1
|
Eddins AJ, Gangarde YM, Singh A, Jana S, Zheng Y, Alexander ND, Reitsma JM, Cooley RB, Karplus PA, Mehl RA. Quantitative Protein Labeling in Live Cells by Controlling the Redox State of Encoded Tetrazines. J Am Chem Soc 2025. [PMID: 40560690 DOI: 10.1021/jacs.5c04605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2025]
Abstract
The site-specific attachment of fluorophores, probes, or drugs to proteins in living systems is critical for advancing our understanding of biology and drug development. The site-specific encoding of 1,2,4,5-tetrazine (Tet) residues into target proteins provides the rapid kinetics and stability required for quantitative labeling in living cells, a property that is increasingly desirable as the resolution and specificity of imaging increases. Here, we adapt a common gel-shift assay to create a "PEG Chaser assay" for evaluating labeling completeness in living cells by "chasing" in-cell Tet reactions with an in vitro reaction with a TCO-PEG5000 polymer; then, a gel shift distinguishes proteins that did not react in cells from those that did. We apply this to observe that encoded Tets exist in an equilibrium between oxidized (Tz) and reduced (DHTz) forms in living cells. We further show how a recently developed photooxidation treatment can convert the nonreactive DHTz Tet-protein to the reactive Tz form and enables its rapid, quantitative in-cell labeling. We then develop genetic code expansion machinery for encoding two new Tet ncAAs with different redox potentials and show how the tuning of the Tet redox is a useful variable for controlling the reactivity of Tet ncAAs. Specifically, the new Tet3H ncAA enables photoactivatable labeling and complete protein labeling in living cells in 5 min. This in-depth evaluation of the impact of the intracellular reducing environment on Tet reactivity and the demonstration of controlling Tet redox in living cells expands the utility of encodable Tet in living cells.
Collapse
Affiliation(s)
- Alex J Eddins
- Department of Biochemistry and Biophysics & GCE4All Research Center, Oregon State University, 2011 Agricultural and Life Sciences, Corvallis, Oregon 97331, United States
| | - Yogesh M Gangarde
- Department of Biochemistry and Biophysics & GCE4All Research Center, Oregon State University, 2011 Agricultural and Life Sciences, Corvallis, Oregon 97331, United States
| | - Anamika Singh
- Department of Biochemistry and Biophysics & GCE4All Research Center, Oregon State University, 2011 Agricultural and Life Sciences, Corvallis, Oregon 97331, United States
| | - Subhashis Jana
- Department of Biochemistry and Biophysics & GCE4All Research Center, Oregon State University, 2011 Agricultural and Life Sciences, Corvallis, Oregon 97331, United States
| | - Yunan Zheng
- Technology & Therapeutic Platforms, AbbVie Inc., North Chicago, Illinois 60064, Untied States
| | - Nathan D Alexander
- Department of Biochemistry and Biophysics & GCE4All Research Center, Oregon State University, 2011 Agricultural and Life Sciences, Corvallis, Oregon 97331, United States
| | - Justin M Reitsma
- Technology & Therapeutic Platforms, AbbVie Inc., North Chicago, Illinois 60064, Untied States
| | - Richard B Cooley
- Department of Biochemistry and Biophysics & GCE4All Research Center, Oregon State University, 2011 Agricultural and Life Sciences, Corvallis, Oregon 97331, United States
| | - P Andrew Karplus
- Department of Biochemistry and Biophysics & GCE4All Research Center, Oregon State University, 2011 Agricultural and Life Sciences, Corvallis, Oregon 97331, United States
| | - Ryan A Mehl
- Department of Biochemistry and Biophysics & GCE4All Research Center, Oregon State University, 2011 Agricultural and Life Sciences, Corvallis, Oregon 97331, United States
| |
Collapse
|
2
|
Yang D, Ruan Z, He S, Tang L, Wang R, Wan C. Sulfur(IV) Chemistry-Based Peptide and Protein Late-Stage Modification. Chembiochem 2025; 26:e202500234. [PMID: 40235189 DOI: 10.1002/cbic.202500234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/14/2025] [Accepted: 04/14/2025] [Indexed: 04/17/2025]
Abstract
The development of precise and controllable chemical modification tools for peptides and proteins represents a great challenge in elucidating their structure-activity relationships and regulatory mechanisms, as well as a powerful driver for advancing macromolecular therapeutic strategies. However, current technologies predominantly rely on irreversible covalent labeling or genetic encoding of unnatural amino acids, exhibiting significant limitations in reversible modification, in situ functional regulation, and adaptability to complex physiological environments. In recent years, breakthrough advancements in sulfur(IV) chemistry have provided a paradigm for the late-stage functionalization of peptides and proteins. Through synergistic innovations in sulfur(IV)-based reagent design, intermediate modulation, and bioorthogonal reactions, a more multifaceted modification toolbox has been progressively established, integrating site selectivity, condition responsiveness, and functional rescue. Providing current challenges and future perspectives in this field, this review focuses on sulfur(IV) chemistry-driven strategies for peptide and protein modification, as well as their applications in proximity-labeling strategies and drug delivery/therapeutic interventions.
Collapse
Affiliation(s)
- Dongyan Yang
- College of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, 510230, China
| | - Zhijun Ruan
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, 518118, China
| | - Shiliang He
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, 518118, China
| | - Li Tang
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, 518118, China
| | - Rui Wang
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, 518118, China
| | - Chuan Wan
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, 518118, China
| |
Collapse
|
3
|
Ahn J, Kim T, Bae J, Jung J, Lee J, Lee H, Mun J, Kim S, Park J, Kim J, Koh M. Reversible Protein Labeling via Genetically Encoded Dithiolane-Containing Amino Acid and Organoarsenic Probes. Bioconjug Chem 2025; 36:1034-1039. [PMID: 40213874 DOI: 10.1021/acs.bioconjchem.5c00078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
Conventional protein labeling techniques often rely on irreversible covalent bonds, limiting dynamic control over protein modifications. Here, we present a reversible protein labeling strategy using genetically encoded dithiolane-containing amino acid (dtF) and organoarsenic conjugation chemistry. Using dithiarsolane dicarboxylic acid probe A2, we achieved near-quantitative labeling and ethanedithiol-mediated removal within 1 h at room temperature. A2 exhibited reduced toxicity with a 7-fold higher IC50 compared to arsenoxide, and its fluorescent derivative A2-FB showed no cytotoxicity up to 100 μM, enabling live-cell applications. This is the first demonstration of dithiol-arsenic chemistry at a single amino acid residue, providing a structural alternative to dicysteine motifs. Reversible labeling was validated in purified proteins (sfGFP-Y151dtF and MYO-K99dtF) and live Escherichia coli, offering a versatile tool for dynamic protein modifications and molecular tracking in biological systems.
Collapse
Affiliation(s)
- Jiyeun Ahn
- Department of Chemistry, Pusan National University, Busan 46241, Republic of Korea
- Institute for Future Earth, Pusan National University, Busan 46241, Republic of Korea
| | - Taegwan Kim
- Department of Chemistry and Integrative Institute of Basic Science, Soongsil University, Seoul 06978, Republic of Korea
| | - Jieun Bae
- Department of Chemistry, Pusan National University, Busan 46241, Republic of Korea
- Institute for Future Earth, Pusan National University, Busan 46241, Republic of Korea
| | - Jinjoo Jung
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
- Multidimensional Genomics Research Center, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jeongeun Lee
- Department of Chemistry, Pusan National University, Busan 46241, Republic of Korea
| | - Hwiyoung Lee
- Department of Chemistry, Pusan National University, Busan 46241, Republic of Korea
| | - Jinhee Mun
- Department of Green Chemistry and Materials Engineering, Soongsil University, Seoul 06978, Republic of Korea
| | - Sohee Kim
- Department of Chemistry, Pusan National University, Busan 46241, Republic of Korea
| | - Jongmin Park
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
- Multidimensional Genomics Research Center, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jonghoon Kim
- Department of Chemistry and Integrative Institute of Basic Science, Soongsil University, Seoul 06978, Republic of Korea
- Department of Green Chemistry and Materials Engineering, Soongsil University, Seoul 06978, Republic of Korea
| | - Minseob Koh
- Department of Chemistry, Pusan National University, Busan 46241, Republic of Korea
- Institute for Future Earth, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
4
|
Okasha M, Chen J, Ayekoi A, Jacob E, Radtke V, Schmidt A, Bacher A, Weber S, Schleicher E. Linear free energy relationship between reduction potential and photoreduction rate: studies on Drosophila cryptochrome. FEBS J 2025. [PMID: 40372360 DOI: 10.1111/febs.70129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 03/04/2025] [Accepted: 04/25/2025] [Indexed: 05/16/2025]
Abstract
Cryptochromes are flavin adenine dinucleotide (FAD)-containing blue-light photoreceptors involved in the regulation of the circadian clock and may play a role in magnetic field sensing. The photochemistry of cryptochromes is based on the isoalloxazine moiety, which can be photoreduced and subsequently reoxidized by an electron acceptor such as oxygen, corresponding to a photo-switch between the dark and signaling state. We replaced the FAD cofactor of Drosophila cryptochrome with a series of FAD cofactors modified at the 7α or 8α positions, in order to modulate the chemical properties of the electron acceptor. These modifications were shown to alter the kinetics of the light-dependent reactions. Notably, 7-halogenated FADs form the signaling state more than six times faster compared to the natural FAD cofactor. The more positive reduction potentials as well as the increased intersystem crossing rates due to heavy halogen atoms were identified as reasons for the altered photochemistry. Both parameters show a linear dependence on the reaction kinetics, according to the Hammett relationship. With this knowledge, the photochemistry of cryptochromes may be modified in a defined way without changing its amino acid sequence.
Collapse
Affiliation(s)
- Moustafa Okasha
- Institute of Physical Chemistry, University of Freiburg, Germany
| | - Jing Chen
- Institute of Physical Chemistry, University of Freiburg, Germany
| | - Audrey Ayekoi
- Institute of Physical Chemistry, University of Freiburg, Germany
| | - Eike Jacob
- Institute of Inorganic Chemistry, University of Freiburg, Germany
| | - Valentin Radtke
- Institute of Inorganic Chemistry, University of Freiburg, Germany
| | - Anton Schmidt
- Institute of Physical Chemistry, University of Freiburg, Germany
| | - Adelbert Bacher
- TUM School of Natural Sciences, Technical University of Munich, Germany
| | - Stefan Weber
- Institute of Physical Chemistry, University of Freiburg, Germany
| | - Erik Schleicher
- Institute of Physical Chemistry, University of Freiburg, Germany
| |
Collapse
|
5
|
Chowdhury R. EosinY and copper-catalyzed oxidative [2 + 3] annulation of glycine esters with oxiranes and thiiranes under light free conditions. Org Biomol Chem 2025; 23:4376-4382. [PMID: 40197789 DOI: 10.1039/d5ob00148j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Herein, we report an oxidative formal [2 + 3] cycloaddition reaction of glycine esters with oxiranes/thiiranes under non-photoredox conditions using the catalytic system consisting of eosin-Y, Cu(OAc)2 and HI. This one-pot protocol delivers an array of oxazolidine-2-carboxylic acids and thiaoxazolidine-2-carboxylic acid derivatives in moderate to good yields under mild reaction conditions. The value of this methodology is demonstrated in preparative scale reactions and downstream synthetic transformations. Based on a series of control experiments, a mechanistic pathway is also proposed.
Collapse
Affiliation(s)
- Raghunath Chowdhury
- Bio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India.
- Homi Bhabha National Institute, Anushaktinagar, Mumbai-94, India
| |
Collapse
|
6
|
Wu Q, Yang X, Wang Y, Qin H, Su XC, Xuan W. Site-Selectively Accelerating the Generation of β-Linked Residue Isoaspartate in Proteins. Angew Chem Int Ed Engl 2025; 64:e202500983. [PMID: 40035449 DOI: 10.1002/anie.202500983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/03/2025] [Accepted: 03/04/2025] [Indexed: 03/05/2025]
Abstract
Isoaspartate (isoAsp) is a β-linked residue in proteins spontaneously generated through Asn deamidation or Asp dehydration and significantly affects protein properties. However, the sluggish and site-nonselective generation of isoAsp residues in proteins severely impedes in-depth biological investigations as well as the exploitation of its unique β-linkage features. Herein, we introduce a method that allows site-selective and rapid generation of isoAsp residues in proteins. This method leverages the genetic incorporation of a side-chain-esterified Asp derivative (BnD), which undergoes facile intramolecular arrangement to form the key intermediate, aspartyl succinimide (Suc); subsequent hydrolysis of Suc gives rise to isoAsp as the major product. On native sites of proteins, including Cu/Zn superoxide dismutase and calmodulin, we demonstrate that BnD-mediated isoAsp formation is faster than Asn deamidation generally by three orders of magnitude.
