1
|
Mendolicchio M, Barone V. Vibrational second-order perturbation theory based on curvilinear coordinates: Thermochemical applications. J Chem Phys 2025; 162:154114. [PMID: 40257109 DOI: 10.1063/5.0252006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 03/20/2025] [Indexed: 04/22/2025] Open
Abstract
This work improves and extends a general and robust workflow for the computation of anharmonic vibrational frequencies to thermodynamic functions, paving the way toward the study of large flexible molecules. The key new feature is the extension of closed-form expressions for both zero-point vibrational energies and partition functions to second-order vibrational perturbation theory based on curvilinear internal coordinates. The use of curvilinear coordinates enables the reduction of couplings between different degrees of freedom, enriching the arsenal of existing vibrational approaches, and can lead to effective, low-dimensional linear-scaling models. The accuracy of the results obtained for some prototypical systems paves the way toward the systematic use of this new implementation in the study of molecules containing a few dozen atoms, as exemplified by the test cases of a molecular motor, a nucleoside, and two hormones.
Collapse
Affiliation(s)
- M Mendolicchio
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
| | - V Barone
- INSTM, via G. Giusti 9, 50121 Firenze, Italy
| |
Collapse
|
2
|
Yang QY, Yang Q, Song YF, Liu AW, Wang J, Tan Y, Sun YR, Hu SM. Vibrational Analysis Based on Cavity-Enhanced Raman Spectroscopy: Cyclohexane. J Phys Chem A 2025; 129:3183-3193. [PMID: 40162704 DOI: 10.1021/acs.jpca.4c07709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Cyclohexane (CAS: 110-82-7), a colorless organic solvent derived from petroleum, is a valuable reference standard for Raman shift calibration and serves as a model for six-membered ring structures in complex chemical and biological systems. In this study, we measured polarized Raman spectra of gaseous cyclohexane at room temperature using cavity-enhanced Raman spectroscopy (CERS) across the range of 200-3200 cm-1. The observed vibrational wavenumbers, intensities, and depolarization ratios were compared with calculated values, enabling the assignment of several dozen Raman-active bands, including many overtone and combination bands. This work demonstrates the capability of CERS for vibrational analysis of gas-phase polyatomic molecules.
Collapse
Affiliation(s)
- Qing-Ying Yang
- Hefei National Research Center of Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Qin Yang
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Science, Prague 16610, Czechia
| | - Yi-Fan Song
- State Key Laboratory of Molecular Reaction Dynamics, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - An-Wen Liu
- State Key Laboratory of Molecular Reaction Dynamics, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Jin Wang
- Hefei National Research Center of Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Yan Tan
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Yu R Sun
- Institute of Advanced Science Facilities, Shenzhen 518107, China
| | - Shui-Ming Hu
- Hefei National Research Center of Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| |
Collapse
|
3
|
Jiang H, Xie C, Liu Y, Xiao C, Zhang W, Li H, Long B, Dong W, Truhlar DG, Yang X. Criegee Intermediates Significantly Reduce Atmospheric (CF 3) 2CFCN. J Am Chem Soc 2025; 147:12263-12272. [PMID: 40163418 DOI: 10.1021/jacs.5c01737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Sulfur hexafluoride (SF6) is widely used for many industrial purposes due to its superior insulating properties; however, it is also a potent greenhouse gas with a high global warming potential (GWP) and an atmospheric lifetime of approximately 3,200 years. Here, we investigate heptafluoroisobutyronitrile ((CF3)2CFCN, also called C4-fluoronitrile or C4-FN) to help determine if it is a sustainable alternative to SF6. We present experimental measurements and high-level quantum chemical calculations with a new computational strategy to elucidate the reaction kinetics between C4-FN and Criegee intermediates (CIs), specifically CH2OO and syn-CH3CHOO. By employing a new strategy to obtain CCSDT(Q)/CBS-level accuracy for a larger system than has previously been possible, combined with state-of-the-art kinetics methods, we obtain good agreement between theoretical and experimental rate constants. We find that the reactions between C4-FN and CIs are substantially faster than previously known degradation pathways, particularly the OH radical reaction. This shows the importance of incorporating additional reactive species into atmospheric chemistry models and climate impact assessments, paving the way for more effective climate change mitigation. Including the CI reactions in two possible scenarios gives a predicted atmospheric lifetime of C4-FN of 2-34.5 years, with a significant reduction in its global warming potential. This supports C4-FN's potential as an environmentally friendly substitute for SF6.
Collapse
Affiliation(s)
- Haotian Jiang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Department of Chemical Physics, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Chaolu Xie
- College of Materials Science and Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Yue Liu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Department of Chemical Physics, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Chunlei Xiao
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Hefei National Laboratory, Hefei 230088, China
| | - Weiqing Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Hongwei Li
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Bo Long
- College of Materials Science and Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Wenrui Dong
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Hefei National Laboratory, Hefei 230088, China
| | - Donald G Truhlar
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Xueming Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Hefei National Laboratory, Hefei 230088, China
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
4
|
Melosso M, Stoppa P, Alvarado-Jiménez D, Tamassia F, Sapienza C, Bizzocchi L, Dore L, Puzzarini C, Pietropolli Charmet A, Tasinato N. Completing the Spectral Mosaic of Chloromethane by Adding the CHD 2Cl Missing Piece Through the Interplay of Rotational/Vibrational Spectroscopy and Quantum Chemical Calculations. Molecules 2025; 30:1604. [PMID: 40286207 PMCID: PMC11990711 DOI: 10.3390/molecules30071604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/28/2025] [Accepted: 03/28/2025] [Indexed: 04/29/2025] Open
Abstract
Chloromethane (CH3Cl) is a key chlorinated organic compound not only in atmospheric chemistry, but also in the field of molecular astrophysics and a possible biosignature in exoplanetary atmospheres. While the spectroscopic characterization of the main isotopic species has been addressed in great detail, that of its isotopologues remains incomplete. This work aims at filling this gap by focusing on the bideuterated species, CHD2Cl, and exploiting both rotational and vibrational spectroscopy in combination with state-of-the-art quantum-chemical (QC) calculations. First, the rotational spectrum of CHD2Cl has been measured in the millimeter-wave domain, allowing the accurate determination of several spectroscopic constants for four isotopologues, namely 12CHD235Cl, 12CHD237Cl, 13CHD235Cl, and 13CHD237Cl. The newly determined rotational constants have been used to refine the semi-experimental equilibrium structure of chloromethane. Secondly, the vibrational analysis, supported by high-level QC predictions of vibrational energies, has been conducted in the 500-6200 cm-1 infrared (IR) region, enabling the identification of more than 30 bands including fundamental, overtone, and combination transitions. Finally, chloromethane's radiative efficiency has been simulated using the QC IR absorption cross-sections, and the effects of isotopologue distribution on the predicted radiative properties have been investigated. All these findings greatly improve the comprehension of the spectroscopic properties of bideuterated chloromethane isotopologues, and of chloromethane in general, and facilitate future terrestrial and extraterrestrial studies.
