1
|
Martín J, Schörgenhumer J, Nevado C. Interrogating the anti-Insertion of Alkynes into Gold(III). JACS AU 2025; 5:1439-1447. [PMID: 40151240 PMCID: PMC11938007 DOI: 10.1021/jacsau.5c00056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/10/2025] [Accepted: 02/11/2025] [Indexed: 03/29/2025]
Abstract
Alkyne hydrofunctionalizations are a powerful strategy to efficiently build up structural complexity. The selectivity of these reactions is typically governed by the interaction between the alkyne and a metal-hydride, which commonly proceeds via a well-understood syn-insertion mechanism. In contrast, anti-insertions are far less common, with proposed mechanisms often extrapolated from literature precedents rather than grounded in direct experimental evidence. While gold complexes rank among the most efficient catalysts for such transformations, the mechanistic understanding of the key alkyne insertion step remains incomplete. In this study, we demonstrate that stable gold(III)-hydrides, featuring a (P∧N∧C) ligand, undergo selective insertion of alkynes to yield the corresponding anti-Markovnikov Z-vinyl complexes. A combination of control experiments, kinetic studies, and computational analyses reveals a nonradical, bimolecular insertion process, in which water plays a pivotal role by accelerating the reaction and potentially stabilizing a highly reactive, T-shaped gold(I) intermediate. Notably, this is the first demonstration of the insertion of both activated and unactivated terminal and internal alkynes into a gold(III)-hydride complex.
Collapse
Affiliation(s)
- Jaime Martín
- Department of Chemistry, University
of Zurich, Winterthurerstrasse 190, Zurich, CH 8057, Switzerland
| | - Johannes Schörgenhumer
- Department of Chemistry, University
of Zurich, Winterthurerstrasse 190, Zurich, CH 8057, Switzerland
| | - Cristina Nevado
- Department of Chemistry, University
of Zurich, Winterthurerstrasse 190, Zurich, CH 8057, Switzerland
| |
Collapse
|
2
|
Tan BB, Ge S. One-Pot Cobalt- or Copper-Catalyzed Asymmetric Ring-Opening Hydrosilylation/Hydroboration of Arylidenecyclopropanes. Angew Chem Int Ed Engl 2025; 64:e202419522. [PMID: 39561038 DOI: 10.1002/anie.202419522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/19/2024] [Accepted: 11/19/2024] [Indexed: 11/21/2024]
Abstract
An operationally convenient cobalt-catalyzed one-pot one-step hydrosilylation/hydroboration reaction of arylidenecyclopropanes is developed to access racemic 1,4-borylsilylalkanes. In addition, the corresponding asymmetric reaction is developed with a chiral copper catalyst to prepare 1,4-borylsilylalkanes with high enantioselectivity by a one-pot two-step procedure. Mechanistic studies reveal that this difunctionalization process begins with metal-hydride-catalyzed ring-opening hydrosilylation of arylidenecyclopropanes to generate homoallylsilane intermediates, followed by regio- or enantioselective metal-hydride-catalyzed hydroboration of homoallylsilanes to produce skipped borylsilylalkanes. Selective transformations of C-B and Si-H bonds in skipped borylsilylalkane products are also demonstrated.
Collapse
Affiliation(s)
- Boon Beng Tan
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Shaozhong Ge
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| |
Collapse
|
3
|
You L, Roth D, Greb L. Structural constraint at a P-P bond: phosphinophosphination of alkenes, alkynes, and carbonyls by a concerted mechanism. Chem Sci 2025; 16:1716-1721. [PMID: 39568914 PMCID: PMC11575562 DOI: 10.1039/d4sc06581f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 11/04/2024] [Indexed: 11/22/2024] Open
Abstract
Structurally constraining p-block elements has become a powerful strategy for bond activation chemistry with main group compounds. Traditionally, this approach focuses on mononuclear centers, yet applying structural constraints to systems with element-element bonds remains underexplored. In this study, we introduce a cation featuring a structural constraint-elongated P-P bond that spontaneously adds to unactivated alkynes, alkenes, aldehydes, and ketones. Despite its positive charge, the surprisingly apolar P-P+ bond promotes phosphinophosphination via a concerted, highly regio- and diastereoselective mechanism. This unique reactivity opens pathways to novel seven-membered phosphorus heterocycles with customizable optical properties and a structurally varied array of ligands for transition metal coordination.
Collapse
Affiliation(s)
- Lijun You
- Anorganisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Daniel Roth
- Anorganisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Lutz Greb
- Anorganisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| |
Collapse
|
4
|
Satyanarayana ANV, Pattanayak P, Chatterjee T. Solvent-Controlled, Atom-Economic, and Highly Regio- and Stereoselective Halo-Chalcogenations of Ynamides: Green Synthesis of Stereodefined Tetrasubstituted Alkenes Bearing Four Different Functional Groups. J Org Chem 2024; 89:11455-11466. [PMID: 39105699 DOI: 10.1021/acs.joc.4c01134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
The synthesis of stereodefined tetrasubstituted alkenes bearing four different functional groups is challenging. Herein, we disclose a 100% atom-economic and highly regio- and stereoselective halo-chalcogenations, in particular, chlorosulfenylation, bromosulfenylation, chloroselenation, and bromoselenation, of ynamides in toluene at room temperature under an aerobic atmosphere for the synthesis of a wide variety of stereodefined tetrasubstituted alkenes bearing four different functional groups in excellent yields. Notably, all the reactions are highly efficient and furnished the desired products in excellent yield (average yield >96%) and stereoselectivity (Z/E = 90:10 to >99:1) within a short time (15-30 min). Interestingly, the high (Z)-stereoselectivity (syn-addition) is controlled by the solvent. The transformation does not require any catalyst, oxidizing or reducing reagent, or external energy. The products were obtained pure by evaporating the solvent after the reaction and washing the crude product with either pentane or ethanol (column-chromatography-free protocol). Moreover, the solvent toluene was recovered and reused in subsequent reactions, which makes the protocol highly sustainable. The protocol is efficiently scalable (96% yield) on a gram scale. Notably, the products were synthetically diversified to other new classes of stereodefined tetrasubstituted alkenes. Significantly, the green chemistry metrics of the protocol are found to be excellent.
Collapse
Affiliation(s)
- Appanapalli N V Satyanarayana
- Department of Chemistry, Birla Institute of Technology and Science, Pilani (BITS Pilani), Hyderabad Campus, Jawahar Nagar, Hyderabad 500078, Telangana India
| | - Paramita Pattanayak
- Department of Chemistry, Birla Institute of Technology and Science, Pilani (BITS Pilani), Hyderabad Campus, Jawahar Nagar, Hyderabad 500078, Telangana India
| | - Tanmay Chatterjee
- Department of Chemistry, Birla Institute of Technology and Science, Pilani (BITS Pilani), Hyderabad Campus, Jawahar Nagar, Hyderabad 500078, Telangana India
| |
Collapse
|
5
|
Ghosh KK, RajanBabu TV. Ligand Effects in Carboxylic Ester- and Aldehyde-Assisted β-C-H Activation in Regiodivergent and Enantioselective Cycloisomerization-Hydroalkenylation and Cycloisomerization-Hydroarylation, and [2 + 2 + 2]-Cycloadditions of 1,6-Enynes. J Am Chem Soc 2024; 146:18753-18770. [PMID: 38935521 PMCID: PMC11415009 DOI: 10.1021/jacs.4c06796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Herein, we report room temperature, atom-economic protocols for high regio- and enantioselective tandem cycloisomerization-hydroarylation and cycloisomerization-hydroalkenylation of 1,6-enynes leading to vicinal carba-functionalized pyrrolidines, tetrahydrofurans, and cyclopentanes. The latter steps in these processes involve carbonyl-coordination-assisted ortho-C-H activation of aromatic aldehydes and esters, and, a similar, yet rarely seen, β-C-H activation in the case of the acrylates. Synthetically useful enantioselective versions of such reactions are rare and are limited to the C2-H activation of indoles and pyrroles. A similar reaction is also observed with N-vinylphthalimide, which also has a carbonyl group suitable for C-H activation. A dibenzooxaphosphole ligand, (2S,2S',3S,3S')-MeO-BIBOP was uniquely identified as crucial to achieving the challenging regio- and enantioselectivity. This methodology gives access to substituted five-membered carbo- and heterocyclic compounds in good yields and excellent enantioselectivities under a low catalyst loading. A primary KIE of 3.5 is observed in an intermolecular competition experiment with methyl benzoate and d5-methyl benzoate, which indicates that the C-H cleavage is the turnover-limiting step of this process. Unlike the acrylates, which undergoes exclusive hydroalkenylation, a β, γ-unsaturated ester, methyl but-3-enoate, undergoes the highly enantioselective cycloisomerization-coupling sequence with a 1,6-enyne giving either a [2 + 2 + 2]-cycloaddition with (S, S)-BDPP or hydroalkenylation with (2S,2'S,3S,3'S)-MeO-BIBOP depending on the ligand employed. The (E)-configuration of the newly formed double bond at the terminal alkynyl carbon (of the starting enyne) in the hydroalkenylation product of β,γ-unsaturated ester suggests a more classical migratory insertion-β-hydride elimination route for the formation of this product.
