1
|
Liu S, Zhou J, Yu L, Liu Y, Huang Y, Ouyang Y, Liu GK, Xu XH, Shibata N. Nitrogen-Based Organofluorine Functional Molecules: Synthesis and Applications. Chem Rev 2025. [PMID: 40261821 DOI: 10.1021/acs.chemrev.4c00661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Fluorine and nitrogen form a successful partnership in organic synthesis, medicinal chemistry, and material sciences. Although fluorine-nitrogen chemistry has a long and rich history, this field has received increasing interest and made remarkable progress over the past two decades, driven by recent advancements in transition metal and organocatalysis and photochemistry. This review, emphasizing contributions from 2015 to 2023, aims to update the state of the art of the synthesis and applications of nitrogen-based organofluorine functional molecules in organic synthesis and medicinal chemistry. In dedicated sections, we first focus on fluorine-containing reagents organized according to the type of fluorine-containing groups attached to nitrogen, including N-F, N-RF, N-SRF, and N-ORF. This review also covers nitrogen-linked fluorine-containing building blocks, catalysts, pharmaceuticals, and agrochemicals, underlining these components' broad applicability and growing importance in modern chemistry.
Collapse
Affiliation(s)
- Shuai Liu
- College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, China
| | - Jun Zhou
- Department of Nanopharmaceutical Sciences & Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Lu Yu
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China
| | - Yingle Liu
- School of Chemistry and Environmental Engineering, Sichuan University of Science&Engineering, 180 Xueyuan Street, Huixing Lu, Zigong, Sichuan 643000, China
| | - Yangen Huang
- College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Yao Ouyang
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China
| | - Guo-Kai Liu
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Xiu-Hua Xu
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China
| | - Norio Shibata
- Department of Nanopharmaceutical Sciences & Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
2
|
Zhong S, Yu Z, Zhu Y, Shi L. Catalytic Fluorination of α-Branched Ketones with Nucleophilic Fluorine. Org Lett 2025; 27:3452-3458. [PMID: 40125966 DOI: 10.1021/acs.orglett.5c00972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
We herein disclose the first example of metal-free, redox-umpolung-enabled catalytic fluorination of α-branched ketones with nucleophilic fluorine by the judicious choice of an oxidant. The strategic use of cyclopropyl malonoyl peroxide in hypervalent iodine(III) catalysis expands the modularity and generality in the construction of α-fluorinated ketones with ideally orthogonal reactivity space, avoiding competing oxidation processes. Characteristic for this transformation is its operational simplicity, mild reaction conditions, and gram-scale synthetic ability.
Collapse
Affiliation(s)
- Shengyu Zhong
- School of Science (Shenzhen), School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Zhiyou Yu
- School of Science (Shenzhen), School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Yuze Zhu
- School of Science (Shenzhen), School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Lei Shi
- School of Science (Shenzhen), School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
3
|
Das S, Das R, Ghosh T, Kumar Nandi R. Recent Advancement on Selectfluor Mediated Synthesis of Heterocyclic Molecules. CHEM REC 2025; 25:e202400216. [PMID: 39817861 DOI: 10.1002/tcr.202400216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/31/2024] [Indexed: 01/18/2025]
Abstract
Selectfluor, [1-chloromethyl-4-fluoro-1,4-diazoniabicyclo[2.2.2]octane bis(tetrafluoroborate)], is a highly valuable reagent in contemporary chemistry, serving not only as an electrophilic fluorinating agent but also as an effective catalyst in the synthesis of various pharmaceutically relevant heterocycles. This review article seeks to present a comprehensive overview of the significant heterocyclic ring formations facilitated by selectfluor. Both metal-free and metal-catalyzed recent advancement on selectfluor mediated cyclisation processes are discussed in this review mainly over last eight years (2017-April 2024).
Collapse
Affiliation(s)
- Sukanya Das
- Department of Chemistry, Jadavpur University, 188, Raja Subodh Chandra Mallick Rd, Jadavpur, Kolkata, West Bengal, 700032, India
| | - Risika Das
- Department of Chemistry, Jadavpur University, 188, Raja Subodh Chandra Mallick Rd, Jadavpur, Kolkata, West Bengal, 700032, India
| | - Tapas Ghosh
- Department of Chemistry, Jadavpur University, 188, Raja Subodh Chandra Mallick Rd, Jadavpur, Kolkata, West Bengal, 700032, India
| | - Raj Kumar Nandi
- Department of Chemistry, Jadavpur University, 188, Raja Subodh Chandra Mallick Rd, Jadavpur, Kolkata, West Bengal, 700032, India
| |
Collapse
|
4
|
Wang B, Fan S, Zhang C, Sun J. Catalytic Enantioselective α-Fluorination of Ketones with CsF. J Am Chem Soc 2025; 147:10059-10065. [PMID: 40080800 DOI: 10.1021/jacs.4c18752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Disclosed here is a catalytic enantioselective nucleophilic α-fluorination of simple ketones. A new hydrogen bonding donor catalyst was designed to not only overcome the competing catalyst deactivation but also enable efficient enantiocontrol in C-F bond formation between racemic α-keto sulfoniums and CsF. Careful condition optimization resulted in a general and mild protocol applicable for the configurational flexible acyclic α-fluoro ketones bearing a tertiary stereogenic center, thus complementary to the previous electrophilic fluorination methods that were only effective to cyclic ketones and/or tetrasubstituted stereogenic centers. Preliminary mechanistic studies support a phase transfer and dynamic kinetic resolution pathway operated by HBD-enabled anion-binding.
Collapse
Affiliation(s)
- Baocheng Wang
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, 999077, Hong Kong SAR (China)
| | - Shuaixin Fan
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, 999077, Hong Kong SAR (China)
| | - Chaoshen Zhang
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, 999077, Hong Kong SAR (China)
| | - Jianwei Sun
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, 999077, Hong Kong SAR (China)
| |
Collapse
|
5
|
Zhang M, Liu T, Chen XQ, Jin H, Lv JJ, Wang S, Yu X, Yang C, Wang ZJ. Recent advances in electrochemical 1,2-difunctionalization of alkenes: mechanisms and perspectives. Org Biomol Chem 2025; 23:2323-2357. [PMID: 39932496 DOI: 10.1039/d4ob01673d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
In recent years, significant achievements have been made in the field of electroorganic chemistry regarding the difunctionalization of alkenes. Researchers have developed innovative strategies utilizing the unique reactivity of electrochemical processes to synthesize complex molecules with high regioselectivity and stereoselectivity. This technology is widely applied in the total synthesis of natural products and in the pharmaceutical industry. This article reviews the research progress in the electrochemical difunctionalization of alkenes through three different radical-mediated pathways over the past five years. It includes discussions on 1,2-stereoselective and non-diastereoselective difunctionalization reactions, rearrangements, intramolecular migrations, and cyclization processes. The summary emphasizes innovative electrode designs, reaction mechanisms, and the integration with other emerging technologies, highlighting the potential of this method in modern organic chemistry. Additionally, it aims to address current challenges and propose possible solutions, providing a promising direction for electrochemically mediated difunctionalization reactions of alkenes.
Collapse
Affiliation(s)
- Mingming Zhang
- Institute of New Materials and Industrial Technologies, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
| | - Ting Liu
- Institute of New Materials and Industrial Technologies, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
| | - Xue-Qiu Chen
- Institute of New Materials and Industrial Technologies, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
| | - Huile Jin
- Institute of New Materials and Industrial Technologies, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
| | - Jing-Jing Lv
- Institute of New Materials and Industrial Technologies, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
| | - Shun Wang
- Institute of New Materials and Industrial Technologies, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
| | - Xiaochun Yu
- Institute of New Materials and Industrial Technologies, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
| | - Chuntian Yang
- Wenzhou Institute of Industry & Science, Wenzhou, 325035, P. R. China
| | - Zheng-Jun Wang
- Institute of New Materials and Industrial Technologies, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
| |
Collapse
|
6
|
Roy S, Besset T. New Opportunities to Access Fluorinated Molecules Using Organophotoredox Catalysis via C(sp 3)-F Bond Cleavage. JACS AU 2025; 5:466-485. [PMID: 40017776 PMCID: PMC11862972 DOI: 10.1021/jacsau.4c01158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/15/2025] [Accepted: 01/17/2025] [Indexed: 03/01/2025]
Abstract
Fluorinated molecules are of paramount importance because of their unique properties. As a result, the search for innovative approaches to the synthesis of this class of compounds has been relentless over the years. Among these, the combination of photocatalysis and organofluorine chemistry turned out to be an effective partnership to access unattainable fluorinated molecules. This Perspective provides an overview of the recent advances in synthesizing fluorinated molecules via an organophotoredox-catalyzed defluorination process from trifluoromethylated compounds. It encompasses the preparation of difluoromethylated (hetero)arenes, amides, and esters as well as gem-difluoroalkene derivatives using C(sp3)-F bond activation or β-fragmentation. This Perspective will highlight remaining challenges and discuss future research opportunities.
Collapse
Affiliation(s)
- Sourav Roy
- INSA
Rouen Normandie, Univ Rouen Normandie, CNRS,
Normandie Univ, COBRA UMR 6014, F-76000 Rouen, France
| | - Tatiana Besset
- INSA
Rouen Normandie, Univ Rouen Normandie, CNRS,
Normandie Univ, COBRA UMR 6014, F-76000 Rouen, France
| |
Collapse
|
7
|
Mulka R, Su D, Huang WS, Zhang L, Huang H, Lai X, Li Y, Xue XS. FluoBase: a fluorinated agents database. J Cheminform 2025; 17:19. [PMID: 39934826 DOI: 10.1186/s13321-025-00949-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 01/06/2025] [Indexed: 02/13/2025] Open
Abstract
Organofluorine compounds, owing to their unique physicochemical properties, play an increasingly crucial role in fields such as medicine, pesticides, and advanced materials. Fluorinated reagents are indispensable for developing efficient synthetic methods for organofluorine compounds and serve as the cornerstone of organofluorine chemistry. Equally important are fluorinated functional molecules, which contribute specific properties necessary for applications in pharmaceuticals, agrochemicals, and materials science. However, information about these agents' structure, properties, and functions is scattered throughout vast literature, making it inconvenient for synthetic chemists to access and utilize them effectively. Recognizing the need for a dedicated and organized resource, we present FluoBase-a comprehensive fluorinated agents database designed to streamline access to key information about fluorinated agents. FluoBase aims to become the premier resource for information related to fluorine chemistry, serving the scientific community and anyone interested in the applications of fluorine chemistry and machine learning for property predictions. FluoBase is freely available at https://fluobase.siochemdb.com . Scientific contribution FluoBase is a database designed to provide comprehensive information on the structures, properties, and functions of fluorinated agents and functional molecules. FluoBase aims to become the premier resource for fluorine chemistry, serving the scientific community and anyone interested in the applications of fluorine chemistry and machine learning for property predictions.
