1
|
Mao J, Wu B, Hao R. Imaging the 4D Chemical Heterogeneity of Single V 2O 5 Particles During Charging/Discharging Processes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2501425. [PMID: 40207797 DOI: 10.1002/adma.202501425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/31/2025] [Indexed: 04/11/2025]
Abstract
Microparticle cathode materials are widely used in secondary batteries. However, obtaining dynamic chemical heterogeneities of these microparticles is challenging, hindering in-depth mechanistic investigation of the underlying processes. For example, although vanadium pentoxide shows promise as an electrode material for zinc ion batteries, its poor performance's root cause is elusive. Herein, a fluorescence/scattering dual-mode spinning disk confocal microscopy-based approach is developed to visualize the 4D chemical heterogeneity of single V2O5 particles during cycling. Dual-mode in situ imaging identifies valence state changes of vanadium ions with high spatiotemporal resolution. A unique difference is observed between the scattering intensities of a particle's bottom electric contact points and the rest parts during the discharging process. In contrast, fluorescence intensity variation suggests high consistency across the particles. Correlative Raman, UV-Vis spectroscopy, and electrochemical impedance spectroscopy analyses suggest the precipitation of V3+ species at the bottom interface of the V2O5 electrode, leading to increased electron transfer resistance and compromised overall performance. A coordination strategy between ethylene diamine tetraacetic acid and V3+ is proposed for inhibiting V3+ precipitation, and its effectiveness is further verified by imaging and electrochemical impedance spectroscopy analyses. Insights from the imaging approach presented herein will enable the rational design of high-performance batteries.
Collapse
Affiliation(s)
- Jiaxin Mao
- Department of Chemistry, Research Center for Chemical Biology and Omics Analysis, Shenzhen Key Laboratory of Functional Proteomics, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Binhong Wu
- Department of Chemistry, Research Center for Chemical Biology and Omics Analysis, Shenzhen Key Laboratory of Functional Proteomics, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Rui Hao
- Department of Chemistry, Research Center for Chemical Biology and Omics Analysis, Shenzhen Key Laboratory of Functional Proteomics, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
2
|
Auer A, Giessibl FJ, Kunze-Liebhäuser J. Combining Electrochemical Scanning Tunneling Microscopy with Force Microscopy. ACS NANO 2025; 19:8401-8410. [PMID: 40019937 PMCID: PMC11912575 DOI: 10.1021/acsnano.5c00591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/19/2025] [Accepted: 02/21/2025] [Indexed: 03/12/2025]
Abstract
All electrochemical and electrocatalytic processes occur at the boundary between an electrode and an electrolyte. Progress in the field of electrochemistry requires a detailed microscopic understanding of these complex solid-liquid interfaces, making this a captivating field for in situ surface-sensitive microscopic techniques, such as scanning probe microscopy. In this Perspective, we outline the roadmap of electrochemical scanning probe microscopy and explore its most recent developments in fundamental research on interface characterization and electrocatalysis. Most importantly, we introduce the reader to the simultaneous operation of electrochemical scanning tunneling microscopy and force microscopy using a qPlus sensor, highlighting its potential to provide high precision, enhanced flexibility and versatility, particularly as a combined approach to interface characterization. Additionally, we identify key future opportunities and challenges.
Collapse
Affiliation(s)
- Andrea Auer
- Institute of Physical Chemistry, University of Innsbruck, 6020 Innsbruck, Austria
| | - Franz J Giessibl
- Institute of Experimental and Applied Physics, University of Regensburg, 93053 Regensburg, Germany
| | | |
Collapse
|
3
|
Lin J, Kilani M, Baharfar M, Wang R, Mao G. Understanding the nanoscale phenomena of nucleation and crystal growth in electrodeposition. NANOSCALE 2024; 16:19564-19588. [PMID: 39380552 DOI: 10.1039/d4nr02389g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Electrodeposition is used at the industrial scale to make coatings, membranes, and composites. With better understanding of the nanoscale phenomena associated with the early stage of the process, electrodeposition has potential to be adopted by manufacturers of energy storage devices, advanced electrode materials, fuel cells, carbon dioxide capturing technologies, and advanced sensing electronics. The ability to conduct precise electrochemical measurements using cyclic voltammetry, chronoamperometry, and chronopotentiometry in addition to control of precursor composition and concentration makes electrocrystallization an attractive method to investigate nucleation and early-stage crystal growth. In this article, we review recent findings of nucleation and crystal growth behaviors at the nanoscale, paying close attention to those that deviate from the classical theories in various electrodeposition systems. The review affirms electrodeposition as a valuable method both for gaining new insights into nucleation and crystallization on surfaces and as a low-cost scalable technology for the manufacturing of advanced materials and devices.
Collapse
Affiliation(s)
- Jiancheng Lin
- School of Chemical Engineering, University of New South Wales (UNSW Sydney), Sydney, New South Wales, 2052, Australia.
| | - Mohamed Kilani
- School of Chemical Engineering, University of New South Wales (UNSW Sydney), Sydney, New South Wales, 2052, Australia.
| | - Mahroo Baharfar
- School of Chemical Engineering, University of New South Wales (UNSW Sydney), Sydney, New South Wales, 2052, Australia.
| | - Ren Wang
- School of Chemical Engineering, University of New South Wales (UNSW Sydney), Sydney, New South Wales, 2052, Australia.
| | - Guangzhao Mao
- School of Chemical Engineering, University of New South Wales (UNSW Sydney), Sydney, New South Wales, 2052, Australia.
- School of Engineering, Institute for Materials and Processes, The University of Edinburgh, Robert Stevenson Road, Edinburgh, EH9 3FB, UK
| |
Collapse
|
4
|
Wang WW, Yan H, Gu Y, Yan J, Mao BW. In Situ Electrochemical Atomic Force Microscopy: From Interfaces to Interphases. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2024; 17:103-126. [PMID: 38603469 DOI: 10.1146/annurev-anchem-061422-020428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
The electrochemical interface formed between an electrode and an electrolyte significantly affects the rate and mechanism of the electrode reaction through its structure and properties, which vary across the interface. The scope of the interface has been expanded, along with the development of energy electrochemistry, where a solid-electrolyte interphase may form on the electrode and the active materials change properties near the surface region. Developing a comprehensive understanding of electrochemical interfaces and interphases necessitates three-dimensional spatial resolution characterization. Atomic force microscopy (AFM) offers advantages of imaging and long-range force measurements. Here we assess the capabilities of AFM by comparing the force curves of different regimes and various imaging modes for in situ characterizing of electrochemical interfaces and interphases. Selected examples of progress on work related to the structures and processes of electrode surfaces, electrical double layers, and lithium battery systems are subsequently illustrated. Finally, this review provides perspectives on the future development of electrochemical AFM.
