1
|
Tufféry P, Derreumaux P. A refined pH-dependent coarse-grained model for peptide structure prediction in aqueous solution. FRONTIERS IN BIOINFORMATICS 2023; 3:1113928. [PMID: 36727106 PMCID: PMC9885153 DOI: 10.3389/fbinf.2023.1113928] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/06/2023] [Indexed: 01/17/2023] Open
Abstract
Introduction: Peptides carry out diverse biological functions and the knowledge of the conformational ensemble of polypeptides in various experimental conditions is important for biological applications. All fast dedicated softwares perform well in aqueous solution at neutral pH. Methods: In this study, we go one step beyond by combining the Debye-Hückel formalism for charged-charged amino acid interactions and a coarse-grained potential of the amino acids to treat pH and salt variations. Results: Using the PEP-FOLD framework, we show that our approach performs as well as the machine-leaning AlphaFold2 and TrRosetta methods for 15 well-structured sequences, but shows significant improvement in structure prediction of six poly-charged amino acids and two sequences that have no homologous in the Protein Data Bank, expanding the range of possibilities for the understanding of peptide biological roles and the design of candidate therapeutic peptides.
Collapse
Affiliation(s)
- Pierre Tufféry
- Université Paris Cité, CNRS UMR 8251, INSERM U1133, Paris, France,*Correspondence: Pierre Tufféry,
| | - Philippe Derreumaux
- Université Paris Cité, CNRSUPR9080, Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, Paris, France,Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
2
|
Sterpone F, Derreumaux P, Melchionna S. Molecular Mechanism of Protein Unfolding under Shear: A Lattice Boltzmann Molecular Dynamics Study. J Phys Chem B 2018; 122:1573-1579. [PMID: 29328657 DOI: 10.1021/acs.jpcb.7b10796] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Proteins are marginally stable soft-matter entities that can be disrupted using a variety of perturbative stresses, including thermal, chemical, or mechanical ones. Fluid under extreme flow conditions is a possible route to probe the weakness of biomolecules and collect information on the molecular cohesive interactions that secure their stability. Moreover, in many cases, physiological flow triggers the functional response of specialized proteins as occurring in blood coagulation or cell adhesion. We deploy the Lattice Boltzmann molecular dynamics technique based on the coarse-grained model for protein OPEP to study the mechanism of protein unfolding under Couette flow. Our simulations provide a clear view of how structural elements of the proteins are affected by shear, and for the simple study case, the β-hairpin, we exploited the analogy to pulling experiments to quantify the mechanical forces acting on the protein under shear.
Collapse
Affiliation(s)
- Fabio Sterpone
- Laboratoire de Biochimie Théorique, IBPC, CNRS UPR9080, Univ. Paris Diderot, Sorbonne Paris Cité , 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Philippe Derreumaux
- Laboratoire de Biochimie Théorique, IBPC, CNRS UPR9080, Univ. Paris Diderot, Sorbonne Paris Cité , 13 rue Pierre et Marie Curie, 75005 Paris, France
| | | |
Collapse
|
3
|
Multi-scale simulations of biological systems using the OPEP coarse-grained model. Biochem Biophys Res Commun 2017; 498:296-304. [PMID: 28917842 DOI: 10.1016/j.bbrc.2017.08.165] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 08/31/2017] [Indexed: 12/14/2022]
Abstract
Biomolecules are complex machines that are optimized by evolution to properly fulfill or contribute to a variety of biochemical tasks in the cellular environment. Computer simulations based on quantum mechanics and atomistic force fields have been proven to be a powerful microscope for obtaining valuable insights into many biological, physical, and chemical processes. Many interesting phenomena involve, however, a time scale and a number of degrees of freedom, notably if crowding is considered, that cannot be explored at an atomistic resolution. To bridge the gap between reality and simulation, many different advanced computational techniques and coarse-grained (CG) models have been developed. Here, we report some applications of the CG OPEP protein model to amyloid fibril formation, the response of catch-bond proteins to two types of fluid flow, and interactive simulations to fold peptides with well-defined 3D structures or with intrinsic disorder.