Collapse
Affiliation(s)
- Rafal Mulka
- State Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Dan Su
- School of Chemistry and Material Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-Lane Xiangshan, Hangzhou, 310024, China
| | - Wen-Shuo Huang
- School of Chemistry and Material Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-Lane Xiangshan, Hangzhou, 310024, China
| | - Li Zhang
- School of Chemistry and Material Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-Lane Xiangshan, Hangzhou, 310024, China
| | - Huaihai Huang
- School of Chemistry and Material Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-Lane Xiangshan, Hangzhou, 310024, China
| | - Xiaoyu Lai
- State Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Yao Li
- State Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China.
| | - Xiao-Song Xue
- State Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China.
- School of Chemistry and Material Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-Lane Xiangshan, Hangzhou, 310024, China.
| |
Collapse
|
8
|
Ávila E, de Almeida MV, Valle MS, Pliego JR. Effects of Hydrogen Bonding Solvation by Diverse Fluorinated Bulky Alcohols on the Reaction Rate and Selectivity in Crown Ether Mediated Nucleophilic Fluorination in an Aprotic Solvent. ACS ORGANIC & INORGANIC AU 2025; 5:69-83. [PMID: 39927103 PMCID: PMC11803469 DOI: 10.1021/acsorginorgau.4c00081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/17/2024] [Accepted: 11/20/2024] [Indexed: 02/11/2025]
Abstract
Solvent effects play a critical role in ionic chemical reactions and have been a research topic for a long time. The solvent molecules in the first solvation shell of the solute are the most important solvating species. Consequently, manipulation of the structure of this shell can be used to control the reactivity and selectivity of ionic reactions. In this work, we report extensive experimental and insightful computational studies of the effects of adding diverse fluorinated bulky alcohols with different solvation abilities to the fluorination reaction of alkyl bromides with potassium fluoride promoted by 18-crown-6. We found that adding a stoichiometric amount of these alcohols to the acetonitrile solution has an important effect on the kinetics and selectivity. The most effective alcohol was 2-trifluoromethyl-2-propanol (TBOH-F3), and the use of 3 equiv of this alcohol to fluorinate a primary alkyl bromide led to a 78% fluorination yield in just 6 h of reaction time at a mild temperature of 82 °C, with 8% of E2 yield. The more challenging secondary alkyl bromide substrate obtained 44% fluorination yield and 56% E2 yield at 18 h of reaction time. More fluorinated alcohols with six or more fluorine atoms have resulted in relatively acidic alcohols, leading to large amounts of the corresponding ethers of these alcohols as side products. The widely used hexafluoroisopropanol (HFIP) was the least effective one for monofluorination, indicating that both acidity and bulkiness are important features of the alcohols for promoting fluorination using KF salt. Nevertheless, the ether of HFIP can be easily formed with the substrate, generating a highly fluorinated ether product. Theoretical calculations predict ΔG ‡ in close agreement with the experiments and explain the higher selectivity induced by the fluorinated bulky alcohols in relation to the use of crown ether alone.
Collapse
Affiliation(s)
- Eloah
P. Ávila
- Chemistry
Department, Federal University of Juiz de
Fora, Cidade Universitaria,
São Pedro, Juiz de Fora, Minas Gerais 36036-900, Brazil
- Departamento
de Ciências Naturais, Universidade
Federal de São João del-Rei, São João del-Rei, MG 36301-160, Brazil
| | - Mauro V. de Almeida
- Chemistry
Department, Federal University of Juiz de
Fora, Cidade Universitaria,
São Pedro, Juiz de Fora, Minas Gerais 36036-900, Brazil
| | - Marcelo S. Valle
- Departamento
de Ciências Naturais, Universidade
Federal de São João del-Rei, São João del-Rei, MG 36301-160, Brazil
| | - Josefredo R. Pliego
- Departamento
de Ciências Naturais, Universidade
Federal de São João del-Rei, São João del-Rei, MG 36301-160, Brazil
| |
Collapse
|
9
|
Willcox DR, Cironis N, Winfrey L, Kirschner S, Nichol GS, Thomas SP, Ingleson MJ. Borane-Mediated Highly Secondary Selective Deoxyfluorination of Alcohols. Angew Chem Int Ed Engl 2025; 64:e202418495. [PMID: 39714578 PMCID: PMC11795720 DOI: 10.1002/anie.202418495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/28/2024] [Accepted: 12/18/2024] [Indexed: 12/24/2024]
Abstract
Organofluorine compounds are vital across multiple sectors, hence highly selective methods to install fluorine are of considerable importance. The deoxyfluorination of alcohols is a key approach to prepare organofluorine compounds, however, a highly secondary (2°)-selective deoxyfluorination of alcohols has not been realized to date. Herein, we report that borane-mediated deoxyfluorination results in high 2°-selectivity in inter- and intra-molecular competition reactions versus primary (1°), tertiary (3°) and even benzylic (Bn) alcohols. This is an operationally simple method using only commercial reagents (e.g., Et3N ⋅ 3HF) that starts from the alcohol which is converted to the O-alkyl-N-H-isourea in situ. The origin of the high 2°-selectivity was elucidated to be due to the relative barriers to carbodiimide elimination from the O-alkyl-N-(BR2)-isoureas. As the selectivity controlling step does not involve fluoride, this borane-mediated approach can be applied to other nucleophiles, as demonstrated by 2°-selective deoxychlorination using HCl occurring in preference to substitution of 1° and Bn analogues. This borane-mediated nucleophilic substitution therefore provides a new approach to circumvent the selectivity limitations inherent in classical SN2 and SN1 type reactions.
Collapse
Affiliation(s)
| | - Nojus Cironis
- EaStCHEM School of ChemistryUniversity of EdinburghEdinburghEH9 3FJUK
| | - Laura Winfrey
- EaStCHEM School of ChemistryUniversity of EdinburghEdinburghEH9 3FJUK
| | - Sven Kirschner
- EaStCHEM School of ChemistryUniversity of EdinburghEdinburghEH9 3FJUK
| | - Gary S. Nichol
- EaStCHEM School of ChemistryUniversity of EdinburghEdinburghEH9 3FJUK
| | - Stephen P. Thomas
- EaStCHEM School of ChemistryUniversity of EdinburghEdinburghEH9 3FJUK
| | | |
Collapse
|
10
|
Liu P, He Y, Jiang CH, Ren WR, Jin RX, Zhang T, Chen WX, Nie X, Wang XS. CF 2H-synthon enables asymmetric radical difluoroalkylation for synthesis of chiral difluoromethylated amines. Nat Commun 2025; 16:599. [PMID: 39799146 PMCID: PMC11724884 DOI: 10.1038/s41467-025-55912-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/06/2025] [Indexed: 01/15/2025] Open
Abstract
The difluoromethyl group is a crucial fluorinated moiety with distinctive biological properties, and the synthesis of chiral CF₂H-containing analogs has been recognized as a powerful strategy in drug design. To date, the most established method for accessing enantioenriched difluoromethyl compounds involves the enantioselective functionalization of nucleophilic and electrophilic CF₂H synthons. However, this approach is limited by lower reactivity and reduced enantioselectivity. Leveraging the unique fluorine effect, we design and synthesize a radical CF₂H synthon by incorporating isoindolinone into alkyl halides for asymmetric radical transformation. Here, we report an efficient strategy for the asymmetric construction of carbon stereocenters featuring a difluoromethyl group via nickel-catalyzed Negishi cross-coupling. This approach demonstrates mild reaction conditions and excellent enantioselectivity. Given that optically pure difluoromethylated amines and isoindolinones are key structural motifs in bioactive compounds, this strategy offers a practical solution for the efficient synthesis of CF₂H-containing chiral drug-like molecules.
Collapse
Affiliation(s)
- Peng Liu
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Yan He
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Chen-Hui Jiang
- Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Wei-Ran Ren
- Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Ruo-Xing Jin
- Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Ting Zhang
- Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Wang-Xuan Chen
- Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Xuan Nie
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Xi-Sheng Wang
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- Department of Chemistry, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
11
|
Zhou K, Xiao Y, Huang Z, Zhao Y. Photocatalyzed Aryl C-H Fluorocarbonylation with CF 2Br 2. Angew Chem Int Ed Engl 2025; 64:e202414933. [PMID: 39269673 DOI: 10.1002/anie.202414933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/15/2024]
Abstract
The use of abundant and inexpensive fluorine feedstocks to synthesize fluorinated compounds is a promising strategy that has not been extensively investigated. Dibromodifluoromethane (CF2Br2) is an inexpensive fluorine source that has rarely been used for C-H fluoroalkylation. This study reveals an iridium-catalyzed, tunable strategy for synthesizing acyl fluorides and difluorobromomethylated products using CF2Br2. To achieve the desired products, this process only requires the change of solvent (from DMSO to 1,4-dioxane) under blue LED illumination. A variety of arenes and heteroarenes with electron-donating substituents were successfully used, yielding the corresponding products in moderate to good yields. Mechanistic experiments revealed that DMSO served a dual role, functioning as both solvent and nucleophilic reagent in C-H fluorocarbonylation.
Collapse
Affiliation(s)
- Kehan Zhou
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Yuheng Xiao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Zhibin Huang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Yingsheng Zhao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453000, P. R. China
| |
Collapse
|
12
|
Pliego JR. Theoretical design of new ligands to boost reaction rate and selectivity in palladium-catalyzed aromatic fluorination. J Comput Chem 2025; 46:e27513. [PMID: 39350669 DOI: 10.1002/jcc.27513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/31/2024] [Accepted: 09/26/2024] [Indexed: 01/01/2025]
Abstract
The development of palladium-catalyzed fluorination with biaryl monophosphine ligands has faced two important problems that limit its application for bromoarenes: the formation of regioisomers and insufficient catalysis for heteroaryl substrates as bromothiophene derivatives. Overcoming these problems requires more ligand design. In this work, reliable theoretical calculations were used to elucidate important ligand features necessary for achieving more rate acceleration and selectivity. These features include increasing the ligand-substrate repulsion and creating a negative charge in the space around the fluoride ion bonded to the palladium. The investigated L5 ligand presents these features, and the calculations predict that this ligand completely suppresses the regioisomer formation in the difficult case of 4-bromoanisole. In addition, the free energy barriers are decreased by 2-3 kcal mol-1 in comparison with the catalysis involving the AlPhos ligand. Thus, the present study points out a direction for new developments in palladium-catalyzed fluorination.