Collapse
Affiliation(s)
- Kiron K Ghosh
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - T V RajanBabu
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
6
|
Zapf L, Finze M. Lewis Acid Decorated Hexacyanodiborane(6) Dianion. Angew Chem Int Ed Engl 2024; 63:e202401681. [PMID: 38530744 DOI: 10.1002/anie.202401681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 03/28/2024]
Abstract
First examples of diborane(6) dianions decorated with weakly coordination B(C6F5)3 (BCF) groups and SiEt3 + moieties have been synthesized demonstrating the synthetic potential of the [B2(CN)6]2- dianion. [B2{CNB(C6F5)3}6]2- (1) was isolated as potassium and tetrabutylammonium salt. 1 is a rare example for a weakly coordinating dianion and it was used for the stabilization of the carbocation [Ph3C]+ and the oxonium acid [H(OEt2)2]+. Reaction of [Ph3C]21 with HSiEt3 resulted in the silylated neutral diborane(6) [B2{CNB(C6F5)3}4(CNSiEt3)2] (2) in which two BCF groups have been selectively replaced by SiEt3 + substituents, underscoring the stability and chemical versatility of the [B2(CN)6]2- dianion. The chemical properties and physicochemical data of 1 and 2 provide insight into electronic, coordinating, and steric properties of theses novel diborane(6) compounds.
Collapse
Affiliation(s)
- Ludwig Zapf
- Institut für nachhaltige Chemie & Katalyse mit Bor (ICB) Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Maik Finze
- Institut für nachhaltige Chemie & Katalyse mit Bor (ICB) Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| |
Collapse
|
7
|
Pawar RB, Karmur MH, Punji B. Ligand-free MnBr 2-Catalyzed Chemo- and Stereoselective Hydroboration of Terminal Alkynes. Chem Asian J 2024; 19:e202400158. [PMID: 38512720 DOI: 10.1002/asia.202400158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 03/23/2024]
Abstract
Developing simple and benign protocols for synthesizing alkenylboronates is crucial as they are synthetically valuable compounds in various organic transformations. In this work, we report a straightforward ligand-free protocol for synthesizing alkenylboronates via atom-economical hydroboration of alkynes with HBpin catalyzed by a manganese salt. The reaction shows a high level of chemo and regioselectivity for the terminal alkynes and exclusively produces E-selective alkenylboronates. The hydroboration scope is vast, with the resilience of a range of synthetically beneficial functionalities, such as halides, ether, alkenyl, silyl and thiophenyl groups. This reaction proceeds through the involvement of a metal-hydride intermediate. The developed alkenylboronate can be smoothly converted to useful C-C, C-N and C-I bond-forming reactions.
Collapse
Affiliation(s)
- Rameshwar B Pawar
- Organometallic Synthesis and Catalysis Lab, Organic Chemistry Division, CSIR - National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411 008, India Ph
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Mital H Karmur
- Organometallic Synthesis and Catalysis Lab, Organic Chemistry Division, CSIR - National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411 008, India Ph
| | - Benudhar Punji
- Organometallic Synthesis and Catalysis Lab, Organic Chemistry Division, CSIR - National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411 008, India Ph
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| |
Collapse
|
8
|
Zuo H, Irran E, Klare HFT, Oestreich M. Electrophilic Activation of S-Si Reagents by Silylium Ions for Their Regio- and Diastereoselective Addition Across C-C Multiple Bonds. Angew Chem Int Ed Engl 2024; 63:e202401599. [PMID: 38323886 DOI: 10.1002/anie.202401599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/05/2024] [Accepted: 02/05/2024] [Indexed: 02/08/2024]
Abstract
A regioselective silylium-ion-promoted thiosilylation of internal C-C triple bonds with control over the double bond geometry is described. Both a C(sp2)-S and a C(sp2)-Si bond are formed with a trans relationship in this two-component reaction of an alkyne and a thiosilane. The resulting orthogonally functionalized C-C double bond can be chemoselectively defunctionalized or further processed by cross-coupling reactions with the alkene configuration retained. The procedure is also applicable to the regio- and diastereoselective thiosilylation of terminal allenes to arrive at allylic thioethers containing a vinylsilane unit. These reactions involve the electrophilic activation of the S-Si reagent, both a silylated thiophenol and even alkylthiol derivative, by an in situ-generated carbocation intermediate. The catalytic cycle is maintained by a bissilylated aryl- or alkylsulfonium ion as a shuttle for the cationic silicon electrophile. Its independent preparation and structural characterization by X-ray diffraction are also reported.
Collapse
Affiliation(s)
- Honghua Zuo
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623, Berlin, Germany
| | - Elisabeth Irran
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623, Berlin, Germany
| | - Hendrik F T Klare
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623, Berlin, Germany
| | - Martin Oestreich
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623, Berlin, Germany
| |
Collapse
|
9
|
Yurino T, Wu Z, Suzuki K, Nitta R, Sakaguchi Y, Ohkuma T. Asymmetric Cyanation of α-Ketimino Ester Derivatives with Chiral Ru-Li Combined Catalysts. Org Lett 2024; 26:900-905. [PMID: 38251826 DOI: 10.1021/acs.orglett.3c04175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Asymmetric cyanation of α-ketimino esters catalyzed by combined systems of amino acid/BINAP derivative/Ru(II) complexes and lithium compounds was examined. The use of an appropriate combination of amino acid and BINAP ligands achieved high enantioselectivity for a variety of α-alkynyl (Val/XylBINAP/Ru), α-alkenyl (Val/TolBINAP/Ru), and α-aryl imino esters (Val/XylBINAP/Ru) as well as an isatin-derived cyclic imino amide (t-Leu/BINAP/Ru) to afford the α-cyano-α-amino esters and the amide with an α-nitrogen-substituted quaternary chiral center with up to 98% ee.
Collapse
Affiliation(s)
- Taiga Yurino
- Division of Applied Chemistry and Frontier Chemistry Center, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Zhen Wu
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Kazuaki Suzuki
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Rino Nitta
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Yusuke Sakaguchi
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Takeshi Ohkuma
- Division of Applied Chemistry and Frontier Chemistry Center, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| |
Collapse
|
10
|
Werner L, Hagn J, Radius U. NHC-Stabilized Dialanes(4) of Al 2 Mes 4. Chemistry 2023; 29:e202303111. [PMID: 37792718 DOI: 10.1002/chem.202303111] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 09/29/2023] [Accepted: 10/02/2023] [Indexed: 10/06/2023]
Abstract
The synthesis and characterization of novel N-heterocyclic carbene (NHC) stabilized dialanes Al2 Mes4 as well as first investigations concerning the reactivity of these compounds are reported. The synthesis of these compounds proceeds via the mesityl-substituted alanes (NHC)⋅AlHMes2 (NHC=IMeMe {=1,3,4,5-tetramethyl-imidazolin-2-ylidene}, IiPrMe {=1,3-di-iso-propyl-4,5-dimethylimidazolin-2-ylidene}) and iodo-alanes (NHC)⋅AlIMes2 (NHC=IMeMe , IiPrMe ). Metallic reduction of (NHC)⋅AlIMes2 afforded the new NHC-stabilized dialanes (NHC)2 ⋅Al2 Mes4 (NHC=IMeMe , IiPrMe ). The NHC-ligated dialanes are thermally robust and storable synthons for the dialane Al2 Mes4 . First reactivity studies on (IMeMe )2 ⋅Al2 Mes4 towards small molecules confirm this, as this compound shows controlled and selective reactions with several substrates. Reaction with CuCl leads to oxidation of the dialane and formation of (IMeMe )⋅AlClMes2 , reactions with pyridine N-oxide and t Bu-N=C=S, respectively, gave the chalcogenide-bridged dimers {(IMeMe )⋅AlMes2 }2 -μ-E (E=O, S), and reaction with acetylene afforded the dimetallaacetylide {(IMeMe )⋅AlMes2 }2 -μ-(C≡C).
Collapse
Affiliation(s)
- Luis Werner
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Julika Hagn
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Udo Radius
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| |
Collapse
|
11
|
Yamamoto Y, Ogawa A. Transition-Metal-Catalyzed Addition of Organosulfur Compounds to Alkynes and Alkenes: Catalysis and Catalyst Poisons. Chemistry 2023; 29:e202302432. [PMID: 37661302 DOI: 10.1002/chem.202302432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/05/2023]
Abstract
The addition of heteroatom compounds to alkynes and alkenes is an atom-efficient method of carbon-heteroatom bond formation and is widely used as a fundamental synthetic method for the construction of functional molecules. Nevertheless, examples of transition-metal-catalyzed addition reactions of group 16 heteroatom compounds to carbon-carbon unsaturated bonds have been limited due to the widespread belief that organic sulfur and selenium compounds are representative catalyst poisons. In recent decades, however, several seminal catalytic reactions of sulfur compounds have been developed, providing important insights into catalysis and poisons. Therefore, this paper focuses on the transition-metal-catalyzed addition of organosulfur compounds to alkynes and alkenes, gains comprehensive insights into the catalysis and catalyst poisons, and proposes concepts for the development of transition-metal-catalyzed reactions of group 16 heteroatom compounds.