Collapse
Affiliation(s)
- Wei-Wei Wang
- 1State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China; ,
- 2Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, China
| | - Hao Yan
- 1State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China; ,
- 2Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, China
| | - Yu Gu
- 1State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China; ,
- 2Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, China
| | - Jiawei Yan
- 1State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China; ,
- 2Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, China
| | - Bing-Wei Mao
- 1State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China; ,
- 2Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, China
| |
Collapse
|
5
|
Li CY, Tian ZQ. Sixty years of electrochemical optical spectroscopy: a retrospective. Chem Soc Rev 2024; 53:3579-3605. [PMID: 38421335 DOI: 10.1039/d3cs00734k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Sixty years ago, Reddy, Devanatan, and Bockris performed the first in situ electrochemical ellipsometry experiment, which ushered in a new era in the study of electrochemistry, using optical spectroscopy. After six decades of development, electrochemical optical spectroscopy, particularly electrochemical vibrational spectroscopy, has advanced from a phase of immaturity with few methods and limited applications to a phase of maturity with excellent substrate generality and significantly improved resolutions. Here, we divide the development of electrochemical optical spectroscopy into four phases, focusing on the proof-of-concept of different electrochemical optical spectroscopy studies, the emergence of plasmonic enhancement-based electrochemical optical spectroscopic (in particular vibrational spectroscopic) methods, the realization of electrochemical vibrational spectroscopy on well-defined surfaces, and the efforts to achieve operando spectroelectrochemical applications. Finally, we discuss the future development trend of electrochemical optical spectroscopy, as well as examples of new methodology and research paradigms for operando spectroelectrochemistry.
Collapse
Affiliation(s)
- Chao-Yu Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Zhong-Qun Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
6
|
Auer A, Eder B, Giessibl FJ. Electrochemical AFM/STM with a qPlus sensor: A versatile tool to study solid-liquid interfaces. J Chem Phys 2023; 159:174201. [PMID: 37909458 DOI: 10.1063/5.0168329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/29/2023] [Indexed: 11/03/2023] Open
Abstract
Atomic force microscopy (AFM) that can be simultaneously performed with scanning tunneling microscopy (STM) using metallic tips attached to self-sensing quartz cantilevers (qPlus sensors) has advanced the field of surface science by allowing for unprecedented spatial resolution under ultrahigh vacuum conditions. Performing simultaneous AFM and STM with atomic resolution in an electrochemical cell offers new possibilities to locally image both the vertical layering of the interfacial water and the lateral structure of the electrochemical interfaces. Here, a combined AFM/STM instrument realized with a qPlus sensor and a home-built potentiostat for electrochemical applications is presented. We demonstrate its potential by simultaneously imaging graphite with atomic resolution in acidic electrolytes. Additionally, we show its capability to precisely measure the interfacial solvent layering along the surface normal as a function of the applied potential.
Collapse
Affiliation(s)
- Andrea Auer
- Institute of Experimental and Applied Physics, University of Regensburg, 93053 Regensburg, Germany
| | - Bernhard Eder
- Institute of Experimental and Applied Physics, University of Regensburg, 93053 Regensburg, Germany
| | - Franz J Giessibl
- Institute of Experimental and Applied Physics, University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
7
|
Lin TE, Darvishi S. A Brief Review of In Situ and Operando Electrochemical Analysis of Bacteria by Scanning Probes. BIOSENSORS 2023; 13:695. [PMID: 37504094 PMCID: PMC10377567 DOI: 10.3390/bios13070695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 07/29/2023]
Abstract
Bacteria are similar to social organisms that engage in critical interactions with one another, forming spatially structured communities. Despite extensive research on the composition, structure, and communication of bacteria, the mechanisms behind their interactions and biofilm formation are not yet fully understood. To address this issue, scanning probe techniques such as atomic force microscopy (AFM), scanning electrochemical microscopy (SECM), scanning electrochemical cell microscopy (SECCM), and scanning ion-conductance microscopy (SICM) have been utilized to analyze bacteria. This review article focuses on summarizing the use of electrochemical scanning probes for investigating bacteria, including analysis of electroactive metabolites, enzymes, oxygen consumption, ion concentrations, pH values, biofilms, and quorum sensing molecules to provide a better understanding of bacterial interactions and communication. SECM has been combined with other techniques, such as AFM, inverted optical microscopy, SICM, and fluorescence microscopy. This allows a comprehensive study of the surfaces of bacteria while also providing more information on their metabolic activity. In general, the use of scanning probes for the detection of bacteria has shown great promise and has the potential to provide a powerful tool for the study of bacterial physiology and the detection of bacterial infections.
Collapse
Affiliation(s)
- Tzu-En Lin
- Institute of Biomedical Engineering, Department of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Sorour Darvishi
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720, USA
- Berkeley Sensor and Actuator Center, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
8
|
Santana Santos C, Jaato BN, Sanjuán I, Schuhmann W, Andronescu C. Operando Scanning Electrochemical Probe Microscopy during Electrocatalysis. Chem Rev 2023; 123:4972-5019. [PMID: 36972701 PMCID: PMC10168669 DOI: 10.1021/acs.chemrev.2c00766] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Scanning electrochemical probe microscopy (SEPM) techniques can disclose the local electrochemical reactivity of interfaces in single-entity and sub-entity studies. Operando SEPM measurements consist of using a SEPM tip to investigate the performance of electrocatalysts, while the reactivity of the interface is simultaneously modulated. This powerful combination can correlate electrochemical activity with changes in surface properties, e.g., topography and structure, as well as provide insight into reaction mechanisms. The focus of this review is to reveal the recent progress in local SEPM measurements of the catalytic activity of a surface toward the reduction and evolution of O2 and H2 and electrochemical conversion of CO2. The capabilities of SEPMs are showcased, and the possibility of coupling other techniques to SEPMs is presented. Emphasis is given to scanning electrochemical microscopy (SECM), scanning ion conductance microscopy (SICM), electrochemical scanning tunneling microscopy (EC-STM), and scanning electrochemical cell microscopy (SECCM).