Collapse
Affiliation(s)
- Josefredo R Pliego
- Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, São João del-Rei, MG, Brazil
| |
Collapse
|
13
|
Pronovost R, Rion M, Tzouras NV, Nolan SP, Paquin JF. Gold-catalyzed hydrofluorination of terminal alkynes using potassium bifluoride (KHF 2). Chem Commun (Camb) 2024; 60:15035-15038. [PMID: 39607436 DOI: 10.1039/d4cc05049e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
A gold-catalyzed hydrofluorination of terminal alkynes is reported. The salient features of this study showcase the use of potassium bifluoride, KHF2, as the fluorinating agent in conjunction with a fluorinated solvent, hexafluoroisopropanol. The reaction is mediated by a well-defined precursor, [Au(IPr)(OH)] with an acid activator. A wide range of functionalized terminal alkynes can be converted to the corresponding monofluoroalkenes in up to 97% yield.
Collapse
Affiliation(s)
- Raphaël Pronovost
- PROTEO, CCVC, Département de chimie, Université Laval, 1045 avenue de la Médecine, Québec, QC, G1V 0A6, Canada.
| | - Mathis Rion
- PROTEO, CCVC, Département de chimie, Université Laval, 1045 avenue de la Médecine, Québec, QC, G1V 0A6, Canada.
| | - Nikolaos V Tzouras
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281, S-3, 9000 Ghent, Belgium
| | - Steven P Nolan
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281, S-3, 9000 Ghent, Belgium
| | - Jean-François Paquin
- PROTEO, CCVC, Département de chimie, Université Laval, 1045 avenue de la Médecine, Québec, QC, G1V 0A6, Canada.
| |
Collapse
|
14
|
Yakubov S, Dauth B, Stockerl WJ, da Silva W, Gschwind RM, Barham JP. Protodefluorinated Selectfluor ® Aggregatively Activates Selectfluor ® for Efficient Radical C(sp 3)-H Fluorination Reactions. CHEMSUSCHEM 2024; 17:e202401057. [PMID: 38874542 PMCID: PMC11632574 DOI: 10.1002/cssc.202401057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 06/15/2024]
Abstract
Efficient fluorination reactions are key in the late-stage functionalization of complex molecules in medicinal chemistry, in upgrading chemical feedstocks, and in materials science. Radical C(sp3)-H fluorinations using Selectfluor® - one of the most popular fluorination agents - allow to directly engage unactivated precursors under mild photochemical or thermal catalytic conditions. However, H-TEDA(BF4)2 to date is overlooked and discarded as waste, despite comprising 95% of the molecular weight of Selectfluor®. We demonstrate that the addition of H-TEDA(BF4)2 at the start of fluorination reactions markedly promotes their rates and accesses higher overall yields of fluorinated products (~3.3 × higher on average across the cases studied) than unpromoted reactions. Several case studies showcase generality of the promotor, for photochemical, photocatalytic and thermal radical fluorination reactions. Detailed mechanistic investigations reveal the key importance of aggregation changes in Selectfluor® and H-TEDA(BF4)2 to fill gaps of understanding in how radical C(sp3)-H fluorination reactions work. This study exemplifies an overlooked reaction waste product being upcycled for a useful application.
Collapse
Affiliation(s)
- Shahboz Yakubov
- Institute of Organic ChemistryUniversity of RegensburgUniversitätsstr. 3193053RegensburgGermany
| | - Bastian Dauth
- Institute of Organic ChemistryUniversity of RegensburgUniversitätsstr. 3193053RegensburgGermany
| | - Willibald J. Stockerl
- Institute of Organic ChemistryUniversity of RegensburgUniversitätsstr. 3193053RegensburgGermany
| | - Wagner da Silva
- Institute of Organic ChemistryUniversity of RegensburgUniversitätsstr. 3193053RegensburgGermany
| | - Ruth M. Gschwind
- Institute of Organic ChemistryUniversity of RegensburgUniversitätsstr. 3193053RegensburgGermany
| | - Joshua P. Barham
- Institute of Organic ChemistryUniversity of RegensburgUniversitätsstr. 3193053RegensburgGermany
| |
Collapse
|
15
|
Leparfait D, Thierry T, da Rocha NL, Legay R, Pfund E, Cormanich RA, Lequeux T. Stereoselective Ring-Opening Reaction of α-Fluorinated Oxetanes: A Practical and Theoretical Investigation. J Org Chem 2024; 89:17194-17206. [PMID: 39516004 DOI: 10.1021/acs.joc.4c01698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The ring-opening reaction of fluorinated oxetanes by halides, including alkylidene oxetanes and spirocyclic oxetanes, was highly stereoselective and directed by the presence of a fluorine atom. This reaction allowed a stereoselective preparation of tetrasubstituted alkenes and substituted pyrrolidines containing all-carbon quaternary centers. Theoretical calculations were performed to shed light on experimentally observed regioselectivity in the opening of oxetane derivatives. Transition state calculations were carried out to compare the energy of transition states responsible for forming different diastereoisomers. These calculations were performed using several DFT functionals and benchmarked to DLPNO-CCSD(T)/def2-TZVP calculations. Intrinsic reaction coordinated (IRC) calculations were run to confirm if the found transition states connect reactants and products. The IRC paths were then decomposed into the electrostatic, steric hyperconjugative contributions to reaction barriers by using the natural bond orbital (NBO) analysis. The destabilizing Fδ-···Br- electrostatic interaction directs the reaction pathway.
Collapse
Affiliation(s)
- David Leparfait
- Université de Caen Normandie, ENSICAEN, CNRS, LCMT, Normandie University, 6 Bd. du Maréchal Juin, Caen 14050, France
| | - Thibault Thierry
- Université de Caen Normandie, ENSICAEN, CNRS, LCMT, Normandie University, 6 Bd. du Maréchal Juin, Caen 14050, France
| | - Nicola L da Rocha
- Departamento de Química Orgânica, Universidade Estadual de Campinas, Instituto de Química, PO Box 6154, Campinas, São Paulo 13083-970, Brazil
| | - Rémi Legay
- Université de Caen Normandie, ENSICAEN, CNRS, LCMT, Normandie University, 6 Bd. du Maréchal Juin, Caen 14050, France
| | - Emmanuel Pfund
- Université de Caen Normandie, ENSICAEN, CNRS, LCMT, Normandie University, 6 Bd. du Maréchal Juin, Caen 14050, France
| | - Rodrigo A Cormanich
- Departamento de Química Orgânica, Universidade Estadual de Campinas, Instituto de Química, PO Box 6154, Campinas, São Paulo 13083-970, Brazil
| | - Thierry Lequeux
- Université de Caen Normandie, ENSICAEN, CNRS, LCMT, Normandie University, 6 Bd. du Maréchal Juin, Caen 14050, France
| |
Collapse
|
16
|
Liu X, Fu H, Hu Q, Cao H. Recent Advances on the Construction of Functionalized Indolizine and Imidazo[1,2-a]pyridine Derivatives. CHEM REC 2024; 24:e202400135. [PMID: 39439190 DOI: 10.1002/tcr.202400135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/27/2024] [Indexed: 10/25/2024]
Abstract
Indolizines and imidazo[1,2-a]pyridines are commonly found in natural products, synthetic drugs, and bioactive molecules. These two types of derivatives possess good antibacterial, antiparasitic, anticancer activities, and so on. The functionalization of indolizines and imidazo[1,2-a]pyridines has always been a hot topic in organic chemistry research and has made significant progress. In recent years, our group has been dedicated to developing diverse synthetic methods for the preparation of such important compounds. 1) We have developed diverse C-H functionalization reactions for efficient modification of the parent indolizines and imidazo[1,2-a]pyridines. 2) A variety of cycloaddition reactions were established for the construction of indolizine and imidazo[1,2-a]pyridine derivatives from simple raw materials. 3) We have developed intriguing deconstruction-functionalization reactions of indolizines, enabling the reorganization of heterocyclic frameworks. This paper outlines our group's latest advancements in constructing structurally diverse indolizine and imidazo[1,2-a]pyridine derivatives. We hope that this work will offer valuable insights and inspiration for the ongoing research in the field of N-heterocyclic compounds.
Collapse
Affiliation(s)
- Xiang Liu
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, 528458, China
| | - Haifeng Fu
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, 528458, China
| | - Qi Hu
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, 528458, China
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, 528458, China
| |
Collapse
|
17
|
Ding CL, Li H, Zhong Y, Lin Y, Ye KY. Hypervalent iodine catalysis enabled iterative multi-fluorination: not just a simple alternative for the electrochemical approach. Chem Commun (Camb) 2024; 60:13738-13741. [PMID: 39484818 DOI: 10.1039/d4cc04641b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Unlike the well-established fluoroalkylation, the direct incorporation of multiple fluorine atoms into small molecules via iterative fluorinations has been much less investigated. Herein, we report a hypervalent iodine catalytically selective multi-fluorination in which the fluorination degree is controlled by the delicate balance between the HF/amine ratios. The pros and cons of hypervalent iodine catalysis and the previously established electrochemical approach in the iterative multi-fluorinations are also provided.
Collapse
Affiliation(s)
- Cheng-Lin Ding
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China.
| | - Hechen Li
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China.
| | - Yi Zhong
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China.
| | - Yuqi Lin
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China.
| | - Ke-Yin Ye
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China.
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
18
|
Vanluchene A, Horsten T, Bonneure E, Stevens CV. Electrochemical Trifluoromethylation of Enamides under Microflow Conditions. Org Process Res Dev 2024; 28:4018-4023. [PMID: 39569050 PMCID: PMC11575483 DOI: 10.1021/acs.oprd.4c00311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/08/2024] [Accepted: 10/11/2024] [Indexed: 11/22/2024]
Abstract
The development of sustainable trifluoromethylations of enamides is of great interest to the pharmaceutical industry. Herein, we demonstrate a sustainable direct electrochemical trifluoromethylation method in a microflow cell, using Langlois reagent, without the need for a supporting electrolyte, oxidants, or any additive under mild conditions. This method can be applied to various substrates with a yield of up to 84%. Additionally, the batch process yielded significantly less (22%), highlighting the microflow cell's efficiency.