Collapse
Affiliation(s)
- Qifan Wu
- State Key Laboratory of Synthetic Biology, School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin, 300072, China
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
- Nano-biotechnology Key Lab of Hebei Province, Yanshan University, No.438 Hebei Street, Qinhuangdao, 066004, China
| | - Xiaochen Yang
- State Key Laboratory of Synthetic Biology, School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin, 300072, China
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Ying Wang
- State Key Laboratory of Synthetic Biology, School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin, 300072, China
| | - Hongqiang Qin
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Xun-Cheng Su
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Weimin Xuan
- State Key Laboratory of Synthetic Biology, School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
7
|
Lundrigan E, Hum C, Ahmed N, Pezacki JP. Monitoring SARS-CoV-2 Nsp13 helicase binding activity using expanded genetic code techniques. RSC Chem Biol 2025:d4cb00230j. [PMID: 40309067 PMCID: PMC12038430 DOI: 10.1039/d4cb00230j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Accepted: 04/18/2025] [Indexed: 05/02/2025] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) non-structural protein 13 (Nsp13) helicase is a multi-functional protein that can unwind dsDNA and dsRNA in an NTP-dependent manner. Given that this viral helicase is essential for viral replication and highly conserved among coronaviruses, a thorough understanding of the helicase's unwinding and binding activity may allow for the development of more effective pan-coronavirus therapeutics. Herein, we describe the use of genetic code expansion techniques to site-specifically incorporate the non-canonical amino acid (ncAA) p-azido-l-phenylalanine (AzF) into Nsp13 for fluorescent labelling of the enzyme with a conjugated Cy5 fluorophore. This Cy5-labelled Nsp13-AzF can then be used in Förster resonance energy transfer (FRET) experiments to investigate the dynamics of enzyme translocation on its substrate during binding and unwinding. Five sites (F81, F90, Y205, Y246, and Y253) were identified for AzF incorporation in Nsp13 and assessed for fluorescent labelling efficiency. The incorporation of AzF was confirmed to not interfere with the unwinding activity of the helicase. Subsequently, FRET-based binding assays were conducted to monitor the binding of Cy5-labelled Nsp13-AzF constructs to a series of fluorescently-labelled nucleic acid substrates in a distance-dependent manner. Overall, this approach not only allows for the direct monitoring of Nsp13's binding activity on its substrate, it may also introduce a novel method to screen for compounds that can inhibit this essential enzymatic activity during viral replication.
Collapse
Affiliation(s)
- Eryn Lundrigan
- Department of Chemistry and Biomolecular Sciences, University of Ottawa Ottawa Ontario K1N 6N5 Canada
| | - Christine Hum
- Department of Chemistry and Biomolecular Sciences, University of Ottawa Ottawa Ontario K1N 6N5 Canada
| | - Nadine Ahmed
- Department of Chemistry and Biomolecular Sciences, University of Ottawa Ottawa Ontario K1N 6N5 Canada
| | - John Paul Pezacki
- Department of Chemistry and Biomolecular Sciences, University of Ottawa Ottawa Ontario K1N 6N5 Canada
| |
Collapse
|
8
|
Murphy I, Bobilev K, Hayakawa D, Ikonen E, Videbæk TE, Dalal S, Ahmed WW, Ross JL, Rogers WB. A method for site-specifically tethering the enzyme urease to DNA origami with sustained activity. PLoS One 2025; 20:e0319790. [PMID: 40258063 PMCID: PMC12011258 DOI: 10.1371/journal.pone.0319790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 02/08/2025] [Indexed: 04/23/2025] Open
Abstract
Attaching enzymes to nanostructures has proven useful to the study of enzyme functionality under controlled conditions and has led to new technologies. Often, the utility and interest of enzyme-tethered nanostructures lie in how the enzymatic activity is affected by how the enzymes are arranged in space. Therefore, being able to conjugate enzymes to nanostructures while preserving the enzymatic activity is essential. In this paper, we present a method to conjugate single-stranded DNA to the enzyme urease while maintaining enzymatic activity. We show evidence of successful conjugation and quantify the variables that affect the conjugation yield. We also show that the enzymatic activity is unchanged after conjugation compared to the enzyme in its native state. Finally, we demonstrate the tethering of urease to nanostructures made using DNA origami with high site-specificity. Decorating nanostructures with enzymatically-active urease may prove to be useful in studying, or even utilizing, the functionality of urease in disciplines ranging from biotechnology to soft-matter physics. The techniques we present in this paper will enable researchers across these fields to modify enzymes without disrupting their functionality, thus allowing for more insightful studies into their behavior and utility.
Collapse
Affiliation(s)
- Ian Murphy
- Martin A. Fisher School of Physics, Brandeis University, Waltham, Massachusetts, United States of America
| | - Keren Bobilev
- Martin A. Fisher School of Physics, Brandeis University, Waltham, Massachusetts, United States of America
| | - Daichi Hayakawa
- Martin A. Fisher School of Physics, Brandeis University, Waltham, Massachusetts, United States of America
| | - Eden Ikonen
- Martin A. Fisher School of Physics, Brandeis University, Waltham, Massachusetts, United States of America
| | - Thomas E. Videbæk
- Martin A. Fisher School of Physics, Brandeis University, Waltham, Massachusetts, United States of America
| | - Shibani Dalal
- Martin A. Fisher School of Physics, Brandeis University, Waltham, Massachusetts, United States of America
| | - Wylie W. Ahmed
- Laboratoire de Physique Théorique (LPT), Université de Toulouse, CNRS, UPS, Toulouse, France
- Molecular, Cellular and Developmental biology unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
- Department of Physics, California State University, Fullerton, California, United States of America
| | - Jennifer L. Ross
- Department of Physics, Syracuse University, Syracuse, New York, United States of America
| | - W. Benjamin Rogers
- Martin A. Fisher School of Physics, Brandeis University, Waltham, Massachusetts, United States of America
| |
Collapse
|
9
|
Gómez-Santacana X, Boutonnet M, Martínez-Juvés C, Cimadevila M, Catena J, Moutin E, Roux T, Trinquet E, Lamarque L, Perroy J, Prézeau L, Zwier JM, Pin JP, Llebaria A. A modular click ligand-directed approach to label endogenous dopamine D 1 receptors in live cells. Commun Chem 2025; 8:113. [PMID: 40216891 PMCID: PMC11992035 DOI: 10.1038/s42004-025-01504-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 03/24/2025] [Indexed: 04/14/2025] Open
Abstract
Most luminescence-based technologies to determine the pharmacological properties of G Protein-Coupled Receptors (GPCRs) rely on the overexpression of genetically modified receptors. However, it is essential to develop approaches allowing the specific labelling of native receptors. Here we report an innovative approach based on the use of molecular modules to build fluorescent ligand-directed probes that can label aminergic GPCRs. Such probes are readily prepared with a click reaction between a ligand that may include nucleophilic groups and a fluorescent electrophilic linker. The rapidity of click reaction before receptor labelling prevents a side reaction between the nucleophilic ligand and the electrophile. This approach allowed us to label D1 receptor in transfected cells and native receptors in neural cell lines, leaving the receptor fully functional. This approach will pave the way to develop new reagents and assays with which to monitor endogenous GPCRs' distribution, trafficking, activity or binding properties in their native environment.
Collapse
Affiliation(s)
- Xavier Gómez-Santacana
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS and INSERM, Montpellier, France.
- Medicinal Chemistry & Synthesis, Institute for Advanced Chemistry of Catalonia (IQAC), Spanish Council for Scientific Research (CSIC), Barcelona, Spain.
| | - Marin Boutonnet
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS and INSERM, Montpellier, France
| | - Carles Martínez-Juvés
- Medicinal Chemistry & Synthesis, Institute for Advanced Chemistry of Catalonia (IQAC), Spanish Council for Scientific Research (CSIC), Barcelona, Spain
| | - Marta Cimadevila
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS and INSERM, Montpellier, France
| | - Juanlo Catena
- Medicinal Chemistry & Synthesis, Institute for Advanced Chemistry of Catalonia (IQAC), Spanish Council for Scientific Research (CSIC), Barcelona, Spain
| | - Enora Moutin
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS and INSERM, Montpellier, France
| | | | | | | | - Julie Perroy
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS and INSERM, Montpellier, France
| | - Laurent Prézeau
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS and INSERM, Montpellier, France
| | - Jurriaan M Zwier
- Revvity, Codolet, France
- Department of Cognitive Neuroscience, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Jean-Philippe Pin
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS and INSERM, Montpellier, France.
| | - Amadeu Llebaria
- Medicinal Chemistry & Synthesis, Institute for Advanced Chemistry of Catalonia (IQAC), Spanish Council for Scientific Research (CSIC), Barcelona, Spain.
| |
Collapse
|
10
|
Yang Z, Xiao Y, Shi Y, Liu L. Advances in the chemical synthesis of human proteoforms. SCIENCE CHINA. LIFE SCIENCES 2025:10.1007/s11427-024-2860-5. [PMID: 40210795 DOI: 10.1007/s11427-024-2860-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 02/03/2025] [Indexed: 04/12/2025]
Abstract
Access to structurally-defined human proteoforms is essential to the biochemical studies on human health and medicine. Chemical protein synthesis provides a bottom-up and atomic-resolution approach for the preparation of homogeneous proteoforms bearing any number of post-translational modifications of any structure, at any position, and in any combination. In this review, we summarize the development of chemical protein synthesis, focusing on the recent advances in synthetic methods, product characterizations, and biomedical applications. By analyzing the chemical protein synthesis studies on human proteoforms reported to date, this review demonstrates the significant methodological improvements that have taken place in the field of human proteoform synthesis, especially in the last decade. Our analysis shows that although further method development is needed, all the human proteoforms could be within reach in a cost-effective manner through a divide-and-conquer chemical protein synthesis strategy. The synthetic proteoforms have been increasingly used to support biomedical research, including spatial-temporal studies and interaction network analysis, activity quantification and mechanism elucidation, and the development and evaluation of diagnostics and therapeutics.
Collapse
Affiliation(s)
- Ziyi Yang
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yudi Xiao
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yang Shi
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Lei Liu
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
11
|
Valaka AP, Nyström H, Håversen L, Benitez-Martin C, Schäfer C, Jang WS, Camponeschi A, Andréasson J, Borén J, Grøtli M. Design and application of a fluorescent probe for imaging of endogenous Bruton's tyrosine kinase with preserved enzymatic activity. RSC Chem Biol 2025; 6:618-629. [PMID: 40026844 PMCID: PMC11867108 DOI: 10.1039/d4cb00313f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 02/20/2025] [Indexed: 03/05/2025] Open
Abstract
Fluorophore integration into proteins within living cells is essential for exploring proteins in their natural environment. Bruton's tyrosine kinase (BTK), is a validated oncology target and is crucial for B cell proliferation and activation. Developing BTK-labelling probes is key to understand BTK's dynamic signalling pathway. In this work, we aimed to develop a novel fluorescent labelling probe for endogenous BTK imaging while preserving its enzymatic activity. Evobrutinib, a second-generation BTK inhibitor with high selectivity, was chosen as the scaffold. We designed two probes, Evo-1 and Evo-2, with a BODIPY fluorescent group, guided by molecular modelling. The synthesis was achieved using optimised Suzuki-Miyaura cross-coupling and amide coupling reactions. Biochemical assays confirmed covalent binding to Cys481 of BTK while preserving its enzymatic activity. Labelling of endogenous BTK with Evo-2 with reduced off-target effects in Ramos cells was validated in cellular assays. The dynamic signalling pathway of BTK in its native environment was investigated by confocal microscopy with Evo-2. This methodology is a valuable asset in the chemical biology toolbox for studying protein dynamics and interactions in real time without interfering with the protein activity.