Collapse
Affiliation(s)
- Carla Santana Santos
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Bright Nsolebna Jaato
- Technical Chemistry III, Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen Carl-Benz-Straße 199, 47057 Duisburg, Germany
| | - Ignacio Sanjuán
- Technical Chemistry III, Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen Carl-Benz-Straße 199, 47057 Duisburg, Germany
| | - Wolfgang Schuhmann
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Corina Andronescu
- Technical Chemistry III, Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen Carl-Benz-Straße 199, 47057 Duisburg, Germany
| |
Collapse
|
9
|
Wei J, Chen W, Zhou D, Cai J, Chen YX. Restructuring of well-defined Pt-based electrode surfaces under mild electrochemical conditions. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(22)64100-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
10
|
Abstract
Understanding the structure-activity relationship at electrochemical interfaces is crucial in improving the performance of practical electrochemical devices, ranging from fuel cells, electrolyzers, and batteries to electrochemical sensors. However, functional electrochemical interfaces are often complex and contain various surface structures, creating heterogeneity in electrochemical activity. In this Perspective, we highlight the role of heterogeneity in electrochemistry, especially in the context of electrocatalysis. Current methods for revealing the heterogeneity at electrochemical interfaces, including nanoelectrochemistry tools and single-entity approaches, are discussed. Lastly, we provide perspectives on what one can learn by studying heterogeneity and how one can use heterogeneity to design more efficient electrochemical devices.
Collapse
Affiliation(s)
- C Hyun Ryu
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Hyein Lee
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Heekwon Lee
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Hang Ren
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
11
|
Li X, Deng S, Du G. Nonionic surfactant of coconut diethanolamide as a novel corrosion inhibitor for cold rolled steel in both HCl and H2SO4 solutions. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2021.104171] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Zeng BF, Wei JY, Zhang XG, Liang QM, Hu S, Wang G, Lei ZC, Zhao SQ, Zhang HW, Shi J, Hong W, Tian ZQ, Yang Y. In situ lattice tuning of quasi-single-crystal surfaces for continuous electrochemical modulation. Chem Sci 2022; 13:7765-7772. [PMID: 35865890 PMCID: PMC9258404 DOI: 10.1039/d2sc01868c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/18/2022] [Indexed: 12/02/2022] Open
Abstract
The ability to control the atomic-level structure of a solid represents a straightforward strategy for fabricating high-performance catalysts and semiconductor materials. Herein we explore the capability of the mechanically controllable surface strain method in adjusting the surface structure of a gold film. Underpotential deposition measurements provide a quantitative and ultrasensitive approach for monitoring the evolution of surface structures. The electrochemical activities of the quasi-single-crystalline gold films are enhanced productively by controlling the surface tension, resulting in a more positive potential for copper deposition. Our method provides an effective way to tune the atom arrangement of solid surfaces with sub-angstrom precision and to achieve a reduction in power consumption, which has vast applications in electrocatalysis, molecular electronics, and materials science. We reported a new method capable of adjusting the lattice structure of solid surfaces with sub-angstrom precision and achieved in situ and continuous control over electrochemical activity.![]()
Collapse
Affiliation(s)
- Biao-Feng Zeng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Pen-Tung Sah Institute of Micro-Nano Science and Technology, College of Chemistry and Chemical Engineering, IKKEM, Xiamen University, Xiamen 361005, China
| | - Jun-Ying Wei
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Pen-Tung Sah Institute of Micro-Nano Science and Technology, College of Chemistry and Chemical Engineering, IKKEM, Xiamen University, Xiamen 361005, China
| | - Xia-Guang Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Pen-Tung Sah Institute of Micro-Nano Science and Technology, College of Chemistry and Chemical Engineering, IKKEM, Xiamen University, Xiamen 361005, China
| | - Qing-Man Liang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Pen-Tung Sah Institute of Micro-Nano Science and Technology, College of Chemistry and Chemical Engineering, IKKEM, Xiamen University, Xiamen 361005, China
| | - Shu Hu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Pen-Tung Sah Institute of Micro-Nano Science and Technology, College of Chemistry and Chemical Engineering, IKKEM, Xiamen University, Xiamen 361005, China
| | - Gan Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Pen-Tung Sah Institute of Micro-Nano Science and Technology, College of Chemistry and Chemical Engineering, IKKEM, Xiamen University, Xiamen 361005, China
| | - Zhi-Chao Lei
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Pen-Tung Sah Institute of Micro-Nano Science and Technology, College of Chemistry and Chemical Engineering, IKKEM, Xiamen University, Xiamen 361005, China
| | - Shi-Qiang Zhao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Pen-Tung Sah Institute of Micro-Nano Science and Technology, College of Chemistry and Chemical Engineering, IKKEM, Xiamen University, Xiamen 361005, China
| | - He-Wei Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Pen-Tung Sah Institute of Micro-Nano Science and Technology, College of Chemistry and Chemical Engineering, IKKEM, Xiamen University, Xiamen 361005, China
| | - Jia Shi
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Pen-Tung Sah Institute of Micro-Nano Science and Technology, College of Chemistry and Chemical Engineering, IKKEM, Xiamen University, Xiamen 361005, China
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Pen-Tung Sah Institute of Micro-Nano Science and Technology, College of Chemistry and Chemical Engineering, IKKEM, Xiamen University, Xiamen 361005, China
| | - Zhong-Qun Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Pen-Tung Sah Institute of Micro-Nano Science and Technology, College of Chemistry and Chemical Engineering, IKKEM, Xiamen University, Xiamen 361005, China
| | - Yang Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Pen-Tung Sah Institute of Micro-Nano Science and Technology, College of Chemistry and Chemical Engineering, IKKEM, Xiamen University, Xiamen 361005, China
| |
Collapse
|
13
|
Karimadom BR, Meyerstein D, Kornweitz H. Calculating the adsorption energy of a charged adsorbent in a periodic metallic system - the case of BH 4- hydrolysis on the Ag(111) surface. Phys Chem Chem Phys 2021; 23:25667-25678. [PMID: 34755165 DOI: 10.1039/d1cp03895h] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The hydrolysis of borohydride on the Ag(111) surface is explored theoretically to obtain the in-depth reaction mechanism. Many heterogeneously catalyzed reactions like this involve the adsorption of charged species on metals. DFT calculations of charged systems, with periodic boundaries, face serious problems, concerning convergence and reliability of the results. To study the heterogeneously catalyzed reactions, a simple method to calculate the adsorption energy of charged systems in metallic periodic cells is proposed. In this method, a counter ion is placed at a non-interactive distance, in an aqueous medium, so that the calculated system is neutral. Bader analysis is used to validate that the calculated couple is charged correctly. Adsorption energies of F-, Cl-, Br-, OH-, BH4-, ClO4- and H- ions on the Ag(111) surface in an aqueous medium were determined using Na+ and K+ as counter ions, to evaluate the performance of this method. The adsorption of the divalent ions S2-, Se2- and SO42- on different surfaces was studied as well. Then this method was used to explore the hydrolysis of BH4- ions, which have a high theoretical hydrogen storage capacity, on the Ag(111) surface. The results point out that during the catalytic hydrolysis only one hydrogen atom from borohydride is transferred to the surface. In the first step one hydrogen atom from BH4- is transferred to the silver surface; this H atom reacts with a hydrogen atom that is released from an adsorbed water molecule; in addition, a hydrogen molecule is released in the second step (one atom from *BH4- and one from *H2O). Thus, the mechanisms of the catalyzed reductions by BH4- and the hydrogen evolution reactions must be reconsidered.