Collapse
Affiliation(s)
- Yuki Yamamoto
- Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4-4-37 Takeda, Kofu, 400-8510, Japan
| | - Akiya Ogawa
- Organization for Research Promotion, Osaka Metropolitan University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka, 599-8531, Japan
| |
Collapse
|
12
|
Zhou Z, Gai L, Xu LW, Guo Z, Lu H. Disilane-bridged architectures: an emerging class of molecular materials. Chem Sci 2023; 14:10385-10402. [PMID: 37799998 PMCID: PMC10548527 DOI: 10.1039/d3sc02690f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 08/21/2023] [Indexed: 10/07/2023] Open
Abstract
Disilanes are organosilicon compounds that contain saturated Si-Si bonds. The structural characteristics of Si-Si single bonds resemble those of C-C single bonds, but their electronic structure is more similar to that of C[double bond, length as m-dash]C double bonds, as Si-Si bonds have a higher HOMO energy level. These organosilicon compounds feature unique intramolecular σ electron delocalization, low ionization potentials, polarizable electronic structure, and σ-π interaction. It has been demonstrated that the employment of disilane units (Si-Si) is a versatile and effective approach for finely adjusting the photophysical properties of organic materials in both solution and solid states. In this review, we present and discuss the structure, properties, and relationships of novel σ-π-conjugated hybrid architectures with saturated Si-Si σ bonds. The application of disilane-bridged σ-conjugated compounds as optoelectronic materials, multifunctional solid-state emitters, CPL, and non-linear optical and stimuli-responsive materials is also reviewed.
Collapse
Affiliation(s)
- Zhikuan Zhou
- Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material Chemistry and Chemical Engineering, Hangzhou Normal University 2318 Yuhangtang Road Hangzhou 311121 China
| | - Lizhi Gai
- Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material Chemistry and Chemical Engineering, Hangzhou Normal University 2318 Yuhangtang Road Hangzhou 311121 China
| | - Li-Wen Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material Chemistry and Chemical Engineering, Hangzhou Normal University 2318 Yuhangtang Road Hangzhou 311121 China
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University 163 Xianlin Avenue Nanjing 210023 China
| | - Hua Lu
- Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material Chemistry and Chemical Engineering, Hangzhou Normal University 2318 Yuhangtang Road Hangzhou 311121 China
| |
Collapse
|
13
|
Zhao S, Ding L, Sun Y, Wang M, Zhao D. Synergistic Palladium/Lewis Acid-Catalyzed Regio- and Stereo-divergent Bissilylation of Alkynoates: Scope, Mechanism, and Origin of Selectivity. Angew Chem Int Ed Engl 2023; 62:e202309169. [PMID: 37477636 DOI: 10.1002/anie.202309169] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 07/22/2023]
Abstract
Transition metal-catalyzed bissilylation reactions of alkynes with disilane reagents have become one of the most straightforward and efficient protocols to rapidly produce structurally diverse alkenyl silicon derivatives. In these reactions, the utilization of unsymmetrical disilane reagents provided the possibilities for reactivity enhancement as well as the synthetic merits in contrast to symmetrical disilane reagents. However, a major yet challenging objective is achieving precise control over the selectivity including the regioselectivity and the cis/trans-selectivity. Herein we realized the first divergent bissilylation of alkynoates with our developed air-stable disilane reagent 8-(2-substituted-1,1,2,2-tetramethyldisilanyl)quinoline (TMDQ) by means of synergistic Pd/Lewis acid catalytic system. The catalytic system precisely dictates the selectivity, resulting in the divergent synthesis of 1,2-bissilyl alkenes. The power of these 1,2-bissilyl alkenes serving as the key synthetic intermediates has been clearly demonstrated by rapid construction of diverse motifs and densely functionalized biologically active compounds. In addition, the origins of the switchable selectivities were well elucidated by experimental and computational studies on the reaction mechanism and were mainly attributed to different ligand steric effects, the use of the specific disilane reagent TMDQ and the different coordination modes of different Lewis acid with alkynoates.
Collapse
Affiliation(s)
- Shuang Zhao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Linlin Ding
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yingman Sun
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Minyan Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Dongbing Zhao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| |
Collapse
|
14
|
Wang X, Feng C, Jiang J, Maeda S, Kubota K, Ito H. Stereospecific synthesis of silicon-stereogenic optically active silylboranes and general synthesis of chiral silyl Anions. Nat Commun 2023; 14:5561. [PMID: 37689789 PMCID: PMC10492825 DOI: 10.1038/s41467-023-41113-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/23/2023] [Indexed: 09/11/2023] Open
Abstract
Silicon-stereogenic optically active silylboranes could potentially allow the formation of chiral silyl nucleophiles as well as the synthesis of various chiral silicon compounds. However, the synthesis of such silicon-stereogenic silylboranes has not been achieved so far. Here, we report the synthesis of silicon-stereogenic optically active silylboranes via a stereospecific Pt(PPh3)4-catalyzed Si-H borylation of chiral hydrosilanes, which are synthesized by stoichiometric and catalytic asymmetric synthesis, in high yield and very high or perfect enantiospecificity (99% es in one case, and >99% es in the others) with retention of the configuration. Furthermore, we report a practical approach to generate silicon-stereogenic silyl nucleophiles with high enantiopurity and configurational stability using MeLi activation. This protocol is suitable for the stereospecific and general synthesis of silicon-stereogenic trialkyl-, dialkylbenzyl-, dialkylaryl-, diarylalkyl-, and alkylary benzyloxy-substituted silylboranes and their corresponding silyl nucleophiles with excellent enantiospecificity (>99% es except one case of 99% es). Transition-metal-catalyzed C-Si bond-forming cross-coupling reactions and conjugate-addition reactions are also demonstrated. The mechanisms underlying the stability and reactivity of such chiral silyl anion were investigated by combining NMR spectroscopy and DFT calculations.
Collapse
Affiliation(s)
- Xihong Wang
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido, 001-0021, Japan
| | - Chi Feng
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan
| | - Julong Jiang
- Department of Chemistry, Faculty of Science, Hokkaido University Sapporo, Hokkaido, 060-0815, Japan
| | - Satoshi Maeda
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido, 001-0021, Japan
- Department of Chemistry, Faculty of Science, Hokkaido University Sapporo, Hokkaido, 060-0815, Japan
| | - Koji Kubota
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido, 001-0021, Japan.
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan.
| | - Hajime Ito
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido, 001-0021, Japan.
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan.
| |
Collapse
|
15
|
Naka A, Kobayashi H. Rhodium-Catalyzed Trans-Bis-Silylation Reactions of 2-Ethynyl-3-pentamethyldisilanylpyridines. Molecules 2023; 28:molecules28083284. [PMID: 37110518 PMCID: PMC10142085 DOI: 10.3390/molecules28083284] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Rhodium-catalyzed reactions of 2-ethynyl-3-pentamethyldisilanylpyridine derivatives (1 and 2) are reported. The reactions of compounds 1 and 2 in the presence of catalytic amounts of rhodium complexes at 110 °C gave the corresponding pyridine-fused siloles (3) and (4) through intramolecular trans-bis-silylation cyclization. The reaction of 2-bromo-3-(1,1,2,2,2-pentamethyldisilanyl)pyridine with 3-phenyl-1-propyne in the presence of PdCl2(PPh3)2-CuI catalysts afforded 1:2 bis-silylation adduct 6. DFT calculations were also performed to understand the reaction mechanism for the production of compound 3 from compound 1.
Collapse
Affiliation(s)
- Akinobu Naka
- Department of Life Science, Kurashiki University of Science and the Arts, Nishinoura, Tsurajima-cho, Kurashiki 712-8505, Okayama, Japan
| | - Hisayoshi Kobayashi
- Emeritus Kyoto Institute of Technology, Matsugasaki, Kyoto-shi 606-8585, Kyoto, Japan
| |
Collapse
|
16
|
Cu-catalysed enantioselective radical heteroatomic S-O cross-coupling. Nat Chem 2023; 15:395-404. [PMID: 36575341 DOI: 10.1038/s41557-022-01102-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 10/27/2022] [Indexed: 12/29/2022]
Abstract
The transition-metal-catalysed cross-coupling reaction has established itself as one of the most reliable and practical synthetic tools for the efficient construction of carbon-carbon/heteroatom (p-block elements other than carbon) bonds in both racemic and enantioselective manners. In contrast, development of the corresponding heteroatom-heteroatom cross-couplings has so far remained elusive, probably due to the under-investigated and often challenging heteroatom-heteroatom reductive elimination. Here we demonstrate the use of single-electron reductive elimination as a strategy for developing enantioselective S-O coupling under Cu catalysis, based on both experimental and theoretical results. The reaction manifests its synthetic potential by the ready preparation of challenging chiral alcohols featuring congested stereocentres, the expedient valorization of the biomass-derived feedstock glycerol, and the remarkable catalytic 4,6-desymmetrization of inositol. These results demonstrate the potential of enantioselective radical heteroatomic cross-coupling as a general chiral heteroatom-heteroatom formation strategy.