Collapse
|
4
|
Binette V, Côté S, Mousseau N. Free-Energy Landscape of the Amino-Terminal Fragment of Huntingtin in Aqueous Solution. Biophys J 2016; 110:1075-88. [PMID: 26958885 DOI: 10.1016/j.bpj.2016.01.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 01/13/2016] [Accepted: 01/19/2016] [Indexed: 01/17/2023] Open
Abstract
The first exon of Huntingtin-a protein with multiple biological functions whose misfolding is related to Huntington's disease-modulates its localization, aggregation, and function within the cell. It is composed of a 17-amino-acid amphipathic segment (Htt17), an amyloidogenic segment of consecutive glutamines (QN), and a proline-rich segment. Htt17 is of fundamental importance: it serves as a membrane anchor to control the localization of huntingtin, it modulates huntingtin's function through posttranslational modifications, and it controls the self-assembly of the amyloidogenic QN segment into oligomers and fibrils. Experimentally, the conformational ensemble of the Htt17 monomer, as well as the impact of the polyglutamine and proline-rich segments, remains, however, mostly uncharacterized at the atomic level due to its intrinsic flexibility. Here, we unveil the free-energy landscape of Htt17, Htt17Q17, and Htt17Q17P11 using Hamiltonian replica exchange combined with well-tempered metadynamics. We characterize the free-energy landscape of these three fragments in terms of a few selected collective variables. Extensive simulations reveal that the free energy of Htt17 is dominated by a broad ensemble of configurations that agree with solution NMR chemical shifts. Addition of Q17 at its carboxy-terminus reduces the extent of the main basin to more extended configurations of Htt17 with lower helix propensity. Also, the aliphatic carbons of Q17 partially sequester the nonpolar amino acids of Htt17. For its part, addition of Q17P11 shifts the overall landscape to a more extended and helical Htt17 stabilized by interactions with Q17 and P11, which almost exclusively form a PPII-helix, as well as by intramolecular H-bonds and salt bridges. Our characterization of Huntingtin's amino-terminus provides insights into the structural origin of its ability to oligomerize and interact with phospholipid bilayers, processes closely linked to the biological functions of this protein.
Collapse
Affiliation(s)
- Vincent Binette
- Département de Physique and Groupe de Recherche sur les Protéines Membranaires (GEPROM), Université de Montréal, succursale Centre-ville, Montréal, Québec, Canada
| | - Sébastien Côté
- Département de Physique and Groupe de Recherche sur les Protéines Membranaires (GEPROM), Université de Montréal, succursale Centre-ville, Montréal, Québec, Canada
| | - Normand Mousseau
- Département de Physique and Groupe de Recherche sur les Protéines Membranaires (GEPROM), Université de Montréal, succursale Centre-ville, Montréal, Québec, Canada.
| |
Collapse
|
5
|
Chiricotto M, Sterpone F, Derreumaux P, Melchionna S. Multiscale simulation of molecular processes in cellular environments. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2016; 374:20160225. [PMID: 27698046 PMCID: PMC5052736 DOI: 10.1098/rsta.2016.0225] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/03/2016] [Indexed: 05/27/2023]
Abstract
We describe the recent advances in studying biological systems via multiscale simulations. Our scheme is based on a coarse-grained representation of the macromolecules and a mesoscopic description of the solvent. The dual technique handles particles, the aqueous solvent and their mutual exchange of forces resulting in a stable and accurate methodology allowing biosystems of unprecedented size to be simulated.This article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'.
Collapse
Affiliation(s)
- Mara Chiricotto
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, IBPC, 13 Rue Pierre et Marie Curie, 75005 Paris, France
| | - Fabio Sterpone
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, IBPC, 13 Rue Pierre et Marie Curie, 75005 Paris, France
| | - Philippe Derreumaux
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, IBPC, 13 Rue Pierre et Marie Curie, 75005 Paris, France
| | - Simone Melchionna
- Istituto Sistemi Complessi-ISC, Consiglio Nazionale delle Ricerche, P.za A. Moro 2, 00185 Rome, Italy
| |
Collapse
|
6
|
Bonomi M, Camilloni C, Vendruscolo M. Metadynamic metainference: Enhanced sampling of the metainference ensemble using metadynamics. Sci Rep 2016; 6:31232. [PMID: 27561930 PMCID: PMC4999896 DOI: 10.1038/srep31232] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 07/11/2016] [Indexed: 01/23/2023] Open
Abstract
Accurate and precise structural ensembles of proteins and macromolecular complexes can be obtained with metainference, a recently proposed Bayesian inference method that integrates experimental information with prior knowledge and deals with all sources of errors in the data as well as with sample heterogeneity. The study of complex macromolecular systems, however, requires an extensive conformational sampling, which represents a separate challenge. To address such challenge and to exhaustively and efficiently generate structural ensembles we combine metainference with metadynamics and illustrate its application to the calculation of the free energy landscape of the alanine dipeptide.