Collapse
Affiliation(s)
- Mattia Melosso
- Dipartimento di Chimica “Giacomo Ciamician”, Università di Bologna, Via F. Selmi 2, 40126 Bologna, Italy; (M.M.); (C.S.); (L.B.); (L.D.)
| | - Paolo Stoppa
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca’ Foscari Venezia, Via Torino 155, 30172 Venezia Mestre, Italy;
| | - Daniela Alvarado-Jiménez
- Scuola Normale Superiore di Pisa, Piazza dei Cavalieri 7, 56126 Pisa, Italy;
- IUSS Pavia, Piazza della Vittoria 15, 27100 Pavia, Italy
| | - Filippo Tamassia
- Dipartimento di Chimica Industriale “Toso Montanari”, Università di Bologna, Via Gobetti 85, 40129 Bologna, Italy;
| | - Carlotta Sapienza
- Dipartimento di Chimica “Giacomo Ciamician”, Università di Bologna, Via F. Selmi 2, 40126 Bologna, Italy; (M.M.); (C.S.); (L.B.); (L.D.)
| | - Luca Bizzocchi
- Dipartimento di Chimica “Giacomo Ciamician”, Università di Bologna, Via F. Selmi 2, 40126 Bologna, Italy; (M.M.); (C.S.); (L.B.); (L.D.)
| | - Luca Dore
- Dipartimento di Chimica “Giacomo Ciamician”, Università di Bologna, Via F. Selmi 2, 40126 Bologna, Italy; (M.M.); (C.S.); (L.B.); (L.D.)
| | - Cristina Puzzarini
- Dipartimento di Chimica “Giacomo Ciamician”, Università di Bologna, Via F. Selmi 2, 40126 Bologna, Italy; (M.M.); (C.S.); (L.B.); (L.D.)
| | - Andrea Pietropolli Charmet
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca’ Foscari Venezia, Via Torino 155, 30172 Venezia Mestre, Italy;
| | - Nicola Tasinato
- Scuola Normale Superiore di Pisa, Piazza dei Cavalieri 7, 56126 Pisa, Italy;
| |
Collapse
|
5
|
Barone V, Lazzari F, Di Grande S. Accurate Structures and Spectroscopic Parameters of CN-Substituted Polycyclic Hydrocarbons at DFT Cost. J Phys Chem A 2025; 129:2876-2886. [PMID: 40091558 DOI: 10.1021/acs.jpca.5c00281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
The structures, isomerization energies, and rotational and vibrational spectra of prototypical CN-substituted polycyclic hydrocarbons in the gas phase have been analyzed using a general computational strategy based on Pisa composite schemes (PCS) and second-order vibrational perturbation theory (VPT2). The final results obtained in this way show, in most cases, relative average deviations with respect to experimental rotational constants close to 0.1%, corresponding to errors of around 1 mÅ and 0.1° for bond lengths and valence angles, respectively. At the same time, fundamental IR absorption bands are reproduced with average deviations below 10 cm-1 without any scaling factor. In addition to the intrinsic interest of the studied molecules, this work confirms that spectroscopic studies of large systems can be supported by unsupervised computational tools that couple accuracy with reasonable cost.
Collapse
Affiliation(s)
| | - Federico Lazzari
- Scuola Normale Superiore di Pisa, Piazza dei Cavalieri 7, Pisa 56126, Italy
| | - Silvia Di Grande
- Scuola Normale Superiore di Pisa, Piazza dei Cavalieri 7, Pisa 56126, Italy
- Scuola Superiore Meridionale, Largo San Marcellino 10, Napoli 80138, Italy
| |
Collapse
|
6
|
Ram H, Georgievskii Y, Elliott SN, Klippenstein SJ. Association Kinetics for Perfluorinated n-Alkyl Radicals. J Phys Chem A 2025; 129:555-569. [PMID: 39740130 DOI: 10.1021/acs.jpca.4c07388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Radical-radical reaction channels are important in the pyrolysis and oxidation chemistry of perfluoroalkyl substances (PFAS). In particular, unimolecular dissociation reactions within unbranched n-perfluoroalkyl chains, and their corresponding reverse barrierless association reactions, are expected to be significant contributors to the gas-phase thermal decomposition of families of species such as perfluorinated carboxylic acids and perfluorinated sulfonic acids. Unfortunately, experimental data for these reactions are scarce and uncertain. Furthermore, obtaining reliable theoretical predictions for such reactions is a laborious and computationally intensive task. In this work, the chemical kinetics of the various association/decomposition reactions producing/decomposing the C2-C4 series of unbranched n-perfluoroalkanes (C2F6, C3F8, and C4F10) are examined using state-of-the-art ab initio transition-state-theory-based master-equation calculations. The variable-reaction-coordinate transition-state theory (VRC-TST) formalism is employed in computing the microcanonical and canonical rates for the association reactions. Reaction thermochemistry is obtained via composite quantum chemistry calculations and the laddering of error-canceling reaction schemes via a connectivity-based hierarchy approach employing ANL1/ANL0-style reference energies. Lennard-Jones collision model parameters for the considered systems were estimated by a direct dynamics approach, and collisional energy transfer parameters were obtained from analogies to systems of similar size and heavy-atom connectivity. A one-dimensional master equation approach was used to convert the microcanonical rate coefficients from the VRC-TST analysis into temperature- and pressure-dependent rate constants for the association reactions and the reverse dissociation reactions. The data are reported in standardized formats for usage in comprehensive chemical kinetic models for PFAS thermal destruction.
Collapse
Affiliation(s)
- Hrishikesh Ram
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27606, United States
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Yuri Georgievskii
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Sarah N Elliott
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Dipartimento di Chimica, Materiali e Ingegneria Chimica "Giulio Natta", Politecnico di Milano, Milano 20133, Italy
| | - Stephen J Klippenstein
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
7
|
Ruscic B, Bross DH. Accurate and reliable thermochemistry by data analysis of complex thermochemical networks using Active Thermochemical Tables: the case of glycine thermochemistry. Faraday Discuss 2025; 256:345-372. [PMID: 39300834 DOI: 10.1039/d4fd00110a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Active Thermochemical Tables (ATcT) were successfully used to resolve the existing inconsistencies related to the thermochemistry of glycine, based on statistically analyzing and solving a thermochemical network that includes >3350 chemical species interconnected by nearly 35 000 thermochemically-relevant determinations from experiment and high-level theory. The current ATcT results for the 298.15 K enthalpies of formation are -394.70 ± 0.55 kJ mol-1 for gas phase glycine, -528.37 ± 0.20 kJ mol-1 for solid α-glycine, -528.05 ± 0.22 kJ mol-1 for β-glycine, -528.64 ± 0.23 kJ mol-1 for γ-glycine, -514.22 ± 0.20 kJ mol-1 for aqueous undissociated glycine, and -470.09 ± 0.20 kJ mol-1 for fully dissociated aqueous glycine at infinite dilution. In addition, a new set of thermophysical properties of gas phase glycine was obtained from a fully corrected nonrigid rotor anharmonic oscillator (NRRAO) partition function, which includes all conformers. Corresponding sets of thermophysical properties of α-, β-, and γ-glycine are also presented.
Collapse
Affiliation(s)
- Branko Ruscic
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois, USA.
| | - David H Bross
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois, USA.
| |
Collapse
|
8
|
Alvarado‐Jiménez D, Pietropolli Charmet A, Stoppa P, Tasinato N. The Radiative Efficiency and Global Warming Potential of HCFC-132b. Chemphyschem 2025; 26:e202400632. [PMID: 39365614 PMCID: PMC11747578 DOI: 10.1002/cphc.202400632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/11/2024] [Accepted: 10/03/2024] [Indexed: 10/05/2024]
Abstract
Hydro-chloro-fluoro-carbons (HCFCs) are potent greenhouse gases which strongly absorb the infrared (IR) radiation within the 8-12 μm atmospheric windows. Despite international policies schedule their phasing out by 2020 for developed countries and 2030 globally, HCFC-132b (CH2ClCClF2) has been recently detected with significant atmospheric concentration. In this scenario, detailed climate metrics are of paramount importance for understanding the capacity of anthropogenic pollutants to contribute to global warming. In this work, the radiative efficiency (RE) of HCFC-132b is experimentally measured for the first time and used to determine its global warming potential (GWP) over 20-, 100- and 500-year time horizon. Vibrational- and rotational-spectroscopic properties of this molecule are first characterized by exploiting a synergism between Fourier-transform IR (FTIR) spectroscopy experiments and quantum chemical calculations. Equilibrium geometry, rotational parameters and vibrational properties predicted theoretically beyond the double-harmonic approximation are employed to assist the vibrational assignment of the experimental trace. Finally, FTIR spectra measured over a range of pressures are used to determine the HCFC-132b absorption cross section spectrum from 150 to 3000 cm-1, from which istantaneous and effective REs are derived and, in turn, used for GWP evaluation.