Collapse
Affiliation(s)
| | - Dan Meyerstein
- Chemical Sciences Department, Ariel University, Ariel, Israel. .,Chemistry Department, Ben-Gurion University, Beer-Sheva, Israel
| | - Haya Kornweitz
- Chemical Sciences Department, Ariel University, Ariel, Israel.
| |
Collapse
|
14
|
Kwon S, Kim YG, Baricuatro JH, Goddard WA. Dramatic Change in the Step Edges of the Cu(100) Electrocatalyst upon Exposure to CO: Operando Observations by Electrochemical STM and Explanation Using Quantum Mechanical Calculations. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02844] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Soonho Kwon
- Liquid Sunlight Alliance (LiSA) and Materials and Process Simulation Center (MSC), California Institute of Technology, Pasadena, California 91125, United States
| | - Youn-Geun Kim
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Jack H. Baricuatro
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - William A. Goddard
- Liquid Sunlight Alliance (LiSA) and Materials and Process Simulation Center (MSC), California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
15
|
Li X, Deng S. Ce(SO4)2 as an efficient corrosion inhibitor for cold rolled steel in citric acid solution. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.04.057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Yokota Y, Kim Y. Molecular Scale Assessments of Electrochemical Interfaces: In Situ and Ex Situ Approaches. CHEM LETT 2021. [DOI: 10.1246/cl.200735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yasuyuki Yokota
- Surface and Interface Science Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- JST PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Yousoo Kim
- Surface and Interface Science Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
17
|
Abstract
Abstract
Scanning tunneling microscopy (STM) has gained increasing attention in the field of electrocatalysis due to its ability to reveal electrocatalyst surface structures down to the atomic level in either ultra-high-vacuum (UHV) or harsh electrochemical conditions. The detailed knowledge of surface structures, surface electronic structures, surface active sites as well as the interaction between surface adsorbates and electrocatalysts is highly beneficial in the study of electrocatalytic mechanisms and for the rational design of electrocatalysts. Based on this, this review will discuss the application of STM in the characterization of electrocatalyst surfaces and the investigation of electrochemical interfaces between electrocatalyst surfaces and reactants. Based on different operating conditions, UHV-STM and STM in electrochemical environments (EC-STM) are discussed separately. This review will also present emerging techniques including high-speed EC-STM, scanning noise microscopy and tip-enhanced Raman spectroscopy.
Graphic Abstract
Collapse
|
18
|
Bacilla ACC, Okada Y, Yoshimoto S, Islyaikin MK, Koifman OI, Kobayashi N. Triangular Expanded Hemiporphyrazines: Electronic Structures and Nanoscale Characterization of Their Adlayers on Au(111). BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200188] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Ana C. C. Bacilla
- Faculty of Textile Science and Technology, Shinshu University, Ueda, Nagano 386-8567, Japan
- Department of Chemistry, Faculty of Science, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
| | - Yusuke Okada
- Faculty of Textile Science and Technology, Shinshu University, Ueda, Nagano 386-8567, Japan
| | - Soichiro Yoshimoto
- Institute of Industrial Nanomaterials, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Mikhail K. Islyaikin
- Research Institute of Macroheterocycles, Ivanovo State University of Chemistry and Technology, 153000 Ivanovo, Russia
| | - Oskar I. Koifman
- Research Institute of Macroheterocycles, Ivanovo State University of Chemistry and Technology, 153000 Ivanovo, Russia
| | - Nagao Kobayashi
- Faculty of Textile Science and Technology, Shinshu University, Ueda, Nagano 386-8567, Japan
| |
Collapse
|
19
|
Daviddi E, Shkirskiy V, Kirkman PM, Robin MP, Bentley CL, Unwin PR. Nanoscale electrochemistry in a copper/aqueous/oil three-phase system: surface structure-activity-corrosion potential relationships. Chem Sci 2020; 12:3055-3069. [PMID: 34164075 PMCID: PMC8179364 DOI: 10.1039/d0sc06516a] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Practically important metal electrodes are usually polycrystalline, comprising surface grains of many different crystallographic orientations, as well as grain boundaries. In this study, scanning electrochemical cell microscopy (SECCM) is applied in tandem with co-located electron backscattered diffraction (EBSD) to give a holistic view of the relationship between the surface structure and the electrochemical activity and corrosion susceptibility of polycrystalline Cu. An unusual aqueous nanodroplet/oil (dodecane)/metal three-phase configuration is employed, which opens up new prospects for fundamental studies of multiphase electrochemical systems, and mimics the environment of corrosion in certain industrial and automotive applications. In this configuration, the nanodroplet formed at the end of the SECCM probe (nanopipette) is surrounded by dodecane, which acts as a reservoir for oil-soluble species (e.g., O2) and can give rise to enhanced flux(es) across the immiscible liquid–liquid interface, as shown by finite element method (FEM) simulations. This unique three-phase configuration is used to fingerprint nanoscale corrosion in a nanodroplet cell, and to analyse the interrelationship between the Cu oxidation, Cu2+ deposition and oxygen reduction reaction (ORR) processes, together with nanoscale open circuit (corrosion) potential, in a grain-by-grain manner. Complex patterns of surface reactivity highlight the important role of grains of high-index orientation and microscopic surface defects (e.g., microscratches) in modulating the corrosion-properties of polycrystalline Cu. This work provides a roadmap for in-depth surface structure–function studies in (electro)materials science and highlights how small variations in surface structure (e.g., crystallographic orientation) can give rise to large differences in nanoscale reactivity. Probing Cu corrosion in an aqueous nanodroplet/oil/metal three-phase environment revealed unique patterns of surface reactivity. The electrochemistry of high-index facets cannot be predicted simply from the low-index {001}, {011} and {111} responses.![]()
