at the outflow (but not the inflow) at the water treatment facility, necessitating the full and costly replacement of all GAC in the facility. The purpose of this study is to investigate the hypothesis that preferential absorbance of one of the two MCHM isomers, coupled with seasonal variations in water temperature, explain this contrary observation. Calculated intermolecular potentials between ovalene (a large planar polycyclic aromatic hydrocarbon) and the MCHM isomers were compared to physisorption potentials of MCHM onto an amorphous carbon model. While a molecular mechanics (MM) force field predicts no difference in the average interaction potentials between the cis- and trans-MCHM with the planar ovalene structure, MM predicts that the trans isomer binds stronger than the cis isomer to the amorphous carbon surface. Semi-empirical and density functional theory also predict stronger binding of trans-MCHM on both the planar and amorphous surfaces. The differences in the isomer binding strengths on amorphous carbon imply preferential absorbance of the trans isomer onto activated charcoal filter media. Considering seasonal water temperatures, simple Arrhenius kinetics arguments based on these predicted binding energies help explain the environmental observations of MCHM leeching from the GAC filters months after the spill. Overall, this work shows the important implications that can arise from detailed interfacial chemistry investigations.
Collapse
|
26
|
Liang Z, Zhang R, Gen M, Chu Y, Chan CK. Nitrate Photolysis in Mixed Sucrose-Nitrate-Sulfate Particles at Different Relative Humidities. J Phys Chem A 2021; 125:3739-3747. [PMID: 33899478 DOI: 10.1021/acs.jpca.1c00669] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Atmospheric particles can be viscous. The limitation in diffusion impedes the mass transfer of oxidants from the gas phase to the particle phase and hinders multiphase oxidation processes. On the other hand, nitrate photolysis has been found to be effective in producing oxidants such as OH radicals within the particles. Whether nitrate photolysis can effectively proceed in viscous particles and how it may affect the physicochemical properties of the particle have not been much explored. In this study, we investigated particulate nitrate photolysis in mixed sucrose-nitrate-sulfate particles as surrogates of atmospheric viscous particles containing organic and inorganic components as a function of relative humidity (RH) and the molar fraction of sucrose to the total solute (FSU) with an in situ micro-Raman system. Sucrose suppressed nitrate crystallization, and high photolysis rate constants (∼10-5 s-1) were found, irrespective of the RH. For FSU = 0.5 and 0.33 particles under irradiation at 30% RH, we observed morphological changes from droplets to the formation of inclusions and then likely "hollow" semisolid particles, which did not show Raman signal at central locations. Together with the phase states of inorganics indicated by the full width at half-maxima (FWHM), images with bulged surfaces, and size increase of the particles in optical microscopic imaging, we inferred that the hindered diffusion of gaseous products (i.e., NOx, NOy) from nitrate photolysis is a likely reason for the morphological changes. Atmospheric implications of these results are also presented.
Collapse
Affiliation(s)
- Zhancong Liang
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue 83, Kowloon, Hong Kong, China
| | - Ruifeng Zhang
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue 83, Kowloon, Hong Kong, China
| | - Masao Gen
- Faculty of Frontier Engineering, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Yangxi Chu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Chak K Chan
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue 83, Kowloon, Hong Kong, China
| |
Collapse
|
27
|
Galib M, Limmer DT. Reactive uptake of N
2
O
5
by atmospheric aerosol is dominated by interfacial processes. Science 2021; 371:921-925. [DOI: 10.1126/science.abd7716] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 01/22/2021] [Indexed: 01/29/2023]
Affiliation(s)
- Mirza Galib
- Department of Chemistry, University of California, Berkeley, CA, USA
| | - David T. Limmer
- Department of Chemistry, University of California, Berkeley, CA, USA
- Kavli Energy NanoScience Institute, Berkeley, CA, USA
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Chemical Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
28
|
Fárník M, Fedor J, Kočišek J, Lengyel J, Pluhařová E, Poterya V, Pysanenko A. Pickup and reactions of molecules on clusters relevant for atmospheric and interstellar processes. Phys Chem Chem Phys 2021; 23:3195-3213. [PMID: 33524089 DOI: 10.1039/d0cp06127a] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In this perspective, we review experiments with molecules picked up on large clusters in molecular beams with the focus on the processes in atmospheric and interstellar chemistry. First, we concentrate on the pickup itself, and we discuss the pickup cross sections. We measure the uptake of different atmospheric molecules on mixed nitric acid-water clusters and determine the accommodation coefficients relevant for aerosol formation in the Earth's atmosphere. Then the coagulation of the adsorbed molecules on the clusters is investigated. In the second part of this perspective, we review examples of different processes triggered by UV-photons or electrons in the clusters with embedded molecules. We start with the photodissociation of hydrogen halides and Freon CF2Cl2 on ice nanoparticles in connection with the polar stratospheric ozone depletion. Next, we mention reactions following the excitation and ionization of the molecules adsorbed on clusters. The first ionization-triggered reaction observed between two different molecules picked up on the cluster was the proton transfer between methanol and formic acid deposited on large argon clusters. Finally, negative ion reactions after slow electron attachment are illustrated by two examples: mixed nitric acid-water clusters, and hydrogen peroxide deposited on large ArN and (H2O)N clusters. The selected examples are discussed from the perspective of the atmospheric and interstellar chemistry, and several future directions are proposed.