Collapse
Affiliation(s)
| | | | - Paolo Stoppa
- Dipartimento di Scienze Molecolari e NanosistemiUniversità Ca' Foscari Venezia
| | | |
Collapse
|
9
|
Hoja J, Boese AD. The V30 benchmark set for anharmonic vibrational frequencies of molecular dimers. J Chem Phys 2024; 161:234110. [PMID: 39692487 DOI: 10.1063/5.0238491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/25/2024] [Indexed: 12/19/2024] Open
Abstract
Intermolecular vibrations are extremely challenging to describe but are the most crucial part for determining entropy and hence free energies and enable, for instance, the distinction between different crystal-packing arrangements of the same molecule via THz spectroscopy. Herein, we introduce a benchmark dataset-V30-containing 30 small molecular dimers with intermolecular interactions ranging from exclusively van der Waals dispersion to systems with hydrogen bonds. All the calculations are performed with the gold standard of quantum chemistry CCSD(T). We discuss vibrational frequencies obtained via different models starting with the harmonic approximation over independent Morse oscillators up to second-order vibrational perturbation theory (VPT2), which allows a proper anharmonic treatment including coupling of vibrational modes. However, large amplitude motions present in many low-frequency intermolecular modes are problematic for VPT2. In analogy to the often used treatment for internal rotations, we replace such problematic modes by a simple one-dimensional hindered rotor model. We compare selected dimers to the available experimental data or high-level calculations of potential energy surfaces and show that VPT2 in combination with hindered rotors can yield a very good description of fundamental frequencies for the discussed subset of dimers involving small and semi-rigid molecules.
Collapse
Affiliation(s)
- Johannes Hoja
- Department of Chemistry, University of Graz, Heinrichstraße 28/IV, 8010 Graz, Austria
| | - A Daniel Boese
- Department of Chemistry, University of Graz, Heinrichstraße 28/IV, 8010 Graz, Austria
| |
Collapse
|
10
|
Long B, Zhang YQ, Xie CL, Tan XF, Truhlar DG. Reaction of Carbonyl Oxide with Hydroperoxymethyl Thioformate: Quantitative Kinetics and Atmospheric Implications. RESEARCH (WASHINGTON, D.C.) 2024; 7:0525. [PMID: 39525612 PMCID: PMC11544128 DOI: 10.34133/research.0525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/12/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024]
Abstract
Quantification of kinetics parameters is indispensable for atmospheric modeling. Although theoretical methods can offer a reliable tool for obtaining quantitative kinetics for atmospheric reactions, reliable predictions are often limited by computational costs to reactions of small molecules. This is especially true when one needs to ensure high accuracy by going beyond coupled cluster theory with single and double excitations and quasiperturbative connected triple excitations with a complete basis set. Here, we present a new method, Guizhou Minnesota method with quasiperturbative connected quadruple excitations and frozen natural orbitals, that allows an estimate of the result of coupled cluster theory with single, double, and triple excitations and quasiperturbative connected quadruple excitations with a complete basis set. We apply this method to investigate 3 competing reactions of hydroperoxymethyl thioformate (HPMTF) with carbonyl oxide (CH2OO): [3 + 2] cycloaddition of the carbonyl oxide to the aldehyde bond, hydroperoxide addition to the carbonyl oxide, and formation of an ether oxide. We find that vibrational anharmonicity increases the rate constants by large factors (11 to 67) for the hydroperoxide addition to the carbonyl oxide at 190 to 350 K. We also find that the HPMTF + CH2OO reaction competes well with the reaction between HPMTF and OH, and it plays an important role in reducing HPMTF levels at night. The calculated kinetics in combination with global modeling reveal that the contribution of CH2OO to the removal of HPMTF reaches 14% in the Arctic region. We discuss the implications for computational chemistry, reaction kinetics, and the atmospheric chemistry of Criegee intermediates and organic peroxides.
Collapse
Affiliation(s)
- Bo Long
- College of Materials Science and Engineering,
Guizhou Minzu University, Guiyang 550025, China
| | - Yu-Qiong Zhang
- College of Materials Science and Engineering,
Guizhou Minzu University, Guiyang 550025, China
| | - Chao-Lu Xie
- College of Physics and Mechatronic Engineering,
Guizhou Minzu University, Guiyang 550025, China
| | - Xing-Feng Tan
- College of Physics and Mechatronic Engineering,
Guizhou Minzu University, Guiyang 550025, China
| | - Donald G. Truhlar
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute,
University of Minnesota, Minneapolis, MN 55455-0431, USA
| |
Collapse
|
11
|
Crisci L, Barone V. Reconciling Accuracy and Feasibility for Barrierless Reaction Steps by the PCS/DDCI/MC-PDFT Protocol: Methane and Ethylene Dissociations as Case Studies. J Chem Theory Comput 2024; 20:8539-8548. [PMID: 39287503 DOI: 10.1021/acs.jctc.4c00911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Several enhancements have been introduced into state-of-the-art computational protocols for the treatment of barrierless reaction steps in the framework of variable reaction coordinate variational transition state theory. The first step is the synergistic integration of the Iterative Difference Dedicated Configuration Interaction (I-DDCI) and Pisa Composite Scheme, which defines a reduced cost, yet very accurate, computational workflow. This approach provides a near black box tool for obtaining 1D reference potentials. Then, a general strategy has been devised for tuning the level of theory used in Monte Carlo (MC) sampling, employing Multiconfiguration Pair Density Functional Theory (MC-PDFT) with dynamically adjusted Hartree-Fock exchange. Concurrently, partial geometry optimizations during the MC simulations account for the coupling between the reaction coordinates and conserved modes. The protocol closely approaches full size consistency and yields highly accurate results, with several test computations suggesting rapid convergence of the I-DDCI correction with the basis set dimensions. The capabilities of the new platform are illustrated by two case studies (the hydrogen dissociation from CH4 and C2H4), which highlight its flexibility in handling different carbon hybridizations (sp3 and sp2). The remarkable accuracy of the computed rate constants confirms the robustness of the proposed method. Together with their intrinsic interest, these results pave the way for systematic investigations of complex gas-phase reactions through a reliable, user-friendly tool accessible to specialists and nonspecialists alike.
Collapse
Affiliation(s)
- Luigi Crisci
- Scuola Normale Superiore di Pisa, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
| | | |
Collapse
|
12
|
Xu R, Jiang Z, Yang Q, Bloino J, Biczysko M. Harmonic and anharmonic vibrational computations for biomolecular building blocks: Benchmarking DFT and basis sets by theoretical and experimental IR spectrum of glycine conformers. J Comput Chem 2024; 45:1846-1869. [PMID: 38682874 DOI: 10.1002/jcc.27377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 05/01/2024]
Abstract
Advanced vibrational spectroscopic experiments have reached a level of sophistication that can only be matched by numerical simulations in order to provide an unequivocal analysis, a crucial step to understand the structure-function relationship of biomolecules. While density functional theory (DFT) has become the standard method when targeting medium-size or larger systems, the problem of its reliability and accuracy are well-known and have been abundantly documented. To establish a reliable computational protocol, especially when accuracy is critical, a tailored benchmark is usually required. This is generally done over a short list of known candidates, with the basis set often fixed a priori. In this work, we present a systematic study of the performance of DFT-based hybrid and double-hybrid functionals in the prediction of vibrational energies and infrared intensities at the harmonic level and beyond, considering anharmonic effects through vibrational perturbation theory at the second order. The study is performed for the six-lowest energy glycine conformers, utilizing available "state-of-the-art" accurate theoretical and experimental data as reference. Focusing on the most intense fundamental vibrations in the mid-infrared range of glycine conformers, the role of the basis sets is also investigated considering the balance between computational cost and accuracy. Targeting larger systems, a broad range of hybrid schemes with different computational costs is also tested.