Collapse
Affiliation(s)
- Anna P Valaka
- Department of Chemistry and Molecular Biology, University of Gothenburg 405 30 Gothenburg Sweden
| | - Hampus Nyström
- Department of Chemistry and Molecular Biology, University of Gothenburg 405 30 Gothenburg Sweden
| | - Liliana Håversen
- Department of Molecular and Clinical Medicine, University of Gothenburg and Sahlgrenska University Hospital 413 45 Gothenburg Sweden
| | - Carlos Benitez-Martin
- Department of Chemistry and Molecular Biology, University of Gothenburg 405 30 Gothenburg Sweden
| | - Clara Schäfer
- Department of Chemistry and Molecular Biology, University of Gothenburg 405 30 Gothenburg Sweden
| | - Woo Suk Jang
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg Gothenburg 413 46 Sweden
| | - Alessandro Camponeschi
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg Gothenburg 413 46 Sweden
| | - Joakim Andréasson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology 412 96 Gothenburg Sweden
| | - Jan Borén
- Department of Molecular and Clinical Medicine, University of Gothenburg and Sahlgrenska University Hospital 413 45 Gothenburg Sweden
| | - Morten Grøtli
- Department of Chemistry and Molecular Biology, University of Gothenburg 405 30 Gothenburg Sweden
| |
Collapse
|
12
|
Silbermann L, Fottner M, van der Meulen R, Migdad N, Lang K, Tych K. One-pot dual protein labeling for simultaneous mechanical and fluorescent readouts in optical tweezers. Protein Sci 2025; 34:e70098. [PMID: 40099877 PMCID: PMC11915586 DOI: 10.1002/pro.70098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 02/14/2025] [Accepted: 02/28/2025] [Indexed: 03/20/2025]
Abstract
Optical tweezers are widely used in the study of biological macromolecules but are limited by their one-directional probing capability, potentially missing critical conformational changes. Combining fluorescence microscopy with optical tweezers, employing Förster resonance energy transfer (FRET) pairs, addresses this issue. When integrating fluorescence microscopy with optical tweezers, orthogonal protein conjugation methods are needed to enable simultaneous, site-specific attachment of fluorophores and DNA handles, commonly used to apply force to molecules of interest. In this study, we utilized commercially available reagents for dual site-specific labeling of the homodimeric heat shock protein 90 (Hsp90) using thiol-maleimide and inverse electron demand Diels-Alder cycloaddition (IEDDAC) bioorthogonal reactions. In a one-pot approach, Hsp90 modified with a cysteine mutation and the non-canonical amino acid cyclopropene-L-lysine (CpK) was labeled with the FRET pair maleimide-Atto 550 and maleimide-Atto 647N, alongside single-stranded methyltetrazine-modified DNA oligonucleotide. Optical tweezers experiments with this labeled Hsp90 construct revealed structural transitions consistent with previous studies, validating the approach. Fluorescence measurements confirmed the proximity of FRET pairs in the N-terminally closed state of Hsp90 in this experimental setup. This integrative method provides a powerful tool for probing complex protein conformational dynamics beyond the limitations of traditional optical tweezers.
Collapse
Affiliation(s)
- Laura‐Marie Silbermann
- Groningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenthe Netherlands
| | - Maximilian Fottner
- Laboratory for Organic Chemistry (LOC), Department of Chemistry and Applied Biosciences (D‐CHAB)ETH ZurichZurichSwitzerland
| | - Ronald van der Meulen
- Groningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenthe Netherlands
| | - Nora Migdad
- Groningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenthe Netherlands
| | - Kathrin Lang
- Laboratory for Organic Chemistry (LOC), Department of Chemistry and Applied Biosciences (D‐CHAB)ETH ZurichZurichSwitzerland
| | - Katarzyna Tych
- Groningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenthe Netherlands
| |
Collapse
|
13
|
Ramos-Figueroa J, Liang H, van der Donk WA. Substrate recognition by a peptide-aminoacyl-tRNA ligase. Proc Natl Acad Sci U S A 2025; 122:e2423858122. [PMID: 40106349 PMCID: PMC11962472 DOI: 10.1073/pnas.2423858122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/18/2025] [Indexed: 03/22/2025] Open
Abstract
The continuing discovery of new peptide-aminoacyl-tRNA ligases (PEARLs) has unveiled a diverse array of enzymes with the unique potential to append amino acids to the C terminus of substrate peptides in an aminoacyl-tRNA-dependent manner. To date, PEARLs have been reported that can conjugate Cys, Ala, Trp, Gly, Leu, Asn, and Thr residues, but the basis of peptide substrate and aminoacyl-tRNA recognition is not known. Cell-free expression (CFE) has emerged as a powerful tool to rapidly assay activity of substrate variants, and we used the technique in this study to investigate the peptide substrate specificity of the PEARL [Formula: see text]. This enzyme that adds Trp was discovered previously during genome mining for ribosomally synthesized and posttranslational modified peptides (RiPPs). The enzyme is remarkably tolerant of changes to the C-terminal amino acid of the peptide substrate, and truncation and replacement experiments suggest a minimal sequence requirement. An AlphaFold3 model provided insights into binding interactions of the substrate peptide BhaA-Ala to [Formula: see text] and also generated predictions for tRNA, ATP, and Mg2+ binding modes that were tested by site-directed mutagenesis. The data suggest that several highly conserved residues in PEARLs recognize the 3'-CCA sequence present in all tRNAs. The minimal sequence required for Trp incorporation by [Formula: see text] was employed as a protein tag for C-terminal labeling of eGFP, lysozyme, and MBP with Trp and 5-Br-Trp.
Collapse
Affiliation(s)
- Josseline Ramos-Figueroa
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL61801
- HHMI, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Haoqian Liang
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Wilfred A. van der Donk
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL61801
- HHMI, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL61801
| |
Collapse
|
14
|
Ghosh P. Metal-Mediated Protein Engineering within Live Cells. Chem Asian J 2025; 20:e202401669. [PMID: 39741109 DOI: 10.1002/asia.202401669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/29/2024] [Accepted: 12/30/2024] [Indexed: 01/02/2025]
Abstract
Metal mediated several organic reactions are known which can be used inside the cellular medium for protein modifications, eventually for targeting diseases. Indeed, due to their ease of handling, rapid solubility, and effective cell penetration, metals are superior than any other competitor as a stimulus/mediator in organic reactions relevant with protein modifications. Metal mediated most effective reactions as a chemical biology tool are Cu(I)-catalyzed azide-alkyne cycloaddition(CuAAC)/click reactions or Pd mediated multiple chemical reactions for intra/extra cellular protein modifications etc. A few examples of Au(III), Ru(III) are also known. Among these, the click reaction has high potential for the management of biomolecules within cells, and thus this methodology is adopted broadly in chemistry, biology towards therapeutic applications in pharmacology. Fast kinetics in aqueous medium at ambient to normal temperature with specificity between precursors (e. g., azide and alkyne for click reactions which are bio-orthogonal to cells) are essential aspects behind the success of metal mediated intracellular reactions. This review dealt with specifically metal mediated protein modifications within live cells, the achievements and challenges.
Collapse
Affiliation(s)
- Pritam Ghosh
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| |
Collapse
|
15
|
Yu A, He X, Shen T, Yu X, Mao W, Chi W, Liu X, Wu H. Design strategies for tetrazine fluorogenic probes for bioorthogonal imaging. Chem Soc Rev 2025; 54:2984-3016. [PMID: 39936362 DOI: 10.1039/d3cs00520h] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
Tetrazine fluorogenic probes play a critical role in bioorthogonal chemistry, selectively activating fluorescence upon reaction to enhance precision in imaging and sensing within complex biological environments. Recent structural innovations-such as varied fluorophore choices, spacer optimization, and direct tetrazine integration within a fluorophore's π-conjugated system-have expanded their spectral range from visible to NIR, enhancing adaptability across various applications. This review examines advancements in the rational design and synthesis of these probes. We examine key fluorogenic mechanisms, such as energy transfer, internal conversion, and electron/charge transfer, that significantly influence fluorescence activation. We also highlight representative applications in live-cell imaging, super-resolution microscopy, and therapeutic monitoring, underscoring the expanding role of tetrazine probes in biomedical research and diagnostics. Collectively, these insights provide a strategic foundation for developing next-generation tetrazine probes with tailored properties to address evolving diagnostic and therapeutic challenges.
Collapse
Affiliation(s)
- Aiwen Yu
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province and Frontiers Science Center for Disease Related Molecular Network West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Xinyu He
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province and Frontiers Science Center for Disease Related Molecular Network West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Tianruo Shen
- Science, Mathematics and Technology Cluster, Singapore University of Technology and Design, Singapore 487372, Singapore.
| | - Xinyu Yu
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province and Frontiers Science Center for Disease Related Molecular Network West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Wuyu Mao
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Weijie Chi
- School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China
| | - Xiaogang Liu
- Science, Mathematics and Technology Cluster, Singapore University of Technology and Design, Singapore 487372, Singapore.
| | - Haoxing Wu
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province and Frontiers Science Center for Disease Related Molecular Network West China Hospital, Sichuan University, Chengdu 610041, China.
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
16
|
Zeng L, Marshall O, McGrory R, Clarke R, Brown RJ, Kadodwala M, Thomson AR, Sutherland A. Synthesis of Fluorescent Dibenzofuran α-Amino Acids: Conformationally Rigid Analogues of Tyrosine. Org Lett 2025; 27:2475-2479. [PMID: 40025849 PMCID: PMC11915488 DOI: 10.1021/acs.orglett.5c00433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/24/2025] [Accepted: 02/27/2025] [Indexed: 03/04/2025]
Abstract
We report two synthetic strategies for the preparation of dibenzofuran α-amino acids, expanding the structural toolbox of fluorescent probes. The strategies involved dibenzofuran synthesis via a Pd(II)-catalyzed C-O cyclization, alongside an efficient Negishi coupling approach for faster access to analogues. These rigid tyrosine mimics possess enhanced fluorescent properties compared to proteinogenic amino acids as demonstrated by application of the lead compound as a FRET donor for monitoring peptide hydrolysis by a serine protease.
Collapse
Affiliation(s)
- Liyao Zeng
- School of Chemistry, The Joseph Black
Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Olivia Marshall
- School of Chemistry, The Joseph Black
Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Rochelle McGrory
- School of Chemistry, The Joseph Black
Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Rebecca Clarke
- School of Chemistry, The Joseph Black
Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Ryan J. Brown
- School of Chemistry, The Joseph Black
Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Malcolm Kadodwala
- School of Chemistry, The Joseph Black
Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Andrew R. Thomson
- School of Chemistry, The Joseph Black
Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Andrew Sutherland
- School of Chemistry, The Joseph Black
Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| |
Collapse
|
17
|
Bilgin N, Hintzen JCJ, Mecinović J. Chemical tools for probing histidine modifications. Chem Commun (Camb) 2025; 61:3805-3820. [PMID: 39936705 DOI: 10.1039/d4cc06586g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
Histidine is a unique amino acid with critical roles in protein structure and function, ranging from metal ion binding to enzyme catalysis. Histidine residues in proteins also undergo diverse posttranslational modifications, including methylation, phosphorylation and hydroxylation, by various enzymes, some of them being only recently identified and characterised. In this review, we describe the development of chemical tools for understanding the role of histidine residues in chemical and biological systems. We spotlight the application of histidine analogues in probing biomedically important posttranslational modifications of histidine residues in proteins, and we highlight novel bioconjugation methods that enable chemoselective modifications of histidine residues in peptides and proteins.
Collapse
Affiliation(s)
- Nurgül Bilgin
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark.
| | - Jordi C J Hintzen
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jasmin Mecinović
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark.
| |
Collapse
|
18
|
Charette M, Rosenblum C, Shade O, Deiters A. Optogenetics with Atomic Precision─A Comprehensive Review of Optical Control of Protein Function through Genetic Code Expansion. Chem Rev 2025; 125:1663-1717. [PMID: 39928721 PMCID: PMC11869211 DOI: 10.1021/acs.chemrev.4c00224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 02/12/2025]
Abstract
Conditional control of protein activity is important in order to elucidate the particular functions and interactions of proteins, their regulators, and their substrates, as well as their impact on the behavior of a cell or organism. Optical control provides a perhaps optimal means of introducing spatiotemporal control over protein function as it allows for tunable, rapid, and noninvasive activation of protein activity in its native environment. One method of introducing optical control over protein activity is through the introduction of photocaged and photoswitchable noncanonical amino acids (ncAAs) through genetic code expansion in cells and animals. Genetic incorporation of photoactive ncAAs at key residues in a protein provides a tool for optical activation, or sometimes deactivation, of protein activity. Importantly, the incorporation site can typically be rationally selected based on structural, mechanistic, or computational information. In this review, we comprehensively summarize the applications of photocaged lysine, tyrosine, cysteine, serine, histidine, glutamate, and aspartate derivatives, as well as photoswitchable phenylalanine analogues. The extensive and diverse list of proteins that have been placed under optical control demonstrates the broad applicability of this methodology.