Collapse
Affiliation(s)
- Massimiliano Bonomi
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Carlo Camilloni
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
- Department of Chemistry and Institute for Advanced Study, Technische Universität München, Lichtenbergstrasse 4, D-85747 Garching, Germany
| | - Michele Vendruscolo
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| |
Collapse
|
7
|
Chiricotto M, Tran TT, Nguyen PH, Melchionna S, Sterpone F, Derreumaux P. Coarse-grained and All-atom Simulations towards the Early and Late Steps of Amyloid Fibril Formation. Isr J Chem 2016. [DOI: 10.1002/ijch.201600048] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Mara Chiricotto
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS; Université Paris Diderot, Sorbonne Paris Cité, IBPC; 13 Rue Pierre et Marie Curie 75005 Paris France
| | - Thanh Thuy Tran
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS; Université Paris Diderot, Sorbonne Paris Cité, IBPC; 13 Rue Pierre et Marie Curie 75005 Paris France
| | - Phuong H. Nguyen
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS; Université Paris Diderot, Sorbonne Paris Cité, IBPC; 13 Rue Pierre et Marie Curie 75005 Paris France
| | - Simone Melchionna
- Istituto Sistemi Complessi; Consiglio Nazionale delle Ricerche; P. le A. Moro 2 00185 Rome Italy
| | - Fabio Sterpone
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS; Université Paris Diderot, Sorbonne Paris Cité, IBPC; 13 Rue Pierre et Marie Curie 75005 Paris France
| | - Philippe Derreumaux
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS; Université Paris Diderot, Sorbonne Paris Cité, IBPC; 13 Rue Pierre et Marie Curie 75005 Paris France
| |
Collapse
|
8
|
Kmiecik S, Gront D, Kolinski M, Wieteska L, Dawid AE, Kolinski A. Coarse-Grained Protein Models and Their Applications. Chem Rev 2016; 116:7898-936. [DOI: 10.1021/acs.chemrev.6b00163] [Citation(s) in RCA: 555] [Impact Index Per Article: 61.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Sebastian Kmiecik
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Dominik Gront
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Michal Kolinski
- Bioinformatics
Laboratory, Mossakowski Medical Research Center of the Polish Academy of Sciences, Pawinskiego 5, 02-106 Warsaw, Poland
| | - Lukasz Wieteska
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
- Department
of Medical Biochemistry, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland
| | | | - Andrzej Kolinski
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| |
Collapse
|
9
|
Sterpone F, Derreumaux P, Melchionna S. Protein Simulations in Fluids: Coupling the OPEP Coarse-Grained Force Field with Hydrodynamics. J Chem Theory Comput 2015; 11:1843-53. [PMID: 26574390 PMCID: PMC5242371 DOI: 10.1021/ct501015h] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A novel simulation framework that integrates the OPEP coarse-grained (CG) model for proteins with the Lattice Boltzmann (LB) methodology to account for the fluid solvent at mesoscale level is presented. OPEP is a very efficient, water-free and electrostatic-free force field that reproduces at quasi-atomistic detail processes like peptide folding, structural rearrangements, and aggregation dynamics. The LB method is based on the kinetic description of the solvent in order to solve the fluid mechanics under a wide range of conditions, with the further advantage of being highly scalable on parallel architectures. The capabilities of the approach are presented, and it is shown that the strategy is effective in exploring the role of hydrodynamics on protein relaxation and peptide aggregation. The end result is a strategy for modeling systems of thousands of proteins, such as in the case of dense protein suspensions. The future perspectives of the multiscale approach are also discussed.