Collapse
Affiliation(s)
- Enrico Daviddi
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
| | | | | | | | - Cameron L Bentley
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK .,School of Chemistry, Monash University Clayton Victoria 3800 Australia
| | - Patrick R Unwin
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
| |
Collapse
|
20
|
Solvent and catalyst-free synthesis, corrosion protection, thermodynamic, MDS and DFT calculation of two environmentally friendly inhibitors: Bis-phosphonic acids. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128813] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
21
|
Ezawa K, Nishi N, Sakka T. In-situ electrochemical SPR study of gold surface smoothing by repetitive cathodic deposition and anodic dissolution of copper in an ionic liquid. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114611] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Adstructures of platinum-complex precursors and platinum nanoparticles formed on low-index single-crystal Au surfaces for oxygen reduction reaction. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
23
|
Gunathunge CM, Li J, Li X, Hong JJ, Waegele MM. Revealing the Predominant Surface Facets of Rough Cu Electrodes under Electrochemical Conditions. ACS Catal 2020. [DOI: 10.1021/acscatal.9b05532] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Charuni M. Gunathunge
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Jingyi Li
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Xiang Li
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Julie J. Hong
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Matthias M. Waegele
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
24
|
Observing atomic layer electrodeposition on single nanocrystals surface by dark field spectroscopy. Nat Commun 2020; 11:2518. [PMID: 32433462 PMCID: PMC7239926 DOI: 10.1038/s41467-020-16405-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 04/30/2020] [Indexed: 11/08/2022] Open
Abstract
Underpotential deposition offers a predominant way to tailor the electronic structure of the catalytic surface at the atomic level, which is key to engineering materials with a high activity for (electro)catalysis. However, it remains challenging to precisely control and directly probe the underpotential deposition of a (sub)monolayer of atoms on nanoparticle surfaces. In this work, we in situ observe silver electrodeposited on gold nanocrystals surface from sub-monolayer to one monolayer by designing a highly sensitive electrochemical dark field scattering setup. The spectral variation is used to reconstruct the optical “cyclic voltammogram” of every single nanocrystal for understanding the underpotential deposition process on nanocrystals, which cannot be achieved by any other methods but are essential for creating novel nanomaterials. Underpotential deposition (UPD) is important to modify the surface properties of nanocrystals. Here, the authors show the application of in situ electrochemical dark field spectroscopy in identifying the UPD processes of silver on different facets of gold nanocrystals at the single nanoparticle level.
Collapse
|
25
|
Waegele MM, Gunathunge CM, Li J, Li X. How cations affect the electric double layer and the rates and selectivity of electrocatalytic processes. J Chem Phys 2019; 151:160902. [PMID: 31675864 DOI: 10.1063/1.5124878] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Electrocatalysis is central to the production of renewable fuels and high-value commodity chemicals. The electrolyte and the electrode together determine the catalytic properties of the liquid/solid interface. In particular, the cations of the electrolyte can greatly change the rates and reaction selectivity of many electrocatalytic processes. For this reason, the careful choice of the cation is an essential step in the design of catalytic interfaces with high selectivity for desired high-value products. To make such a judicious choice, it is critical to understand where in the electric double layer the cations reside and the various distinct mechanistic impacts they can have on the electrocatalytic process of interest. In this perspective, we review recent advances in the understanding of the electric double layer with a particular focus on the interfacial distribution of cations and the cations' hydration states in the vicinity of the electrode under various experimental conditions. Furthermore, we summarize the different ways in which cations can alter the rates and selectivity of chemical processes at electrified interfaces and identify possible future areas of research in this field.
Collapse
Affiliation(s)
- Matthias M Waegele
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Boston, Massachusetts 02467, USA
| | - Charuni M Gunathunge
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Boston, Massachusetts 02467, USA
| | - Jingyi Li
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Boston, Massachusetts 02467, USA
| | - Xiang Li
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Boston, Massachusetts 02467, USA
| |
Collapse
|
26
|
Ciftci HT, Van LP, Koopmans B, Kurnosikov O. Polymer Patterning with Self-Heating Atomic Force Microscope Probes. J Phys Chem A 2019; 123:8036-8042. [PMID: 31411884 PMCID: PMC6755611 DOI: 10.1021/acs.jpca.9b06056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Scanning probe-assisted patterning methods already demonstrated a high degree of capabilities on submicrometer scales. However, the throughput is still far from its potential because of complexity or fragility of the probes for exploiting thermal effects, chemical reactions, and voltage-induced processes in various patterning operations. Here, we present a new approach to thermomechanical patterning by implementing a multitasking atomic force microscopy (AFM) probe: the functionalized planar probes. In this method, we can generate a tunable thermal gradient between the tip and the sample, wherein they remain in the noncontact regime. In principle, the capillary instability provoked by the van der Waals interaction yields a pull-off force toward the tip. Hence, locally rising protrusions form features at any selected position on a polymer surface without any chemical reaction or irreversible transformation. These multitasking probe-integrated AFMs can pave the way for a remarkable freedom in determining the operation regime on submicrometer surface-patterning applications.