Collapse
Affiliation(s)
- Michal Fárník
- J. Heyrovský Institute of Physical Chemistry, v.v.i., The Czech Academy of Sciences, Dolejškova 2155/3, 182 23 Prague, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
29
|
Lengyel J, Pysanenko A, Fárníková K, Pluhařová E, Fárník M. Oxidation Enhances Aerosol Nucleation: Measurement of Kinetic Pickup Probability of Organic Molecules on Hydrated Acid Clusters. J Phys Chem Lett 2020; 11:2101-2105. [PMID: 32101439 DOI: 10.1021/acs.jpclett.0c00207] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
We investigate the uptake of the most prominent biogenic volatile organic compounds (VOCs)-isoprene, α-pinene, and their selected oxidation products-by hydrated acid clusters in a molecular beam experiment and by DFT calculations. Our experiments provide a unique and direct way of determination of the surface accommodation coefficient (αS) on the proxies of ultrafine aerosol particles. Since we are able to determine unambiguously the fraction of the clusters to which the molecules stick upon collisions, our αS is a purely kinetic parameter disentangling the molecule pickup from its evaporation. Oxidation increases the αS of VOCs by more than an order of magnitude, because oxidized compounds form hydrogen bonds with the clusters, whereas the interactions of the parent VOCs are weaker and nonspecific. This work provides molecular-level insight into the condensation of single molecules into atmospheric particles, which has important implications for aerosol nucleation and growth.
Collapse
Affiliation(s)
- Jozef Lengyel
- Chair of Physical Chemistry, Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Andriy Pysanenko
- J. Heyrovský Institute of Physical Chemistry, v.v.i., Czech Academy of Sciences, Dolejškova 2155/3, 182 23 Prague, Czech Republic
| | - Karolína Fárníková
- J. Heyrovský Institute of Physical Chemistry, v.v.i., Czech Academy of Sciences, Dolejškova 2155/3, 182 23 Prague, Czech Republic
| | - Eva Pluhařová
- J. Heyrovský Institute of Physical Chemistry, v.v.i., Czech Academy of Sciences, Dolejškova 2155/3, 182 23 Prague, Czech Republic
| | - Michal Fárník
- J. Heyrovský Institute of Physical Chemistry, v.v.i., Czech Academy of Sciences, Dolejškova 2155/3, 182 23 Prague, Czech Republic
| |
Collapse
|
30
|
Psillakis E, Koutela N, Colussi AJ. Vacuum-assisted headspace single-drop microextraction: Eliminating interfacial gas-phase limitations. Anal Chim Acta 2019; 1092:9-16. [DOI: 10.1016/j.aca.2019.09.056] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/18/2019] [Accepted: 09/21/2019] [Indexed: 10/26/2022]
|
31
|
Moreno C, Baeza-Romero MT. A kinetic model for ozone uptake by solutions and aqueous particles containing I - and Br -, including seawater and sea-salt aerosol. Phys Chem Chem Phys 2019; 21:19835-19856. [PMID: 31497813 DOI: 10.1039/c9cp03430g] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The heterogeneous interactions of gaseous ozone (O3) with seawater and with sea-salt aerosols are known to generate volatile halogen species, which, in turn, lead to further destruction of O3. Here, a kinetic model for the interaction of ozone (O3) with Br- and I- solutions and aqueous particles has been proposed that satisfactorily explains previous literature studies about this process. Apart from the aqueous-phase reactions X- + O3 (X = I, Br), the interaction also involves the surface reactions X- + O3 that occur via O3 adsorption on the aqueous surface. In single salt solutions and aerosols, the partial order in ozone and the total order of the surface reactions are one, but the apparent total order is second order because the number of ozone sites where reaction can occur is equal to the surficial concentration of X- ([X-]surf). In the presence of Cl-, the surface reactions are enhanced by a factor equal to , where and . Therefore, we have inferred that Cl- acts as a catalyst in the surface reactions X- + O3. The model has been applied to estimate ozone uptake by the reaction with these halides in/on seawater and in/on sea-salt aerosol, where it has been concluded that the Cl--catalyzed surface reaction is important relative to total ozone uptake and should therefore be considered to model Y/YO (Y = I, Br, Cl) levels in the troposphere.