Collapse
Affiliation(s)
- Fabio Sterpone
- Laboratoire de Biochimie Théorique, IBPC, CNRS UPR9080, Univ. Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005, Paris, France
| | - Philippe Derreumaux
- Laboratoire de Biochimie Théorique, IBPC, CNRS UPR9080, Univ. Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005, Paris, France
| | | |
Collapse
|
10
|
Nasica-Labouze J, Nguyen PH, Sterpone F, Berthoumieu O, Buchete NV, Coté S, De Simone A, Doig AJ, Faller P, Garcia A, Laio A, Li MS, Melchionna S, Mousseau N, Mu Y, Paravastu A, Pasquali S, Rosenman DJ, Strodel B, Tarus B, Viles JH, Zhang T, Wang C, Derreumaux P. Amyloid β Protein and Alzheimer's Disease: When Computer Simulations Complement Experimental Studies. Chem Rev 2015; 115:3518-63. [PMID: 25789869 DOI: 10.1021/cr500638n] [Citation(s) in RCA: 499] [Impact Index Per Article: 49.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jessica Nasica-Labouze
- †Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Phuong H Nguyen
- †Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Fabio Sterpone
- †Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Olivia Berthoumieu
- ‡LCC (Laboratoire de Chimie de Coordination), CNRS, Université de Toulouse, Université Paul Sabatier (UPS), Institut National Polytechnique de Toulouse (INPT), 205 route de Narbonne, BP 44099, Toulouse F-31077 Cedex 4, France
| | | | - Sébastien Coté
- ∥Département de Physique and Groupe de recherche sur les protéines membranaires (GEPROM), Université de Montréal, C.P. 6128, succursale Centre-ville, Montréal, Québec H3C 3T5, Canada
| | - Alfonso De Simone
- ⊥Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Andrew J Doig
- #Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Peter Faller
- ‡LCC (Laboratoire de Chimie de Coordination), CNRS, Université de Toulouse, Université Paul Sabatier (UPS), Institut National Polytechnique de Toulouse (INPT), 205 route de Narbonne, BP 44099, Toulouse F-31077 Cedex 4, France
| | | | - Alessandro Laio
- ○The International School for Advanced Studies (SISSA), Via Bonomea 265, 34136 Trieste, Italy
| | - Mai Suan Li
- ◆Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland.,¶Institute for Computational Science and Technology, SBI Building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City, Vietnam
| | - Simone Melchionna
- ⬠Instituto Processi Chimico-Fisici, CNR-IPCF, Consiglio Nazionale delle Ricerche, 00185 Roma, Italy
| | | | - Yuguang Mu
- ▲School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| | - Anant Paravastu
- ⊕National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, United States
| | - Samuela Pasquali
- †Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | | | - Birgit Strodel
- △Institute of Complex Systems: Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Bogdan Tarus
- †Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - John H Viles
- ▼School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Tong Zhang
- †Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France.,▲School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| | | | - Philippe Derreumaux
- †Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France.,□Institut Universitaire de France, 75005 Paris, France
| |
Collapse
|
11
|
Rutter GO, Brown AH, Quigley D, Walsh TR, Allen MP. Testing the transferability of a coarse-grained model to intrinsically disordered proteins. Phys Chem Chem Phys 2015; 17:31741-9. [DOI: 10.1039/c5cp05652g] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The coarse-grained PLUM model is shown to capture structural and dimerization behaviour of the intrinsically disordered biomineralisation peptide n16N.