Collapse
Affiliation(s)
- H Tunc Ciftci
- Eindhoven University of Technology , Eindhoven 5600 MB , The Netherlands
| | | | - Bert Koopmans
- Eindhoven University of Technology , Eindhoven 5600 MB , The Netherlands
| | - Oleg Kurnosikov
- Eindhoven University of Technology , Eindhoven 5600 MB , The Netherlands
| |
Collapse
|
27
|
Magnussen OM. Atomic‐Scale Insights into Electrode Surface Dynamics by High‐Speed Scanning Probe Microscopy. Chemistry 2019; 25:12865-12883. [DOI: 10.1002/chem.201901709] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/28/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Olaf M. Magnussen
- Institute of Experimental and Applied PhysicsKiel University Olshausenstr. 40 24098 Kiel Germany
| |
Collapse
|
28
|
Virwani K, Ansari Y, Nguyen K, Moreno-Ortiz FJA, Kim J, Giammona MJ, Kim HC, La YH. In situ AFM visualization of Li-O 2 battery discharge products during redox cycling in an atmospherically controlled sample cell. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2019; 10:930-940. [PMID: 31165020 PMCID: PMC6541370 DOI: 10.3762/bjnano.10.94] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 03/26/2019] [Indexed: 06/09/2023]
Abstract
The in situ observation of electrochemical reactions is challenging due to a constantly changing electrode surface under highly sensitive conditions. This study reports the development of an in situ atomic force microscopy (AFM) technique for electrochemical systems, including the design, fabrication, and successful performance of a sealed AFM cell operating in a controlled atmosphere. Documentation of reversible physical processes on the cathode surface was performed on the example of a highly reactive lithium-oxygen battery system at different water concentrations in the solvent. The AFM data collected during the discharge-recharge cycles correlated well with the simultaneously recorded electrochemical data. We were able to capture the formation of discharge products from correlated electrical and topographical channels and measure the impact of the presence of water. The cell design permitted acquisition of electrochemical impedance spectroscopy, contributing information about electrical double layers under the system's controlled environment. This characterization method can be applied to a wide range of reactive surfaces undergoing transformations under carefully controlled conditions.
Collapse
Affiliation(s)
- Kumar Virwani
- IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120, USA
| | - Younes Ansari
- IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120, USA
| | - Khanh Nguyen
- IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120, USA
| | | | - Jangwoo Kim
- IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120, USA
| | | | - Ho-Cheol Kim
- IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120, USA
| | - Young-Hye La
- IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120, USA
| |
Collapse
|
29
|
Spectroelectrochemical operando method for monitoring a phenothiazine electrografting process on amide functionalized C-nanodots/Au hybrid electrodes. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.12.106] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
30
|
Magnussen OM, Groß A. Toward an Atomic-Scale Understanding of Electrochemical Interface Structure and Dynamics. J Am Chem Soc 2019; 141:4777-4790. [DOI: 10.1021/jacs.8b13188] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Olaf M. Magnussen
- Institute of Experimental and Applied Physics, Kiel University, Olshausenstr. 40, 24098 Kiel, Germany
| | - Axel Groß
- Institute of Theoretical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
- Helmholtz-Institute Ulm, Helmholtzstr. 11, 89081 Ulm, Germany
| |
Collapse
|
31
|
Red tetrazolium as an effective inhibitor for the corrosion of cold rolled steel in 7.0 mol·L−1 H2SO4 solution. Chin J Chem Eng 2018. [DOI: 10.1016/j.cjche.2018.02.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
32
|
Dharmasena SM, Yang Z, Kim S, Bergman LA, Vakakis AF, Cho H. Ultimate Decoupling between Surface Topography and Material Functionality in Atomic Force Microscopy Using an Inner-Paddled Cantilever. ACS NANO 2018; 12:5559-5569. [PMID: 29800518 DOI: 10.1021/acsnano.8b01319] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Atomic force microscopy (AFM) has been widely utilized to gain insight into various material and structural functionalities on the nanometer scale, leading to numerous discoveries and technologies. Despite the phenomenal success in applying AFM to the simultaneous characterization of topological and functional properties of materials, it has continuously suffered from the crosstalk between the observables, causing undesirable artifacts and complicated interpretations. Here, we introduce a two-field AFM probe, namely an inner-paddled cantilever integrating two discrete pathways such that they respond independently to the variations in surface topography and material functionality. Hence, the proposed design allows reliable and potentially quantitative determination of functional properties. In this paper, the efficacy of the proposed design has been demonstrated via piezoresponse force microscopy of periodically poled lithium niobate and collagen, although it can also be applied to other AFM methods such as AFM-based infrared spectroscopy and electrochemical strain microscopy.
Collapse
Affiliation(s)
- Sajith M Dharmasena
- Department of Mechanical and Aerospace Engineering , The Ohio State University , Columbus , Ohio 43210 , United States
| | - Zining Yang
- Department of Mechanical Science and Engineering , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Seok Kim
- Department of Mechanical Science and Engineering , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Lawrence A Bergman
- Department of Aerospace Engineering , University of Illinois , Urbana , Illinois 61801 , United States
| | - Alexander F Vakakis
- Department of Mechanical Science and Engineering , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Hanna Cho
- Department of Mechanical and Aerospace Engineering , The Ohio State University , Columbus , Ohio 43210 , United States
| |
Collapse
|
33
|
Baricuatro JH, Kim YG, Korzeniewski CL, Soriaga MP. Seriatim ECSTM-ECPMIRS of the adsorption of carbon monoxide on Cu(100) in alkaline solution at CO2-reduction potentials. Electrochem commun 2018. [DOI: 10.1016/j.elecom.2018.04.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
34
|
Tripathi AM, Su WN, Hwang BJ. In situ analytical techniques for battery interface analysis. Chem Soc Rev 2018; 47:736-851. [DOI: 10.1039/c7cs00180k] [Citation(s) in RCA: 268] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Interface is a key to high performance and safe lithium-ion batteries or lithium batteries.
Collapse
Affiliation(s)
- Alok M. Tripathi
- Nano-electrochemistry Laboratory
- Department of Chemical Engineering
- National Taiwan University of Science and Technology
- Taipei
- Taiwan
| | - Wei-Nien Su
- Nano-electrochemistry Laboratory
- Department of Chemical Engineering
- National Taiwan University of Science and Technology
- Taipei
- Taiwan
| | - Bing Joe Hwang
- Nano-electrochemistry Laboratory
- Department of Chemical Engineering
- National Taiwan University of Science and Technology
- Taipei
- Taiwan
| |
Collapse
|
35
|
Jelínek P. High resolution SPM imaging of organic molecules with functionalized tips. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:343002. [PMID: 28749786 DOI: 10.1088/1361-648x/aa76c7] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
One of the most remarkable and exciting achievements in the field of scanning probe microscopy (SPM) in the last years is the unprecedented sub-molecular resolution of both atomic and electronic structures of single molecules deposited on solid state surfaces. Despite its youth, the technique has already brought many new possibilities to perform different kinds of measurements, which cannot be accomplished by other techniques. This opens new perspectives in advanced characterization of physical and chemical processes and properties of molecular structures on surfaces. Here, we discuss the history and recent progress of the high resolution imaging with a functionalized probe by means of atomic force microscopy (AFM), scanning tunnelling microscopy (STM) and inelastic electron tunneling spectroscopy (IETS). We describe the mechanisms responsible for the high-resolution AFM, STM and IETS-STM contrast. The complexity of this technique requires new theoretical approaches, where a relaxation of the functionalized probe is considered. We emphasise the similarities of the mechanism driving high-resolution SPM with other imaging methods. We also summarise briefly significant achievements and progress in different branches. Finally we provide brief perspectives and remaining challenges of the further refinement of these high-resolution methods.