Collapse
Affiliation(s)
- Carolina Moreno
- Escuela de Ingeniería Industrial y Aeroespacial, Universidad de Castilla-La Mancha, 45071, Toledo, Spain.
| | | |
Collapse
|
32
|
Bianchini RH, Roman MJ, Costen ML, McKendrick KG. Real-space laser-induced fluorescence imaging applied to gas-liquid interfacial scattering. J Chem Phys 2019. [DOI: 10.1063/1.5110517] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Robert H. Bianchini
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Maksymilian J. Roman
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Matthew L. Costen
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Kenneth G. McKendrick
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| |
Collapse
|
33
|
Enami S, Hoffmann MR, Colussi AJ. Iodide Accelerates the Processing of Biogenic Monoterpene Emissions on Marine Aerosols. ACS OMEGA 2019; 4:7574-7580. [PMID: 31459850 PMCID: PMC6648763 DOI: 10.1021/acsomega.9b00024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 04/15/2019] [Indexed: 06/10/2023]
Abstract
Marine photosynthetic organisms emit organic gases, including the polyolefins isoprene (C5H8) and monoterpenes (MTPs, C10H16), into the boundary layer. Their atmospheric processing produces particles that influence cloud formation and growth and, as a result, the Earth's radiation balance. Here, we report that the heterogeneous ozonolysis of dissolved α-pinene by O3(g) on aqueous surfaces is dramatically accelerated by I-, an anion enriched in the ocean upper microlayer and sea spray aerosols (SSAs). In our experiments, liquid microjets of α-pinene solutions, with and without added I-, are dosed with O3(g) for τ < 10 μs and analyzed online by pneumatic ionization mass spectrometry. In the absence of I-, α-pinene does not detectably react with O3(g) under present conditions. In the presence of ≥ 0.01 mM I-, in contrast, new signals appear at m/z = 169 (C9H13O3 -), m/z = 183 (C10H15O3 -), m/z = 199 (C10H15O4 -), m/z = 311 (C10H16IO3 -), and m/z = 461 (C20H30IO4 -), plus m/z = 175 (IO3 -), and m/z = 381 (I3 -). Collisional fragmentation splits CO2 from C9H13O3 -, C10H15O3 - and C10H15O4 -, and I- plus IO- from C10H16IO3 - as expected from a trioxide IOOO•C10H16 - structure. We infer that the oxidative processing of α-pinene on aqueous surfaces is significantly accelerated by I- via the formation of IOOO- intermediates that are more reactive than O3. A mechanism in which IOOO- reacts with α-pinene (and likely with other unsaturated species) in competition with its isomerization to IO3 - accounts for present results and the fact that soluble iodine in SSA is mostly present as iodine-containing organic species rather than the thermodynamically more stable iodate. By this process, a significant fraction of biogenic MTPs and other unsaturated gases may be converted to water-soluble species rather than emitted to the atmosphere.