Collapse
|
17
|
Sahharova LT, Burykina JV, Kostyukovich AY, Eremin DB, Boiko DA, Fakhrutdinov AN, Ananikov VP. Expanding the Role of Dimeric Species: On-Cycle Involvement, Improved Stability, and Control of Stereo-Specificity. A Case Study of Atom-Economic Catalytic Hydrothiolation. ACS Catal 2023. [DOI: 10.1021/acscatal.2c06406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Affiliation(s)
- Liliya T. Sahharova
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119991, Russia
| | - Julia V. Burykina
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119991, Russia
| | - Alexander Yu. Kostyukovich
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119991, Russia
| | - Dmitry B. Eremin
- The Bridge@USC, University of Southern California, 1002 Childs Way, Los Angeles, California 90089-3502, United States
| | - Daniil A. Boiko
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119991, Russia
| | - Artem N. Fakhrutdinov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119991, Russia
| | - Valentine P. Ananikov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119991, Russia
| |
Collapse
|
18
|
Metal-Free One-Pot Multi-Functionalization of Unsaturated Compounds with Interelement Compounds by Radical Process. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020787. [PMID: 36677845 PMCID: PMC9861539 DOI: 10.3390/molecules28020787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 01/14/2023]
Abstract
In recent years, the importance of "environmentally friendly manufacturing" has been increasing toward the establishment of a resource-recycling society. In organic synthesis, as well, it is becoming increasingly important to develop new synthetic strategies with resource conservation and the recycling of elemental resources in mind, rather than just only synthesis. Many studies on the construction of frameworks of functional molecules using ionic reactions and transition-metal-catalyzed reactions have been reported, but most of them have focused on the formation of carbon-carbon bonds. However, it is essential to introduce appropriate functional groups at appropriate positions in molecules in order for the molecules to express their functions, and furthermore, the highly selective preparation of multiple functional groups is considered important for the creation of new functional molecules. In this review, we focus on radical reactions with high functional group selectivity and overview the recent progress in practical methods for the simultaneous introduction of multiple functional groups and propose future synthetic strategies that emphasize the recycling of elemental resources and environmental friendliness.
Collapse
|
19
|
Vázquez-Domínguez P, Romero-Arenas A, Fernández R, Lassaletta JM, Ros A. Ir-Catalyzed Asymmetric Hydroarylation of Alkynes for the Synthesis of Axially Chiral Heterobiaryls. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Pablo Vázquez-Domínguez
- Instituto de Investigaciones Químicas (CSIC-US) and Centro de Innovación en Química Avanzada (ORFEO−CINQA), Avda. Américo Vespucio, 49, 41092 Seville, Spain
- Departamento de Química Orgánica, Universidad de Sevilla and Centro de Innovación en Química Avanzada (ORFEO−CINQA), C/Prof. García González, 1, 41012 Seville, Spain
| | - Antonio Romero-Arenas
- Instituto de Investigaciones Químicas (CSIC-US) and Centro de Innovación en Química Avanzada (ORFEO−CINQA), Avda. Américo Vespucio, 49, 41092 Seville, Spain
| | - Rosario Fernández
- Departamento de Química Orgánica, Universidad de Sevilla and Centro de Innovación en Química Avanzada (ORFEO−CINQA), C/Prof. García González, 1, 41012 Seville, Spain
| | - José María Lassaletta
- Instituto de Investigaciones Químicas (CSIC-US) and Centro de Innovación en Química Avanzada (ORFEO−CINQA), Avda. Américo Vespucio, 49, 41092 Seville, Spain
| | - Abel Ros
- Instituto de Investigaciones Químicas (CSIC-US) and Centro de Innovación en Química Avanzada (ORFEO−CINQA), Avda. Américo Vespucio, 49, 41092 Seville, Spain
| |
Collapse
|
20
|
Arai R, Nagashima Y, Koshikawa T, Tanaka K. Photocatalytic Generations of Secondary and Tertiary Silyl Radicals from Silylboranes Using an Alkoxide Cocatalyst. J Org Chem 2022. [PMID: 36214474 DOI: 10.1021/acs.joc.2c01885] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Silyl radicals are valuable species to prepare diverse organosilicon compounds. However, unlike stable tertiary silyl radicals, the use of secondary silyl radicals has been problematic in silylation reactions due to their instability. Here, we present photocatalytic in situ generations of both secondary and tertiary silyl radicals by one-electron oxidation of ate complexes, formed from silylboranes and an alkoxide cocatalyst, achieving highly efficient hydrosilylation and deuterosilylation of electron-rich alkenes and dienes as well as electron-deficient alkenes. The theoretical studies show that anionic borate complexes activated with an alkoxide have lower oxidation potentials than neutral borate complexes, allowing the formation of secondary silyl radicals. The calculated reaction pathways reveal that anionic conditions using the conjugate acid-base pair of NaOEt (cocatalyst) and EtOH (solvent) are the key to expanding the scope of silyl radicals and alkenes.
Collapse
Affiliation(s)
- Ryo Arai
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo152-8550, Japan
| | - Yuki Nagashima
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo152-8550, Japan
| | - Takumi Koshikawa
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo152-8550, Japan
| | - Ken Tanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo152-8550, Japan
| |
Collapse
|
21
|
Zhang Y, Xu W, Gao T, Guo M, Yang CH, Xie H, Kong X, Yang Z, Chang J. Pd-Catalyzed Borylsilylative Cyclization of 1,6-Allenynes. Org Lett 2022; 24:7021-7025. [PMID: 36129417 DOI: 10.1021/acs.orglett.2c02878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A Pd-catalyzed borylsilylative cyclization of 1,6-allenynes with PhMe2SiBpin was developed. This method provides a practical and general method to afford the carbocycles and heterocycles bearing silyl and boryl groups with excellent regioselectivities and stereoselectivities in high to excellent yields.
Collapse
Affiliation(s)
- Yinchao Zhang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Wenxiu Xu
- Henan Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, 436 Xian'ge Road, Anyang 455000, People's Republic of China
| | - Tongtong Gao
- Henan Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, 436 Xian'ge Road, Anyang 455000, People's Republic of China
| | - Mengjuan Guo
- Henan Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, 436 Xian'ge Road, Anyang 455000, People's Republic of China
| | - Chun-Hua Yang
- Henan Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, 436 Xian'ge Road, Anyang 455000, People's Republic of China
| | - Hua Xie
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Xiangtao Kong
- Henan Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, 436 Xian'ge Road, Anyang 455000, People's Republic of China
| | - Zhantao Yang
- Henan Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, 436 Xian'ge Road, Anyang 455000, People's Republic of China
| | - Junbiao Chang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| |
Collapse
|
22
|
Naka A, Shimomura N, Kobayashi H. Synthesis of Pyridine-Fused Siloles by Palladium-Catalyzed Intramolecular Bis-Silylation. ACS OMEGA 2022; 7:30369-30375. [PMID: 36061719 PMCID: PMC9435037 DOI: 10.1021/acsomega.2c03637] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/08/2022] [Indexed: 05/14/2023]
Abstract
Silole derivatives are attracting significant attention as new functional materials with excellent electronic and photophysical properties. Thus, the development of synthesis methods to afford such derivatives is highly desirable. Herein, the synthesis of pyridine-fused siloles under the conditions of the Sonogashira coupling reaction is described. The reactions of 2-bromo-3-(pentamethyldisilanyl)pyridine (1) with ethynylbenzene derivatives in the presence of PdCl2(PPh3)2-CuI as a catalyst afforded the corresponding pyridine-fused siloles (2a-2c) through intramolecular trans-bis-silylation. DFT calculations were also performed to understand the reaction mechanism. This paper is the first to report on the successful use of palladium catalysts in the trans-bis-silylation of alkynes with disilanes.