Collapse
Affiliation(s)
- Pavel Jelínek
- Institute of Physics, Czech Academy of Sciences, Cukrovarnická 10, 162 00, Prague, Czech Republic
| |
Collapse
|
36
|
Reikowski F, Wiegmann T, Stettner J, Drnec J, Honkimäki V, Maroun F, Allongue P, Magnussen OM. Transmission Surface Diffraction for Operando Studies of Heterogeneous Interfaces. J Phys Chem Lett 2017; 8:1067-1071. [PMID: 28201875 DOI: 10.1021/acs.jpclett.7b00332] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Processes at material interfaces to liquids or to high-pressure gases often involve structural changes that are heterogeneous on the micrometer scale. We present a novel in situ X-ray scattering technique that uses high-energy photons and a transmission geometry for atomic-scale studies under these conditions. Transmission surface diffraction gives access to a large fraction of reciprocal space in a single acquisition, allowing direct imaging of the in-plane atomic arrangement at the interface. Experiments with focused X-ray beams enable mapping of these structural properties with micrometer spatial resolution. The potential of this new technique is illustrated by in situ studies of electrochemical surface phase transitions and deposition processes.
Collapse
Affiliation(s)
- Finn Reikowski
- Institute of Experimental and Applied Physics, Kiel University , 24098 Kiel, Germany
| | - Tim Wiegmann
- Institute of Experimental and Applied Physics, Kiel University , 24098 Kiel, Germany
| | - Jochim Stettner
- Institute of Experimental and Applied Physics, Kiel University , 24098 Kiel, Germany
| | - Jakub Drnec
- Experimental Division, ESRF , 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Veijo Honkimäki
- Experimental Division, ESRF , 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Fouad Maroun
- Physique de la Matière Condensée, Ecole Polytechnique, CNRS, 91128 Palaiseau, France
| | - Philippe Allongue
- Physique de la Matière Condensée, Ecole Polytechnique, CNRS, 91128 Palaiseau, France
| | - Olaf M Magnussen
- Institute of Experimental and Applied Physics, Kiel University , 24098 Kiel, Germany
| |
Collapse
|
37
|
Umemura K, Izumi K, Oura S. Probe Microscopic Studies of DNA Molecules on Carbon Nanotubes. NANOMATERIALS 2016; 6:nano6100180. [PMID: 28335308 PMCID: PMC5245195 DOI: 10.3390/nano6100180] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/15/2016] [Accepted: 09/27/2016] [Indexed: 01/21/2023]
Abstract
Hybrids of DNA and carbon nanotubes (CNTs) are promising nanobioconjugates for nanobiosensors, carriers for drug delivery, and other biological applications. In this review, nanoscopic characterization of DNA-CNT hybrids, in particular, characterization by scanning probe microscopy (SPM), is summarized. In many studies, topographical imaging by atomic force microscopy has been performed. However, some researchers have demonstrated advanced SPM operations in order to maximize its unique and valuable functions. Such sophisticated approaches are attractive and will have a significant impact on future studies of DNA-CNT hybrids.
Collapse
Affiliation(s)
- Kazuo Umemura
- Biophysics Section, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601, Japan.
| | - Katsuki Izumi
- Biophysics Section, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601, Japan.
| | - Shusuke Oura
- Biophysics Section, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601, Japan.
| |
Collapse
|
38
|
Wang Y, Sun Y, Liao H, Sun S, Li S, Ager JW, Xu ZJ. Activation Effect of Electrochemical Cycling on Gold Nanoparticles towards the Hydrogen Evolution Reaction in Sulfuric Acid. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.05.095] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
39
|
|
40
|
Azhagurajan M, Kajita T, Itoh T, Kim YG, Itaya K. In Situ Visualization of Lithium Ion Intercalation into MoS2 Single Crystals using Differential Optical Microscopy with Atomic Layer Resolution. J Am Chem Soc 2016; 138:3355-61. [DOI: 10.1021/jacs.5b11849] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Mukkannan Azhagurajan
- Institute
of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Sendai 980-8577, Japan
| | - Tetsuya Kajita
- Frontier
Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University, 6-3 Aoba, Sendai 980-8578, Japan
| | - Takashi Itoh
- Frontier
Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University, 6-3 Aoba, Sendai 980-8578, Japan
| | - Youn-Geun Kim
- Division of Chemistry and Chemical
Engineering, Joint Center for
Artificial Photosynthesis , California Institute of Technology, Pasadena, California 91125, United States
| | - Kingo Itaya
- Institute
of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Sendai 980-8577, Japan
- Frontier
Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University, 6-3 Aoba, Sendai 980-8578, Japan
| |
Collapse
|
41
|
Huang Y, Yau S. Effects of Benzenediols on the Oxidative Polymerization of Aniline on Au(111) – Electrochemistry and Scanning Tunneling Microscopy. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.05.091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
42
|
Abdelhafiz A, Vitale A, Joiner C, Vogel E, Alamgir FM. Layer-by-layer evolution of structure, strain, and activity for the oxygen evolution reaction in graphene-templated Pt monolayers. ACS APPLIED MATERIALS & INTERFACES 2015; 7:6180-6188. [PMID: 25730297 DOI: 10.1021/acsami.5b00182] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In this study, we explore the dimensional aspect of structure-driven surface properties of metal monolayers grown on a graphene/Au template. Here, surface limited redox replacement (SLRR) is used to provide precise layer-by-layer growth of Pt monolayers on graphene. We find that after a few iterations of SLRR, fully wetted 4-5 monolayer Pt films can be grown on graphene. Incorporating graphene at the Pt-Au interface modifies the growth mechanism, charge transfers, equilibrium interatomic distances, and associated strain of the synthesized Pt monolayers. We find that a single layer of sandwiched graphene is able to induce a 3.5% compressive strain on the Pt adlayer grown on it, and as a result, catalytic activity is increased due to a greater areal density of the Pt layers beyond face-centered-cubic close packing. At the same time, the sandwiched graphene does not obstruct vicinity effects of near-surface electron exchange between the substrate Au and adlayers Pt. X-ray photoelectron spectroscopy (XPS) and extended X-ray absorption fine structure (EXAFS) techniques are used to examine charge mediation across the Pt-graphene-Au junction and the local atomic arrangement as a function of the Pt adlayer dimension. Cyclic voltammetry (CV) and the oxygen reduction reaction (ORR) are used as probes to examine the electrochemically active area of Pt monolayers and catalyst activity, respectively. Results show that the inserted graphene monolayer results in increased activity for the Pt due to a graphene-induced compressive strain, as well as a higher resistance against loss of the catalytically active Pt surface.