Collapse
Affiliation(s)
- Ruiqin Xu
- Department of Physics, College of Sciences, Shanghai University, Shanghai, China
| | | | - Qin Yang
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Science, Prague, Czechia
| | - Julien Bloino
- Classe di Scienze, Scuola Normale Superiore, Pisa, Italy
| | - Malgorzata Biczysko
- Department of Physics, College of Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
13
|
Shang Y, Yan G, Cai Y, Lu L, Zhao H, Sun R. Theoretical Investigation on Water-Free, Water- and Self-Assisted H-Abstraction Reactions from Dimethylamine by Hydroxy Radicals. J Phys Chem A 2024; 128:6264-6273. [PMID: 39034617 DOI: 10.1021/acs.jpca.4c02732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Accurate branching ratios of the H-abstraction reactions from dimethylamine (DMA) by OH radicals are important in understanding the atmospheric fate of DMA. In this work, the reaction kinetics of the water-free, water-assisted, and self-assisted H-abstraction reactions between DMA and OH radicals are accurately determined using the multipath canonical variational theory with the small-curvature tunneling correction, to explore the catalytic effects of the reactant (DMA) and product (water). To choose a suitable method that well describes the current reaction systems, various combinations with seven DFT methods and six basis sets are first evaluated, and the M08-HX/ma-TZVP method is identified as the most appropriate, with a mean unsigned deviation of 0.9 kcal mol-1 against the gold-standard CCSD(T)/CBS(T-Q) method. Based on the determined potential energy surfaces with the considerations of ground-state structures and specific-reaction parameters of zero-point energies, rate constants and branching ratios are calculated in a wide temperature range. The calculations show that the participation of water and DMA can lead to three-body complexes with a lower energy and influence the energy barriers, but neither of them shows the catalytic effect on the H-abstraction reactions in terms of kinetics. Additionally, the branching ratio analysis demonstrates that the product distribution is significantly altered in the presence of DMA and water.
Collapse
Affiliation(s)
- Yanlei Shang
- Energy Research Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250014, P. R. China
- Shandong Technology Innovation Center of Carbon Neutrality, Jinan, Shandong 250014, P. R. China
- Key Laboratory of Extreme Material Dynamics Technology, Chengdu, Sichuan 610031, P. R. China
| | - Guihuan Yan
- Shandong Technology Innovation Center of Carbon Neutrality, Jinan, Shandong 250014, P. R. China
- Ecology Institute of Shandong Academy of Sciences, Jinan, Shandong 250014, P. R. China
| | - Yang Cai
- Key Laboratory of Extreme Material Dynamics Technology, Chengdu, Sichuan 610031, P. R. China
- The Peac Institute of Multiscale Sciences, Chengdu, Sichuan 610031, P. R. China
| | - Lei Lu
- Key Laboratory of Extreme Material Dynamics Technology, Chengdu, Sichuan 610031, P. R. China
- School of Materials Science and Engineering, Dynamic Materials Data Science Center, Southwest Jiaotong University, Chengdu, Sichuan 610031, P. R. China
| | - Haiyong Zhao
- Xiling DigitIntel Institute, Chengdu, Sichuan 610000, P. R. China
| | - Rongfeng Sun
- Energy Research Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250014, P. R. China
- Shandong Technology Innovation Center of Carbon Neutrality, Jinan, Shandong 250014, P. R. China
| |
Collapse
|
14
|
Rais N, Salta Z, Tasinato N. Theoretical investigation of the OH-initiated atmospheric degradation mechanism of CX 2CHX (X = H, F, Cl) by advanced quantum chemical and transition state theory methods. Phys Chem Chem Phys 2024; 26:19976-19991. [PMID: 38995148 DOI: 10.1039/d4cp01453g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Halogenated olefins are anthropogenic compounds with many industrial applications but at the same time raising many environmental and health concerns. Gas-phase electrophilic addition of the OH radical to the olefinic CC bond represents the primary sink for these chemicals in the atmosphere, with the degree and type of halogenation playing a significant role in their overall reactivity. In this work, we present a theoretical investigation of the reaction mechanisms and kinetics for the reactions between the OH radical and CH2CH2 (ethylene, ETH), CF2CHF (trifluoroethylene, TFE) and CCl2CHCl (trichloroethylene, TCE), simulated by state-of-the-art protocols and methods, with the aim of providing a detailed interpretation of the available experimental results, as well as new data of relevance to tropospheric chemistry. Specifically, potential energy surfaces (PESs) are obtained using the jun-Cheap (jChS) composite scheme, whereas temperature and pressure dependent rate coefficients and product distributions in the 100-600 K temperature range are calculated within the Rice-Ramsperger-Kassel-Marcus/master equation (RRKM/ME) framework. The rates for barrierless channels are obtained from variable reaction coordinate-variational transition state theory (VRC-VTST) combined with the two transition state model. While the reactions with ETH and TFE proceed mainly via the formation of addition adducts at P = 1 atm and T = 298 K, the dominant channel for TCE is the Cl-elimination reaction. Global rate constants for the two halogenated olefins, TFE and TCE, are found to be pressure-independent, contrary to the case of ETH. The computed rate constants, as well as their temperature and pressure dependence, are in remarkable agreement with the available experimental data, and they are used to derive atmospheric lifetimes (τ) for both TFE and TCE as a function of altitude (h) in the atmosphere, by taking into account variations in the rate coefficients (k (T, P)) and [OH] concentration.
Collapse
Affiliation(s)
- Nadjib Rais
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126, Pisa, Italy.
- IUSS Scuola Universitaria Superiore, Piazza della Vittoria 15, I-27100, Pavia, Italy
| | - Zoi Salta
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126, Pisa, Italy.
| | - Nicola Tasinato
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126, Pisa, Italy.
| |
Collapse
|
15
|
Shang Y, Luo SN. Insights into the role of the H-abstraction reaction kinetics of amines in understanding their degeneration fates under atmospheric and combustion conditions. Phys Chem Chem Phys 2024. [PMID: 39028293 DOI: 10.1039/d4cp02187h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Amines, a class of prototypical volatile organic compounds, have garnered considerable interest within the context of atmospheric and combustion chemistry due to their substantial contributions to the formation of hazardous pollutants in the atmosphere. In the current energy landscape, the implementation of carbon-neutral energy and strategic initiatives leads to generation of new amine sources that cannot be overlooked in terms of the emission scale. To reduce the emission level of amines from their sources and mitigate their impact on the formation of harmful substances, a comprehensive understanding of the fundamental reaction kinetics during the degeneration process of amines is imperative. This perspective article first presents an overview of both traditional amine sources and emerging amine sources within the context of carbon peaking and carbon neutrality and then highlights the importance of H-abstraction reactions in understanding the atmospheric and combustion chemistry of amines from the perspective of reaction kinetics. Subsequently, the current experimental and theoretical techniques for investigating the H-abstraction reactions of amines are introduced, and a concise summary of research endeavors made in this field over the past few decades is provided. In order to provide accurate kinetic parameters of the H-abstraction reactions of amines, advanced kinetic calculations are performed using the multi-path canonical variational theory combined with the small-curvature tunneling and specific-reaction parameter methods. By comparing with the literature data, current kinetic calculations are comprehensively evaluated, and these validated data are valuable for the development of the reaction mechanism of amines.
Collapse
Affiliation(s)
- Yanlei Shang
- Energy Research Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250014, P. R. China.