Collapse
Affiliation(s)
- Shinichi Enami
- National
Institute for Environmental Studies, 16-2 Onogawa, Tsukuba 305-8506, Japan
| | - Michael R. Hoffmann
- Linde
Center for Global Environmental Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Agustín J. Colussi
- Linde
Center for Global Environmental Science, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
34
|
Ryazanov M, Nesbitt DJ. Quantum-state-resolved studies of aqueous evaporation dynamics: NO ejection from a liquid water microjet. J Chem Phys 2019; 150:044201. [PMID: 30709290 DOI: 10.1063/1.5083050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
This work presents the first fully quantum-state-resolved measurements of a solute molecule evaporating from the gas-liquid interface in vacuum. Specifically, laser-induced fluorescence detection of NO(2Π1/2, 3/2, v = 0, J) evaporating from an ∼5 mM NO-water solution provides a detailed characterization of the rotational and spin-orbit distributions emerging from a ⌀4-5 μm liquid microjet into vacuum. The internal-quantum-state populations are found to be well described by Boltzmann distributions, but corresponding to temperatures substantially colder (up to 50 K for rotational and 30 K for spin-orbit) than the water surface. The results therefore raise the intriguing possibility of non-equilibrium dynamics in the evaporation of dissolved gases at the vacuum-liquid-water interface. In order to best interpret these data, we use a model for evaporative cooling of the liquid microjet and develop a model for collisional cooling of the nascent NO evaporant in the expanding water vapor. In particular, the collisional-cooling model illustrates that, despite the 1/r drop-off in density near the microjet greatly reducing the probability of collisions in the expanding water vapor, even small inelastic cross sections (≲ 20 Å2) could account for the experimentally observed temperature differences. The current results do not rule out the possibility of non-equilibrium evaporation dynamics, but certainly suggest that correct interpretation of liquid-microjet studies, even under conditions previously considered as "collision-free," may require more careful consideration of residual collisional dynamics.
Collapse
Affiliation(s)
- Mikhail Ryazanov
- JILA, National Institute of Standards and Technology and University of Colorado, Boulder, Colorado 80309, USA
| | - David J Nesbitt
- JILA, National Institute of Standards and Technology and University of Colorado, Boulder, Colorado 80309, USA
| |
Collapse
|
35
|
Delivery efficiencies of constituents of combustion-derived aerosols across the air-liquid interface during in vitro exposures. Toxicol In Vitro 2018; 52:384-398. [PMID: 30003980 DOI: 10.1016/j.tiv.2018.06.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/20/2018] [Accepted: 06/29/2018] [Indexed: 12/14/2022]
Abstract
In vitro aerosol exposure of epithelial cells grown at the air-liquid interface is an experimental methodology widely used in respiratory toxicology. The exposure depends to a large part on the physicochemical properties of individual aerosol constituents, as they determine the transfer kinetics from the aerosol into the cells. We characterized the transfer of 70 cigarette smoke constituents from the smoke into aqueous samples exposed in the Vitrocell® 24/48 aerosol exposure system. The amounts of these compounds in the applied smoke were determined by trapping whole smoke in N,N-dimethylformamide and then compared with their amounts in smoke-exposed, phosphate-buffered saline, yielding compound specific delivery efficiencies. Delivery efficiencies of different smoke constituents differed by up to five orders of magnitude, which indicates that the composition of the applied smoke is not necessarily representative for the delivered smoke. Therefore, dose metrics for in vitro exposure experiments should, if possible, be based on delivered and not applied doses. A comparison to literature on in vivo smoke retention in the respiratory tract indicated that the same applies for smoke retention in the respiratory tract.
Collapse
|
36
|
Dong R, Zhang T, Feng X. Interface-Assisted Synthesis of 2D Materials: Trend and Challenges. Chem Rev 2018; 118:6189-6235. [DOI: 10.1021/acs.chemrev.8b00056] [Citation(s) in RCA: 378] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Renhao Dong
- Department of Chemistry and Food Chemistry & Center for Advancing Electronics Dresden, Technische Universität Dresden, 01062 Dresden, Germany
| | - Tao Zhang
- Department of Chemistry and Food Chemistry & Center for Advancing Electronics Dresden, Technische Universität Dresden, 01062 Dresden, Germany
| | - Xinliang Feng
- Department of Chemistry and Food Chemistry & Center for Advancing Electronics Dresden, Technische Universität Dresden, 01062 Dresden, Germany
| |
Collapse
|
37
|
Enami S, Hoffmann MR, Colussi AJ. Extensive H-atom abstraction from benzoate by OH-radicals at the air-water interface. Phys Chem Chem Phys 2018; 18:31505-31512. [PMID: 27827491 DOI: 10.1039/c6cp06652f] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Much is known about OH-radical chemistry in the gas-phase and bulk water. Important atmospheric and biological processes, however, involve little investigated OH-radical reactions at aqueous interfaces with hydrophobic media. Here, we report the online mass-specific identification of the products and intermediates generated on the surface of aqueous (H2O, D2O) benzoate-h5 and -d5 microjets by ∼8 ns ˙OH(g) pulses in air at 1 atm. Isotopic labeling lets us unambiguously identify the phenylperoxyl radicals that ensue H-abstraction from the aromatic ring and establish a lower bound (>26%) to this process as it takes place in the interfacial water nanolayers probed by our experiments. The significant extent of H-abstraction vs. its negligible contribution both in the gas-phase and bulk water underscores the unique properties of the air-water interface as a reaction medium. The enhancement of H-atom abstraction in interfacial water is ascribed, in part, to the relative destabilization of a more polar transition state for OH-radical addition vs. H-abstraction due to incomplete hydration at the low water densities prevalent therein.