Collapse
Affiliation(s)
- Ali Abdelhafiz
- School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive, Atlanta, Georgia 30332, United States
| | - Adam Vitale
- School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive, Atlanta, Georgia 30332, United States
| | - Corey Joiner
- School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive, Atlanta, Georgia 30332, United States
| | - Eric Vogel
- School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive, Atlanta, Georgia 30332, United States
| | - Faisal M Alamgir
- School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive, Atlanta, Georgia 30332, United States
| |
Collapse
|
43
|
ITAYA K. Recent Progresses of Electrochemical Surface Science ∼Importance of Surface Imaging with Atomic Scale∼. ELECTROCHEMISTRY 2015. [DOI: 10.5796/electrochemistry.83.670] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Kingo ITAYA
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University
| |
Collapse
|
44
|
Sawaguchi T, Tanaka M. ELECTROCHEMISTRY 2015; 83:106-111. [DOI: 10.5796/electrochemistry.83.106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] Open
|
45
|
Utsunomiya T, Tatsumi S, Yokota Y, Fukui KI. Potential-dependent structures investigated at the perchloric acid solution/iodine modified Au(111) interface by electrochemical frequency-modulation atomic force microscopy. Phys Chem Chem Phys 2015; 17:12616-22. [DOI: 10.1039/c5cp01156f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Highly sensitive force measurements revealed that hydration and geometrical structures at the iodine terminated Au(111) surface were reversibly modified by applying electrode potentials.
Collapse
Affiliation(s)
- Toru Utsunomiya
- Department of Materials Engineering Science
- Graduate School of Engineering Science
- Osaka University
- Toyonaka
- Japan
| | - Shoko Tatsumi
- Department of Materials Engineering Science
- Graduate School of Engineering Science
- Osaka University
- Toyonaka
- Japan
| | - Yasuyuki Yokota
- Department of Materials Engineering Science
- Graduate School of Engineering Science
- Osaka University
- Toyonaka
- Japan
| | - Ken-ichi Fukui
- Department of Materials Engineering Science
- Graduate School of Engineering Science
- Osaka University
- Toyonaka
- Japan
| |
Collapse
|
46
|
Xia Z, Wang J, Hou Y, Lu Q. A high stability and repeatability electrochemical scanning tunneling microscope. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2014; 85:125103. [PMID: 25554322 DOI: 10.1063/1.4902975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We present a home built electrochemical scanning tunneling microscope (ECSTM) with very high stability and repeatability. Its coarse approach is driven by a closely stacked piezo motor of GeckoDrive type with four rigid clamping points, which enhances the rigidity, compactness, and stability greatly. It can give high clarity atomic resolution images without sound and vibration isolations. Its drifting rates in XY and Z directions in solution are as low as 84 pm/min and 59 pm/min, respectively. In addition, repeatable coarse approaches in solution within 2 mm travel distance show a lateral deviation less than 50 nm. The gas environment can be well controlled to lower the evaporation rate of the cell, thus reducing the contamination and elongating the measurement time. Atomically resolved SO4(2-) image on Au (111) work electrode is demonstrated to show the performance of the ECSTM.
Collapse
Affiliation(s)
- Zhigang Xia
- High Magnetic Field Laboratory, Chinese Academy of Sciences and University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Jihao Wang
- High Magnetic Field Laboratory, Chinese Academy of Sciences and University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Yubin Hou
- High Magnetic Field Laboratory, Chinese Academy of Sciences and University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Qingyou Lu
- High Magnetic Field Laboratory, Chinese Academy of Sciences and University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| |
Collapse
|
47
|
Yang YC, Magnussen OM. Quantitative studies of adsorbate dynamics at noble metal electrodes by in situ Video-STM. Phys Chem Chem Phys 2014; 15:12480-7. [PMID: 23652411 DOI: 10.1039/c3cp51027a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The surface diffusion of adsorbates at electrochemical interfaces is studied by in situ scanning tunneling microscopy with high temporal resolution, using sulfur and methyl thiolate on c(2 × 2) Cl covered Cu(100), Ag(100), and Au(100) electrode surfaces in 0.01 M HCl solution as an example. While on Au(100) quantitative studies were not possible because of the slow dynamics and high surface defect density, on Cu(100) and Ag(100) a pronounced exponential increase of the jump rates of isolated adsorbates toward more negative potentials was found, indicating a linear decrease of the tracer diffusion barriers with potential. The potential dependence is independent of the adsorbate species, but differs for Cu(100) and Ag(100) substrates. These trends can be explained by electrostatic contributions to the diffusion barrier, caused by the interaction of the adsorbates with the field of the electrochemical double layer, if the presence of the chloride coadsorbate layer is taken into account.
Collapse
Affiliation(s)
- Yaw-Chia Yang
- Institute of Experimental and Applied Physics, University Kiel, Kiel, Germany
| | | |
Collapse
|
48
|
|
49
|
UMEZAWA N, SANO S, AOKI N, FRIEDBACHER G, KONDO T. Step-by-step Investigation of Atomically Flattening Processes of Au(111) Single Crystal Surfaces. ELECTROCHEMISTRY 2014. [DOI: 10.5796/electrochemistry.82.346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
50
|
Iida K, Yasuike T, Nobusada K. Development of open-boundary cluster model approach for electrochemical systems and its application to Ag+ adsorption on Au(111) and Ag(111) electrodes. J Chem Phys 2013; 139:104101. [DOI: 10.1063/1.4820360] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|