Collapse
Affiliation(s)
- Maura Charette
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Carolyn Rosenblum
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Olivia Shade
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
19
|
Cheng L, Bo Z, Krohn-Hansen B, Yang Y. Directed Evolution and Unusual Protonation Mechanism of Pyridoxal Radical C-C Coupling Enzymes for the Enantiodivergent Photobiocatalytic Synthesis of Noncanonical Amino Acids. J Am Chem Soc 2025; 147:4602-4612. [PMID: 39849356 DOI: 10.1021/jacs.4c16716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Visible light-driven pyridoxal radical biocatalysis has emerged as a new strategy for the stereoselective synthesis of valuable noncanonical amino acids in a protecting-group-free fashion. In our previously developed dehydroxylative C-C coupling using engineered PLP-dependent tryptophan synthases, an enzyme-controlled unusual α-stereochemistry reversal and pH-controlled enantiopreference were observed. Herein, through high-throughput photobiocatalysis, we evolved a set of stereochemically complementary PLP radical enzymes, allowing the synthesis of both l- and d-amino acids with enhanced enantiocontrol across a broad pH window. These newly engineered l- and d-amino acid synthases permitted the use of a broad range of organoboron substrates, including boronates, trifluoroborates, and boronic acids, with excellent efficiency. Mechanistic studies unveiled unexpected PLP racemase activity with our earlier PLP enzyme variants. This promiscuous racemase activity was abolished in our evolved amino acid synthases, shedding light on the origin of enhanced enantiocontrol. Further mechanistic investigations suggest a switch of proton donor to account for the stereoinvertive formation of d-amino acids, highlighting an unusual stereoinversion mechanism that is rare in conventional two-electron PLP enzymology.
Collapse
Affiliation(s)
- Lei Cheng
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Zhiyu Bo
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Benjamin Krohn-Hansen
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Yang Yang
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
- Biomolecular Science and Engineering Program, University of California Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
20
|
Shade O, Ryan A, Belsito G, Deiters A. Investigating protein degradability through site-specific ubiquitin ligase recruitment. RSC Chem Biol 2025; 6:240-248. [PMID: 39711601 PMCID: PMC11657224 DOI: 10.1039/d4cb00273c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 12/12/2024] [Indexed: 12/24/2024] Open
Abstract
We report targeted protein degradation through the site-specific recruitment of native ubiquitin ligases to a protein of interest via conjugation of E3 ligase ligands. Direct comparison of degradation ability of proteins displaying the corresponding bioconjugation handle at different regions of protein surfaces was explored. We demonstrate the benefit of proximal lysine residues and investigate flexibility in linker length for the design of optimal degraders. Two proteins without known small molecule ligands, EGFP and DUSP6, were differentially degraded when modified at different locations on their protein surfaces. Further, the cereblon-mediated degradation of the known PROTAC target ERRα was improved through the recruitment of the E3 ligase to regions different from the known ligand binding site. This new methodology will provide insight into overall protein degradability, even in the absence of a known small molecule ligand and inform the process of new ligand and PROTAC development to achieve optimal protein degradation. Furthermore, this approach represents a new, small molecule-based conditional OFF switch of protein function with complete genetic specificity. Importantly, the protein of interest is only modified with a minimal surface modification (<200 Da) and does not require any protein domain fusions.
Collapse
Affiliation(s)
- Olivia Shade
- Department of Chemistry, University of Pittsburgh Pittsburgh PA 15260 USA
| | - Amy Ryan
- Department of Chemistry, University of Pittsburgh Pittsburgh PA 15260 USA
| | - Gabriella Belsito
- Department of Chemistry, University of Pittsburgh Pittsburgh PA 15260 USA
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh Pittsburgh PA 15260 USA
| |
Collapse
|
21
|
Kekec A, Tran LML, Plummer CW, Kalyani D. Late-stage installation and functionalization of alkyl pyridiniums: a general HTE amenable strategy to access diverse aryl alanine containing macrocyclic peptides. Chem Sci 2025; 16:2287-2294. [PMID: 39776654 PMCID: PMC11701726 DOI: 10.1039/d4sc06837h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
This manuscript describes a strategy to readily access diverse aryl and homoaryl alanine-containing pharmaceutically relevant macrocyclic peptides. A two-step sequence involving the late-stage installation of the pyridinium functionality on macrocyclic peptides followed by reductive couplings was implemented. These transformations are amenable to microscale high-throughput experimentation (HTE) and enable rapid access to aryl alanine-containing macrocyclic peptides that would otherwise be inaccessible via solid-phase peptide synthesis using commercially available amino acids. Numerous aryl and heteroaryl derivatives can be effectively used in these reactions. In addition, a systematic investigation was undertaken using an "informer" set of macrocyclic peptides which revealed the compatibility of the late-stage diversification with peptides containing diverse side chain functionalities.
Collapse
Affiliation(s)
- Ahmet Kekec
- Discovery Chemistry, Merck & Co., Inc. Rahway New Jersey 07065 USA
| | | | | | | |
Collapse
|
22
|
Huang Y, Zhang P, Wang H, Chen Y, Liu T, Luo X. Genetic Code Expansion: Recent Developments and Emerging Applications. Chem Rev 2025; 125:523-598. [PMID: 39737807 PMCID: PMC11758808 DOI: 10.1021/acs.chemrev.4c00216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 12/02/2024] [Accepted: 12/09/2024] [Indexed: 01/01/2025]
Abstract
The concept of genetic code expansion (GCE) has revolutionized the field of chemical and synthetic biology, enabling the site-specific incorporation of noncanonical amino acids (ncAAs) into proteins, thus opening new avenues in research and applications across biology and medicine. In this review, we cover the principles of GCE, including the optimization of the aminoacyl-tRNA synthetase (aaRS)/tRNA system and the advancements in translation system engineering. Notable developments include the refinement of aaRS/tRNA pairs, enhancements in screening methods, and the biosynthesis of noncanonical amino acids. The applications of GCE technology span from synthetic biology, where it facilitates gene expression regulation and protein engineering, to medicine, with promising approaches in drug development, vaccine production, and gene editing. The review concludes with a perspective on the future of GCE, underscoring its potential to further expand the toolkit of biology and medicine. Through this comprehensive review, we aim to provide a detailed overview of the current state of GCE technology, its challenges, opportunities, and the frontier it represents in the expansion of the genetic code for novel biological research and therapeutic applications.
Collapse
Affiliation(s)
- Yujia Huang
- State
Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular
and Cellular Pharmacology, School of Pharmaceutical Sciences, Chemical
Biology Center, Peking University, Beijing 100191, China
| | - Pan Zhang
- Shenzhen
Key Laboratory for the Intelligent Microbial Manufacturing of Medicines,
Key Laboratory of Quantitative Synthetic Biology, Center for Synthetic
Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese
Academy of Sciences, Shenzhen 518055, P.R. China
| | - Haoyu Wang
- State
Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular
and Cellular Pharmacology, School of Pharmaceutical Sciences, Chemical
Biology Center, Peking University, Beijing 100191, China
| | - Yan Chen
- Shenzhen
Key Laboratory for the Intelligent Microbial Manufacturing of Medicines,
Key Laboratory of Quantitative Synthetic Biology, Center for Synthetic
Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese
Academy of Sciences, Shenzhen 518055, P.R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Tao Liu
- State
Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular
and Cellular Pharmacology, School of Pharmaceutical Sciences, Chemical
Biology Center, Peking University, Beijing 100191, China
| | - Xiaozhou Luo
- Shenzhen
Key Laboratory for the Intelligent Microbial Manufacturing of Medicines,
Key Laboratory of Quantitative Synthetic Biology, Center for Synthetic
Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese
Academy of Sciences, Shenzhen 518055, P.R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
23
|
Schöning J, Rösner L, Depke DA, Hüwel S, Kukhar A, Schäfers M, Rentmeister A. Toolbox of Clickable Benzylguanines for Labeling of HoxB8-Derived Macrophages via SNAP-Tag and Bioorthogonal Chemistry. Bioconjug Chem 2025; 36:34-43. [PMID: 39762144 DOI: 10.1021/acs.bioconjchem.4c00364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Inflammation is a dynamic process which importantly involves migration of immune cells. Understanding the onset, acute phase and resolution of inflammation is greatly facilitated by their in vivo imaging. However, immune cells are sensitive, difficult to genetically manipulate and prone to changes in response to contact, hindering the application of well-established cell labeling methods. We generated the first reported SNAP-tag expressing conditionally immortalized early hematopoietic progenitor cells (ER-HoxB8) and synthesized benzylguanine (BG) analogs with bioorthogonal groups for SNAP-tag mediated cell surface labeling. Comparative investigation of SNAP-tag positive HeLa cells, ER-HoxB8 progenitor cells and ER-HoxB8-derived macrophages as well as neutrophiles revealed remarkable differences in labeling depending on the bioorthogonal group and fluorescent reporter used. HeLa cells and ER-HoxB8 progenitor cells were efficiently labeled with BG analogs bearing an azide and a dioxolan-fused trans-cyclooctene (dTCO). When we differentiated ER-HoxB8 cells into macrophages, labeling was less bright due to lower SNAP-tag expression and only the tetrazine ligation of dTCO proved suitable for cell-type specific labeling. These results show that exploring different reactions and bioorthogonal groups is important to address the challenge of labeling differentiated immune cells. Combining the SNAP-tag with click chemistry provides a modular approach for cell-specific labeling and the combination of SNAP-tag and dTCO presents an improved system for labeling ER-HoxB8-derived macrophages.
Collapse
Affiliation(s)
- Jonas Schöning
- Institute of Biochemistry, University of Münster, Corrensstraße 36, 48149 Münster, Germany
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377 München, Germany
| | - Lukas Rösner
- Institute of Biochemistry, University of Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Dominic Alexej Depke
- European Institute for Molecular Imaging, University of Münster, Röntgenstraße 16, 48149 Münster, Germany
- Department of Nuclear Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Sabine Hüwel
- Institute of Biochemistry, University of Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Anastasiia Kukhar
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377 München, Germany
| | - Michael Schäfers
- European Institute for Molecular Imaging, University of Münster, Röntgenstraße 16, 48149 Münster, Germany
- Department of Nuclear Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Andrea Rentmeister
- Institute of Biochemistry, University of Münster, Corrensstraße 36, 48149 Münster, Germany
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377 München, Germany
| |
Collapse
|
24
|
Langschwager T, Storch G. Flavin-Catalyzed, Photochemical Conversion of Dehydroalanine into 4,5-Dihydroxynorvaline. Angew Chem Int Ed Engl 2025; 64:e202414679. [PMID: 39305229 DOI: 10.1002/anie.202414679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Indexed: 11/06/2024]
Abstract
The chemical synthesis of unnatural amino acids (UAA) is a key strategy for preparing designed peptides, including pharmaceutically active compounds. Alterations of existing amino acid residues such as dehydroalanine (Dha) are particularly important since selected positions can be addressed without the necessity of a complete de novo synthesis. The intriguing UAA 4,5-dihydroxynorvaline (Dnv) is found in a variety of naturally occurring peptides and biologically active compounds. However, no method is currently available to modify an existing peptide with this residue. We report the use of flavin catalysts and visible light irradiation for this challenge, which serves as a versatile strategy for converting Dha into Dnv. Our study shows that excited flavins are competent hydrogen atom abstraction catalysts for ethers and acetals, which allows masked 1,2-dihydroxyethylene functionalization from 2,2-dimethyl-1,3-dioxolane. The masked diol was successfully coupled to Dha residues, and a series of Dnv-containing products is reported. A mild and orthogonal protocol for deprotection of the acetal group was also identified, allowing free Dnv-modified peptides to be obtained. This method provides a straightforward strategy for Dnv functionalization, which is envisioned to be crucial for accessing natural products and synthetic analogues with pharmaceutical activity.
Collapse
Affiliation(s)
- Tim Langschwager
- School of Natural Sciences and Catalysis Research Center (CRC), Technical University of Munich (TUM), Lichtenbergstr. 4, 85747, Garching, Germany
| | - Golo Storch
- School of Natural Sciences and Catalysis Research Center (CRC), Technical University of Munich (TUM), Lichtenbergstr. 4, 85747, Garching, Germany
| |
Collapse
|
25
|
Tamura T, Hamachi I. N-Acyl- N-alkyl/aryl Sulfonamide Chemistry Assisted by Proximity for Modification and Covalent Inhibition of Endogenous Proteins in Living Systems. Acc Chem Res 2025; 58:87-100. [PMID: 39661110 DOI: 10.1021/acs.accounts.4c00628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Selective chemical modification of endogenous proteins in living systems with synthetic small molecular probes is a central challenge in chemical biology. Such modification has a variety of applications important for biological and pharmaceutical research, including protein visualization, protein functionalization, proteome-wide profiling of enzyme activity, and irreversible inhibition of protein activity. Traditional chemistry for selective protein modification in cells largely relies on the high nucleophilicity of cysteine residues to ensure target-selectivity and site-specificity of modification. More recently, lysine residues, which are more abundant on protein surfaces, have attracted attention for the covalent modification of proteins. However, it has been difficult to efficiently modify the ε-amino groups of lysine side-chains, which are mostly (∼99.9%) protonated and thus exhibit low nucleophilicity at physiological pH. Our group revealed that N-acyl-N-alkyl sulfonamide (NASA) moieties can rapidly and efficiently acylate noncatalytic (i.e., less reactive) lysine residues in proteins by leveraging a reaction acceleration effect via proximity. The excellent reaction kinetics and selectivity for lysine of the NASA chemistry enable covalent modification of natural intracellular and cell-surface proteins, which is intractable using conventional chemistries. Moreover, recently developed N-acyl-N-aryl sulfonamide (ArNASA) scaffolds overcome some problems faced by the first-generation NASA compounds. In this Account, we summarize our recent works in the development of NASA/ArNASA chemistry and several applications reported by ourselves and other groups. First, we characterize the basic properties of NASA/ArNASA chemistry, including the labeling kinetics, amino acid preference, and biocompatibility, and compare this approach with other ligand-directed chemistries. This section also describes the principles of nucleophilic organocatalyst-mediated protein acylation, another important protein labeling strategy using the NASA reactive group, and its application to neurotransmitter receptor labeling in brain slices. Second, we highlight various recent examples of protein functionalization using NASA/ArNASA chemistry, such as visualization of membrane proteins including therapeutically important G-protein coupled receptors, gel-based ligand screening assays, photochemical control of protein activity, and targeted protein degradation. Third, we survey covalent inhibition of proteins by NASA/ArNASA-based lysine-targeting. The unprecedented reactivity of NASA/ArNASA toward lysine allows highly potent, irreversible inhibition of several drug targets for the treatment of cancer, including HSP90, HDM2-p53 protein-protein interaction, and a Bruton's tyrosine kinase mutant that has developed resistance to cysteine-targeted covalent-binding drugs. Finally, current limitations of, and future perspectives on, this research field are discussed. The new chemical labeling techniques offered by NASA/ArNASA chemistry and its derivatives create a valuable molecular toolbox for studying numerous biomolecules in living cells and even in vivo.