Collapse
Affiliation(s)
- Shinichi Enami
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan.
| | - Michael R Hoffmann
- Linde Center for Global Environmental Science, California Institute of Technology, California 91125, USA.
| | - Agustín J Colussi
- Linde Center for Global Environmental Science, California Institute of Technology, California 91125, USA.
| |
Collapse
|
38
|
Bertram TH, Cochran RE, Grassian VH, Stone EA. Sea spray aerosol chemical composition: elemental and molecular mimics for laboratory studies of heterogeneous and multiphase reactions. Chem Soc Rev 2018; 47:2374-2400. [DOI: 10.1039/c7cs00008a] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Schematic representation of the reactive uptake of N2O5to a sea spray aerosol particle containing a thick organic film.
Collapse
Affiliation(s)
| | - Richard E. Cochran
- Department of Chemistry and Biochemistry
- University of California
- La Jolla
- USA
| | - Vicki H. Grassian
- Department of Chemistry and Biochemistry
- University of California
- La Jolla
- USA
- Departments of Nanoengineering and Scripps Institution of Oceanography University of California
| | | |
Collapse
|
39
|
Kalume A, Wang C, Santarpia J, Pan YL. Liquid–liquid phase separation and evaporation of a laser-trapped organic–organic airborne droplet using temporal spatial-resolved Raman spectroscopy. Phys Chem Chem Phys 2018; 20:19151-19159. [DOI: 10.1039/c8cp02372g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Using temporal position-resolved Raman spectroscopy, different gradient distributions of two chemicals an different time within an airborne droplets were directly observed, as well as their phase separation and evaporation processes.
Collapse
Affiliation(s)
| | - Chuji Wang
- Mississippi State University
- Starkville
- USA
| | | | | |
Collapse
|
40
|
Xiao P, Yang JJ, Fang WH, Cui G. QM/MM studies on ozonolysis of α-humulene and Criegee reactions with acids and water at air–water/acetonitrile interfaces. Phys Chem Chem Phys 2018; 20:16138-16150. [DOI: 10.1039/c8cp01750f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
QM/MM electronic structure calculations reveal important mechanistic insights on the ozonolysis of α-humulene and Criegee reactions with acids and water at air–water/acetonitrile interfaces.
Collapse
Affiliation(s)
- Pin Xiao
- Key Laboratory of Theoretical and Computational Photochemistry
- Ministry of Education
- College of Chemistry
- Beijing Normal University
- Beijing 100875
| | - Jia-Jia Yang
- Key Laboratory of Theoretical and Computational Photochemistry
- Ministry of Education
- College of Chemistry
- Beijing Normal University
- Beijing 100875
| | - Wei-Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry
- Ministry of Education
- College of Chemistry
- Beijing Normal University
- Beijing 100875
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry
- Ministry of Education
- College of Chemistry
- Beijing Normal University
- Beijing 100875
| |
Collapse
|
41
|
Wick CD. A comparison of sodium and hydrogen halides at the air-water interface. J Chem Phys 2017; 147:161703. [PMID: 29096503 PMCID: PMC5648577 DOI: 10.1063/1.4984114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 05/12/2017] [Indexed: 11/14/2022] Open
Abstract
New molecular models, parameterized to ab initio calculations, were developed to describe HBr and HI at the air-water interface. These were used to compare how the air-water interface influenced dissociation of NaX and HX, with X being Cl, Br, or I, and also their propensity for the interface. The polarizable multistate empirical valence bond method, which explicitly describes proton sharing, was used to model HX. Results showed that the air-water interface suppressed HX dissociation from a contact ion pair to a solvent separated to a greater degree than NaX dissociation. Furthermore, HX had a greater propensity for the interface than NaX, which was a consequence of the hydronium ion having a greatest interfacial activity of all species studied. As a consequence of this, the average configuration of dissociated HX, while in both contact ion and solvent separated ion pairs near the air-water interface, is with the dissociated hydrogen oriented more towards the air than the X atom.