Collapse
Affiliation(s)
- Anna Vanluchene
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Tomas Horsten
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Eli Bonneure
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Christian V Stevens
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| |
Collapse
|
19
|
Yan Y, Qian H, Lv L, Li Z. Pd-IHept-Catalyzed Ring-Opening of gem-Difluorocyclopropanes with Malonates Via Selective C-C Bond Cleavage: Synthesis of Monofluoroalkenes. J Org Chem 2024; 89:16253-16261. [PMID: 37737890 DOI: 10.1021/acs.joc.3c00744] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Monofluoroalkene scaffolds are frequently found in various functional molecules. Herein, we report a Pd-IHept-catalyzed (NHC = N-heterocyclic carbene) defluorinative functionalization approach for the synthesis of monofluoroalkenes from gem-difluorocyclopropanes and malonates. The flexible yet sterically hindered N,N'-bis(2,6-di(4-heptyl)phenyl)imidazol-2-ylidene ligand plays a key role in ensuring the high reaction efficiency. In addition, sterically hindered 1,1- and 1,2-disubstituted gem-difluorocyclopropanes could also be used in this transformation.
Collapse
Affiliation(s)
- Yuxuan Yan
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Huijun Qian
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Leiyang Lv
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Zhiping Li
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, China
| |
Collapse
|
20
|
Levet V, Ramesh B, Wang C, Besset T. C-H Trifluoromethylthiolation of aldehyde hydrazones. Beilstein J Org Chem 2024; 20:2883-2890. [PMID: 39559444 PMCID: PMC11571951 DOI: 10.3762/bjoc.20.242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/28/2024] [Indexed: 11/20/2024] Open
Abstract
The selective C-H trifluoromethylthiolation of aldehyde hydrazones afforded interesting fluorinated building blocks, which could be used as a synthetic platform. Starting from readily available (hetero)aromatic and aliphatic hydrazones, the formation of a C-SCF3 bond was achieved under oxidative and mild reaction conditions in the presence of the readily available AgSCF3 salt via a one-pot sequential process (28 examples, up to 91% yield). Mechanistic investigations revealed that AgSCF3 was the active species in the transformation.
Collapse
Affiliation(s)
- Victor Levet
- INSA Rouen Normandie, Univ Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, INC3M FR 3038, F-76000 Rouen, France
| | - Balu Ramesh
- INSA Rouen Normandie, Univ Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, INC3M FR 3038, F-76000 Rouen, France
| | - Congyang Wang
- Beijing National Laboratory for Molecular Sciences CAS key Laboratory of Molecular Recognition and Function CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Tatiana Besset
- INSA Rouen Normandie, Univ Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, INC3M FR 3038, F-76000 Rouen, France
| |
Collapse
|
21
|
Wang W, Song S, Jiao N. Late-Stage Halogenation of Complex Substrates with Readily Available Halogenating Reagents. Acc Chem Res 2024; 57:3161-3181. [PMID: 39303309 DOI: 10.1021/acs.accounts.4c00501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
ConspectusLate-stage halogenation, targeting specific positions in complex substrates, has gained significant attention due to its potential for diversifying and functionalizing complex molecules such as natural products and pharmaceutical intermediates. Utilizing readily available halogenating reagents, such as hydrogen halides (HX), N-halosuccinimides (NXS), and dichloroethane (DCE) reagents for late-stage halogenation shows great promise for expanding the toolbox of synthetic chemists. However, the reactivity of haleniums (X+, X = Cl, Br, I) can be significantly hindered by the presence of various functional groups such as hydroxyl, amine, amide, or carboxylic acid groups. The developed methods of late-stage halogenation often rely on specialized activating reagents and conditions. Recently, our group (among others) has put great efforts into addressing these challenges and unlocking the potential of these readily available HX, NXS, and DCE reagents in complex molecule halogenation. Developing new methodologies, catalyst systems, and reaction conditions further enhanced their utility, enabling the efficient and selective halogenation of intricate substrates.With the long-term goal of achieving selective halogenation of complex molecules, we summarize herein three complementary research topics in our group: (1) Efficient oxidative halogenations: Taking inspiration from naturally occurring enzyme-catalyzed oxidative halogenation reactions, we focused on developing cost-effective oxidative halogenation reactions. We found the combination of dimethyl sulfoxide (DMSO) and HX (X = Cl, Br, I) efficient for the oxidative halogenation of aromatic compounds and alkenes. Additionally, we developed electrochemical oxidative halogenation using DCE as a practical chlorinating reagent for chlorination of (hetero)arenes. (2) Halenium reagent activation: Direct electrophilic halogenation using halenium reagents is a reliable method for obtaining organohalides. However, compared to highly reactive reagents, the common and readily available NXS and dihalodimethylhydantoin (DXDMH) demonstrate relatively lower reactivity. Therefore, we focused on developing oxygen-centered Lewis base catalysts such as DMSO, 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO) and nitromethane to activate NXS or DXDMH, enabling selective halogenation of bioactive substrates. (3) Halogenation of inert substrates: Some substrates, such as electron-poor arenes and pyridines, are inert toward electrophilic functionalization reactions. We devised several strategies to enhance the reactivity of these molecules. These strategies, characterized by mild reaction conditions, the ready availability and stability of catalysts and reagents, and excellent tolerance for various functional groups, have emerged as versatile protocols for the late-stage aromatic halogenation of drugs, natural products, and peptides. By harnessing the versatility and selectivity of these catalysts and methodologies, synthetic chemists can unlock new possibilities in the synthesis of halogenated compounds, paving the way for the development of novel functional materials and biologically active molecules.
Collapse
Affiliation(s)
- Weijin Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Xue Yuan Road 38, Beijing 100191, China
| | - Song Song
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Xue Yuan Road 38, Beijing 100191, China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Xue Yuan Road 38, Beijing 100191, China
- State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences. Shanghai 200032, China
| |
Collapse
|
22
|
Yin T, Jin M, Zhao T, Chang J, Bai D. Synthesis of Axially Chiral Monofluoroalkenes via Nickel-Catalyzed Reductive Cross-Coupling of gem-Difluoroalkenes. Org Lett 2024; 26:8194-8199. [PMID: 39270207 DOI: 10.1021/acs.orglett.4c03119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Enantioenriched monofluoroalkenes are important structural motifs in life science and functional materials. To date, only limited strategies were reported for the synthesis of monofluoroalkenes with stereogenic carbon centers; the axially chiral counterpart is still highly desirable. Herein, we report Ni-catalyzed defluorinative cross-electrophile coupling of gem-difluoroalkenes with biaryl electrophiles for the synthesis of axially chiral monofluoroalkenes. The resulting axially chiral monofluoroalkenes are formed with excellent regio- and stereoselectivities. Synthetic transformation of these axially enantioenriched monofluoroalkenes was also demonstrated.
Collapse
Affiliation(s)
- Tiantian Yin
- State Key Laboratory of Antiviral Drugs, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China
| | - Ming Jin
- State Key Laboratory of Antiviral Drugs, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China
| | - Tiantian Zhao
- State Key Laboratory of Antiviral Drugs, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China
| | - Junbiao Chang
- State Key Laboratory of Antiviral Drugs, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China
| | - Dachang Bai
- State Key Laboratory of Antiviral Drugs, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China
| |
Collapse
|
23
|
Zhu M, Wang QL, Huang H, Mao G, Deng GJ. General Defluoroalkylation of Trifluoromethylarenes with Both Electron-Donating and -Withdrawing Alkenes. J Org Chem 2024; 89:12591-12609. [PMID: 39141011 DOI: 10.1021/acs.joc.4c01531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
The incorporation of gem-difluoromethylene units into organic molecules remains a formidable challenge. Conventional methodologies for constructing aryldifluoromethyl derivatives relied on the use of high-functional fluorinating regents under harsh conditions. Herein, we report general and efficient photoredox catalytic systems for defluoroalkylation of readily available trifluoromethylarenes through selective C-F cleavage to deliver gem-difluoromethyl radicals which proceed through reductive addition to both electron-donating and withdrawing alkenes under transition-metal free conditions. Mechanistic studies reveal that thiol serves as both photocatalyst and HAT reagent under visible light irradiation. This synergistic photocatalysis and HAT catalysis protocol exhibits ample and salient features such as high chemo- and regioselectivity, broad substrate scope, amenable gram-scale synthesis and late-stage modification of bioactive molecules.
Collapse
Affiliation(s)
- Mengqi Zhu
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Qiao-Lin Wang
- College of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Huawen Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Guojiang Mao
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Guo-Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
24
|
Li Q, Yuan D, Liu C, Herington F, Yang K, Ge H. Selective Oxidation of Benzo[ d]isothiazol-3(2 H)-Ones Enabled by Selectfluor. Molecules 2024; 29:3899. [PMID: 39202979 PMCID: PMC11357611 DOI: 10.3390/molecules29163899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/10/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
A metal-free and Selectfluor-mediated selective oxidation reaction of benzo[d]isothiazol-3(2H)-ones in aqueous media is presented. This novel strategy provides a facile, green, and efficient approach to access important benzo[d]isothiazol-3(2H)-one-1-oxides with excellent yields and high tolerance to various functional groups. Furthermore, the purification of benzoisothiazol-3-one-1-oxides does not rely on column chromatography. Moreover, the preparation of saccharine derivatives has been achieved through sequential, double oxidation reactions in a one-pot aqueous media.