Collapse
Affiliation(s)
- Tomonori Tamura
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- ERATO (Exploratory Research for Advanced Technology, JST), Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Itaru Hamachi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- ERATO (Exploratory Research for Advanced Technology, JST), Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| |
Collapse
|
26
|
Chen Y, Clay N, Phan N, Lothrop E, Culkins C, Robinson B, Stubblefield A, Ferguson A, Kimmel BR. Molecular Matchmakers: Bioconjugation Techniques Enhance Prodrug Potency for Immunotherapy. Mol Pharm 2025; 22:58-80. [PMID: 39570179 DOI: 10.1021/acs.molpharmaceut.4c00867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Cancer patients suffer greatly from the severe off-target side effects of small molecule drugs, chemotherapy, and radiotherapy─therapies that offer little protection following remission. Engineered immunotherapies─including cytokines, immune checkpoint blockade, monoclonal antibodies, and CAR-T cells─provide better targeting and future tumor growth prevention. Still, issues such as ineffective activation, immunogenicity, and off-target effects remain primary concerns. "Prodrug" therapies─classified as therapies administered as inactive and then selectively activated to control the time and area of release─hold significant promise in overcoming these concerns. Bioconjugation techniques (e.g., natural linker conjugation, bioorthogonal reactions, and noncanonical amino acid incorporation) enable the rapid and homogeneous synthesis of prodrugs and offer selective loading of immunotherapeutic agents to carrier molecules and protecting groups to prevent off-target effects after administration. Several prodrug activation mechanisms have been highlighted for cancer therapeutics, including endogenous activation by hypoxic or acidic conditions common in tumors, exogenous activation by targeted bioorthogonal cleavage, or stimuli-responsive light activation, and dual-stimuli activation, which adds specificity by combining these mechanisms. This review will explore modern prodrug conjugation and activation options, focusing on how these strategies can enhance immunotherapy responses and improve patient outcomes. We will also discuss the implications of computational methodology for therapy design and recommend procedures to determine how and where to conjugate carrier systems and "prodrug" groups onto therapeutic agents to enhance the safety and control of these delivery platforms.
Collapse
Affiliation(s)
- Yinuo Chen
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Natalie Clay
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Nathan Phan
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Elijah Lothrop
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Courtney Culkins
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Blaise Robinson
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Ariana Stubblefield
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Alani Ferguson
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Blaise R Kimmel
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
- Center for Cancer Engineering, Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
- Pelotonia Institute for Immuno-Oncology, Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
27
|
Gu J, Lao L, Chen Y, Lin S. Investigation of protein post-translational modifications with site-specifically incorporated non-canonical amino acids. Bioorg Med Chem 2025; 117:118013. [PMID: 39602864 DOI: 10.1016/j.bmc.2024.118013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/31/2024] [Accepted: 11/17/2024] [Indexed: 11/29/2024]
Abstract
Despite the important functions of protein post-translational modifications (PTMs) in numerous cellular processes, understanding the biological roles of PTMs remains quite challenging. Here, we summarize our efforts in recent years to incorporate a variety of non-canonical amino acids (ncAAs) to study the biological functions of protein PTMs in mammalian cells, with a focus on the use of ncAA tools to probe the biological functions of various protein PTMs. We design length-tunable lipidation mimics for studying lipidation function and designing protein drugs. We highlight the use of genetically encoded lysine aminoacylations as chemical baits to identify aminoacylated lysine ubiquitination. Finally, we discuss the use of genetically encoded electron-rich Trp derivatives to design binding affinity-enhancing histone methylations readers.
Collapse
Affiliation(s)
- Jiayu Gu
- Department of Medical Oncology, State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Lihui Lao
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Yulin Chen
- Department of Medical Oncology, State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China; Shaoxing Institute, Zhejiang University, Shaoxing 312099, China
| | - Shixian Lin
- Department of Medical Oncology, State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China; Shaoxing Institute, Zhejiang University, Shaoxing 312099, China.
| |
Collapse
|
28
|
Joshi S, Moody A, Budthapa P, Gurung A, Gautam R, Sanjel P, Gupta A, Aryal SP, Parajuli N, Bhattarai N. Advances in Natural-Product-Based Fluorescent Agents and Synthetic Analogues for Analytical and Biomedical Applications. Bioengineering (Basel) 2024; 11:1292. [PMID: 39768110 PMCID: PMC11727039 DOI: 10.3390/bioengineering11121292] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/09/2024] [Accepted: 12/16/2024] [Indexed: 01/16/2025] Open
Abstract
Fluorescence is a remarkable property exhibited by many chemical compounds and biomolecules. Fluorescence has revolutionized analytical and biomedical sciences due to its wide-ranging applications in analytical and diagnostic tools of biological and environmental importance. Fluorescent molecules are frequently employed in drug delivery, optical sensing, cellular imaging, and biomarker discovery. Cancer is a global challenge and fluorescence agents can function as diagnostic as well as monitoring tools, both during early tumor progression and treatment monitoring. Many fluorescent compounds can be found in their natural form, but recent developments in synthetic chemistry and molecular biology have allowed us to synthesize and tune fluorescent molecules that would not otherwise exist in nature. Naturally derived fluorescent compounds are generally more biocompatible and environmentally friendly. They can also be modified in cost-effective and target-specific ways with the help of synthetic tools. Understanding their unique chemical structures and photophysical properties is key to harnessing their full potential in biomedical and analytical research. As drug discovery efforts require the rigorous characterization of pharmacokinetics and pharmacodynamics, fluorescence-based detection accelerates the understanding of drug interactions via in vitro and in vivo assays. Herein, we provide a review of natural products and synthetic analogs that exhibit fluorescence properties and can be used as probes, detailing their photophysical properties. We have also provided some insights into the relationships between chemical structures and fluorescent properties. Finally, we have discussed the applications of fluorescent compounds in biomedical science, mainly in the study of tumor and cancer cells and analytical research, highlighting their pivotal role in advancing drug delivery, biomarkers, cell imaging, biosensing technologies, and as targeting ligands in the diagnosis of tumors.
Collapse
Affiliation(s)
- Soniya Joshi
- Central Department of Chemistry, Tribhuvan University, Kathmandu 44618, Nepal; (S.J.); (P.B.); (A.G.); (R.G.); (P.S.)
| | - Alexis Moody
- Department of Chemical, Biological, and Bioengineering, North Carolina A&T State University, Greensboro, NC 27411, USA;
| | - Padamlal Budthapa
- Central Department of Chemistry, Tribhuvan University, Kathmandu 44618, Nepal; (S.J.); (P.B.); (A.G.); (R.G.); (P.S.)
| | - Anita Gurung
- Central Department of Chemistry, Tribhuvan University, Kathmandu 44618, Nepal; (S.J.); (P.B.); (A.G.); (R.G.); (P.S.)
| | - Rachana Gautam
- Central Department of Chemistry, Tribhuvan University, Kathmandu 44618, Nepal; (S.J.); (P.B.); (A.G.); (R.G.); (P.S.)
| | - Prabha Sanjel
- Central Department of Chemistry, Tribhuvan University, Kathmandu 44618, Nepal; (S.J.); (P.B.); (A.G.); (R.G.); (P.S.)
| | - Aakash Gupta
- Department of Biomedical Engineering, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA;
| | - Surya P. Aryal
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA;
| | - Niranjan Parajuli
- Central Department of Chemistry, Tribhuvan University, Kathmandu 44618, Nepal; (S.J.); (P.B.); (A.G.); (R.G.); (P.S.)
| | - Narayan Bhattarai
- Department of Chemical, Biological, and Bioengineering, North Carolina A&T State University, Greensboro, NC 27411, USA;
| |
Collapse
|
29
|
Kurmayer R, Morón Asensio R. Real-Time Observation of Clickable Cyanotoxin Synthesis in Bloom-Forming Cyanobacteria Microcystis aeruginosa and Planktothrix agardhii. Toxins (Basel) 2024; 16:526. [PMID: 39728784 PMCID: PMC11679549 DOI: 10.3390/toxins16120526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/28/2024] [Accepted: 12/01/2024] [Indexed: 12/28/2024] Open
Abstract
Recently, the use of click chemistry for localization of chemically modified cyanopeptides has been introduced, i.e., taking advantage of promiscuous adenylation (A) domains in non-ribosomal peptide synthesis (NRPS), allowing for the incorporation of clickable non-natural amino acids (non-AAs) into their peptide products. In this study, time-lapse experiments have been performed using pulsed feeding of three different non-AAs in order to observe the synthesis or decline of azide- or alkyne-modified microcystins (MCs) or anabaenopeptins (APs). The cyanobacteria Microcystis aeruginosa and Planktothrix agardhii were grown under maximum growth rate conditions (r = 0.35-0.6 and 0.2-0.4 (day-1), respectively) in the presence of non-AAs for 12-168 h. The decline of the azide- or alkyne-modified MC or AP was observed via pulse-feeding. In general, the increase in clickable MC/AP in peptide content reached a plateau after 24-48 h and was related to growth rate, i.e., faster-growing cells also produced more clickable MC/AP. Overall, the proportion of clickable MC/AP in the intracellular fraction correlated with the proportion observed in the dissolved fraction. Conversely, the overall linear decrease in clickable MC/AP points to a rather constant decline via dilution by growth instead of a regulated or induced release in the course of the synthesis process.
Collapse
Affiliation(s)
- Rainer Kurmayer
- Research Department for Limnology, University of Innsbruck, Mondseestrasse 9, 5310 Mondsee, Austria;
| | | |
Collapse
|
30
|
Abbas SJ, Yesmin S, Vittala SK, Sepay N, Xia F, Ali SI, Chang WC, Hung YC, Ma WL. Target Bioconjugation of Protein Through Chemical, Molecular Dynamics, and Artificial Intelligence Approaches. Metabolites 2024; 14:668. [PMID: 39728449 DOI: 10.3390/metabo14120668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/18/2024] [Accepted: 11/22/2024] [Indexed: 12/28/2024] Open
Abstract
Covalent modification of proteins at specific, predetermined sites is essential for advancing biological and biopharmaceutical applications. Site-selective labeling techniques for protein modification allow us to effectively track biological function, intracellular dynamics, and localization. Despite numerous reports on modifying target proteins with functional chemical probes, unique organic reactions that achieve site-selective integration without compromising native functional properties remain a significant challenge. In this review, we delve into site-selective protein modification using synthetic probes, highlighting both chemical and computational methodologies for chemo- and regioselective modifications of naturally occurring amino acids, as well as proximity-driven protein-selective chemical modifications. We also underline recent traceless affinity labeling strategies that involve exchange/cleavage reactions and catalyst tethering modifications. The rapid development of computational infrastructure and methods has made the bioconjugation of proteins more accessible, enabling precise predictions of structural changes due to protein modifications. Hence, we discuss bioconjugational computational approaches, including molecular dynamics and artificial intelligence, underscoring their potential applications in enhancing our understanding of cellular biology and addressing current challenges in the field.