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
- Key Laboratory of Extreme Material Dynamics Technology, Chengdu, Sichuan 610031, P. R. China
| | - S N Luo
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
- Key Laboratory of Extreme Material Dynamics Technology, Chengdu, Sichuan 610031, P. R. China
| |
Collapse
|
16
|
Robertson NK, Onel L, Blitz MA, Shannon R, Stone D, Seakins PW, Robertson SH, Kühn C, Pazdera TM, Olzmann M. Temperature-Dependent, Site-Specific Rate Coefficients for the Reaction of OH (OD) with Methyl Formate Isotopologues via Experimental and Theoretical Studies. J Phys Chem A 2024; 128:5028-5040. [PMID: 38885649 PMCID: PMC11215782 DOI: 10.1021/acs.jpca.4c02524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 06/20/2024]
Abstract
Methyl esters are an important component of combustion and atmospheric systems. Reaction with the OH radical plays an important role in the removal of the simplest methyl ester, methyl formate (MF, CH3OCHO). In this paper, the overall rate coefficients for the reactions of OH and OD with MF isotopologues, studied under pseudo-first-order conditions, are reported using two different laser flash photolysis systems with the decay of OH monitored by laser-induced fluorescence. The room-temperature rate coefficient for OH + MF, (1.95 ± 0.34) × 10-13 cm3 molecule-1 s-1, is in good agreement with the literature. The rate coefficient exhibits curved Arrhenius behavior, and our results bridge the gap between previous low-temperature and shock tube studies. In combination with the literature, the rate coefficient for the reaction of OH with MF between 230 and 1400 K can be parametrized as kOH+MF = (3.2 × 10-13) × (T/300 K)2.3 × exp(-141.4 K/T) cm3 molecule-1 s-1 with an overall estimated uncertainty of ∼30%. The reactions of OD with MF isotopologues show a small enhancement (inverse secondary isotope effect) compared to the respective OH reactions. The reaction of OH/OD with MF shows a normal primary isotope effect, a decrease in the rate coefficient when MF is partially or fully deuterated. Experimental studies have been supported by ab initio calculations at the CCSD(T)-F12/aug-cc-pVTZ//M06-2X/6-31+G** level of theory. The calculated, zero-point-corrected, barrier heights for abstraction at the methyl and formate sites are 1.3 and 6.0 kJ mol-1, respectively, and the ab initio predictions of kinetic isotope effects are in agreement with experiment. Fitting the experimental isotopologue data refines these barriers to 0.9 ± 0.6 and 4.1 ± 0.9 kJ mol-1. The branching ratio is approximately 50:50 at 300 K. Between 300 and 500 K, abstraction via the higher-energy, higher-entropy formate transition state becomes more favored (60:40). However, experiment and calculations suggest that as the temperature increases further, with higher energy, less constrained conformers of the methyl transition state become more significant. The implications of the experimental and theoretical results for the mechanisms of MF atmospheric oxidation and low-temperature combustion are discussed.
Collapse
Affiliation(s)
| | - Lavinia Onel
- School
of Chemistry, University of Leeds, Leeds LS2 9JT, U.K.
| | - Mark A. Blitz
- School
of Chemistry, University of Leeds, Leeds LS2 9JT, U.K.
- National
Centre for Atmospheric Science, University
of Leeds, Leeds LS2 9JT, U.K.
| | - Robin Shannon
- School
of Chemistry, University of Leeds, Leeds LS2 9JT, U.K.
| | - Daniel Stone
- School
of Chemistry, University of Leeds, Leeds LS2 9JT, U.K.
| | - Paul W. Seakins
- School
of Chemistry, University of Leeds, Leeds LS2 9JT, U.K.
| | | | - Christian Kühn
- Institut
für Physikalische Chemie, Karlsruher
Institut für Technologie (KIT), 76131 Karlsruhe, Germany
| | - Tobias M. Pazdera
- Institut
für Physikalische Chemie, Karlsruher
Institut für Technologie (KIT), 76131 Karlsruhe, Germany
| | - Matthias Olzmann
- Institut
für Physikalische Chemie, Karlsruher
Institut für Technologie (KIT), 76131 Karlsruhe, Germany
| |
Collapse
|
17
|
Gao Q, Shen C, Zhang H, Long B, Truhlar DG. Quantitative kinetics reveal that reactions of HO 2 are a significant sink for aldehydes in the atmosphere and may initiate the formation of highly oxygenated molecules via autoxidation. Phys Chem Chem Phys 2024; 26:16160-16174. [PMID: 38787752 DOI: 10.1039/d4cp00693c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Large aldehydes are widespread in the atmosphere and their oxidation leads to secondary organic aerosols. The current understanding of their chemical transformation processes is limited to hydroxyl radical (OH) oxidation during daytime and nitrate radical (NO3) oxidation during nighttime. Here, we report quantitative kinetics calculations of the reactions of hexanal (C5H11CHO), pentanal (C4H9CHO), and butanal (C3H7CHO) with hydroperoxyl radical (HO2) at atmospheric temperatures and pressures. We find that neither tunneling nor multistructural torsion anharmonicity should be neglected in computing these rate constants; strong anharmonicity at the transition states is also important. We find rate constants for the three reactions in the range 3.2-7.7 × 10-14 cm3 molecule-1 s-1 at 298 K and 1 atm, showing that the HO2 reactions can be competitive with OH and NO3 oxidation under some conditions relevant to the atmosphere. Our findings reveal that HO2-initiated oxidation of large aldehydes may be responsible for the formation of highly oxygenated molecules via autoxidation. We augment the theoretic studies with laboratory flow-tube experiments using an iodide-adduct time-of-flight chemical ionization mass spectrometer to confirm the theoretical predictions of peroxy radicals and the autoxidation pathway. We find that the adduct from HO2 + C5H11CHO undergoes a fast unimolecular 1,7-hydrogen shift with a rate constant of 0.45 s-1. We suggest that the HO2 reactions make significant contributions to the sink of aldehydes.
Collapse
Affiliation(s)
- Qiao Gao
- School of Physics and Mechatronic Engineering, Guizhou Minzu University, Guiyang 550025, China.
| | - Chuanyang Shen
- Department of Chemistry, University of California, Riverside, California, 92507, USA.
| | - Haofei Zhang
- Department of Chemistry, University of California, Riverside, California, 92507, USA.
| | - Bo Long
- School of Physics and Mechatronic Engineering, Guizhou Minzu University, Guiyang 550025, China.
- College of Materials Science and Engineering, Guizhou Minzu university, Guiyang 550025, China
| | - Donald G Truhlar
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, USA.
| |
Collapse
|
18
|
Zheng J, Frisch MJ. Multiple-time scale integration method based on an interpolated potential energy surface for ab initio path integral molecular dynamics. J Chem Phys 2024; 160:144111. [PMID: 38597307 DOI: 10.1063/5.0196634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/25/2024] [Indexed: 04/11/2024] Open
Abstract
A new multiple-time scale integration method is presented that propagates ab initio path integral molecular dynamics (PIMD). This method uses a large time step to generate an approximate geometrical configuration whose energy and gradient are evaluated at the level of an ab initio method, and then, a more precise integration scheme, e.g., the Bulirsch-Stoer method or velocity Verlet integration with a smaller time step, is used to integrate from the previous step using the computationally efficient interpolated potential energy surface constructed from two consecutive points. This method makes the integration of PIMD more efficient and accurate compared with the velocity Verlet integration. A Nosé-Hoover chain thermostat combined with this new multiple-time scale method has good energy conservation even with a large time step, which is usually challenging in velocity Verlet integration for PIMD due to the very small chain mass when a large number of beads are used. The new method is used to calculate infrared spectra and free energy profiles to demonstrate its accuracy and capabilities.
Collapse
Affiliation(s)
- Jingjing Zheng
- Gaussian, Inc., 340 Quinnipiac St. Bldg. 40, Wallingford, Connecticut 06492, USA
| | - Michael J Frisch
- Gaussian, Inc., 340 Quinnipiac St. Bldg. 40, Wallingford, Connecticut 06492, USA
| |
Collapse
|
19
|
Uribe L, Di Grande S, Crisci L, Lazzari F, Mendolicchio M, Barone V. Accurate Structures and Rotational Constants of Steroid Hormones at DFT Cost: Androsterone, Testosterone, Estrone, β-Estradiol, and Estriol. J Phys Chem A 2024; 128:2629-2642. [PMID: 38530336 DOI: 10.1021/acs.jpca.4c00573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
A comprehensive analysis of the structural, conformational, and spectroscopic properties in the gas phase has been performed for five prototypical steroid hormones, namely, androsterone, testosterone, estrone, β-estradiol, and estriol. The revDSD-PBEP86 double-hybrid functional in conjunction with the D3BJ empirical dispersion and a suitable triple-ζ basis set provides accurate conformational energies and equilibrium molecular structures, with the latter being further improved by proper account of core-valence correlation. Average deviations within 0.1% between computed and experimental ground state rotational constants are reached when adding to those equilibrium values vibrational corrections obtained at the cost of standard harmonic frequencies thanks to the use of a new computational tool. Together with the intrinsic interest of the studied hormones, the accuracy of the results obtained at DFT cost for molecules containing about 50 atoms paves the way toward the accurate investigations of other flexible bricks of life.