Collapse
Affiliation(s)
- Akinobu Naka
- Department
of Life Science, Kurashiki University of
Science and the Arts, 2640 Nishinoura, Tsurajima, Kurashiki, Okayama 712-8505, Japan
| | - Natsumi Shimomura
- Department
of Life Science, Kurashiki University of
Science and the Arts, 2640 Nishinoura, Tsurajima, Kurashiki, Okayama 712-8505, Japan
| | - Hisayoshi Kobayashi
- Professor
Emeritus, Kyoto Institute of Technology, Matsugasaki, Kyoto 606-8585, Japan
| |
Collapse
|
23
|
Suzuki K, Sugihara N, Nishimoto Y, Yasuda M. anti-Selective Borylstannylation of Alkynes with (o-Phenylenediaminato)borylstannanes by a Radical Mechanism. Angew Chem Int Ed Engl 2022; 61:e202201883. [PMID: 35485137 DOI: 10.1002/anie.202201883] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Indexed: 12/20/2022]
Abstract
We have achieved the first anti-borylstannylation of alkynes by using (o-phenylenediaminato)borylstannanes. This reaction afforded 1-boryl-2-stannylalkenes with excellent regio- and stereoselectivity by a radical mechanism. This anti-addition manner is in sharp contrast to the syn-selectivity obtained during transition metal-catalyzed borylstannylation. The mild radical conditions enabled a broad substrate scope, and various types of aromatic and aliphatic alkynes were applicable. The origin of regio- and stereoselectivity was elucidated by DFT calculation of the reaction mechanism. The application of the borylstannylation products to cross- or homocoupling reactions provided ready access to either triarylethenes or bisborylbutadienes.
Collapse
Affiliation(s)
- Kensuke Suzuki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Naoki Sugihara
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yoshihiro Nishimoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Makoto Yasuda
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
24
|
Gao B, Jiang T, Yang R, Yan Q, Liu X, Xie Q, Zhang X. Palladium-Catalyzed Highly Chemo- and Stereoselective Bisthiolation of Terminal Alkynes with Allyl Phenyl Sulfides via C-S Bond Cleavage. J Org Chem 2022; 87:7895-7904. [PMID: 35666286 DOI: 10.1021/acs.joc.2c00545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A facile and general method for palladium-catalyzed stereoselective bisthiolation of terminal alkynes with allyl phenyl sulfides has been developed. The scope and versatility of the reaction have been demonstrated, and a broad range of substrates bearing electron-donating and -withdrawing groups on the aromatic rings were all compatible with this reaction, providing the desired (Z)-1,2-dithio-1-alkenes in moderate to good yields. Preliminary mechanistic studies demonstrated that the sulfur source of the desired products may be successively incorporated into alkynes via C-S bond cleavage of two molecules of allyl phenyl sulfides and ruled out the possibility of vinyl sulfides, alkynyl sulfides, and disulfide intermediates being involved in this reaction.
Collapse
Affiliation(s)
- Bao Gao
- Department of Applied Chemistry, School of Science, Anhui Agricultural University, Hefei 230036, P. R. China
| | - Tao Jiang
- Department of Applied Chemistry, School of Science, Anhui Agricultural University, Hefei 230036, P. R. China
| | - Ruiting Yang
- Department of Applied Chemistry, School of Science, Anhui Agricultural University, Hefei 230036, P. R. China
| | - Qian Yan
- Department of Applied Chemistry, School of Science, Anhui Agricultural University, Hefei 230036, P. R. China
| | - Xiaojun Liu
- Department of Applied Chemistry, School of Science, Anhui Agricultural University, Hefei 230036, P. R. China
| | - Qiumin Xie
- Department of Applied Chemistry, School of Science, Anhui Agricultural University, Hefei 230036, P. R. China
| | - Xiuli Zhang
- Department of Applied Chemistry, School of Science, Anhui Agricultural University, Hefei 230036, P. R. China
| |
Collapse
|
25
|
Li J, An M, Gao Z, Guo Y, Liu H, Zhao P, Bi X, Shi E, Xiao J. Organobase-catalyzed 1,1-diborylation of terminal alkynes under metal-free conditions. RSC Adv 2022; 12:16530-16534. [PMID: 35747526 PMCID: PMC9159348 DOI: 10.1039/d2ra02638d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/25/2022] [Indexed: 11/26/2022] Open
Abstract
An organobase-catalyzed 1,1-diborylation of terminal alkynes from propargylic derivatives with bis(2,4-dimethylpentane-2,4-glycolato)diboron (B2oct2) is first reported, regioselectively providing 1,1-diborylalkene products with high efficiency. The catalytic pathway is well postulated on the basis of DFT calculations. An organobase-catalyzed 1,1-diborylation of terminal alkynes from propargylic derivatives with B2oct2 is first reported, providing 1,1-diborylalkene products with high efficiency. The catalytic pathway is well postulated on the basis of DFT calculations.![]()
Collapse
Affiliation(s)
- Junchen Li
- State Key Laboratory of NBC Protection for Civilian Beijing P. R. China
| | - Min An
- College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering Zigong P. R. China
| | - Zhenhua Gao
- State Key Laboratory of NBC Protection for Civilian Beijing P. R. China
| | - Yongbiao Guo
- State Key Laboratory of NBC Protection for Civilian Beijing P. R. China
| | - Haibo Liu
- State Key Laboratory of NBC Protection for Civilian Beijing P. R. China
| | - Peichao Zhao
- State Key Laboratory of NBC Protection for Civilian Beijing P. R. China
| | - Xiaojing Bi
- State Key Laboratory of NBC Protection for Civilian Beijing P. R. China
| | - Enxue Shi
- State Key Laboratory of NBC Protection for Civilian Beijing P. R. China
| | - Junhua Xiao
- State Key Laboratory of NBC Protection for Civilian Beijing P. R. China
| |
Collapse
|
26
|
Kanno KI, Kyushin S. Transition Metal-Catalyzed Selective Functionalization of Oligosilanes without Si-Si Bond Cleavage. J SYN ORG CHEM JPN 2022. [DOI: 10.5059/yukigoseikyokaishi.80.574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
27
|
Mahato S, Nandy S, Das KK, Panda S. Zirconium Promoted Synthetic Transformations of Organoboron Compounds. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Somenath Mahato
- IIT Kharagpur: Indian Institute of Technology Kharagpur chemistry INDIA
| | - Soumilee Nandy
- IIT Kharagpur: Indian Institute of Technology Kharagpur chemistry INDIA
| | - Kanak Kanti Das
- IIT Kharagpur: Indian Institute of Technology Kharagpur chemistry INDIA
| | - Santanu Panda
- Indian Institute of Technology Kharagpur Department of Chemistry Chemistry IIT Kharagpur, Organic chemistry building, OC-207Near Rubber technology department 721302 Kharagpur INDIA
| |
Collapse
|
28
|
Suzuki K, Sugihara N, Nishimoto Y, Yasuda M. anti‐Selective Borylstannylation of Alkynes with (o‐Phenylenediaminato)borylstannanes by a Radical Mechanism. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | | | | | - Makoto Yasuda
- Osaka University Department of Applied Chemistry, Graduate School of Engineering 2-1 Yamadaoka, Suita 565-0871 Osaka JAPAN
| |
Collapse
|
29
|
Pradhan TR, Paudel M, Feoktistova T, Cheong PHY, Park JK. Silaborative Assembly of Allenamides and Alkynes: Highly Regio- and Stereocontrolled Access to Bi- or Trimetallic Skipped Dienes. Angew Chem Int Ed Engl 2022; 61:e202116154. [PMID: 35142019 DOI: 10.1002/anie.202116154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Indexed: 12/16/2022]
Abstract
A highly stereo- and regiocontrolled multicomponent approach to skipped 1,4-dienes decorated with one boryl and two silyl functionalities is described. This Pd-catalyzed atom-economical union of allenamides, alkynes, and Me2 PhSiBpin (or Et3 SiBpin) proceeds without the use of phosphine ligands, instead relying on chelation through the internal amide group of the allenamide sulfonyl. A variety of alkynes, including those derived from complex bioactive molecules, can be efficiently coupled with allenamides and Me2 PhSiBpin in good yields and with excellent selectivity. The synthetic potential was demonstrated through multiple valuable chemoselective transformations, establishing new disconnections for functionalized dienes. Density functional theory calculations revealed that the reaction first proceeded through borylation of the allenamide, followed by silylation of the alkyne and then reductive elimination, which convergently assemble the skipped 1,4-diene.
Collapse
Affiliation(s)
- Tapas R Pradhan
- Department of Chemistry and Institution for Functional Materials, Pusan National University, Busan, 46241, Republic of Korea
| | - Mukti Paudel
- Department of Chemistry and Institution for Functional Materials, Pusan National University, Busan, 46241, Republic of Korea
| | | | | | - Jin Kyoon Park
- Department of Chemistry and Institution for Functional Materials, Pusan National University, Busan, 46241, Republic of Korea
| |
Collapse
|
30
|
Yang M, Yu Y, Ma W, Feng Y, Zhang G, Wu Y, Zhou F, Yang Y, Liu D. Palladium-catalyzed hydroboration reaction of unactivated alkynes with bis (pinacolato) diboron in water. RSC Adv 2022; 12:9815-9820. [PMID: 35424934 PMCID: PMC8961796 DOI: 10.1039/d1ra09136k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/14/2022] [Indexed: 11/21/2022] Open
Abstract
A highly efficient and mild palladium-catalyzed hydroboration of unactivated internal alkynes in water is described. Both aryl- and alkyl-substituted alkynes proceeded smoothly within the reaction time to afford the desired vinylboronates in moderate to high yields. Bis (pinacolato) diboron was used to afford α- and β-hydroborated products in the presence of HOAc. These reactions showed high reactivities and tolerance, thus providing a promising method for the synthesis of alkenyl boron compounds.