Collapse
Affiliation(s)
- Sk Jahir Abbas
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
- Department of Obstetrics and Gynecology, Asia University Hospital, Taichung 41354, Taiwan
| | - Sabina Yesmin
- Institute of Chemistry, Academia Sinica, Taipei 115201, Taiwan
- Department of Physics, National Dong Hwa University, Hualien 97401, Taiwan
| | - Sandeepa K Vittala
- Leiden Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands
| | - Nayim Sepay
- Department of Chemistry, Lady Brabourne College, Kolkata 700017, India
| | - Fangfang Xia
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Centre, Houston, TX 77030, USA
| | - Sk Imran Ali
- Department of Chemistry, University of Kalyani, Kalyani 741235, India
| | - Wei-Chun Chang
- Ph.D. Program for Health Science and Industry, China Medical University, Taichung 40402, Taiwan
- Department of Medical Research, Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung 40402, Taiwan
| | - Yao-Ching Hung
- Department of Obstetrics and Gynecology, Asia University Hospital, Taichung 41354, Taiwan
| | - Wen-Lung Ma
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
- Department of Medical Research, Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung 40402, Taiwan
| |
Collapse
|
31
|
Pigula ML, Schultz PG. Recent advances in the expanding genetic code. Curr Opin Chem Biol 2024; 83:102537. [PMID: 39366132 PMCID: PMC11809236 DOI: 10.1016/j.cbpa.2024.102537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/20/2024] [Accepted: 09/10/2024] [Indexed: 10/06/2024]
Abstract
For over a billion years, the central dogma of biology has been limited largely to 20 canonical amino acids with relatively simple functionalities. The ability to rationally add new building blocks to the genetic code has enabled the site-specific incorporation of hundreds of noncanonical amino acids (ncAAs) with novel properties into proteins in living organisms. Recent technological advances have enabled high level mammalian expression of proteins containing ncAAs, the use of unique codons to direct ncAA incorporation, extension of this methodology to a range of eukaryotic organisms, and the ability to encode building blocks beyond α-amino acids. These ncAAs have been used to study and control proteins in their native cellular context and to engineer enzymes and biotherapeutics with improved or novel properties. Herein we discuss recent developments in the field and potential future research directions.
Collapse
Affiliation(s)
- Michael L Pigula
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Peter G Schultz
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States.
| |
Collapse
|
32
|
De Faveri C, Mattheisen JM, Sakmar TP, Coin I. Noncanonical Amino Acid Tools and Their Application to Membrane Protein Studies. Chem Rev 2024; 124:12498-12550. [PMID: 39509680 PMCID: PMC11613316 DOI: 10.1021/acs.chemrev.4c00181] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 11/15/2024]
Abstract
Methods rooted in chemical biology have contributed significantly to studies of integral membrane proteins. One recent key approach has been the application of genetic code expansion (GCE), which enables the site-specific incorporation of noncanonical amino acids (ncAAs) with defined chemical properties into proteins. Efficient GCE is challenging, especially for membrane proteins, which have specialized biogenesis and cell trafficking machinery and tend to be expressed at low levels in cell membranes. Many eukaryotic membrane proteins cannot be expressed functionally in E. coli and are most effectively studied in mammalian cell culture systems. Recent advances have facilitated broader applications of GCE for studies of membrane proteins. First, AARS/tRNA pairs have been engineered to function efficiently in mammalian cells. Second, bioorthogonal chemical reactions, including cell-friendly copper-free "click" chemistry, have enabled linkage of small-molecule probes such as fluorophores to membrane proteins in live cells. Finally, in concert with advances in GCE methodology, the variety of available ncAAs has increased dramatically, thus enabling the investigation of protein structure and dynamics by multidisciplinary biochemical and biophysical approaches. These developments are reviewed in the historical framework of the development of GCE technology with a focus on applications to studies of membrane proteins.
Collapse
Affiliation(s)
- Chiara De Faveri
- Faculty
of Life Science, Institute of Biochemistry, Leipzig University, Leipzig 04103, Germany
| | - Jordan M. Mattheisen
- Laboratory
of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York 10065, United States
- Tri-Institutional
PhD Program in Chemical Biology, New York, New York 10065, United States
| | - Thomas P. Sakmar
- Laboratory
of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York 10065, United States
| | - Irene Coin
- Faculty
of Life Science, Institute of Biochemistry, Leipzig University, Leipzig 04103, Germany
| |
Collapse
|
33
|
Peng P, Lu Y, Ren X, Yan C, Guo X, Liu R, Song X, Huang H. SIRT3 differentially regulates lysine benzoylation from SIRT2 in mammalian cells. iScience 2024; 27:111176. [PMID: 39524354 PMCID: PMC11546291 DOI: 10.1016/j.isci.2024.111176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 08/26/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024] Open
Abstract
Lysine benzoylation (Kbz), a new type of protein post-translational modification (PTM) we discovered, has garnered significant attention. While we initially identified SIRT2 as a debenzoylase in mammalian cells, recent findings suggest its exclusivity may be questioned. However, other debenzoylases in mammalian cells remain underexplored. Here, our study reveals SIRT3 as an additional debenzoylase. Through quantitative analysis, we identified 1,075 Kbz sites in mammalian cells, with 44 specifically mediated by SIRT3 and 66 influenced by SIRT2. Notably, SIRT3 and SIRT2 regulate distinct Kbz substrates, indicating involvement in different cellular processes. Functional investigations demonstrated SIRT3's regulation of benzoylated protein peptidyl-prolyl cis-trans isomerase F (PPIF), where K73bz and K197bz markedly diminished interactions with the tumor suppressor p53. Additionally, K978bz on ATP-citrate lyase (ACLY) notably inhibited its enzymatic activity. This study not only identifies a debenzoylase and its Kbz substrates but also enhances our understanding of Kbz's biological functions.
Collapse
Affiliation(s)
- Panpan Peng
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ying Lu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xuelian Ren
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Cong Yan
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xinlong Guo
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ruilong Liu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xiaohan Song
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - He Huang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
34
|
Li J, Zhang T, Wu D, He C, Weng H, Zheng T, Liu J, Yao H, Chen J, Ren Y, Zhu Z, Xu J, Xu S. Palladium-Mediated Bioorthogonal System for Prodrug Activation of N-Benzylbenzamide-Containing Tubulin Polymerization Inhibitors for the Treatment of Solid Tumors. J Med Chem 2024; 67:19905-19924. [PMID: 39484713 DOI: 10.1021/acs.jmedchem.4c02419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Bioorthogonal cleavage reactions have been developed as an intriguing strategy to enhance the safety of chemotherapeutics. Aiming to reduce the toxicity and improve the targeted release properties of the colchicine binding site inhibitors (CBSIs) based on previous work, a series of biologically inert prodrugs were further designed and synthesized through a bioorthogonal prodrug strategy. The therapeutic effects of prodrugs could be "turned-on" once combined with palladium resins. Particularly, prodrug 2b was 68.3-fold less cytotoxic compared to the parent compound, while its cytotoxicity was recovered in situ in the presence of palladium resins. Mechanism studies confirmed that 2b inhibited cell growth in the same manner as CBSIs. More importantly, in vivo efficacy studies demonstrated the efficient activation of 2b by palladium resins, resulting in significant inhibition of tumor growth (63.2%). These results suggest that prodrug 2b with improved safety and targeted release property catalyzed by a Pd-mediated bioorthogonal cleavage reaction deserves further investigation.
Collapse
Affiliation(s)
- Jinlong Li
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, P.R. China
| | - Tong Zhang
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, P.R. China
| | - Di Wu
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, P.R. China
| | - Chen He
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, P.R. China
| | - Haoxiang Weng
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, P.R. China
| | - Tiandong Zheng
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, P.R. China
| | - Jie Liu
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, P.R. China
| | - Hong Yao
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, P.R. China
| | - Jichao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Yansong Ren
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, P.R. China
| | - Zheying Zhu
- Division of Molecular Therapeutics & Formulation, School of Pharmacy, The University of Nottingham, Nottingham NG7 2RD, U.K
| | - Jinyi Xu
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, P.R. China
| | - Shengtao Xu
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, P.R. China
- Department of Hepatobiliary Surgery, The First People's Hospital of Kunshan, Suzhou 215132, P.R. China
| |
Collapse
|
35
|
Shade O, Ryan A, Belsito G, Deiters A. Investigating Protein Degradability through Site-Specific Ubiquitin Ligase Recruitment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.11.623099. [PMID: 39605659 PMCID: PMC11601344 DOI: 10.1101/2024.11.11.623099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
We report targeted protein degradation through the site-specific recruitment of native ubiquitin ligases to a protein of interest via conjugation of E3 ligase ligands. Direct comparison of degradation ability of proteins displaying the corresponding bioconjugation handle at different regions of protein surfaces was explored. We demonstrate the benefit of proximal lysine residues and investigate flexibility in linker length for the design of optimal degraders. Two proteins without known small molecule ligands, EGFP and DUSP6, were differentially degraded when modified at different locations on their protein surfaces. Further, the cereblon-mediated degradation of the known PROTAC target ERRα was improved through the recruitment of the E3 ligase to regions different from the known ligand binding site. This new methodology will provide insight into overall protein degradability, even in the absence of a known small molecule ligand and inform the process of new ligand and PROTAC development to achieve optimal protein degradation. Furthermore, this approach represents a new, small molecule-based conditional OFF switch of protein function with complete genetic specificity. Importantly, the protein of interest is only modified with a minimal surface modification (< 200 Da) and does not require any protein domain fusions.
Collapse
Affiliation(s)
- Olivia Shade
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Amy Ryan
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Gabriella Belsito
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
36
|
Wanka V, Fottner M, Cigler M, Lang K. Genetic Code Expansion Approaches to Decipher the Ubiquitin Code. Chem Rev 2024; 124:11544-11584. [PMID: 39311880 PMCID: PMC11503651 DOI: 10.1021/acs.chemrev.4c00375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/05/2024] [Accepted: 08/19/2024] [Indexed: 10/25/2024]
Abstract
The covalent attachment of Ub (ubiquitin) to target proteins (ubiquitylation) represents one of the most versatile PTMs (post-translational modifications) in eukaryotic cells. Substrate modifications range from a single Ub moiety being attached to a target protein to complex Ub chains that can also contain Ubls (Ub-like proteins). Ubiquitylation plays pivotal roles in most aspects of eukaryotic biology, and cells dedicate an orchestrated arsenal of enzymes to install, translate, and reverse these modifications. The entirety of this complex system is coined the Ub code. Deciphering the Ub code is challenging due to the difficulty in reconstituting enzymatic machineries and generating defined Ub/Ubl-protein conjugates. This Review provides a comprehensive overview of recent advances in using GCE (genetic code expansion) techniques to study the Ub code. We highlight strategies to site-specifically ubiquitylate target proteins and discuss their advantages and disadvantages, as well as their various applications. Additionally, we review the potential of small chemical PTMs targeting Ub/Ubls and present GCE-based approaches to study this additional layer of complexity. Furthermore, we explore methods that rely on GCE to develop tools to probe interactors of the Ub system and offer insights into how future GCE-based tools could help unravel the complexity of the Ub code.
Collapse
Affiliation(s)
- Vera Wanka
- Laboratory
for Organic Chemistry (LOC), Department of Chemistry and Applied Biosciences
(D-CHAB), ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland
| | - Maximilian Fottner
- Laboratory
for Organic Chemistry (LOC), Department of Chemistry and Applied Biosciences
(D-CHAB), ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland
| | - Marko Cigler
- Department
of Chemistry, Technical University of Munich, 85748 Garching, Germany
| | - Kathrin Lang
- Laboratory
for Organic Chemistry (LOC), Department of Chemistry and Applied Biosciences
(D-CHAB), ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland
- Department
of Chemistry, Technical University of Munich, 85748 Garching, Germany
| |
Collapse
|
37
|
Zhang R, Li B, Dong L, Hu Z, Li X, Yao X, Zheng J, Lin A, Gao S, Hang T, Wu X, Chu Q. Fast and Selective Cysteine Conjugation Using para-Quinone Methides. Org Lett 2024; 26:8951-8955. [PMID: 39373401 DOI: 10.1021/acs.orglett.4c03452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
An efficient and selective method for cysteine conjugation utilizing para-quinone methides (p-QMs) was developed. p-QM labeling exhibits high specificity toward the cysteine residue, as evidenced by its reactivity with various amino acid derivatives, peptides, and proteins. Notably, the p-QM-cysteine reactions display robust kinetics with rate constants up to 1.67 × 104 M-1·s-1. Furthermore, p-QM conjugation enables us to attach a fluorescent probe to a HER2 nanobody, resulting in selective labeling of HER2-positive SK-BR-3 cells.