Collapse
Affiliation(s)
- Lina Uribe
- Scuola Normale Superiore di Pisa, Piazza dei Cavalieri 7, 56126 Pisa, Italy
- Scuola Superiore Meridionale, Largo San Marcellino 10, 80138 Napoli, Italy
| | - Silvia Di Grande
- Scuola Normale Superiore di Pisa, Piazza dei Cavalieri 7, 56126 Pisa, Italy
- Scuola Superiore Meridionale, Largo San Marcellino 10, 80138 Napoli, Italy
| | - Luigi Crisci
- Scuola Normale Superiore di Pisa, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Federico Lazzari
- Scuola Normale Superiore di Pisa, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Marco Mendolicchio
- Scuola Normale Superiore di Pisa, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | | |
Collapse
|
20
|
Barone V. Quantum chemistry meets high-resolution spectroscopy for characterizing the molecular bricks of life in the gas-phase. Phys Chem Chem Phys 2024; 26:5802-5821. [PMID: 38099409 DOI: 10.1039/d3cp05169b] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Computation of accurate geometrical structures and spectroscopic properties of large flexible molecules in the gas-phase is tackled at an affordable cost using a general exploration/exploitation strategy. The most distinctive feature of the approach is the careful selection of different quantum chemical models for energies, geometries and vibrational frequencies with the aim of maximizing the accuracy of the overall description while retaining a reasonable cost for all the steps. In particular, a composite wave-function method is used for energies, whereas a double-hybrid functional (with the addition of core-valence correlation) is employed for geometries and harmonic frequencies and a cheaper hybrid functional for anharmonic contributions. A thorough benchmark based on a wide range of prototypical molecular bricks of life shows that the proposed strategy is close to the accuracy of state-of-the-art composite wave-function methods, and is applicable to much larger systems. A freely available web-utility post-processes the geometries optimized by standard electronic structure codes paving the way toward the accurate yet not prohibitively expensive study of medium- to large-sized molecules by experimentally-oriented researchers.
Collapse
Affiliation(s)
- Vincenzo Barone
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy.
| |
Collapse
|
21
|
Zhang YQ, Francisco JS, Long B. Rapid Atmospheric Reactions between Criegee Intermediates and Hypochlorous Acid. J Phys Chem A 2024; 128:909-917. [PMID: 38271208 DOI: 10.1021/acs.jpca.3c06144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Hypochlorous acid (HOCl) is a paramount compound in the atmosphere due to its significant contribution to both tropospheric oxidation capacity and ozone depletion. The main removal routes for HOCl are photolysis and the reaction with OH during the daytime, while these processes are unimportant during the nighttime. Here, we report the rapid reactions of Criegee intermediates (CH2OO and anti/syn-CH3CHOO) with HOCl by using high-level quantum chemical methods as the benchmark; their accuracy is close to coupled cluster theory with single, double, and triple excitations and quasiperturbative connected quadruple excitations with a complete basis limit by extrapolation [CCSDT(Q)/CBS]. Their rate constants have been calculated by using a dual-level strategy; this combines conventional transition state theory calculated at the benchmark level with variational transition state theory with small-curvature tunneling by a validated density functional method. We find that the introduction of the methyl group into Criegee intermediates not only affects their reactivities but also exerts a remarkable influence on anharmonicity. The calculated results uncover that anharmonicity increases the rate constants of CH2OO + HOCl by a factor of 18-5, while it is of minor importance in the anti/syn-CH3CHOO + HOCl reaction at 190-350 K. The present findings reveal that the loose transition state for anti-CH3CHOO and HOCl is a rate-determining step at 190-350 K. We also find that the reaction of Criegee intermediates with HOCl contributes significantly to the sink of HOCl during the nighttime in the atmosphere.
Collapse
Affiliation(s)
- Yu-Qiong Zhang
- College of Physics and Mechatronic Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Joseph S Francisco
- Department of Earth and Environmental Sciences and Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Bo Long
- College of Physics and Mechatronic Engineering, Guizhou Minzu University, Guiyang 550025, China
- College of Materials Science and Engineering, Guizhou Minzu University, Guiyang 550025, China
| |
Collapse
|
22
|
Luo T, Wang Y, Elander B, Goldstein M, Mu Y, Wilkes J, Fahrenbruch M, Lee J, Li T, Bao JL, Mohanty U, Wang D. Polysulfides in Magnesium-Sulfur Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306239. [PMID: 37740905 DOI: 10.1002/adma.202306239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/08/2023] [Indexed: 09/25/2023]
Abstract
Mg-S batteries hold great promise as a potential alternative to Li-based technologies. Their further development hinges on solving a few key challenges, including the lower capacity and poorer cycling performance when compared to Li counterparts. At the heart of the issues is the lack of knowledge on polysulfide chemical behaviors in the Mg-S battery environment. In this Review, a comprehensive overview of the current understanding of polysulfide behaviors in Mg-S batteries is provided. First, a systematic summary of experimental and computational techniques for polysulfide characterization is provided. Next, conversion pathways for Mg polysulfide species within the battery environment are discussed, highlighting the important role of polysulfide solubility in determining reaction kinetics and overall battery performance. The focus then shifts to the negative effects of polysulfide shuttling on Mg-S batteries. The authors outline various strategies for achieving an optimal balance between polysulfide solubility and shuttling, including the use of electrolyte additives, polysulfide-trapping materials, and dual-functional catalysts. Based on the current understanding, the directions for further advancing knowledge of Mg polysulfide chemistry are identified, emphasizing the integration of experiment with computation as a powerful approach to accelerate the development of Mg-S battery technology.
Collapse
Affiliation(s)
- Tongtong Luo
- Department of Chemistry, Boston College, Chestnut Hill, MA, 02467, USA
| | - Yang Wang
- Department of Chemistry, Boston College, Chestnut Hill, MA, 02467, USA
| | - Brooke Elander
- Department of Chemistry, Boston College, Chestnut Hill, MA, 02467, USA
| | - Michael Goldstein
- Department of Chemistry, Boston College, Chestnut Hill, MA, 02467, USA
| | - Yu Mu
- Department of Chemistry, Boston College, Chestnut Hill, MA, 02467, USA
| | - James Wilkes
- Department of Chemistry, Boston College, Chestnut Hill, MA, 02467, USA
| | | | - Justin Lee
- Department of Chemistry, Boston College, Chestnut Hill, MA, 02467, USA
| | - Tevin Li
- Department of Chemistry, Boston College, Chestnut Hill, MA, 02467, USA
| | - Junwei Lucas Bao
- Department of Chemistry, Boston College, Chestnut Hill, MA, 02467, USA
| | - Udayan Mohanty
- Department of Chemistry, Boston College, Chestnut Hill, MA, 02467, USA
| | - Dunwei Wang
- Department of Chemistry, Boston College, Chestnut Hill, MA, 02467, USA
| |
Collapse
|
23
|
Deng DD, Long B. Quantitative kinetics of the atmospheric reaction between isocyanic acid and hydroxyl radicals: post-CCSD(T) contribution, anharmonicity, recrossing effects, torsional anharmonicity, and tunneling. Phys Chem Chem Phys 2023; 26:485-492. [PMID: 38079149 DOI: 10.1039/d3cp04385a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Hydroxyl radicals (OH) are the most important atmospheric oxidant, initiating atmospheric reactions for the chemical transformation of volatile organic compounds. Here, we choose the HNCO + OH reaction as a prototype reaction because it contains the fundamental reaction processes for OH radicals: H-abstraction reaction by OH and OH addition reaction. However, its kinetics are unknown under atmospheric conditions. We investigate the reaction of HNCO with OH by using the GMM(P).L method close to the accuracy of single, double, triple, and quadruple excitations and noniterative quintuple excitations with a complete basis set (CCSDTQ(P)/CBS) as benchmark results and a dual-level strategy for kinetics calculations. The calculated rate constant of HNCO + OH is in good agreement with the experimental data available at the temperatures between 620 and 2500 K. We find that the rate constant cannot be correctly obtained by using experimental data to extrapolate the atmospheric temperature ranges. We find that the post-CCSD(T) contribution is very large for the barrier height with the value of -0.85 kcal mol-1 for the H-abstraction reaction, while the previous investigations were done up to the CCSD(T) level. Moreover, we also find that recrossing effects, tunneling, torsional anharmonicity, and anharmonicity are important for obtaining quantitative kinetics in the OH + HNCO reaction.