Collapse
Affiliation(s)
- Ming Yang
- School of Chemistry and Engineering, Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, Wuhan Textile University 1 Textile Road Wuhan 430073 Hubei China
| | - Yunzi Yu
- School of Chemistry and Engineering, Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, Wuhan Textile University 1 Textile Road Wuhan 430073 Hubei China
| | - Wenxia Ma
- School of Chemistry and Engineering, Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, Wuhan Textile University 1 Textile Road Wuhan 430073 Hubei China
| | - Yuqin Feng
- School of Chemistry and Engineering, Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, Wuhan Textile University 1 Textile Road Wuhan 430073 Hubei China
| | - Gang Zhang
- School of Chemistry and Engineering, Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, Wuhan Textile University 1 Textile Road Wuhan 430073 Hubei China
| | - Yaqi Wu
- School of Chemistry and Engineering, Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, Wuhan Textile University 1 Textile Road Wuhan 430073 Hubei China
| | - Fanyu Zhou
- School of Chemistry and Engineering, Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, Wuhan Textile University 1 Textile Road Wuhan 430073 Hubei China
| | - Yongsheng Yang
- School of Chemistry and Engineering, Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, Wuhan Textile University 1 Textile Road Wuhan 430073 Hubei China
| | - Dezheng Liu
- School of Mechanical Engineering, Hubei University of Arts and Science No. 296 Longzhong Road Xiangyang Hubei Province 41053 P. R. China
| |
Collapse
|
31
|
Manjón‐Mata I, Quirós MT, Velasco‐Juárez E, Buñuel E, Cárdenas DJ. Nickel‐Catalyzed Hydroborylative Polycyclization of Allenynes: an Atom‐Economical and Diastereoselective Synthesis of Bicyclic 5‐5 Fused Rings. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202101462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Inés Manjón‐Mata
- Department of Organic Chemistry Facultad de Ciencias Universidad Autónoma de Madrid Institute for Advanced Research in Chemical Sciences (IAdChem) Avd. Francisco Tomás y Valiente 7, Campus de Cantoblanco 28049 Madrid Spain
| | - M. Teresa Quirós
- Department of Organic Chemistry and Inorganic Chemistry Facultad de Farmacia Universidad de Alcalá Campus Universitario. Ctra. Madrid-Barcelona, Km. 33,600. Alcalá de Henares 28871 Madrid Spain
| | - Elena Velasco‐Juárez
- Department of Organic Chemistry Facultad de Ciencias Universidad Autónoma de Madrid Institute for Advanced Research in Chemical Sciences (IAdChem) Avd. Francisco Tomás y Valiente 7, Campus de Cantoblanco 28049 Madrid Spain
| | - Elena Buñuel
- Department of Organic Chemistry Facultad de Ciencias Universidad Autónoma de Madrid Institute for Advanced Research in Chemical Sciences (IAdChem) Avd. Francisco Tomás y Valiente 7, Campus de Cantoblanco 28049 Madrid Spain
| | - Diego J. Cárdenas
- Department of Organic Chemistry Facultad de Ciencias Universidad Autónoma de Madrid Institute for Advanced Research in Chemical Sciences (IAdChem) Avd. Francisco Tomás y Valiente 7, Campus de Cantoblanco 28049 Madrid Spain
| |
Collapse
|
32
|
Pradhan TR, Paudel M, Feoktistova T, Cheong PH, Park JK. Silaborative Assembly of Allenamides and Alkynes: Highly Regio‐ and Stereocontrolled Access to Bi‐ or Trimetallic Skipped Dienes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Tapas R. Pradhan
- Department of Chemistry and Institution for Functional Materials Pusan National University Busan 46241 Republic of Korea
| | - Mukti Paudel
- Department of Chemistry and Institution for Functional Materials Pusan National University Busan 46241 Republic of Korea
| | | | | | - Jin Kyoon Park
- Department of Chemistry and Institution for Functional Materials Pusan National University Busan 46241 Republic of Korea
| |
Collapse
|
33
|
Ruthenium-catalyzed hydrosilylation of alkynes with preservation of the Si–Si bond of hydrooligosilanes: Regio- and stereoselective synthesis of (Z)-alkenyloligosilanes and carbonyl-functionalized alkenyldisilanes. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2021.122234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
34
|
Photoinduced Bisphosphination of Alkynes with Phosphorus Interelement Compounds and Its Application to Double-Bond Isomerization. Molecules 2022; 27:molecules27041284. [PMID: 35209072 PMCID: PMC8878596 DOI: 10.3390/molecules27041284] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 11/17/2022] Open
Abstract
The addition of interelement compounds with heteroatom-heteroatom single bonds to carbon-carbon unsaturated bonds under light irradiation is believed to be an atomically efficient method to procure materials with carbon-heteroatom bonds. In this study, we achieved the photoinduced bisphosphination of alkynes using the phosphorus interelement compound, tetraphenyldiphosphine monosulfide (1), to stereoselectively obtain the corresponding (E)-vic-1,2-bisphosphinoalkenes, which are important transition-metal ligands. The bisphosphination reaction was performed by mixing 1 and various alkynes and then exposing the mixture to light irradiation. Optimization of the conditions for the bisphosphination reaction resulted in a wide substrate range and excellent trans-selectivity. Moreover, the completely regioselective introduction of pentavalent and trivalent phosphorus groups to the terminal and internal positions of the alkynes, respectively, was achieved. We also found that the novel double-bond isomerization reaction of the synthesized bisphosphinated products occurred with a catalytic amount of a base under mild conditions. Our method for the photoinduced bisphosphination of carbon-carbon unsaturated compounds may have strong implications for both organic synthesis and organometallic and catalyst chemistry.
Collapse
|
35
|
Liu J, Wu C, Hu T, Yang W, Xie Y, Shi Y, Liu Q, Shao Y, Zhang F. Hexamethyldisilazane Lithium (LiHMDS)-Promoted Hydroboration of Alkynes and Alkenes with Pinacolborane. J Org Chem 2022; 87:3442-3452. [PMID: 35143184 DOI: 10.1021/acs.joc.1c03012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Lithium-promoted hydroboration of alkynes and alkenes using commercially available hexamethyldisilazane lithium as a precatalyst and HBpin as a hydride source has been developed. This method will be appealing for organic synthesis because of its remarkable substrate tolerance and good yields. Mechanistic studies revealed that the hydroboration proceeds through the in situ-formed BH3 species, which acts to drive the turnover of the hydroboration of alkynes and alkenes.
Collapse
Affiliation(s)
- Jichao Liu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.,College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Caiyan Wu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Tinghui Hu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Wei Yang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Yaoyao Xie
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Yinyin Shi
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Qianrui Liu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Yinlin Shao
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Fangjun Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
36
|
Marciniec B, Pietraszuk C, Pawluć P, Maciejewski H. Inorganometallics (Transition Metal-Metalloid Complexes) and Catalysis. Chem Rev 2022; 122:3996-4090. [PMID: 34967210 PMCID: PMC8832401 DOI: 10.1021/acs.chemrev.1c00417] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Indexed: 11/28/2022]
Abstract
While the formation and breaking of transition metal (TM)-carbon bonds plays a pivotal role in the catalysis of organic compounds, the reactivity of inorganometallic species, that is, those involving the transition metal (TM)-metalloid (E) bond, is of key importance in most conversions of metalloid derivatives catalyzed by TM complexes. This Review presents the background of inorganometallic catalysis and its development over the last 15 years. The results of mechanistic studies presented in the Review are related to the occurrence of TM-E and TM-H compounds as reactive intermediates in the catalytic transformations of selected metalloids (E = B, Si, Ge, Sn, As, Sb, or Te). The Review illustrates the significance of inorganometallics in catalysis of the following processes: addition of metalloid-hydrogen and metalloid-metalloid bonds to unsaturated compounds; activation and functionalization of C-H bonds and C-X bonds with hydrometalloids and bismetalloids; activation and functionalization of C-H bonds with vinylmetalloids, metalloid halides, and sulfonates; and dehydrocoupling of hydrometalloids. This first Review on inorganometallic catalysis sums up the developments in the catalytic methods for the synthesis of organometalloid compounds and their applications in advanced organic synthesis as a part of tandem reactions.