Collapse
Affiliation(s)
- Gil O. Rutter
- Department of Physics
- University of Warwick
- Coventry CV4 7AL
- UK
| | - Aaron H. Brown
- Department of Chemistry and Centre for Scientific Computing
- University of Warwick
- Coventry
- UK
- Institute for Frontier Materials
| | - David Quigley
- Department of Physics and Centre for Scientific Computing
- University of Warwick
- Coventry CV4 7AL
- UK
| | - Tiffany R. Walsh
- Institute for Frontier Materials
- Deakin University
- Geelong
- Australia
| | - Michael P. Allen
- Department of Physics
- University of Warwick
- Coventry CV4 7AL
- UK
- H. H. Wills Physics Laboratory
| |
Collapse
|
12
|
Kalimeri M, Derreumaux P, Sterpone F. Are coarse-grained models apt to detect protein thermal stability? The case of OPEP force field. JOURNAL OF NON-CRYSTALLINE SOLIDS 2015; 407:494-501. [PMID: 28100926 PMCID: PMC5238951 DOI: 10.1016/j.jnoncrysol.2014.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
We present the first investigation of the kinetic and thermodynamic stability of two homologous thermophilic and mesophilic proteins based on the coarse-grained model OPEP. The object of our investigation is a pair of G-domains of relatively large size, 200 amino acids each, with an experimental stability gap of about 40 K. The OPEP force field is able to maintain stable the fold of these relatively large proteins within the hundrend-nanosecond time scale without including external constraints. This makes possible to characterize the conformational landscape of the folded protein as well as to explore the unfolding. In agreement with all-atom simulations used as a reference, we show that the conformational landscape of the thermophilic protein is characterized by a larger number of substates with slower dynamics on the network of states and more resilient to temperature increase. Moreover, we verify the stability gap between the two proteins using replica-exchange simulations and estimate a difference between the melting temperatures of about 23 K, in fair agreement with experiment. The detailed investigation of the unfolding thermodynamics, allows to gain insight into the mechanism underlying the enhanced stability of the thermophile relating it to a smaller heat capacity of unfolding.
Collapse
Affiliation(s)
- Maria Kalimeri
- Laboratoire de Biochimie Théorique, IBPC, CNRS, UPR9080, Univ. Paris Diderot, Sorbonne Paris Cité, France
| | - Philippe Derreumaux
- Laboratoire de Biochimie Théorique, IBPC, CNRS, UPR9080, Univ. Paris Diderot, Sorbonne Paris Cité, France
- Institut Universitaire de France, 103 Boulevard Saint-Michel, 75005, Paris, France
| | - Fabio Sterpone
- Laboratoire de Biochimie Théorique, IBPC, CNRS, UPR9080, Univ. Paris Diderot, Sorbonne Paris Cité, France
- Corresponding author.
| |
Collapse
|
13
|
Kar P, Feig M. Recent advances in transferable coarse-grained modeling of proteins. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2014; 96:143-80. [PMID: 25443957 PMCID: PMC5366245 DOI: 10.1016/bs.apcsb.2014.06.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Computer simulations are indispensable tools for studying the structure and dynamics of biological macromolecules. Biochemical processes occur on different scales of length and time. Atomistic simulations cannot cover the relevant spatiotemporal scales at which the cellular processes occur. To address this challenge, coarse-grained (CG) modeling of the biological systems is employed. Over the last few years, many CG models for proteins continue to be developed. However, many of them are not transferable with respect to different systems and different environments. In this review, we discuss those CG protein models that are transferable and that retain chemical specificity. We restrict ourselves to CG models of soluble proteins only. We also briefly review recent progress made in the multiscale hybrid all-atom/CG simulations of proteins.
Collapse
Affiliation(s)
- Parimal Kar
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - Michael Feig
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA; Department of Chemistry, Michigan State University, East Lansing, Michigan, USA.
| |
Collapse
|
14
|
Sterpone F, Melchionna S, Tuffery P, Pasquali S, Mousseau N, Cragnolini T, Chebaro Y, St-Pierre JF, Kalimeri M, Barducci A, Laurin Y, Tek A, Baaden M, Nguyen PH, Derreumaux P. The OPEP protein model: from single molecules, amyloid formation, crowding and hydrodynamics to DNA/RNA systems. Chem Soc Rev 2014; 43:4871-93. [PMID: 24759934 PMCID: PMC4426487 DOI: 10.1039/c4cs00048j] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The OPEP coarse-grained protein model has been applied to a wide range of applications since its first release 15 years ago. The model, which combines energetic and structural accuracy and chemical specificity, allows the study of single protein properties, DNA-RNA complexes, amyloid fibril formation and protein suspensions in a crowded environment. Here we first review the current state of the model and the most exciting applications using advanced conformational sampling methods. We then present the current limitations and a perspective on the ongoing developments.