Collapse
Affiliation(s)
- Collin D Wick
- Louisiana Tech University, Ruston, Louisiana 71270, USA
| |
Collapse
|
42
|
Wick CD. Comparing hydroxide and hydronium at the instantaneous air-water interface using polarizable multi-state empirical valence bond models. COMPUT THEOR CHEM 2017. [DOI: 10.1016/j.comptc.2017.01.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
43
|
Faust JA, Wong JPS, Lee AKY, Abbatt JPD. Role of Aerosol Liquid Water in Secondary Organic Aerosol Formation from Volatile Organic Compounds. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:1405-1413. [PMID: 28124902 DOI: 10.1021/acs.est.6b04700] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A key mechanism for atmospheric secondary organic aerosol (SOA) formation occurs when oxidation products of volatile organic compounds condense onto pre-existing particles. Here, we examine effects of aerosol liquid water (ALW) on relative SOA yield and composition from α-pinene ozonolysis and the photooxidation of toluene and acetylene by OH. Reactions were conducted in a room-temperature flow tube under low-NOx conditions in the presence of equivalent loadings of deliquesced (∼20 μg m-3 ALW) or effloresced (∼0.2 μg m-3 ALW) ammonium sulfate seeds at exactly the same relative humidity (RH = 70%) and state of wall conditioning. We found 13% and 19% enhancements in relative SOA yield for the α-pinene and toluene systems, respectively, when seeds were deliquesced rather than effloresced. The relative yield doubled in the acetylene system, and this enhancement was partially reversible upon drying the prepared SOA, which reduced the yield by 40% within a time scale of seconds. We attribute the high relative yield of acetylene SOA on deliquesced seeds to aqueous partitioning and particle-phase reactions of the photooxidation product glyoxal. The observed range of relative yields for α-pinene, toluene, and acetylene SOA on deliquesced and effloresced seeds suggests that ALW plays a complicated, system-dependent role in SOA formation.
Collapse
Affiliation(s)
- Jennifer A Faust
- Department of Chemistry, University of Toronto , 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
| | - Jenny P S Wong
- Department of Chemistry, University of Toronto , 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
| | - Alex K Y Lee
- Department of Chemistry, University of Toronto , 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
| | - Jonathan P D Abbatt
- Department of Chemistry, University of Toronto , 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
44
|
Matsuoka K, Sakamoto Y, Hama T, Kajii Y, Enami S. Reactive Uptake of Gaseous Sesquiterpenes on Aqueous Surfaces. J Phys Chem A 2017; 121:810-818. [DOI: 10.1021/acs.jpca.6b11821] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Kohei Matsuoka
- Graduate
School of Global Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
| | - Yosuke Sakamoto
- Graduate
School of Global Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
- Graduate
School of Human and Environmental Studies, Kyoto University, Kyoto 606-8316, Japan
| | - Tetsuya Hama
- Institute
of Low Temperature Science, Hokkaido University, Sapporo 060-0819, Japan
| | - Yoshizumi Kajii
- Graduate
School of Global Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
- Graduate
School of Human and Environmental Studies, Kyoto University, Kyoto 606-8316, Japan
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Shinichi Enami
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| |
Collapse
|
45
|
Chu Y, Chan CK. Reactive Uptake of Dimethylamine by Ammonium Sulfate and Ammonium Sulfate–Sucrose Mixed Particles. J Phys Chem A 2016; 121:206-215. [DOI: 10.1021/acs.jpca.6b10692] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Chak K. Chan
- School of Energy and
Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| |
Collapse
|
46
|
Huang IS, Li JJ, Tsai MK. Solvation Dynamics of CO₂(g) by Monoethanolamine at the Gas-Liquid Interface: A Molecular Mechanics Approach. Molecules 2016; 22:molecules22010008. [PMID: 28025552 PMCID: PMC6155642 DOI: 10.3390/molecules22010008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 12/14/2016] [Accepted: 12/19/2016] [Indexed: 11/25/2022] Open
Abstract
A classical force field approach was used to characterize the solvation dynamics of high-density CO2(g) by monoethanolamine (MEA) at the air–liquid interface. Intra- and intermolecular CO2 and MEA potentials were parameterized according to the energetics calculated at the MP2 and BLYP-D2 levels of theory. The thermodynamic properties of CO2 and MEA, such as heat capacity and melting point, were consistently predicted using this classical potential. An approximate interfacial simulation for CO2(g)/MEA(l) was performed to monitor the depletion of the CO2(g) phase, which was influenced by amino and hydroxyl groups of MEA. There are more intramolecular hydrogen bond interactions notably identified in the interfacial simulation than the case of bulk MEA(l) simulation. The hydroxyl group of MEA was found to more actively approach CO2 and overpower the amino group to interact with CO2 at the air–liquid interface. With artificially reducing the dipole moment of the hydroxyl group, CO2–amino group interaction was enhanced and suppressed CO2(g) depletion. The hydroxyl group of MEA was concluded to play dual but contradictory roles for CO2 capture.