Collapse
Affiliation(s)
- Bogdan Marciniec
- Faculty
of Chemistry, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego
8, 61-614 Poznań, Poland
- Center
for Advanced Technology, Adam Mickiewicz
University, Poznań,
Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
| | - Cezary Pietraszuk
- Faculty
of Chemistry, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego
8, 61-614 Poznań, Poland
| | - Piotr Pawluć
- Faculty
of Chemistry, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego
8, 61-614 Poznań, Poland
- Center
for Advanced Technology, Adam Mickiewicz
University, Poznań,
Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
| | - Hieronim Maciejewski
- Faculty
of Chemistry, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego
8, 61-614 Poznań, Poland
| |
Collapse
|
37
|
Das KK, Mahato S, Hazra S, Panda S. Development of Methods to the Synthesis of β-Boryl Acyls, Imines and Nitriles. CHEM REC 2022; 22:e202100290. [PMID: 35088513 DOI: 10.1002/tcr.202100290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 12/30/2022]
Abstract
Organoboron compounds are highly important and versatile synthetic intermediates for the preparation of a wide range of organic molecules. Organoboron compounds have drawn significant attention among organic chemists due to their Lewis acidic property, non-toxicity, and commercial availability. Over the last several decades, there has been a substantial development of new organoboron compounds, useful in organic synthesis. Among all other organoboron compounds, β-boryl carbonyl compounds are the important ones. The β-boryl compounds have appeared as promising intermediates for various synthetic transformations. The 1,4-conjugate addition of diboron reagents to carbon-carbon double bond in the presence of different transition-metal catalysts has been extensively reported by various research groups across the globe. This mini-review outlines the numerous racemic as well as asymmetric β-borylation methods developed to date.
Collapse
Affiliation(s)
- Kanak Kanti Das
- Department of Chemistry, Indian Institute of Technology, Kharagpur, 721302, India
| | - Somenath Mahato
- Department of Chemistry, Indian Institute of Technology, Kharagpur, 721302, India
| | - Subrata Hazra
- Department of Chemistry, Indian Institute of Technology, Kharagpur, 721302, India
| | - Santanu Panda
- Department of Chemistry, Indian Institute of Technology, Kharagpur, 721302, India
| |
Collapse
|
38
|
Transition-Metal-Free Synthesis of Unsymmetrical Diaryl Tellurides via S H2 Reaction of Aryl Radicals on Tellurium. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030809. [PMID: 35164075 PMCID: PMC8839872 DOI: 10.3390/molecules27030809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 01/20/2022] [Accepted: 01/20/2022] [Indexed: 11/25/2022]
Abstract
Although diaryl tellurides are parent organotellurium compounds, their synthesis methods, especially for unsymmetrical ones, are limited. This may be due to the instability of diaryl tellurides and their synthesis intermediates under reaction conditions. Radical reactions are known to exhibit excellent functional group selectivity; therefore, we focused on a bimolecular homolytic substitution (SH2) reaction between the aryl radical and diaryl ditelluride. Aryl radicals are generated from arylhydrazines in air and captured by diaryl ditellurides, resulting in a selective formation of unsymmetrical diaryl tellurides with high yields. The electronic effects of the substituents on both arylhydrazines and diaryl ditellurides on the SH2 reaction of tellurium are also discussed in detail.
Collapse
|
39
|
McManus C, Crumpton A, Aldridge S. Alkyne insertion into Cu-Al bonds and selective functionalization to form copper acyl compounds. Chem Commun (Camb) 2022; 58:8274-8277. [DOI: 10.1039/d2cc02578g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report on the insertion of alkynes into heterometallic M–M' bonds, producing (aluminylalkenyl)copper compounds which possess differential reactivity at the two derived M–C functions. Uniquely, this system is capable of...
Collapse
|
40
|
Chandrasekaran R, Pulikkottil FT, Elama KS, Rasappan R. Direct synthesis and applications of solid silylzinc reagents. Chem Sci 2021; 12:15719-15726. [PMID: 35003603 PMCID: PMC8654096 DOI: 10.1039/d1sc06038d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 11/19/2021] [Indexed: 01/29/2023] Open
Abstract
The increased synthetic utility of organosilanes has motivated researchers to develop milder and more practical synthetic methods. Silylzinc reagents, which are typically the most functional group tolerant, are notoriously difficult to synthesize because they are obtained by a pyrophoric reaction of silyllithium, particularly Me3SiLi which is itself prepared by the reaction of MeLi and disilane. Furthermore, the dissolved LiCl in silylzinc may have a detrimental effect. A synthetic method that can avoid silyllithium and involves a direct synthesis of silylzinc reagents from silyl halides is arguably the simplest and most economical strategy. We describe, for the first time, the direct synthesis of PhMe2SiZnI and Me3SiZnI reagents by employing a coordinating TMEDA ligand, as well as single crystal XRD structures. Importantly, they can be obtained as solids and stored for longer periods at 4 °C. We also demonstrate their significance in cross-coupling of various free alkyl/aryl/alkenyl carboxylic acids with broader functional group tolerance and API derivatives. The general applicability and efficiency of solid Me3SiZnI are shown in a wide variety of reactions including alkylation, arylation, allylation, 1,4-addition, acylation and more.
Collapse
Affiliation(s)
- Revathi Chandrasekaran
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram Vithura Thiruvananthapuram Kerala 695551 India
| | - Feba Thomas Pulikkottil
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram Vithura Thiruvananthapuram Kerala 695551 India
| | - Krishna Suresh Elama
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram Vithura Thiruvananthapuram Kerala 695551 India
| | - Ramesh Rasappan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram Vithura Thiruvananthapuram Kerala 695551 India
| |
Collapse
|
41
|
Kanno S, Kakiuchi F, Kochi T. Palladium-Catalyzed Remote Diborylative Cyclization of Dienes with Diborons via Chain Walking. J Am Chem Soc 2021; 143:19275-19281. [PMID: 34695350 DOI: 10.1021/jacs.1c09705] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A novel method for catalytic remote bismetalation of alkene substrates by the addition of dimetal reagents is accomplished by using chain walking. In the presence of a palladium catalyst, the reaction of various 1,n-dienes and diborons were converted into cyclopentane derivatives with two boryl groups at remote positions via facile regioselective transformation of an unactivated sp3 C-H bond to a C-B bond. Sequential construction of three distant bonds, which is difficult to achieve by any method, was accomplished for the reactions of 1,n-dienes (n ≥ 7).
Collapse
Affiliation(s)
- Shota Kanno
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Fumitoshi Kakiuchi
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Takuya Kochi
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| |
Collapse
|
42
|
Hung VT, Tran CC, Yamamoto Y, Kodama S, Nomoto A, Ogawa A. Clarification on the Reactivity of Diaryl Diselenides toward Hexacyclohexyldilead under Light. Molecules 2021; 26:6265. [PMID: 34684846 PMCID: PMC8541589 DOI: 10.3390/molecules26206265] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 02/06/2023] Open
Abstract
In this study, the reactivity of organochalcogen compounds toward a representative alkyl-lead bond compound under light was investigated in detail. Under light irradiation, the Cy-Pb bond of Cy6Pb2 (Cy = cyclohexyl) undergoes homolytic cleavage to generate a cyclohexyl radical (Cy•). This radical can be successfully captured by diphenyl diselenide, which exhibits excellent carbon-radical-capturing ability. In the case of (PhS)2 and (PhTe)2, the yields of the corresponding cyclohexyl sulfides and tellurides were lower than that of (PhSe)2. This probably occurred due to the low carbon-radical-capturing ability of (PhS)2 and the high photosensitivity of the cyclohexyl-tellurium bond.
Collapse
Affiliation(s)
| | | | | | - Shintaro Kodama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Osaka 599-8531, Japan; (V.T.H.); (C.C.T.); (Y.Y.); (A.N.)
| | | | - Akiya Ogawa
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Osaka 599-8531, Japan; (V.T.H.); (C.C.T.); (Y.Y.); (A.N.)
| |
Collapse
|
43
|
Regio‐controllable Cobalt‐Catalyzed Sequential Hydrosilylation/Hydroboration of Arylacetylenes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
44
|
Radical Silyl‐ and Germylzincation of Propargylic Alcohols. Helv Chim Acta 2021. [DOI: 10.1002/hlca.202100128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
45
|
2,2-Bis(phenylselanyl)-1-(p-tolyl)vinyl 2-Oxo-2-(p-tolyl)acetate. MOLBANK 2021. [DOI: 10.3390/m1283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
2,2-Bis(phenylselanyl)-1-(p-tolyl)vinyl 2-oxo-2-(p-tolyl)acetate was synthesized via the reaction of p-tolylacetylene with diphenyl diselenide and benzoyl peroxide in benzene under atmospheric conditions. The molecular structure of the synthesized compound was evaluated using single-crystal X-ray analysis and spectral analyses. The process reported here provides a rare example of the direct and selective transformation of a terminal alkyne to the corresponding geminal diseleno-substituted alkene.