Collapse
Affiliation(s)
- Fabio Sterpone
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, IBPC, 13 rue Pierre et Marie Curie, 75005, Paris, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Ingólfsson HI, Lopez CA, Uusitalo JJ, de Jong DH, Gopal SM, Periole X, Marrink SJ. The power of coarse graining in biomolecular simulations. WILEY INTERDISCIPLINARY REVIEWS. COMPUTATIONAL MOLECULAR SCIENCE 2014; 4:225-248. [PMID: 25309628 PMCID: PMC4171755 DOI: 10.1002/wcms.1169] [Citation(s) in RCA: 354] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Computational modeling of biological systems is challenging because of the multitude of spatial and temporal scales involved. Replacing atomistic detail with lower resolution, coarse grained (CG), beads has opened the way to simulate large-scale biomolecular processes on time scales inaccessible to all-atom models. We provide an overview of some of the more popular CG models used in biomolecular applications to date, focusing on models that retain chemical specificity. A few state-of-the-art examples of protein folding, membrane protein gating and self-assembly, DNA hybridization, and modeling of carbohydrate fibers are used to illustrate the power and diversity of current CG modeling.
Collapse
Affiliation(s)
- Helgi I Ingólfsson
- Groningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced Materials, University of GroningenGroningen, The Netherlands
| | - Cesar A Lopez
- Groningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced Materials, University of GroningenGroningen, The Netherlands
| | - Jaakko J Uusitalo
- Groningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced Materials, University of GroningenGroningen, The Netherlands
| | - Djurre H de Jong
- Groningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced Materials, University of GroningenGroningen, The Netherlands
| | - Srinivasa M Gopal
- Groningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced Materials, University of GroningenGroningen, The Netherlands
| | - Xavier Periole
- Groningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced Materials, University of GroningenGroningen, The Netherlands
| | - Siewert J Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced Materials, University of GroningenGroningen, The Netherlands
| |
Collapse
|
16
|
Hills RD. Balancing bond, nonbond, and gō-like terms in coarse grain simulations of conformational dynamics. Methods Mol Biol 2014; 1084:123-140. [PMID: 24061919 DOI: 10.1007/978-1-62703-658-0_7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Characterization of the protein conformational landscape remains a challenging problem, whether it concerns elucidating folding mechanisms, predicting native structures or modeling functional transitions. Coarse-grained molecular dynamics simulation methods enable exhaustive sampling of the energetic landscape at resolutions of biological interest. The general utility of structure-based models is reviewed along with their differing levels of approximation. Simple Gō models incorporate attractive native interactions and repulsive nonnative contacts, resulting in an ideal smooth landscape. Non-Gō coarse-grained models reduce the parameter set as needed but do not include bias to any desired native structure. While non-Gō models have achieved limited success in protein coarse-graining, they can be combined with native structured-based potentials to create a balanced and powerful force field. Recent applications of such Gō-like models have yielded insight into complex folding mechanisms and conformational transitions in large macromolecules. The accuracy and usefulness of reduced representations are also revealed to be a function of the mathematical treatment of the intrinsic bonded topology.
Collapse
Affiliation(s)
- Ronald D Hills
- Department of Pharmaceutical Sciences, University of New England, Portland, ME, USA
| |
Collapse
|
17
|
Sterpone F, Nguyen PH, Kalimeri M, Derreumaux P. Importance of the ion-pair interactions in the OPEP coarse-grained force field: parametrization and validation. J Chem Theory Comput 2013; 9:4574-4584. [PMID: 25419192 DOI: 10.1021/ct4003493] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have derived new effective interactions that improve the description of ion-pairs in the OPEP coarse-grained force field without introducing explicit electrostatic terms. The iterative Boltzmann inversion method was used to extract these potentials from all atom simulations by targeting the radial distribution function of the distance between the center of mass of the side-chains. The new potentials have been tested on several systems that differ in structural properties, thermodynamic stabilities and number of ion-pairs. Our modeling, by refining the packing of the charged amino-acids, impacts the stability of secondary structure motifs and the population of intermediate states during temperature folding/unfolding; it also improves the aggregation propensity of peptides. The new version of the OPEP force field has the potentiality to describe more realistically a large spectrum of situations where salt-bridges are key interactions.