Collapse
Affiliation(s)
- Qin Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China; (Q.L.); (D.Y.)
| | - Dan Yuan
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China; (Q.L.); (D.Y.)
| | - Chong Liu
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA; (C.L.); (F.H.)
| | - Faith Herington
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA; (C.L.); (F.H.)
| | - Ke Yang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China; (Q.L.); (D.Y.)
| | - Haibo Ge
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA; (C.L.); (F.H.)
| |
Collapse
|
25
|
Liu Q, Qin C, Wan J, Mai BK, Sui XZ, Kobayashi H, Zahedian H, Liu P, Hoveyda AH. Synthesis of Z- gem-Cl,CF 3-Substituted Alkenes by Stereoselective Cross-Metathesis and the Role of Disubstituted Mo Alkylidenes. J Am Chem Soc 2024; 146:22485-22497. [PMID: 39078367 PMCID: PMC11330298 DOI: 10.1021/jacs.4c06071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Stereochemically defined organofluorine compounds are central to drug discovery and development. Here, we present a catalytic cross-metathesis method for the synthesis of Z-trisubstituted olefins that contain a Cl- and a CF3-bound carbon terminus. Notably, the process is stereoselective, which is in contrast to the existing stereoretentive strategies that also involve a trisubstituted olefin as starting material. Reactions are catalyzed by a Mo monoaryloxide pyrrolide alkylidene, involve a trisubstituted alkene and gem-Cl,CF3-substituted alkene, and are fully Z-selective. Catalytic cross-coupling can be used to convert the C-Cl bond of the trisubstituted olefin to C-B, C-D, and different C-C bonds. We elucidate the role of Cl,CF3-disubstituted Mo alkylidenes. Experimental and computational (DFT) data show that in some instances a disubstituted alkylidene is formed and then transformed to a more active complex. In other cases, the Cl,CF3-disubstituted alkylidene is a direct participant in a catalytic cycle. The studies described shed new light on the chemistry of high oxidation-state disubstituted alkylidenes-scarcely investigated entities likely to be pivotal to approaches for stereocontrolled synthesis of tetrasubstituted alkenes through olefin metathesis.
Collapse
Affiliation(s)
- Qinghe Liu
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | - Can Qin
- Supramolecular Science and Engineering Institute, University of Strasbourg, CNRS, 67000 Strasbourg, France
| | - Jing Wan
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | - Binh Khanh Mai
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | - Xin Zhi Sui
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | - Haruki Kobayashi
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | - Hossein Zahedian
- Supramolecular Science and Engineering Institute, University of Strasbourg, CNRS, 67000 Strasbourg, France
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | - Amir H. Hoveyda
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, USA
- Supramolecular Science and Engineering Institute, University of Strasbourg, CNRS, 67000 Strasbourg, France
| |
Collapse
|
26
|
Spiller TE, Donabauer K, Brooks AF, Witek JA, Bowden GD, Scott PJH, Sanford MS. Room-Temperature Photochemical Copper-Mediated Fluorination of Aryl Iodides. Org Lett 2024; 26:6433-6437. [PMID: 39024514 PMCID: PMC11316249 DOI: 10.1021/acs.orglett.4c02227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
This report describes a method for the photochemical Cu-mediated fluorination of aryl iodides with AgF via putative aryl radical (Ar•) intermediates. It involves irradiating an aryl iodide with UVB light (λmax = 313 nm) in the presence of a mixture of CuI and CuII salts and AgF. Under these conditions, fluorination proceeds at room temperature for substrates containing diverse substituents, including alkoxy and alkyl groups, ketones, esters, sulfonate esters, sulfonamides, and protected amines. This method has been translated to radiofluorination using a combination of K18F, K3PO4, and AgOTf.
Collapse
Affiliation(s)
- Taylor E. Spiller
- Department of Chemistry, University of Michigan, 930 North Avenue, Ann Arbor, Michigan, 48104, United States
| | - Karsten Donabauer
- Department of Chemistry, University of Michigan, 930 North Avenue, Ann Arbor, Michigan, 48104, United States
| | - Allen F. Brooks
- Department of Radiology, University of Michigan Medical School, 1301 Catherine Street, Ann Arbor, Michigan 48109, United States
| | - Jason A. Witek
- Department of Radiology, University of Michigan Medical School, 1301 Catherine Street, Ann Arbor, Michigan 48109, United States
| | - Gregory D. Bowden
- Department of Radiology, University of Michigan Medical School, 1301 Catherine Street, Ann Arbor, Michigan 48109, United States
| | - Peter J. H. Scott
- Department of Radiology, University of Michigan Medical School, 1301 Catherine Street, Ann Arbor, Michigan 48109, United States
| | - Melanie S. Sanford
- Department of Chemistry, University of Michigan, 930 North Avenue, Ann Arbor, Michigan, 48104, United States
| |
Collapse
|
27
|
Formen JSSK, Lynch CC, Nelson E, Yuan A, Steber SE, Wolf C. Regioconvergent Nucleophilic Substitutions with Morita-Baylis-Hillman Fluorides. J Org Chem 2024; 89:10998-11002. [PMID: 39014960 DOI: 10.1021/acs.joc.4c00660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Lithium iodide enables regioconvergent C-F bond functionalization of isomeric Morita-Baylis-Hillman fluorides with carbon, sulfur, and nitrogen nucleophiles. The defluorinative carbon-carbon and carbon-heteroatom bond formations give multifunctional compounds in excellent yields and with good to high diastereoselectivities at room temperature. The possibility of catalytic enantioselective allylation is also discussed.
Collapse
Affiliation(s)
- Jeffrey S S K Formen
- Department of Chemistry, Georgetown University, 37th and O Streets, Washington, District of Columbia 20057, United States
| | - Ciarán C Lynch
- Department of Chemistry, Georgetown University, 37th and O Streets, Washington, District of Columbia 20057, United States
| | - Eryn Nelson
- Department of Chemistry, Georgetown University, 37th and O Streets, Washington, District of Columbia 20057, United States
| | - Andi Yuan
- Department of Chemistry, Georgetown University, 37th and O Streets, Washington, District of Columbia 20057, United States
| | - Sarah E Steber
- Department of Chemistry, Georgetown University, 37th and O Streets, Washington, District of Columbia 20057, United States
| | - Christian Wolf
- Department of Chemistry, Georgetown University, 37th and O Streets, Washington, District of Columbia 20057, United States
| |
Collapse
|
28
|
Hannam A, Kankraisri P, Thombare KR, Meher P, Jean A, Hilton ST, Murarka S, Arseniyadis S. Visible light-mediated difluoromethylation/cyclization in batch and flow: scalable synthesis of CHF 2-containing benzimidazo- and indolo[2,1- a]isoquinolin-6(5 H)-ones. Chem Commun (Camb) 2024; 60:7938-7941. [PMID: 38984848 DOI: 10.1039/d4cc02557a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
We report here a practical and cost-effective method for the synthesis of CHF2-containing benzimidazo- and indolo[2,1,a]-isoquinolin-6(5H)-ones through a visible light-mediated difluoromethylation/cyclization cascade. The method, which affords functionalized multifused N-heterocyclic scaffolds in moderate to high yields under mild reaction conditions, is also easily scalable using low-cost 3D printed photoflow reactors.
Collapse
Affiliation(s)
- Al Hannam
- Department of Chemistry, Queen Mary University of London, Mile End Road, E1 4NS, London, UK.
| | - Phinyada Kankraisri
- Department of Chemistry, Queen Mary University of London, Mile End Road, E1 4NS, London, UK.
| | - Karan R Thombare
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar-342037, Rajasthan, India.
| | - Prahallad Meher
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar-342037, Rajasthan, India.
| | - Alexandre Jean
- Industrial Research Centre, Oril Industrie, 13 rue Desgenétais, 76210, Bolbec, France
| | - Stephen T Hilton
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, WC1N 1AX, London, UK
| | - Sandip Murarka
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar-342037, Rajasthan, India.
| | - Stellios Arseniyadis
- Department of Chemistry, Queen Mary University of London, Mile End Road, E1 4NS, London, UK.
| |
Collapse
|
29
|
Trojan M, Hroch A, Gruden E, Cvačka J, Čejka J, Tavčar G, Rybáčková M, Kvíčala J. Modified aryldifluorophenylsilicates with improved activity and selectivity in nucleophilic fluorination of secondary substrates. RSC Adv 2024; 14:22326-22334. [PMID: 39010913 PMCID: PMC11247957 DOI: 10.1039/d4ra04332d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/04/2024] [Indexed: 07/17/2024] Open
Abstract
Nucleophilic fluorination of secondary aliphatic substrates, especially of halides, still remains a challenge. Among the available reagents, TBAT belongs to one of the best choices due to its stability, affordable price and low toxicity. With the aim to improve its selectivity, we synthesized three analogues modified in the aryl part of the TBAT reagent with one or two electron donating methoxy groups or with one electron withdrawing trifluoromethyl group. All three reagents are air-stable compounds and their structure was confirmed by a single crystal X-ray analysis. In testing the reactivity and selectivity of the reagents with a library of secondary bromides, as well as of other selected primary and secondary substrates, we found that substitution with methoxy groups mostly improves both reactivity and selectivity compared to TBAT, while the substitution with trifluoromethyl group leads to inferior results. Difluorosilicates modified by more than two electron donating methoxy groups proved to be unstable and decomposed spontaneously to the HF2 - anion. DFT calculations of tetramethylammonium analogues of the studied reagents disclosed that the substitution of the phenyl group with the methoxy substituent lowers the transitions state energy of the decomposition to a fluorosilane-fluoride complex, while the substitution with the trifluoromethyl group has an opposite effect.
Collapse
Affiliation(s)
- Michal Trojan
- Department of Organic Chemistry, University of Chemistry and Technology, Prague Technická 5 166 28 Prague 6 Czech Republic
| | - Adam Hroch
- Department of Organic Chemistry, University of Chemistry and Technology, Prague Technická 5 166 28 Prague 6 Czech Republic
| | - Evelin Gruden
- Department of Inorganic Chemistry and Technology, "Jožef Stefan" Institute Jamova Cesta 39 Ljubljana Slovenia
| | - Josef Cvačka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo Náměstí 542/2 160 00 Prague 6 Czech Republic
| | - Jan Čejka
- Department of Solid State Chemistry, University of Chemistry and Technology, Prague Technická 5 166 28 Prague 6 Czech Republic
| | - Gašper Tavčar
- Department of Inorganic Chemistry and Technology, "Jožef Stefan" Institute Jamova Cesta 39 Ljubljana Slovenia
| | - Markéta Rybáčková
- Department of Organic Chemistry, University of Chemistry and Technology, Prague Technická 5 166 28 Prague 6 Czech Republic
| | - Jaroslav Kvíčala
- Department of Organic Chemistry, University of Chemistry and Technology, Prague Technická 5 166 28 Prague 6 Czech Republic
| |
Collapse
|
30
|
Huang YL, Zhang QQ, Wang CY, Zhao Y, Wang XS. Development of SF 6 as a Formal Electrophilic Fluorinating Reagent for Photocatalyzed Oxidative Fluorination of Phosphine Oxides. Org Lett 2024; 26:5776-5781. [PMID: 38934518 DOI: 10.1021/acs.orglett.4c01953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Organophosphorus-fluorine compounds are of significant utility across biology, pharmacy, and chemical synthesis. Here, we introduce a photocatalyzed oxidative-fluorination approach employing SF6 as a formal electrophilic fluorinating reagent. It offers an innovative pathway to forge P(O)-F bonds. Notably, sulfur hexafluoride plays a dual role as both the oxidant and the fluorinating reagent under mild conditions in this transformation. Meanwhile, this method contributes to environmental sustainability by consuming a notorious greenhouse gas, underscoring the ecological benefits of our approach.