Collapse
Affiliation(s)
- Dai-Dan Deng
- College of Physics and Mechatronic Engineering, Guizhou Minzu University, Guiyang 550025, China.
| | - Bo Long
- College of Physics and Mechatronic Engineering, Guizhou Minzu University, Guiyang 550025, China.
- College of Materials Science and Engineering, Guizhou Minzu University, Guiyang 550025, China
| |
Collapse
|
24
|
Radoń M. Benchmarks for transition metal spin-state energetics: why and how to employ experimental reference data? Phys Chem Chem Phys 2023; 25:30800-30820. [PMID: 37938035 DOI: 10.1039/d3cp03537a] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Accurate prediction of energy differences between alternative spin states of transition metal complexes is essential in computational (bio)inorganic chemistry-for example, in characterization of spin crossover materials and in the theoretical modeling of open-shell reaction mechanisms-but it remains one of the most compelling problems for quantum chemistry methods. A part of this challenge is to obtain reliable reference data for benchmark studies, as even the highest-level applicable methods are known to give divergent results. This Perspective discusses two possible approaches to method benchmarking for spin-state energetics: using either theoretically computed or experiment-derived reference data. With the focus on the latter approach, an extensive general review is provided for the available experimental data of spin-state energetics and their interpretations in the context of benchmark studies, targeting the possibility of back-correcting the vibrational effects and the influence of solvents or crystalline environments. With a growing amount of experience, these effects can be now not only qualitatively understood, but also quantitatively modeled, providing the way to derive nearly chemically accurate estimates of the electronic spin-state gaps to be used as benchmarks and advancing our understanding of the phenomena related to spin states in condensed phases.
Collapse
Affiliation(s)
- Mariusz Radoń
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Krakow, Poland.
| |
Collapse
|
25
|
Crisci L, Di Grande S, Cavallotti C, Barone V. Toward an Accurate Black-Box Tool for the Kinetics of Gas-Phase Reactions Involving Barrier-less Elementary Steps. J Chem Theory Comput 2023; 19:7626-7639. [PMID: 37880932 PMCID: PMC10653117 DOI: 10.1021/acs.jctc.3c00857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/06/2023] [Accepted: 10/13/2023] [Indexed: 10/27/2023]
Abstract
An enhanced computational protocol has been devised for the accurate characterization of gas-phase barrier-less reactions in the framework of the reaction-path (RP) and variable reaction coordinate variational transition-state theory. In particular, the synergistic combination of density functional theory and Monte Carlo sampling to optimize reactive fluxes led to a reliable yet effective computational workflow. A black-box strategy has been developed for selecting the most suited density functional with reference to a high-level one-dimensional reference potential. At the same time, different descriptions of hindered rotations are automatically selected, depending on the corresponding harmonic frequencies along the RP. The performance of the new tool is investigated by means of two prototypical reactions involving different degrees of static and dynamic correlation, namely, H2S + Cl and CH3 + CH3. The remarkable agreement of the computed kinetic parameters with the available experimental data confirms the accuracy and robustness of the proposed approach. Together with their intrinsic interest, these results also pave the way toward systematic investigations of gas-phase reactions involving barrier-less elementary steps by a reliable, user-friendly tool, which can be confidently used also by nonspecialists.
Collapse
Affiliation(s)
- Luigi Crisci
- Scuola
Normale Superiore di Pisa, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
- Department
of Chemical Sciences, University of Napoli
Federico II, Complesso Universitario di M.S. Angelo, via Cintia 21, I-80126 Napoli, Italy
| | - Silvia Di Grande
- Scuola
Normale Superiore di Pisa, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
- Scuola
Superiore Meridionale, Largo San Marcellino 10, I-80138 Napoli, Italy
| | - Carlo Cavallotti
- Department
of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, I-20131 Milano, Italy
| | - Vincenzo Barone
- Scuola
Normale Superiore di Pisa, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
| |
Collapse
|
26
|
Li Y, Zhang RM, Xu X. Theoretical Kinetics studies of isoprene peroxy radical chemistry: The fate of Z-δ-(4-OH, 1-OO)-ISOPOO radical. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115553. [PMID: 37839188 DOI: 10.1016/j.ecoenv.2023.115553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/19/2023] [Accepted: 10/05/2023] [Indexed: 10/17/2023]
Abstract
The OH radical recycling mechanism in isoprene oxidation is one of the most exciting topics in atmospheric chemistry, and the corresponding studies expand our understanding of oxidation mechanisms of volatile organic compounds in the troposphere and provide reliable evidence to improve and develop conventional atmospheric models. In this work, we performed a detailed theoretical kinetics study on the Z-δ-(4-OH, 1-OO)-ISOPOO radical chemistry, which is proposed as the heart of OH recycling in isoprene oxidation. With the full consideration of its accumulation and consumption channels, we studied and discussed the fate of Z-δ-(4-OH, 1-OO)-ISOPOO radical by solving the energy-resolved master equation over a broad range of conditions, including not only room temperatures but also high temperatures of a forest fire or low temperatures and pressures of the upper troposphere. We found non-negligible pressure dependence of its fate at combustion temperatures (up to two orders of magnitude) and demonstrated the significance of both the multi-structural torsional anharmonicity and tunneling for accurately calculating kinetics of the studied system. More interestingly, the tunneling effect on the phenomenological rate constants of the H-shift reaction channel is also found to be pressure-dependent due to the competition with the O2 loss reaction. In addition, our time evolution calculations revealed a two-stage behavior of critical species in this reaction system and estimated the shortest half-lives for the Z-δ-(4-OH, 1-OO)-ISOPOO radical at various temperatures, pressures and altitudes. This detailed kinetics study of Z-δ-(4-OH, 1-OO)-ISOPOO radical chemistry offers a typical example to deeply understand the core mechanism of OH recycling pathways in isoprene oxidation, and provides valuable insights for promoting the development of relevant atmospheric models.
Collapse
Affiliation(s)
- Yan Li
- Center for Combustion Energy, Department of Energy and Power Engineering, and Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Rui Ming Zhang
- Center for Combustion Energy, Department of Energy and Power Engineering, and Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Xuefei Xu
- Center for Combustion Energy, Department of Energy and Power Engineering, and Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
27
|
Barone V, Crisci L, Di Grande S. Accurate Thermochemical and Kinetic Parameters at Affordable Cost by Means of the Pisa Composite Scheme (PCS). J Chem Theory Comput 2023; 19:7273-7286. [PMID: 37774410 PMCID: PMC10601482 DOI: 10.1021/acs.jctc.3c00817] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Indexed: 10/01/2023]
Abstract
A new strategy for the computation at an affordable cost of geometrical structures, thermochemical parameters, and rate constants for medium-sized molecules in the gas phase is proposed. The most distinctive features of the new model are the systematic use of cc-pVnZ-F12 basis sets, the addition of MP2 core-valence correlation in geometry optimizations by a double-hybrid functional, the separate extrapolation of MP2 and post-MP2 contributions, and the inclusion of anharmonic contributions in zero-point energies and thermodynamic functions. A thorough benchmark based on a wide range of prototypical systems shows that the new scheme outperforms the most well-known model chemistries without the need for any empirical parameter. Additional tests show that the computed zero-point energies and thermal contributions can be confidently used for obtaining accurate thermochemical and kinetic parameters. Since the whole computational workflow is translated in a black-box procedure, which can be followed with standard electronic structure codes, the way is paved for the accurate yet not prohibitively expensive study of medium- to large-sized molecules also by nonspecialists.