Collapse
Affiliation(s)
- Fabio Sterpone
- Laboratoire de Biochimie Théorique, IBPC, CNRS, UPR9080, Univ. Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005, Paris, France
| | - Phuong H Nguyen
- Laboratoire de Biochimie Théorique, IBPC, CNRS, UPR9080, Univ. Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005, Paris, France
| | - Maria Kalimeri
- Laboratoire de Biochimie Théorique, IBPC, CNRS, UPR9080, Univ. Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005, Paris, France
| | - Philippe Derreumaux
- Laboratoire de Biochimie Théorique, IBPC, CNRS, UPR9080, Univ. Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005, Paris, France ; Institut Universitaire de France, Bvd St Michel, 75005, Paris, France
| |
Collapse
|
18
|
Kar P, Gopal SM, Cheng YM, Predeus A, Feig M. PRIMO: A Transferable Coarse-grained Force Field for Proteins. J Chem Theory Comput 2013; 9:3769-3788. [PMID: 23997693 PMCID: PMC3755638 DOI: 10.1021/ct400230y] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We describe here the PRIMO (PRotein Intermediate Model) force field, a physics-based fully transferable additive coarse-grained potential energy function that is compatible with an all-atom force field for multi-scale simulations. The energy function consists of standard molecular dynamics energy terms plus a hydrogen-bonding potential term and is mainly parameterized based on the CHARMM22/CMAP force field in a bottom-up fashion. The solvent is treated implicitly via the generalized Born model. The bonded interactions are either harmonic or distance-based spline interpolated potentials. These potentials are defined on the basis of all-atom molecular dynamics (MD) simulations of dipeptides with the CHARMM22/CMAP force field. The non-bonded parameters are tuned by matching conformational free energies of diverse set of conformations with that of CHARMM all-atom results. PRIMO is designed to provide a correct description of conformational distribution of the backbone (ϕ/ψ) and side chains (χ1) for all amino acids with a CMAP correction term. The CMAP potential in PRIMO is optimized based on the new CHARMM C36 CMAP. The resulting optimized force field has been applied in MD simulations of several proteins of 36-155 amino acids and shown that the root-mean-squared-deviation of the average structure from the corresponding crystallographic structure varies between 1.80 and 4.03 Å. PRIMO is shown to fold several small peptides to their native-like structures from extended conformations. These results suggest the applicability of the PRIMO force field in the study of protein structures in aqueous solution, structure predictions as well as ab initio folding of small peptides.
Collapse
Affiliation(s)
- Parimal Kar
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Srinivasa Murthy Gopal
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Yi-Ming Cheng
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Alexander Predeus
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Michael Feig
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
19
|
Spiga E, Alemani D, Degiacomi MT, Cascella M, Peraro MD. Electrostatic-Consistent Coarse-Grained Potentials for Molecular Simulations of Proteins. J Chem Theory Comput 2013; 9:3515-26. [PMID: 26584108 DOI: 10.1021/ct400137q] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We present a new generation of coarse-grained (CG) potentials that account for a simplified electrostatic description of soluble proteins. The treatment of permanent electrostatic dipoles of the backbone and polar side-chains allows to simulate proteins, preserving an excellent structural and dynamic agreement with respective reference structures and all-atom molecular dynamics simulations. Moreover, multiprotein complexes can be well described maintaining their molecular interfaces thanks to the ability of this scheme to better describe the actual electrostatics at a CG level of resolution. An efficient and robust heuristic algorithm based on particle swarm optimization is used for the derivation of CG parameters via a force-matching procedure. The ability of this protocol to deal with high dimensional search spaces suggests that the extension of this optimization procedure to larger data sets may lead to the generation of a fully transferable CG force field. At the present stage, these electrostatic-consistent CG potentials are easily and efficiently parametrized, show a good degree of transferability, and can be used to simulate soluble proteins or, more interestingly, large macromolecular assemblies for which long all-atom simulations may not be easily affordable.