Collapse
Affiliation(s)
- Ruimin Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Bo Li
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Liuli Dong
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Zhaoliang Hu
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Xue Li
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Xueyu Yao
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Jia Zheng
- Shimadzu (China) Co., Ltd., Shanghai 200233, P. R. China
| | - Aijun Lin
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Shang Gao
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Taijun Hang
- Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Xiaoxing Wu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Qian Chu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
| |
Collapse
|
38
|
Guo Y, Cheng L, Hu Y, Zhang M, Liu R, Wang Y, Jiang S, Xiao H. Biosynthesis of Halogenated Tryptophans for Protein Engineering Using Genetic Code Expansion. Chembiochem 2024; 25:e202400366. [PMID: 38958600 PMCID: PMC11483216 DOI: 10.1002/cbic.202400366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/29/2024] [Accepted: 07/03/2024] [Indexed: 07/04/2024]
Abstract
Genetic Code Expansion technology offers significant potential in incorporating noncanonical amino acids into proteins at precise locations, allowing for the modulation of protein structures and functions. However, this technology is often limited by the need for costly and challenging-to-synthesize external noncanonical amino acid sources. In this study, we address this limitation by developing autonomous cells capable of biosynthesizing halogenated tryptophan derivatives and introducing them into proteins using Genetic Code Expansion technology. By utilizing inexpensive halide salts and different halogenases, we successfully achieve the selective biosynthesis of 6-chloro-tryptophan, 7-chloro-tryptophan, 6-bromo-tryptophan, and 7-bromo-tryptophan. These derivatives are introduced at specific positions with corresponding bioorthogonal aminoacyl-tRNA synthetase/tRNA pairs in response to the amber codon. Following optimization, we demonstrate the robust expression of proteins containing halogenated tryptophan residues in cells with the ability to biosynthesize these tryptophan derivatives. This study establishes a versatile platform for engineering proteins with various halogenated tryptophans.
Collapse
Affiliation(s)
- Yiming Guo
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas, 77005, U.S.A
| | - Linqi Cheng
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas, 77005, U.S.A
| | - Yu Hu
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas, 77005, U.S.A
| | - Mengxi Zhang
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas, 77005, U.S.A
| | - Rui Liu
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas, 77005, U.S.A
| | - Yixian Wang
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas, 77005, U.S.A
| | - Shiyu Jiang
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas, 77005, U.S.A
| | - Han Xiao
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas, 77005, U.S.A
- SynthX Center, Rice University, 6100 Main Street, Houston, Texas, 77005, U.S.A
- Department of Biosciences, Rice University, 6100 Main Street, Houston, Texas, 77005, U.S.A
- Department of Bioengineering, Rice University, 6100 Main Street, Houston, Texas, 77005, USA
| |
Collapse
|
39
|
Dunkelmann DL, Chin JW. Engineering Pyrrolysine Systems for Genetic Code Expansion and Reprogramming. Chem Rev 2024; 124:11008-11062. [PMID: 39235427 PMCID: PMC11467909 DOI: 10.1021/acs.chemrev.4c00243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 09/06/2024]
Abstract
Over the past 16 years, genetic code expansion and reprogramming in living organisms has been transformed by advances that leverage the unique properties of pyrrolysyl-tRNA synthetase (PylRS)/tRNAPyl pairs. Here we summarize the discovery of the pyrrolysine system and describe the unique properties of PylRS/tRNAPyl pairs that provide a foundation for their transformational role in genetic code expansion and reprogramming. We describe the development of genetic code expansion, from E. coli to all domains of life, using PylRS/tRNAPyl pairs, and the development of systems that biosynthesize and incorporate ncAAs using pyl systems. We review applications that have been uniquely enabled by the development of PylRS/tRNAPyl pairs for incorporating new noncanonical amino acids (ncAAs), and strategies for engineering PylRS/tRNAPyl pairs to add noncanonical monomers, beyond α-L-amino acids, to the genetic code of living organisms. We review rapid progress in the discovery and scalable generation of mutually orthogonal PylRS/tRNAPyl pairs that can be directed to incorporate diverse ncAAs in response to diverse codons, and we review strategies for incorporating multiple distinct ncAAs into proteins using mutually orthogonal PylRS/tRNAPyl pairs. Finally, we review recent advances in the encoded cellular synthesis of noncanonical polymers and macrocycles and discuss future developments for PylRS/tRNAPyl pairs.
Collapse
Affiliation(s)
- Daniel L. Dunkelmann
- Medical
Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, England, United Kingdom
- Max
Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Jason W. Chin
- Medical
Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, England, United Kingdom
| |
Collapse
|
40
|
Yang S, Qiu CY, Hu H, Jiang Y, Chen M. Visible-Light-Driven Synthesis of N-Alkyl α-Amino Acid Derivatives from Unactivated Alkyl Bromides and In Situ Generated Imines. Org Lett 2024; 26:8416-8423. [PMID: 39311501 DOI: 10.1021/acs.orglett.4c03297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
One-pot, multicomponent reactions are known for their green and efficient nature. We report a novel three-component reaction of alkyl amines, alkyl glyoxylates, and unactivated alkyl bromides under visible-light-induced palladium catalysis, yielding N-alkyl unnatural α-amino acid derivatives. This method offers mild conditions, broad substrate scope, and excellent functional group tolerance without requiring stoichiometric organometallic reagents. The approach has promising applications in protein engineering and drug discovery.
Collapse
Affiliation(s)
- Sen Yang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| | - Chao-Ying Qiu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| | - Hao Hu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| | - Yan Jiang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| | - Ming Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| |
Collapse
|
41
|
Choi JH, Kim S, Kang OY, Choi SY, Hyun JY, Lee HS, Shin I. Selective fluorescent labeling of cellular proteins and its biological applications. Chem Soc Rev 2024; 53:9446-9489. [PMID: 39109465 DOI: 10.1039/d4cs00094c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Proteins, which are ubiquitous in cells and critical to almost all cellular functions, are indispensable for life. Fluorescence imaging of proteins is key to understanding their functions within their native milieu, as it provides insights into protein localization, dynamics, and trafficking in living systems. Consequently, the selective labeling of target proteins with fluorophores has emerged as a highly active research area, encompassing bioorganic chemistry, chemical biology, and cell biology. Various methods for selectively labeling proteins with fluorophores in cells and tissues have been established and are continually being developed to visualize and characterize proteins. This review highlights research findings reported since 2018, with a focus on the selective labeling of cellular proteins with small organic fluorophores and their biological applications in studying protein-associated biological events. We also discuss the strengths and weaknesses of each labeling approach for their utility in living systems.
Collapse
Affiliation(s)
- Joo Hee Choi
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea.
| | - Sooin Kim
- Department of Chemistry, Sogang University, 04107 Seoul, Republic of Korea.
| | - On-Yu Kang
- Department of Drug Discovery, Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea.
| | - Seong Yun Choi
- Department of Drug Discovery, Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea.
- Pharmaceutical Chemistry, University of Science & Technology, Daejeon 34113, Republic of Korea
| | - Ji Young Hyun
- Department of Drug Discovery, Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea.
- Pharmaceutical Chemistry, University of Science & Technology, Daejeon 34113, Republic of Korea
| | - Hyun Soo Lee
- Department of Chemistry, Sogang University, 04107 Seoul, Republic of Korea.
| | - Injae Shin
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea.
| |
Collapse
|
42
|
Jann C, Giofré S, Bhattacharjee R, Lemke EA. Cracking the Code: Reprogramming the Genetic Script in Prokaryotes and Eukaryotes to Harness the Power of Noncanonical Amino Acids. Chem Rev 2024; 124:10281-10362. [PMID: 39120726 PMCID: PMC11441406 DOI: 10.1021/acs.chemrev.3c00878] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 06/10/2024] [Accepted: 06/27/2024] [Indexed: 08/10/2024]
Abstract
Over 500 natural and synthetic amino acids have been genetically encoded in the last two decades. Incorporating these noncanonical amino acids into proteins enables many powerful applications, ranging from basic research to biotechnology, materials science, and medicine. However, major challenges remain to unleash the full potential of genetic code expansion across disciplines. Here, we provide an overview of diverse genetic code expansion methodologies and systems and their final applications in prokaryotes and eukaryotes, represented by Escherichia coli and mammalian cells as the main workhorse model systems. We highlight the power of how new technologies can be first established in simple and then transferred to more complex systems. For example, whole-genome engineering provides an excellent platform in bacteria for enabling transcript-specific genetic code expansion without off-targets in the transcriptome. In contrast, the complexity of a eukaryotic cell poses challenges that require entirely new approaches, such as striving toward establishing novel base pairs or generating orthogonally translating organelles within living cells. We connect the milestones in expanding the genetic code of living cells for encoding novel chemical functionalities to the most recent scientific discoveries, from optimizing the physicochemical properties of noncanonical amino acids to the technological advancements for their in vivo incorporation. This journey offers a glimpse into the promising developments in the years to come.
Collapse
Affiliation(s)
- Cosimo Jann
- Biocenter, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
- IMB
Postdoc Programme (IPPro), 55128 Mainz, Germany
| | - Sabrina Giofré
- Biocenter, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
- IMB
Postdoc Programme (IPPro), 55128 Mainz, Germany
| | - Rajanya Bhattacharjee
- Biocenter, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
- IMB
International PhD Programme (IPP), 55128 Mainz, Germany
| | - Edward A. Lemke
- Biocenter, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
- Institute
of Molecular Biology (IMB), 55128 Mainz, Germany
| |
Collapse
|
43
|
Lockwood CJ, Nash BW, Newton-Payne SE, van Wonderen JH, Whiting KPS, Connolly A, Sutton-Cook AL, Crook A, Aithal AR, Edwards MJ, Clarke TA, Sachdeva A, Butt JN. Genetic Code Expansion in Shewanella oneidensis MR-1 Allows Site-Specific Incorporation of Bioorthogonal Functional Groups into a c-Type Cytochrome. ACS Synth Biol 2024; 13:2833-2843. [PMID: 39158169 PMCID: PMC11421213 DOI: 10.1021/acssynbio.4c00248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/15/2024] [Accepted: 08/06/2024] [Indexed: 08/20/2024]
Abstract
Genetic code expansion has enabled cellular synthesis of proteins containing unique chemical functional groups to allow the understanding and modulation of biological systems and engineer new biotechnology. Here, we report the development of efficient methods for site-specific incorporation of structurally diverse noncanonical amino acids (ncAAs) into proteins expressed in the electroactive bacterium Shewanella oneidensis MR-1. We demonstrate that the biosynthetic machinery for ncAA incorporation is compatible and orthogonal to the endogenous pathways of S. oneidensis MR-1 for protein synthesis, maturation of c-type cytochromes, and protein secretion. This allowed the efficient synthesis of a c-type cytochrome, MtrC, containing site-specifically incorporated ncAA in S. oneidensis MR-1 cells. We demonstrate that site-specific replacement of surface residues in MtrC with ncAAs does not influence its three-dimensional structure and redox properties. We also demonstrate that site-specifically incorporated bioorthogonal functional groups could be used for efficient site-selective labeling of MtrC with fluorophores. These synthetic biology developments pave the way to expand the chemical repertoire of designer proteins expressed in S. oneidensis MR-1.
Collapse
Affiliation(s)
- Colin
W. J. Lockwood
- School
of Chemistry and School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K.
| | - Benjamin W. Nash
- School
of Chemistry and School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K.
| | - Simone E. Newton-Payne
- School
of Chemistry and School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K.
| | - Jessica H. van Wonderen
- School
of Chemistry and School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K.
| | - Keir P. S. Whiting
- School
of Chemistry and School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K.
| | - Abigail Connolly
- School
of Chemistry and School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K.
| | - Alexander L. Sutton-Cook
- School
of Chemistry and School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K.
| | - Archie Crook
- School
of Chemistry and School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K.
| | - Advait R. Aithal
- School
of Chemistry and School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K.
| | - Marcus J. Edwards
- School
of Life Sciences, University of Essex, Colchester CO4 3SQ, U.K.
| | - Thomas A. Clarke
- School
of Chemistry and School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K.
| | - Amit Sachdeva
- School
of Chemistry and School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K.
| | - Julea N. Butt
- School
of Chemistry and School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K.
| |
Collapse
|
44
|
Basuli F, Shi J, Lindberg E, Fayn S, Lee W, Ho M, Hammoud DA, Cheloha RW, Swenson RE, Escorcia FE. Sortase-Mediated Site-Specific Conjugation to Prepare Fluorine-18-Labeled Nanobodies. Bioconjug Chem 2024; 35:1335-1342. [PMID: 39172920 DOI: 10.1021/acs.bioconjchem.4c00264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Single-domain antibodies, or nanobodies (Nbs), are promising biomolecules for use in molecular imaging due to their excellent affinity, specificity, and fast clearance from the blood. Given their short blood half-life, pairing Nbs with short-lived imaging radioisotopes is desirable. Because fluorine-18 (18F) is routinely used for clinical imaging, it is an attractive radioisotope for Nbs. We report a novel sortase-based, site-specific 18F-labeling method applied to three nanobodies. Labeled nanobodies were synthesized either by a two-step indirect radiolabeling method in one pot or by a one-step direct labeling method using a sortase-mediated conjugation of either the radiolabeled chelator (H-GGGK((±)-Al[18F]FH3RESCA)-NH2) or the unlabeled chelator (H-GGGK((±)-H3RESCA)-NH2) followed by labeling with Al[18F]F, respectively. The overall radiochemical yields were 15-43% (n = 22, decay-corrected) in 70 min (indirect labeling) and 23-58% (n = 12, decay-corrected) in 50 min (direct labeling). The radiochemical purities of the labeled nanobodies prepared by both methods were >98% with a specific activity of 400-600 Ci/mmol (n = 22) for each of the three Nbs tested and exhibited excellent stability profiles under physiological conditions. This simple, site-specific, reproducible, and generalizable 18F-labeling method to prepare nanobodies (Nb-Al[18F]F-RESCA) or other low molecular weight biomolecules can easily be adopted in various settings for preclinical and clinical studies.