Collapse
Affiliation(s)
- Yu-Ling Huang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Qing-Qing Zhang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Cheng-Yu Wang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Yue Zhao
- State grid Anhui electric power Research Institute, Hefei, Anhui 230601, China
| | - Xi-Sheng Wang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
- Institution of Advanced Technology, University of Science and Technology of China, 5089 Wangjiang Road, Hefei, Anhui 230031, China
| |
Collapse
|
31
|
Atkins AP, Dean AC, Lennox AJJ. Benzylic C(sp 3)-H fluorination. Beilstein J Org Chem 2024; 20:1527-1547. [PMID: 39015617 PMCID: PMC11250007 DOI: 10.3762/bjoc.20.137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/26/2024] [Indexed: 07/18/2024] Open
Abstract
The selective fluorination of C(sp3)-H bonds is an attractive target, particularly for pharmaceutical and agrochemical applications. Consequently, over recent years much attention has been focused on C(sp3)-H fluorination, and several methods that are selective for benzylic C-H bonds have been reported. These protocols operate via several distinct mechanistic pathways and involve a variety of fluorine sources with distinct reactivity profiles. This review aims to give context to these transformations and strategies, highlighting the different tactics to achieve fluorination of benzylic C-H bonds.
Collapse
Affiliation(s)
| | - Alice C Dean
- University of Bristol, School of Chemistry, Bristol, BS8 1TS, U.K.
| | | |
Collapse
|
32
|
Wang ZX, Xu Y, Gilmour R. Regioselective fluorination of allenes enabled by I(I)/I(III) catalysis. Nat Commun 2024; 15:5770. [PMID: 38982181 PMCID: PMC11233658 DOI: 10.1038/s41467-024-50227-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/02/2024] [Indexed: 07/11/2024] Open
Abstract
The prominence and versatility of propargylic fluorides in medicinal chemistry, coupled with the potency of F/H and F/OH bioisosterism, has created a powerful impetus to develop efficient methods to facilitate their construction. Motivated by the well-established conversion of propargylic alcohols to allenes, an operationally simple, organocatalysis-based strategy to process these abundant unsaturated precursors to propargylic fluorides would be highly enabling: this would consolidate the bioisosteric relationship that connects propargylic alcohols and fluorides. Herein, we describe a highly regioselective fluorination of unactivated allenes based on I(I)/I(III) catalysis in the presence of an inexpensive HF source that serves a dual role as both nucleophile and Brønsted acid activator. This strategy enables a variety of secondary and tertiary propargylic fluorides to be prepared: these motifs are prevalent across the bioactive small molecule spectrum. Facile product derivatisation, concise synthesis of multi-vicinal fluorinated products together with preliminary validation of enantioselective catalysis are disclosed. The expansive potential of this platform is also demonstrated through the highly regioselective organocatalytic oxidation, chlorination and arylation of allenes. It is envisaged that the transformation will find application in molecular design and accelerate the exploration of organofluorine chemical space.
Collapse
Affiliation(s)
- Zi-Xuan Wang
- Institute for Organic Chemistry, University of Münster, Corrensstraße 36, 48149, Münster, Germany
| | - Yameng Xu
- Institute for Organic Chemistry, University of Münster, Corrensstraße 36, 48149, Münster, Germany
| | - Ryan Gilmour
- Institute for Organic Chemistry, University of Münster, Corrensstraße 36, 48149, Münster, Germany.
| |
Collapse
|
33
|
Chen Z, Song G, Qi L, Gunasekar R, Aïssa C, Robertson C, Steiner A, Xue D, Xiao J. Reductive Transamination of Pyridinium Salts to N-Aryl Piperidines. J Org Chem 2024; 89:9352-9359. [PMID: 38872240 PMCID: PMC11232014 DOI: 10.1021/acs.joc.4c00493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/30/2024] [Accepted: 06/05/2024] [Indexed: 06/15/2024]
Abstract
Saturated N-heterocycles are found in numerous bioactive natural products and are prevalent in pharmaceuticals and agrochemicals. While there are many methods for their synthesis, each has its limitations, such as scope and functional group tolerance. Herein, we describe a rhodium-catalyzed transfer hydrogenation of pyridinium salts to access N-(hetero)aryl piperidines. The reaction proceeds via a reductive transamination process, involving the initial formation of a dihydropyridine intermediate via reduction of the pyridinium ion with HCOOH, which is intercepted by water and then hydrolyzed. Subsequent reductive amination with an exogenous (hetero)aryl amine affords an N-(hetero)aryl piperidine. This reductive transamination method thus allows for access of N-(hetero)aryl piperidines from readily available pyridine derivatives, expanding the toolbox of dearomatization and skeletal editing.
Collapse
Affiliation(s)
- Zhenyu Chen
- Department
of Chemistry, University of Liverpool, Liverpool L69 7ZD, U.K.
| | - Geyang Song
- Key
Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education
and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Leiming Qi
- Department
of Chemistry, University of Liverpool, Liverpool L69 7ZD, U.K.
| | | | - Christophe Aïssa
- Department
of Chemistry, University of Liverpool, Liverpool L69 7ZD, U.K.
| | - Craig Robertson
- Department
of Chemistry, University of Liverpool, Liverpool L69 7ZD, U.K.
| | - Alexander Steiner
- Department
of Chemistry, University of Liverpool, Liverpool L69 7ZD, U.K.
| | - Dong Xue
- Key
Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education
and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Jianliang Xiao
- Department
of Chemistry, University of Liverpool, Liverpool L69 7ZD, U.K.
| |
Collapse
|
34
|
Vincent É, Brioche J. Silver-Catalyzed Carbofluorination of Olefins and α-Fluoroolefins with Carbamoyl Radicals. Chemistry 2024; 30:e202401419. [PMID: 38712694 DOI: 10.1002/chem.202401419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/08/2024]
Abstract
The reactivity of carbamoyl radicals, generated in situ from sodium oxamate salts, has been investigated in the context of radical carbofluorination reactions of olefins and α-fluoroolefins, respectively. Both transformations are catalyzed by silver salts and required the presence of potassium persulfate (K2S2O8) and SelectfluorTM as a radicophilic fluorine source. The reported methods provide a direct access to β-fluoroamides and β,β-difluoroamides.
Collapse
Affiliation(s)
- Émilie Vincent
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, INC3M FR 3038, F-76000, Rouen, France
| | - Julien Brioche
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, INC3M FR 3038, F-76000, Rouen, France
| |
Collapse
|
35
|
Dağalan Z, Çelikoğlu MH, Çelik S, Koçak R, Nişancı B. Selectfluor and alcohol-mediated synthesis of bicyclic oxyfluorination compounds by Wagner-Meerwein rearrangement. Beilstein J Org Chem 2024; 20:1462-1467. [PMID: 38978745 PMCID: PMC11228819 DOI: 10.3762/bjoc.20.129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/18/2024] [Indexed: 07/10/2024] Open
Abstract
Herein, we report the first environmentally friendly systematic fluoroalkoxylation reactions in bicyclic systems. New oxyfluorination products were obtained with excellent yields (up to 98%) via Wagner-Meerwein rearrangement using benzonorbornadiene and the chiral natural compound (+)-camphene as bicyclic alkenes, selectfluor as an electrophilic fluorine source, and water and various alcohols as nucleophile sources. The structure of bicyclic oxy- and alkoxyfluorine compounds was determined by NMR and QTOF-MS analyses.
Collapse
Affiliation(s)
- Ziya Dağalan
- Department of Chemistry, Faculty of Science, Ataturk University, Erzurum, Turkey
| | | | - Saffet Çelik
- Technology Research and Development Application and Research Center, Trakya University, Edirne, Turkey
| | - Ramazan Koçak
- Department of Chemistry, Faculty of Science, Ataturk University, Erzurum, Turkey
- Department of Chemistry, Faculty of Arts and Sciences, Amasya University, Amasya, Turkey
| | - Bilal Nişancı
- Department of Chemistry, Faculty of Science, Ataturk University, Erzurum, Turkey
| |
Collapse
|
36
|
Yamamoto T, Asakura M, Yamanomoto K, Shibata T, Endo K. Creation of a Chiral All-Carbon Quaternary Center Induced by CF 3 and CH 3 Substituents via Cu-Catalyzed Asymmetric Conjugate Addition. Org Lett 2024; 26:5312-5317. [PMID: 38869935 PMCID: PMC11217942 DOI: 10.1021/acs.orglett.4c01691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 06/14/2024]
Abstract
Cu-catalyzed asymmetric construction of a chiral quaternary center bearing CH3 and CF3 groups was achieved with high to excellent enantioselectivity using our originally developed ligands. The asymmetric conjugate addition of Me3Al to β-CF3-substituted enones and unsaturated ketoesters proceeded efficiently. The use of unsaturated ketoesters gives optically active furanones in high yields with high enantioselectivities. The perfluoroalkyl-substituted enone does not seem to be favorable in the present reaction.