Collapse
Affiliation(s)
- Enrico Spiga
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne-EPFL , Lausanne, CH-1015, Switzerland
| | - Davide Alemani
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne-EPFL , Lausanne, CH-1015, Switzerland
| | - Matteo T Degiacomi
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne-EPFL , Lausanne, CH-1015, Switzerland
| | - Michele Cascella
- Departement für Chemie und Biochemie, Universität Bern , Freiestrasse 3, Bern, CH-3012, Switzerland
| | - Matteo Dal Peraro
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne-EPFL , Lausanne, CH-1015, Switzerland
| |
Collapse
|
20
|
Chebaro Y, Pasquali S, Derreumaux P. The Coarse-Grained OPEP Force Field for Non-Amyloid and Amyloid Proteins. J Phys Chem B 2012; 116:8741-52. [DOI: 10.1021/jp301665f] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yassmine Chebaro
- Laboratoire de Biochimie Théorique,
CNRS UPR 9080, Université Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique,
13 rue Pierre et Marie Curie, 75005 Paris
| | - Samuela Pasquali
- Laboratoire de Biochimie Théorique,
CNRS UPR 9080, Université Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique,
13 rue Pierre et Marie Curie, 75005 Paris
| | - Philippe Derreumaux
- Laboratoire de Biochimie Théorique,
CNRS UPR 9080, Université Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique,
13 rue Pierre et Marie Curie, 75005 Paris
- Institut Universitaire de France, 103 Bvd Saint-Michel, Paris 75005, France
| |
Collapse
|
21
|
St-Pierre JF, Mousseau N. Large loop conformation sampling using the activation relaxation technique, ART-nouveau method. Proteins 2012; 80:1883-94. [PMID: 22488731 DOI: 10.1002/prot.24085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 03/19/2011] [Accepted: 03/30/2012] [Indexed: 12/25/2022]
Abstract
We present an adaptation of the ART-nouveau energy surface sampling method to the problem of loop structure prediction. This method, previously used to study protein folding pathways and peptide aggregation, is well suited to the problem of sampling the conformation space of large loops by targeting probable folding pathways instead of sampling exhaustively that space. The number of sampled conformations needed by ART nouveau to find the global energy minimum for a loop was found to scale linearly with the sequence length of the loop for loops between 8 and about 20 amino acids. Considering the linear scaling dependence of the computation cost on the loop sequence length for sampling new conformations, we estimate the total computational cost of sampling larger loops to scale quadratically compared to the exponential scaling of exhaustive search methods.
Collapse
Affiliation(s)
- Jean-François St-Pierre
- Département de Physique and Regroupement Québécois sur les Matériaux de Pointe, Université de Montréal, CP 6128, Succursale Centre-Ville, Montréal, Québec, Canada H3C 3J7
| | | |
Collapse
|
22
|
Sutto L, Marsili S, Gervasio FL. New advances in metadynamics. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2012. [DOI: 10.1002/wcms.1103] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
23
|
Nguyen PH, Derreumaux P. Configurational entropy: an improvement of the quasiharmonic approximation using configurational temperature. Phys Chem Chem Phys 2012; 14:877-86. [DOI: 10.1039/c1cp21779h] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Leherte L, Vercauteren DP. Implementation of a protein reduced point charge model toward molecular dynamics applications. J Phys Chem A 2011; 115:12531-43. [PMID: 21800922 DOI: 10.1021/jp202708a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A reduced point charge model was developed in a previous work from the study of extrema in smoothed charge density distribution functions generated from the Amber99 molecular electrostatic potential. In the present work, such a point charge distribution is coupled with the Amber99 force field and implemented in the program TINKER to allow molecular dynamics (MD) simulations of proteins. First applications to two polypeptides that involve α-helix and β-sheet motifs are analyzed and compared to all-atom MD simulations. Two types of coarse-grained (CG)-based trajectories are generated using, on one hand, harmonic bond stretching terms and, on the other hand, distance restraints. Results show that the use of the unrestrained CG conditions are sufficient to preserve most of the secondary structure characteristics but restraints lead to a better agreement between CG and all-atom simulation results such as rmsd, dipole moment, and time-dependent mean square deviation functions.
Collapse
Affiliation(s)
- Laurence Leherte
- Laboratoire de Physico-Chimie Informatique, Unité de Chimie Physique Théorique et Structurale, University of Namur (FUNDP), Namur, Belgium.
| | | |
Collapse
|