Collapse
|
46
|
Xu Y, Xu W, Chen X, Luo X, Lu H, Zhang M, Yang X, Deng G, Liang Y, Yang Y. Me 3SiSiMe 2(O n Bu): a disilane reagent for the synthesis of diverse silacycles via Brook- and retro-Brook-type rearrangement. Chem Sci 2021; 12:11756-11761. [PMID: 34659712 PMCID: PMC8442712 DOI: 10.1039/d1sc03487a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 07/31/2021] [Indexed: 12/14/2022] Open
Abstract
Herein, a readily available disilane Me3SiSiMe2(OnBu) has been developed for the synthesis of diverse silacycles via Brook- and retro-Brook-type rearrangement. This protocol enables the incorporation of a silylene into different starting materials, including acrylamides, alkene-tethered 2-(2-iodophenyl)-1H-indoles, and 2-iodobiaryls, via the cleavage of Si–Si, Si–C, and Si–O bonds, leading to the formation of spirobenzosiloles, fused benzosiloles, and π-conjugated dibenzosiloles in moderate to good yields. Preliminary mechanistic studies indicate that this transformation is realized by successive palladium-catalyzed bis-silylation and Brook- and retro-Brook-type rearrangement of silane-tethered silanols. A readily available disilane Me3SiSiMe2(OnBu) as a silylene source has been developed for the synthesis of diverse silacycles via Brook- and retro-Brook-type rearrangement.![]()
Collapse
Affiliation(s)
- Yankun Xu
- National & Local Joint Engineering Laboratory for New Petro-Chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University Changsha 410081 China
| | - Weiwei Xu
- National & Local Joint Engineering Laboratory for New Petro-Chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University Changsha 410081 China
| | - Xinyang Chen
- National & Local Joint Engineering Laboratory for New Petro-Chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University Changsha 410081 China
| | - Xiai Luo
- National & Local Joint Engineering Laboratory for New Petro-Chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University Changsha 410081 China
| | - Haiyan Lu
- National & Local Joint Engineering Laboratory for New Petro-Chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University Changsha 410081 China
| | - Minghao Zhang
- National & Local Joint Engineering Laboratory for New Petro-Chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University Changsha 410081 China
| | - Xiumei Yang
- National & Local Joint Engineering Laboratory for New Petro-Chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University Changsha 410081 China
| | - Guobo Deng
- National & Local Joint Engineering Laboratory for New Petro-Chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University Changsha 410081 China
| | - Yun Liang
- National & Local Joint Engineering Laboratory for New Petro-Chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University Changsha 410081 China
| | - Yuan Yang
- National & Local Joint Engineering Laboratory for New Petro-Chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University Changsha 410081 China
| |
Collapse
|
47
|
Herbort JH, Lalisse RF, Hadad CM, RajanBabu TV. Cationic Co(I) Catalysts for Regiodivergent Hydroalkenylation of 1,6-Enynes. An Uncommon cis-β-C-H Activation Leads to Z-Selective Coupling of Acrylates. ACS Catal 2021; 11:9605-9617. [PMID: 34745711 DOI: 10.1021/acscatal.1c02530] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Two intermolecular hydroalkenylation reactions of 1,6-enynes are presented which yield substituted 5-membered carbo- and -heterocycles. This reactivity is enabled by a cationic bis-diphenylphosphinopropane (DPPP)CoI species which forms a cobaltacyclopentene intermediate by oxidative cyclization of the enyne. This key species interacts with alkenes in distinct fashion, depending on the identity of the coupling partner to give regiodivergent products. Simple alkenes undergo insertion reactions to furnish 1,3-dienes whereby one of the alkenes is tetrasubstituted. When acrylates are employed as coupling partners, the site of intermolecular C-C formation shifts from the alkyne to the alkene motif of the enyne, yielding Z-substituted-acrylate derivatives. Computational studies provide support for our experimental observations and show that the turnover-limiting steps in both reactions are the interactions of the alkenes with the cobaltacyclopentene intermediate via either a 1,2-insertion in the case of ethylene, or an unexpected β-C-H activation in the case of most acrylates. Thus, the H syn to the ester is activated through the coordination of the acrylate carbonyl to the cobaltacycle intermediate, which explains the uncommon Z-selectivity and regiodivergence. Variable time normalization analysis (VTNA) of the kinetic data reveals a dependance upon the concentration of cobalt, acrylate, and activator. A KIE of 2.1 was observed with methyl methacrylate in separate flask experiments, indicating that C-H cleavage is the turnover-limiting step in the catalytic cycle. Lastly, a Hammett study of aryl-substituted enynes yields a ρ value of -0.4, indicating that more electron-rich substituents accelerate the rate of the reaction.
Collapse
Affiliation(s)
- James H. Herbort
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Remy F. Lalisse
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Christopher M. Hadad
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - T. V. RajanBabu
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
48
|
Cheng Z, Guo J, Sun Y, Zheng Y, Zhou Z, Lu Z. Regio-controllable Cobalt-Catalyzed Sequential Hydrosilylation/Hydroboration of Arylacetylenes. Angew Chem Int Ed Engl 2021; 60:22454-22460. [PMID: 34347353 DOI: 10.1002/anie.202109089] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Indexed: 12/15/2022]
Abstract
Regiodivergent addition reactions provide straightforward and atom-economic approaches to access different regioisomers. However, the regio-chemistry control to access all the possible results is still challenging especially for the reaction involving multiple addition steps. Herein, we reported regio-controllable cobalt-catalyzed sequential hydrosilylation/hydroboration of arylacetylenes, delivering all the possible regio-outcomes with high regioselectivities (up to >20/1 rr for all the cases). Each regioisomer of value-added silylboronates could be efficiently and regioselectively obtained from the same materials. The adjustment of the ligands of cobalt catalysts combined with dual catalysis relay strategy is the key to achieve regio-chemistry control. This regio-controllable research might inspire the exploration of the diversity-oriented synthesis that involves multiple additions and provide full sets of regioisomers of other synthetic useful molecules.
Collapse
Affiliation(s)
- Zhaoyang Cheng
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Jun Guo
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Yufeng Sun
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Yushan Zheng
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Zhehong Zhou
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Zhan Lu
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
49
|
Bhoyare VW, Tathe AG, Das A, Chintawar CC, Patil NT. The interplay of carbophilic activation and Au(I)/Au(III) catalysis: an emerging technique for 1,2-difunctionalization of C-C multiple bonds. Chem Soc Rev 2021; 50:10422-10450. [PMID: 34323240 DOI: 10.1039/d0cs00700e] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Gold complexes have emerged as the catalysts of choice for various functionalization reactions of C-C multiple bonds due to their inherent carbophilic nature. In a parallel space, efforts to realize less accessible cross-coupling reactivity have led to the development of various strategies that facilitate the arduous Au(i)/Au(iii) redox cycle. The interplay of the two important reactivity modes encountered in gold catalysis, namely carbophilic activation and Au(i)/Au(iii) catalysis, has allowed the development of a novel mechanistic paradigm that sponsors 1,2-difunctionalization reactions of various C-C multiple bonds. Interestingly, the reactivity as well as selectivity obtained through this interplay could be complementary to that obtained by the use of various other transition metals that mainly involved the classical oxidative addition/migratory insertion pathways. The present review shall comprehensively cover all the 1,2-difunctionalization reactions of C-C multiple bonds that have been realized by the interplay of the two important reactivity modes and categorized on the basis of the method that has been employed to foster the Au(i)/Au(iii) redox cycle.
Collapse
Affiliation(s)
- Vivek W Bhoyare
- India Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal Bypass Road, Bhauri, Bhopal - 462 066, India.
| | - Akash G Tathe
- India Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal Bypass Road, Bhauri, Bhopal - 462 066, India.
| | - Avishek Das
- India Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal Bypass Road, Bhauri, Bhopal - 462 066, India.
| | - Chetan C Chintawar
- India Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal Bypass Road, Bhauri, Bhopal - 462 066, India.
| | - Nitin T Patil
- India Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal Bypass Road, Bhauri, Bhopal - 462 066, India.
| |
Collapse
|
50
|
Ota K, Kinjo R. A Crystalline B 4N 2 Dewar Benzene as a Building Block for Conjugated B,N-Chains. J Am Chem Soc 2021; 143:11152-11159. [PMID: 34264664 DOI: 10.1021/jacs.1c04860] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Dewar benzene, one of the isolable valence isomers of C6H6, has been extensively studied since its first synthesis in 1962. By contrast, the chemistry of inorganic congeners of Dewar benzene, which can be formally gained by replacing the skeletal carbon atoms with heteroatoms, has been less developed despite their peculiar structural and electronic features. Among them, the extant B,N-Dewar benzenes are limited to the B3N3 system. Herein, we report the development of the first example of an isolable B4N2 Dewar benzene, 3. As predicted by DFT calculations, a judicious selection of the substituents allows synthesizing 3. Single-crystal X-ray analysis, NMR, and computational studies confirmed that 3 possesses a high-lying B(sp3)-B(sp3) σ-bond at the bridgehead position. Reactions with ethylene and phenylacetylene proceeded smoothly under mild conditions, affording the fused B4C4N2 ring systems (4 and 5). Structural characterization as well as DFT calculations revealed that compounds 4 and 5 involve a rigid and conjugated (BN)4 tetraene scaffold. Formation of 4 and 5 demonstrates that 3 may serve as a building block for the construction of conjugated B,N-chains.
Collapse
Affiliation(s)
- Kei Ota
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Rei Kinjo
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| |
Collapse
|