Collapse
Affiliation(s)
- Taiyo Yamamoto
- Department
of Chemistry, Faculty of Science, Tokyo
University of Science, Shinjuku, Tokyo 162-8601, Japan
| | - Masayuki Asakura
- Department
of Chemistry, Faculty of Science, Tokyo
University of Science, Shinjuku, Tokyo 162-8601, Japan
| | - Ken Yamanomoto
- Department
of Chemistry, Faculty of Science, Tokyo
University of Science, Shinjuku, Tokyo 162-8601, Japan
| | - Takanori Shibata
- Department
of Chemistry and Biochemistry, Graduate School of Science and Technology, Waseda University, Shinjuku, Tokyo 169-8555, Japan
| | - Kohei Endo
- Department
of Chemistry, Faculty of Science, Tokyo
University of Science, Shinjuku, Tokyo 162-8601, Japan
| |
Collapse
|
37
|
Mizuta S, Yamaguchi T, Ishikawa T. Nucleophilic fluorine substitution reaction of α-carbonyl benzyl bromide, phenylthiofluoroalkyl bromide, and 2-bromo-2-phenoxyacetonitrile. RSC Adv 2024; 14:19062-19066. [PMID: 38873540 PMCID: PMC11172408 DOI: 10.1039/d4ra03085k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/09/2024] [Indexed: 06/15/2024] Open
Abstract
We herein describe a new method for nucleophilic fluorine substitution of alkylbromides using Et3N·3HF. The process is characterized by a broad substrate scope, good functional-group compatibility, and mild conditions and provides a variety of alkylfluorides including tertiary alkylfluorides that are versatile and structurally attractive.
Collapse
Affiliation(s)
- Satoshi Mizuta
- Center for Bioinformatics and Molecular Medicine, Graduate School of Biomedical Sciences, Nagasaki University 1-14 Bunkyo Nagasaki 852-8521 Japan
| | - Tomoko Yamaguchi
- Center for Bioinformatics and Molecular Medicine, Graduate School of Biomedical Sciences, Nagasaki University 1-14 Bunkyo Nagasaki 852-8521 Japan
| | - Takeshi Ishikawa
- Department of Chemistry, Biotechnology, and Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University 1-21-40 Korimoto Kagoshima 890-0065 Japan
| |
Collapse
|
38
|
Yu Q, Zhou D, Ma J, Song C. Decarboxylative Nucleophilic Fluorination of Aliphatic Carboxylic Acids. Org Lett 2024; 26:4257-4261. [PMID: 38738813 DOI: 10.1021/acs.orglett.4c01185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Herein, we present a decarboxylative nucleophilic fluorination of carboxylic acids with a silver catalyst. This strategy enables the synthesis of a myriad of diverse and valuable fluorinated motifs under mild conditions, demonstrating good functional-group tolerance and utility in late-stage functionalization. In contrast to traditional electrophilic fluorination, this nucleophilic method utilizes a more readily available nucleophilic fluorinating reagent, providing substantial advantages in terms of cost efficiency, broad substrate scope, and functional-group compatibility.
Collapse
Affiliation(s)
- Qian Yu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Donglin Zhou
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Junjun Ma
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Chunlan Song
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
39
|
Singh S, Singh RP. Photoinduced metal-free trifluoro/perfluoroalkylation of heteroarenes. Org Biomol Chem 2024; 22:4072-4076. [PMID: 38717247 DOI: 10.1039/d4ob00511b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
A practical and straightforward protocol to access trifluoromethylated/perfluoroalkylated heteroarenes via radical-type nucleophilic substitution rather than typical radical-type electrophilic substitution is described here. The substrate scope was observed to be broad and diverse-covering arenes, heteroarenes (containing N, O, S), bioactive cores, and allylic cores. Mechanistic studies confirmed a radical-mediated reaction pathway.
Collapse
Affiliation(s)
- Shashank Singh
- Department of Chemistry, Indian Institute of Technology, Delhi Hauz Khas, New Delhi, 110016, India.
| | - Ravi P Singh
- Department of Chemistry, Indian Institute of Technology, Delhi Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
40
|
Feng A, Yang Y, Liu C, Zhang D. DFT Calculations Rationalize Unconventional Regioselectivity in Pd II-Catalyzed Defluorinative Alkylation of gem-Difluorocyclopropanes with Hydrazones. J Org Chem 2024. [PMID: 38766868 DOI: 10.1021/acs.joc.3c02770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Density functional theory (DFT) calculations have been conducted to gain insight into the unique formation of the branched alkylation product in the PdII-catalyzed defluorinative alkylation of gem-difluorocyclopropanes with hydrazones. The reaction is established to occur in sequence through oxidative addition, β-F elimination, η1-η3 isomerization, transmetalation, η3-η1 isomerization, 3,3'-reductive elimination, deprotonation/N2 extrusion, and proton abstraction. The rate-determining step of the reaction is identified as the β-F elimination, featuring an energy barrier of 28.6 kcal/mol. The 3,3'-reductive elimination transition states are the regioselectivity-determining transition states. The favorable noncovalent π-π interaction between the naphthyl group of gem-difluorocyclopropane and the phenyl group of hydrazone is found to be mainly responsible for the observed regioselectivity.
Collapse
Affiliation(s)
- Aili Feng
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, Institute of Theoretical Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Yiying Yang
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, Institute of Theoretical Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Chengbu Liu
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, Institute of Theoretical Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Dongju Zhang
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, Institute of Theoretical Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| |
Collapse
|
41
|
Rajabalinia S, Hoford S, Dudding T. Streamlining Fluoroalkenyl Arene Synthesis Illuminated with Mechanistic Insights. ACS OMEGA 2024; 9:21152-21163. [PMID: 38764685 PMCID: PMC11097363 DOI: 10.1021/acsomega.4c01055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/22/2024] [Accepted: 04/16/2024] [Indexed: 05/21/2024]
Abstract
Fluorinated compounds are a staple of modern-day chemical innovation, and efficient strategies for their synthesis are highly valuable. In this chemical space, fluoroalkenes continue to be the object of much interest across diverse fields, including drug development and pharmaceuticals with active roles as bioisosteres. Herein, in expanding chemists' synthetic toolbox for constructing valuable organofluorine compounds, we report a "pipeline" strategy for the synthesis of fluorinated olefins, viz., gem-difluoroalkenyl and monofluoroalkenyl arenes with high E-isomeric selectivity. The advantages of this streamlined synthetic protocol include mild reaction conditions, operational simplicity, broad substrate scope, and good to excellent yields, even at gram scales. Critical to this robust procedure is the use of widely available and inexpensive "scavenger" solid-support Merrifield peptide resin for removing phosphine impurities. Further computational investigations offering clarity into this reactivity are disclosed.
Collapse
Affiliation(s)
- Sanaz Rajabalinia
- Department of Chemistry, Brock University, St. Catharines, Ontario L2S 3A1, Canada
| | - Sabrina Hoford
- Department of Chemistry, Brock University, St. Catharines, Ontario L2S 3A1, Canada
| | - Travis Dudding
- Department of Chemistry, Brock University, St. Catharines, Ontario L2S 3A1, Canada
| |
Collapse
|
42
|
Bouda M, Bertke JA, Wolf C. Organocatalytic Asymmetric Conjugate Addition of Fluorooxindoles to Quinone Methides. J Org Chem 2024; 89:6100-6105. [PMID: 38619814 PMCID: PMC11077483 DOI: 10.1021/acs.joc.4c00062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/24/2024] [Accepted: 04/03/2024] [Indexed: 04/16/2024]
Abstract
Fluorooxindoles undergo asymmetric Michael addition to para-quinone methides under phase-transfer conditions with 10 mol% of a readily available cinchona alkaloid ammonium catalyst. This reaction affords sterically encumbered, multifunctional fluorinated organic compounds displaying two adjacent chirality centers with high yields, ee's and dr's.
Collapse
Affiliation(s)
- Maria Bouda
- Chemistry Department, Georgetown University, Washington, D.C. 20057, United States
| | - Jeffery A. Bertke
- Chemistry Department, Georgetown University, Washington, D.C. 20057, United States
| | - Christian Wolf
- Chemistry Department, Georgetown University, Washington, D.C. 20057, United States
| |
Collapse
|
43
|
Heinrich G, Kondratiuk M, Gooßen LJ, Wiesenfeldt MP. Rapid reaction optimization by robust and economical quantitative benchtop 19F NMR spectroscopy. Nat Protoc 2024; 19:1529-1556. [PMID: 38409535 DOI: 10.1038/s41596-023-00951-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 11/16/2023] [Indexed: 02/28/2024]
Abstract
The instrumental analysis of reaction mixtures is usually the rate-determining step in the optimization of chemical processes. Traditionally, reactions are analyzed by gas chromatography, HPLC or quantitative NMR spectroscopy on high-field spectrometers. However, chromatographic methods require elaborate work-up and calibration protocols, and high-field NMR spectrometers are expensive to purchase and operate. This protocol describes an inexpensive and highly effective analysis method based on low-field benchtop NMR spectroscopy. Its key feature is the use of fluorine-labeled model substrates that, because of the wide chemical shift range and high sensitivity of 19F, enable separate, quantitative detection of product and by-product signals even on low-field, permanent magnet spectrometers. An external lock/shim device obviates the need for deuterated solvents, permitting the direct, noninvasive measurement of crude reaction mixtures with minimal workup. The low field-strength facilitates a homogeneous excitation over a wide chemical shift range, minimizing systematic integration errors. The addition of the optimal amount of the nonshifting relaxation agent tris(acetylacetonato) iron(III) minimizes relaxation delays at full resolution, reducing the analysis time to 32 s per sample. The correct choice of processing parameters is also crucial. A step-by-step guideline is provided, the influence of all parameters, including adjustments needed when using high-field spectrometers, is discussed and potential pitfalls are highlighted. The wide applicability of the analytical protocol for reaction optimization is illustrated by three examples: a Buchwald-Hartwig amination, a Suzuki coupling and a C-H arylation reaction.
Collapse
Affiliation(s)
- G Heinrich
- Faculty for Chemistry and Biochemistry, Ruhr-Universität Bochum, Bochum, Germany
| | - M Kondratiuk
- Faculty for Chemistry and Biochemistry, Ruhr-Universität Bochum, Bochum, Germany
| | - L J Gooßen
- Faculty for Chemistry and Biochemistry, Ruhr-Universität Bochum, Bochum, Germany
| | - M P Wiesenfeldt
- Faculty for Chemistry and Biochemistry, Ruhr-Universität Bochum, Bochum, Germany.