Collapse
Affiliation(s)
- I-Shou Huang
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan.
| | - Jia-Jen Li
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan.
| | - Ming-Kang Tsai
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan.
| |
Collapse
|
47
|
Bruggeman PJ, Kushner MJ, Locke BR, Gardeniers JGE, Graham WG, Graves DB, Hofman-Caris RCHM, Maric D, Reid JP, Ceriani E, Fernandez Rivas D, Foster JE, Garrick SC, Gorbanev Y, Hamaguchi S, Iza F, Jablonowski H, Klimova E, Kolb J, Krcma F, Lukes P, Machala Z, Marinov I, Mariotti D, Mededovic Thagard S, Minakata D, Neyts EC, Pawlat J, Petrovic ZL, Pflieger R, Reuter S, Schram DC, Schröter S, Shiraiwa M, Tarabová B, Tsai PA, Verlet JRR, von Woedtke T, Wilson KR, Yasui K, Zvereva G. Plasma–liquid interactions: a review and roadmap. ACTA ACUST UNITED AC 2016. [DOI: 10.1088/0963-0252/25/5/053002] [Citation(s) in RCA: 917] [Impact Index Per Article: 101.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
48
|
Rovelli G, Miles REH, Reid JP, Clegg SL. Accurate Measurements of Aerosol Hygroscopic Growth over a Wide Range in Relative Humidity. J Phys Chem A 2016; 120:4376-88. [DOI: 10.1021/acs.jpca.6b04194] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Grazia Rovelli
- School
of Chemistry, University of Bristol, Bristol BS8 1TS, U.K
- Department
of Earth and Environmental Sciences, University of Milano-Bicocca, 20124 Milan, Italy
| | | | - Jonathan P. Reid
- School
of Chemistry, University of Bristol, Bristol BS8 1TS, U.K
| | - Simon L. Clegg
- School
of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ, U.K
| |
Collapse
|
49
|
Tesa-Serrate MA, Smoll EJ, Minton TK, McKendrick KG. Atomic and Molecular Collisions at Liquid Surfaces. Annu Rev Phys Chem 2016; 67:515-40. [PMID: 27090845 DOI: 10.1146/annurev-physchem-040215-112355] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The gas-liquid interface remains one of the least explored, but nevertheless most practically important, environments in which molecular collisions take place. These molecular-level processes underlie many bulk phenomena of fundamental and applied interest, spanning evaporation, respiration, multiphase catalysis, and atmospheric chemistry. We review here the research that has, during the past decade or so, been unraveling the molecular-level mechanisms of inelastic and reactive collisions at the gas-liquid interface. Armed with the knowledge that such collisions with the outer layers of the interfacial region can be unambiguously distinguished, we show that the scattering of gas-phase projectiles is a promising new tool for the interrogation of liquid surfaces with extreme surface sensitivity. Especially for reactive scattering, this method also offers absolute chemical selectivity for the groups that react to produce a specific observed product.
Collapse
Affiliation(s)
- Maria A Tesa-Serrate
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom;
| | - Eric J Smoll
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717;
| | - Timothy K Minton
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717;
| | - Kenneth G McKendrick
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom;
| |
Collapse
|
50
|
Affiliation(s)
- Ashwini A. Ghogare
- Department
of Chemistry, Brooklyn College, 2900 Bedford Avenue, Brooklyn, New York 11210, United States
- Ph.D.
Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| | - Alexander Greer
- Department
of Chemistry, Brooklyn College, 2900 Bedford Avenue, Brooklyn, New York 11210, United States
- Ph.D.
Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| |
Collapse
|