Collapse
Affiliation(s)
- Falguni Basuli
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, Maryland 20892-0001, United States
| | - Jianfeng Shi
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, Maryland 20892-0001, United States
| | - Eric Lindberg
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, Maryland 20892-0001, United States
| | - Stanley Fayn
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
- Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, U.K
| | - Woonghee Lee
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Mitchell Ho
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Dima A Hammoud
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center (CC), National Institutes of Health (NIH), Bethesda, Maryland 20892, United States
| | - Ross W Cheloha
- Chemical Biology in Signaling Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Rolf E Swenson
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, Maryland 20892-0001, United States
| | - Freddy E Escorcia
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
45
|
Lin X, Mandal S, Nithun RV, Kolla R, Bouri B, Lashuel HA, Jbara M. A Versatile Method for Site-Specific Chemical Installation of Aromatic Posttranslational Modification Analogs into Proteins. J Am Chem Soc 2024; 146:25788-25798. [PMID: 39224092 PMCID: PMC11421021 DOI: 10.1021/jacs.4c08416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Posttranslational modifications (PTMs) of proteins play central roles in regulating the protein structure, interactome, and functions. A notable modification site is the aromatic side chain of Tyr, which undergoes modifications such as phosphorylation and nitration. Despite the biological and physiological importance of Tyr-PTMs, our current understanding of the mechanisms by which these modifications contribute to human health and disease remains incomplete. This knowledge gap arises from the absence of natural amino acids that can mimic these PTMs and the lack of synthetic tools for the site-specific introduction of aromatic PTMs into proteins. Herein, we describe a facile method for the site-specific chemical installation of aromatic PTMs into proteins through palladium-mediated S-C(sp2) bond formation under ambient conditions. We demonstrate the incorporation of novel PTMs such as Tyr-nitration and phosphorylation analogs to synthetic and recombinantly expressed Cys-containing peptides and proteins within minutes and in good yields. To demonstrate the versatility of our approach, we employed it to prepare 10 site-specifically modified proteins, including nitrated and phosphorylated analogs of Myc and Max proteins. Furthermore, we prepared a focused library of site-specifically nitrated and phosphorylated α-synuclein (α-Syn) protein, which enabled, for the first time, deciphering the role of these competing modifications in regulating α-Syn conformation aggregation in vitro. Our strategy offers advantages over synthetic or semisynthetic approaches, as it enables rapid and selective transfer of rarely explored aromatic PTMs into recombinant proteins, thus facilitating the generation of novel libraries of homogeneous posttranslationally modified proteins for biomarker discovery, mechanistic studies, and drug discovery.
Collapse
Affiliation(s)
- Xiaoxi Lin
- School
of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Shaswati Mandal
- Laboratory
of Molecular and Chemical Biology of Neurodegeneration, Institute
of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| | - Raj V. Nithun
- School
of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Rajasekhar Kolla
- Laboratory
of Molecular and Chemical Biology of Neurodegeneration, Institute
of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| | - Bouchra Bouri
- Protein
Production and Structure core facility, School of Life Sciences, École Polytechnique Fédérale
de Lausanne, Lausanne CH-1015, Switzerland
| | - Hilal A. Lashuel
- Laboratory
of Molecular and Chemical Biology of Neurodegeneration, Institute
of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| | - Muhammad Jbara
- School
of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
46
|
Ali AA, You M. DNA-modulated dimerization and oligomerization of cell membrane receptors. Chem Commun (Camb) 2024; 60:10265-10279. [PMID: 39190295 PMCID: PMC11415102 DOI: 10.1039/d4cc03077j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
DNA-based nanostructures and nanodevices have recently been employed for a broad range of applications in modulating the assemblies and interaction patterns of different cell membrane receptors. These versatile nanodevices can be rationally designed with modular structures, easily programmed and tweaked such that they may act as smart chemical biology and cell biology tools to reveal insights into complicated cellular signaling processes. Their outstanding in vitro and cellular features have also begun to be further validated for some in vivo applications and demonstrated their great biomedical potential. In this review, we will highlight some key current advances in the molecular engineering and biological applications of DNA-based functional nanodevices, with a focus on how these tools have been used to respond and modulate membrane receptor dimerizations and/or oligomerizations, as a way to control cellular signaling processes. Some current challenges and future directions to further develop and apply these DNA nanodevices will also be discussed.
Collapse
Affiliation(s)
- Ahsan Ausaf Ali
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA.
| | - Mingxu You
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA.
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA 01003, USA
| |
Collapse
|
47
|
Gran-Scheuch A, Hanreich S, Keizer I, W Harteveld J, Ruijter E, Drienovská I. Designing Michaelases: exploration of novel protein scaffolds for iminium biocatalysis. Faraday Discuss 2024; 252:279-294. [PMID: 38842386 PMCID: PMC11389850 DOI: 10.1039/d4fd00057a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Biocatalysis is becoming a powerful and sustainable alternative for asymmetric catalysis. However, enzymes are often restricted to metabolic and less complex reactivities. This can be addressed by protein engineering, such as incorporating new-to-nature functional groups into proteins through the so-called expansion of the genetic code to produce artificial enzymes. Selecting a suitable protein scaffold is a challenging task that plays a key role in designing artificial enzymes. In this work, we explored different protein scaffolds for an abiological model of iminium-ion catalysis, Michael addition of nitromethane into E-cinnamaldehyde. We studied scaffolds looking for open hydrophobic pockets and enzymes with described binding sites for the targeted substrate. The proteins were expressed and variants harboring functional amine groups - lysine, p-aminophenylalanine, or N6-(D-prolyl)-L-lysine - were analyzed for the model reaction. Among the newly identified scaffolds, a thermophilic ene-reductase from Thermoanaerobacter pseudethanolicus was shown to be the most promising biomolecular scaffold for this reaction.
Collapse
Affiliation(s)
- Alejandro Gran-Scheuch
- Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands.
| | - Stefanie Hanreich
- Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands.
| | - Iris Keizer
- Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands.
| | - Jaap W Harteveld
- Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands.
| | - Eelco Ruijter
- Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands.
| | - Ivana Drienovská
- Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands.
| |
Collapse
|
48
|
Wright MT, Timalsina B, Garcia Lopez V, Hermanson JN, Garcia S, Plate L. Time-resolved interactome profiling deconvolutes secretory protein quality control dynamics. Mol Syst Biol 2024; 20:1049-1075. [PMID: 39103653 PMCID: PMC11369088 DOI: 10.1038/s44320-024-00058-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/15/2024] [Accepted: 07/22/2024] [Indexed: 08/07/2024] Open
Abstract
Many cellular processes are governed by protein-protein interactions that require tight spatial and temporal regulation. Accordingly, it is necessary to understand the dynamics of these interactions to fully comprehend and elucidate cellular processes and pathological disease states. To map de novo protein-protein interactions with time resolution at an organelle-wide scale, we developed a quantitative mass spectrometry method, time-resolved interactome profiling (TRIP). We apply TRIP to elucidate aberrant protein interaction dynamics that lead to the protein misfolding disease congenital hypothyroidism. We deconvolute altered temporal interactions of the thyroid hormone precursor thyroglobulin with pathways implicated in hypothyroidism pathophysiology, such as Hsp70-/90-assisted folding, disulfide/redox processing, and N-glycosylation. Functional siRNA screening identified VCP and TEX264 as key protein degradation components whose inhibition selectively rescues mutant prohormone secretion. Ultimately, our results provide novel insight into the temporal coordination of protein homeostasis, and our TRIP method should find broad applications in investigating protein-folding diseases and cellular processes.
Collapse
Affiliation(s)
- Madison T Wright
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37240, USA
| | - Bibek Timalsina
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37240, USA
| | - Valeria Garcia Lopez
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37240, USA
| | - Jake N Hermanson
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37240, USA
| | - Sarah Garcia
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37240, USA
| | - Lars Plate
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37240, USA.
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37240, USA.
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
| |
Collapse
|
49
|
Ai H, Pan M, Liu L. Chemical Synthesis of Human Proteoforms and Application in Biomedicine. ACS CENTRAL SCIENCE 2024; 10:1442-1459. [PMID: 39220697 PMCID: PMC11363345 DOI: 10.1021/acscentsci.4c00642] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 09/04/2024]
Abstract
Limited understanding of human proteoforms with complex posttranslational modifications and the underlying mechanisms poses a major obstacle to research on human health and disease. This Outlook discusses opportunities and challenges of de novo chemical protein synthesis in human proteoform studies. Our analysis suggests that to develop a comprehensive, robust, and cost-effective methodology for chemical synthesis of various human proteoforms, new chemistries of the following types need to be developed: (1) easy-to-use peptide ligation chemistries allowing more efficient de novo synthesis of protein structural domains, (2) robust temporary structural support strategies for ligation and folding of challenging targets, and (3) efficient transpeptidative protein domain-domain ligation methods for multidomain proteins. Our analysis also indicates that accurate chemical synthesis of human proteoforms can be applied to the following aspects of biomedical research: (1) dissection and reconstitution of the proteoform interaction networks, (2) structural mechanism elucidation and functional analysis of human proteoform complexes, and (3) development and evaluation of drugs targeting human proteoforms. Overall, we suggest that through integrating chemical protein synthesis with in vivo functional analysis, mechanistic biochemistry, and drug development, synthetic chemistry would play a pivotal role in human proteoform research and facilitate the development of precision diagnostics and therapeutics.
Collapse
Affiliation(s)
- Huasong Ai
- New
Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life
Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and
Chemical Biology, Center for Synthetic and Systems Biology, Department
of Chemistry, Tsinghua University, Beijing 100084, China
- Institute
of Translational Medicine, School of Pharmacy, School of Chemistry
and Chemical Engineering, National Center for Translational Medicine
(Shanghai), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Man Pan
- Institute
of Translational Medicine, School of Pharmacy, School of Chemistry
and Chemical Engineering, National Center for Translational Medicine
(Shanghai), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lei Liu
- New
Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life
Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and
Chemical Biology, Center for Synthetic and Systems Biology, Department
of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
50
|
Wang S, Shcherbii MV, Hirvonen SP, Silvennoinen G, Sarparanta M, Santos HA. Quantitative analysis of electroporation-mediated intracellular delivery via bioorthogonal luminescent reaction. Commun Chem 2024; 7:181. [PMID: 39147836 PMCID: PMC11327378 DOI: 10.1038/s42004-024-01266-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/01/2024] [Indexed: 08/17/2024] Open
Abstract
Efficient intracellular delivery is crucial for biotherapeutics, such as proteins, oligonucleotides, and CRISPR/Cas9 gene-editing systems, to achieve their efficacy. Despite the great efforts of developing new intracellular delivery carriers, the lack of straightforward methods for intracellular delivery quantification limits further development in this area. Herein, we designed a simple and versatile bioorthogonal luminescent reaction (BioLure assay) to analyze intracellular delivery. Our results suggest that BioLure can be used to estimate the amount of intracellularly delivered molecules after electroporation, and the estimation by BioLure is in good correlation with the results from complementary methods. Furthermore, we used BioLure assay to correlate the intracellularly-delivered RNase A amount with its tumoricidal activity. Overall, BioLure is a versatile tool for understanding the intracellular delivery process on live cells, and establishing the link between the cytosolic concentration of intracellularly-delivered biotherapeutics and their therapeutic efficacy.
Collapse
Affiliation(s)
- Shiqi Wang
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland.
| | - Mariia V Shcherbii
- Institute of Biotechnology, University of Helsinki, FI-00014, Helsinki, Finland
| | - Sami-Pekka Hirvonen
- Department of Chemistry, Faculty of Science, University of Helsinki, FI-00014, Helsinki, Finland
| | - Gudrun Silvennoinen
- Department of Chemistry, Faculty of Science, University of Helsinki, FI-00014, Helsinki, Finland
| | - Mirkka Sarparanta
- Department of Chemistry, Faculty of Science, University of Helsinki, FI-00014, Helsinki, Finland
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen, University of Groningen, 9713, AV, Groningen, The Netherlands
| |
Collapse
|