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany.
| |
Collapse
|
44
|
Liu T, Yisimayili N, Chu LF, Lu CD. Diastereoselective Synthesis of Less Accessible Fluorine-Containing Acyclic Tetrasubstituted Stereocenters via Electrophilic Fluorination of β,β-Disubstituted Metalloenamines. J Org Chem 2024; 89:5726-5740. [PMID: 38598176 DOI: 10.1021/acs.joc.4c00306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
A stereocontrolled protocol was developed to construct less accessible fluorine-containing acyclic tetrasubstituted stereocenters bearing two sterically and electronically similar alkyl groups at the α-position of carbonyls. In this process, tBuOK-promoted stereospecific α-deprotonation of α,α-disubstituted N-tert-butanesulfinyl ketimines or NH deprotonation of β,β-disubstituted enesulfinamides generates geometry-defined multisubstituted metalloenamines, followed by stereoselective electrophilic fluorination with the N-fluoro ammonium salt of quinine, affording the acyclic α-fluorinated ketimines with excellent diastereoselectivities.
Collapse
Affiliation(s)
- Tao Liu
- School of Chemical Science and Technology, Yunnan University, Kunming, Yunnan 650091, China
| | | | - Li-Feng Chu
- School of Chemical Science and Technology, Yunnan University, Kunming, Yunnan 650091, China
| | - Chong-Dao Lu
- School of Chemical Science and Technology, Yunnan University, Kunming, Yunnan 650091, China
- School of Health, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| |
Collapse
|
45
|
Liu GY, Tang LN, Li JH, Yang S, Chen M. Palladium-catalyzed alkynylation of allylic gem-difluorides. Chem Commun (Camb) 2024; 60:4471-4474. [PMID: 38563905 DOI: 10.1039/d4cc01007h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Herein, a palladium-catalyzed regioselective alkynylation, esterification, and amination of allylic gem-difluorides via C-F bond activation/transmetallation/β-C elimination or nucleophilic attack has been achieved. This innovative protocol showcases an extensive substrate range and operates efficiently under mild reaction conditions, resulting in high product yields and Z-selectivity. Particularly noteworthy is its exceptional tolerance towards a wide array of functional groups. This developed methodology provides effective and convenient routes to access a diverse array of essential fluorinated enynes, esters and amines.
Collapse
Affiliation(s)
- Guo-Ying Liu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Chang-zhou University, Changzhou, 213164, China.
| | - Lu-Ning Tang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Chang-zhou University, Changzhou, 213164, China.
| | - Jun-Hua Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Chang-zhou University, Changzhou, 213164, China.
| | - Sen Yang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Chang-zhou University, Changzhou, 213164, China.
| | - Ming Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Chang-zhou University, Changzhou, 213164, China.
| |
Collapse
|
46
|
Chen F, Zhang Q, Li Y, Yu ZX, Chu L. Selective Hydrofunctionalization of Alkenyl Fluorides Enabled by Nickel-Catalyzed Hydrogen Atoms and Group Transfer: Reaction Development and Mechanistic Study. J Am Chem Soc 2024. [PMID: 38621358 DOI: 10.1021/jacs.4c01506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Due to the unique effect of fluorine atoms, the efficient construction of high-value alkyl fluorides has attracted significant interest in modern drug development. However, enantioselective catalytic strategies for the efficient assembly of highly functionalized chiral C(sp3)-F scaffolds from simple starting materials have been underutilized. Herein, we demonstrate a nickel-catalyzed radical transfer strategy for the efficient, modular, asymmetric hydrogenation and hydroalkylation of alkenyl fluorides with primary, secondary, and tertiary alkyl halides under mild conditions. The transformation provides facile access to various structurally complex secondary and tertiary α-fluoro amide products from readily available starting materials with excellent substrate compatibility and distinct selectivity. Furthermore, the utility of this method is demonstrated by late-stage modifications and product derivatizations. Detailed mechanistic studies and DFT calculations have been conducted, showing that the rate-determining step for asymmetric hydrogenation reaction is NiH-HAT toward alkenyl fluorides and the stereo-determining step is alcohol coordination to Ni-enolates followed by a barrierless protonation. The mechanism for the asymmetric hydroalkylation reaction is also delivered in this investigation.
Collapse
Affiliation(s)
- Fan Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China
| | - Qianwei Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Yingying Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China
| | - Zhi-Xiang Yu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Lingling Chu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China
| |
Collapse
|
47
|
Zhang J, Selmi-Higashi E, Zhang S, Jean A, Hilton ST, Cambeiro XC, Arseniyadis S. Synthesis of CHF 2-Containing Heterocycles through Oxy-difluoromethylation Using Low-Cost 3D Printed PhotoFlow Reactors. Org Lett 2024; 26:2877-2882. [PMID: 38190457 PMCID: PMC11020168 DOI: 10.1021/acs.orglett.3c03997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/29/2023] [Accepted: 01/05/2024] [Indexed: 01/10/2024]
Abstract
We report here a highly straightforward access to a variety of CHF2-containing heterocycles, including lactones, tetrahydrofurans, tetrahydropyrans, benzolactones, phthalanes, and pyrrolidines, through a visible light-mediated intramolecular oxy-difluoromethylation under continuous flow. The method, which relies on the use of readily available starting materials, low-cost 3D printed photoflow reactors, and difluoromethyltriphenylphosphonium bromide used here as a CHF2 radical precursor, is practical and scalable and provides the desired products in moderate to excellent yields and excellent regio- and stereoselectivities.
Collapse
Affiliation(s)
- Jinlei Zhang
- Department of Chemistry, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| | - Elias Selmi-Higashi
- Department of Chemistry, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| | - Shen Zhang
- Department of Chemistry, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
- School of Science, University of Greenwich, Central Avenue, Gillingham ME4 4TB, United Kingdom
| | - Alexandre Jean
- Industrial Research Centre, Oril Industrie, 13 rue Desgenétais, Bolbec 76210, France
| | - Stephen T Hilton
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Xacobe C Cambeiro
- School of Science, University of Greenwich, Central Avenue, Gillingham ME4 4TB, United Kingdom
| | - Stellios Arseniyadis
- Department of Chemistry, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| |
Collapse
|
48
|
Hu DD, Nie TM, Xiao X, Li K, Li YB, Gao Q, Bi YX, Wang XS. Enantioselective Construction of C-SCF 3 Stereocenters via Nickel Catalyzed Asymmetric Negishi Coupling Reaction. Angew Chem Int Ed Engl 2024; 63:e202400308. [PMID: 38299744 DOI: 10.1002/anie.202400308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/02/2024]
Abstract
The construction of the SCF3-containing 1,1-diaryl tertiary carbon stereocenters with high enantioselectivities is reported via a nickel-catalyzed asymmetric C-C coupling strategy. This method demonstrates simple operations, mild conditions and excellent functional group tolerance, with newly designed SCF3-containing synthon, which can be easily obtained from commercially available benzyl bromide and trifluoromethylthio anion in a two-step manner. Further substrate exploration indicated that the reaction system could be extended to diverse perfluoroalkyl sulfide (SC2F5, SC3F7, SC4F9, SCF2CO2Et)-substituted 1,1-diaryl compounds with excellent enantioselectivities. The synthetic utility of this transformation was further demonstrated by convenient derivatization to optical SCF3-containing analogues of bioactive compounds without an apparent decrease in enantioselectivity.
Collapse
Affiliation(s)
- Duo-Duo Hu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
- School of Chemical and Blasting Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, China
| | - Tian-Mei Nie
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Xi Xiao
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Kuiliang Li
- School of Chemical and Blasting Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, China
| | - Yuan-Bo Li
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Qian Gao
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Yu-Xiang Bi
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Xi-Sheng Wang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| |
Collapse
|
49
|
Delcaillau T, Yang B, Wang Q, Zhu J. Editing Tetrasubstituted Carbon: Dual C-O Bond Functionalization of Tertiary Alcohols Enabled by Palladium-Based Dyotropic Rearrangement. J Am Chem Soc 2024. [PMID: 38587988 DOI: 10.1021/jacs.4c02924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Many elegant asymmetric syntheses of enantioenriched tertiary alcohols have been developed, and both the transition metal-catalyzed and the radical-based peripheral functionalization of tertiary alcohols have attracted intensive research interest in recent years. However, directly editing tetrasubstituted carbons remains challenging. Herein, we report a Pd-catalyzed migratory fluoroarylation reaction that converts tertiary alcohols to α-fluorinated tertiary alkyl ethers in good to excellent yields. An unprecedented 1,2-aryl/PdIV dyotropic rearrangement along the C-O bond, integrated in a PdII-catalyzed domino process, is key to the dual functionalization of both the hydroxyl group and the tetrasubstituted carbon. This reaction, which is compatible with a broad range of functional groups, generates a tertiary alkyl fluoride and an alkyl-aryl ether functional group with inversion of the absolute configuration at the tetrasubstituted stereocenter.
Collapse
Affiliation(s)
- Tristan Delcaillau
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH5304, CH-1015 Lausanne, Switzerland
| | - Baochao Yang
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH5304, CH-1015 Lausanne, Switzerland
| | - Qian Wang
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH5304, CH-1015 Lausanne, Switzerland
| | - Jieping Zhu
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH5304, CH-1015 Lausanne, Switzerland
| |
Collapse
|
50
|
Garg A, Haswell A, Hopkinson MN. C-F Bond Insertion: An Emerging Strategy for Constructing Fluorinated Molecules. Chemistry 2024; 30:e202304229. [PMID: 38270496 DOI: 10.1002/chem.202304229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 01/26/2024]
Abstract
C-F Insertion reactions, where an organic fragment formally inserts into a carbon-fluorine bond in a substrate, are highly attractive, yet largely unexplored, methods to prepare valuable fluorinated molecules. The inherent strength of C-F bonds and the resulting need for a large thermodynamic driving force to initiate C-F cleavage often leads to sequestering of the released fluoride in an unreactive by-product. Recently, however, several groups have succeeded in overcoming this challenge, opening up the study of C-F insertion as an efficient and highly atom-economical approach to prepare fluorinated compounds. In this article, the recent breakthroughs are discussed focusing on the key conceptual advances that allowed for both C-F bond cleavage and subsequent incorporation of the released fluoride into the product.
Collapse
Affiliation(s)
- Arushi Garg
- School of Natural and Environmental Sciences, Newcastle University, Bedson Building, NE1 7RU, Newcastle Upon Tyne, UK
| | - Alex Haswell
- School of Natural and Environmental Sciences, Newcastle University, Bedson Building, NE1 7RU, Newcastle Upon Tyne, UK
| | - Matthew N Hopkinson
- School of Natural and Environmental Sciences, Newcastle University, Bedson Building, NE1 7RU, Newcastle Upon Tyne, UK
| |
Collapse
|