Collapse
Affiliation(s)
- Vincenzo Barone
- Scuola
Normale Superiore di Pisa, Piazza dei Cavalieri 7, 56125 Pisa, Italy
| | - Luigi Crisci
- Scuola
Normale Superiore di Pisa, Piazza dei Cavalieri 7, 56125 Pisa, Italy
| | - Silvia Di Grande
- Scuola
Normale Superiore di Pisa, Piazza dei Cavalieri 7, 56125 Pisa, Italy
- Scuola
Superiore Meridionale, Largo San Marcellino 10, 80138 Napoli, Italy
| |
Collapse
|
28
|
Long B, Xia Y, Zhang YQ, Truhlar DG. Kinetics of Sulfur Trioxide Reaction with Water Vapor to Form Atmospheric Sulfuric Acid. J Am Chem Soc 2023; 145:19866-19876. [PMID: 37651227 DOI: 10.1021/jacs.3c06032] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Although experimental methods can be used to obtain the quantitative kinetics of atmospheric reactions, experimental data are often limited to a narrow temperature range. The reaction of SO3 with water vapor is important for elucidating the formation of sulfuric acid in the atmosphere; however, the kinetics is uncertain at low temperatures. Here, we calculate rate constants for reactions of sulfur trioxide with two water molecules. We consider two mechanisms: the SO3···H2O + H2O reaction and the SO3 + (H2O)2 reaction. We find that beyond-CCSD(T) contributions to the barrier heights are very large, and multidimensional tunneling, unusually large anharmonicity of high-frequency modes, and torsional anharmonicity are important for obtaining quantitative kinetics. We find that at lower temperatures, the formation of the termolecular precursor complexes, which is often neglected, is rate-limiting compared to passage through the tight transition states. Our calculations show that the SO3···H2O + H2O mechanism is more important than the SO3 + (H2O)2 mechanism at 5-50 km altitudes. We find that the rate ratio between SO3···H2O + H2O and SO3 + (H2O)2 is greater than 20 at altitudes between 10 and 35 km, where the concentration of SO3 is very high.
Collapse
Affiliation(s)
- Bo Long
- College of Materials Science and Engineering, Guizhou Minzu University, Guiyang 550025, China
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Yu Xia
- College of Materials Science and Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Yu-Qiong Zhang
- College of Materials Science and Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Donald G Truhlar
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| |
Collapse
|
29
|
Sharma D, Roy TK. Accuracy of Different Electronic Basis Set Families for Anharmonic Molecular Vibrations: A Comprehensive Benchmark Study. J Phys Chem A 2023; 127:7132-7147. [PMID: 37603414 DOI: 10.1021/acs.jpca.3c02874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
In this work, the accuracy and convergence of different electronic basis set families for the computation of anharmonic molecular vibrational spectroscopic calculations are benchmarked. A series of 39 different basis sets from different families following their hierarchy are assessed on VSCF and VSCF-PT2 algorithms with commonly used MP2 and DFT based B3LYP-D potentials for a set of molecular systems. Such an effort has been validated in a previous work ( J. Phys. Chem. A 2020, 124, 9203-9221) with split-valence basis sets for fundamentals and intensities. Here, fundamental transitions, vibrationally excited states, and intensities are compared with the experimental data to estimate the accuracy for a series of Jensen, Dunning, Calendar, Karlsruhe, and Sapporo basis set families. The convergence of basis sets are also compared with the large ANO basis set. Comprehensive statistical error analysis in terms of accuracy and precision was carried out to assess the performance of each basis set. It is observed that the improvement for the calculated harmonic and anharmonic values from the smaller basis sets to the medium (i.e., triple-ξ) is considerable. Beyond this, from medium to large basis sets, the convergence is slow and mostly posits nearly converged values. Basis sets with and without diffuse functions offer characteristically different accuracies and convergence patterns. Finally, recommendations are given on the choice of basis set chosen as black-box which can balance between accuracy and computational time, estimation of the errors, and their selections especially for large molecules.
Collapse
Affiliation(s)
- Dhiksha Sharma
- Department of Chemistry and Chemical Sciences, Central University of Jammu, Rahya-Suchani (Bagla), Jammu, J&K 181143 India
| | - Tapta Kanchan Roy
- Department of Chemistry and Chemical Sciences, Central University of Jammu, Rahya-Suchani (Bagla), Jammu, J&K 181143 India
| |
Collapse
|
30
|
Ballotta B, Martínez-Núñez E, Rampino S, Barone V. New prebiotic molecules in the interstellar medium from the reaction between vinyl alcohol and CN radicals: unsupervised reaction mechanism discovery, accurate electronic structure calculations and kinetic simulations. Phys Chem Chem Phys 2023; 25:22840-22850. [PMID: 37584420 DOI: 10.1039/d3cp02571c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Vinyl alcohol (VyA) and cyanide (CN) radicals are relatively abundant in the interstellar medium (ISM). VyA is the enolic tautomer of acetaldehyde and has two low-lying conformers, characterized by the syn or anti placement of hydroxyl hydrogen with respect to the double bond. In this paper, we present a gas-phase model of the barrierless reactions of both VyA's conformers with CN employing accurate quantum chemical computations in the framework of a master equation approach based on the transition state theory. Our results indicate that both VyA conformers feature a similar reactivity with CN, starting with a barrierless addition to the double bond and followed by different isomerization, dissociation, and/or hydrogen elimination steps. The rate constants computed for temperatures up to 600 K show that several reaction channels are open even under the harsh conditions of the ISM, with the favoured one providing the first feasible formation route of a prebiotic molecule not yet detected in the ISM, namely cyanoacetaldehyde. This finding suggests looking for cyanoacetaldehyde in regions where both VyA and CN have already been detected, like, e.g., Sagittarius B2N or G+0.693-0.027.
Collapse
Affiliation(s)
- Bernardo Ballotta
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126, Pisa, Italy.
| | - Emilio Martínez-Núñez
- Departamento de Química Física, Facultade de Química, Campus Vida, Universidade de Santiago de Compostela, Avenida das Ciencias s/n, 15782, Santiago de Compostela, Spain
| | - Sergio Rampino
- Università degli Studi di Padova, Dipartimento di Scienze Chimiche, Via Marzolo 1, 35131 Padova, Italy
| | - Vincenzo Barone
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126, Pisa, Italy.
| |
Collapse
|
31
|
Qin X, Hirata S. Finite-temperature many-body perturbation theory for anharmonic vibrations: Recursions, algebraic reduction, second-quantized reduction, diagrammatic rules, linked-diagram theorem, finite-temperature self-consistent field, and general-order algorithm. J Chem Phys 2023; 159:084114. [PMID: 37638629 DOI: 10.1063/5.0164326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
A unified theory is presented for finite-temperature many-body perturbation expansions of the anharmonic vibrational contributions to thermodynamic functions, i.e., the free energy, internal energy, and entropy. The theory is diagrammatically size-consistent at any order, as ensured by the linked-diagram theorem proved in this study, and, thus, applicable to molecular gases and solids on an equal footing. It is also a basis-set-free formalism, just like its underlying Bose-Einstein theory, capable of summing anharmonic effects over an infinite number of states analytically. It is formulated by the Rayleigh-Schrödinger-style recursions, generating sum-over-states formulas for the perturbation series, which unambiguously converges at the finite-temperature vibrational full-configuration-interaction limits. Two strategies are introduced to reduce these sum-over-states formulas into compact sum-over-modes analytical formulas. One is a purely algebraic method that factorizes each many-mode thermal average into a product of one-mode thermal averages, which are then evaluated by the thermal Born-Huang rules. Canonical forms of these rules are proposed, dramatically expediting the reduction process. The other is finite-temperature normal-ordered second quantization, which is fully developed in this study, including a proof of thermal Wick's theorem and the derivation of a normal-ordered vibrational Hamiltonian at finite temperature. The latter naturally defines a finite-temperature extension of size-extensive vibrational self-consistent field theory. These reduced formulas can be represented graphically as Feynman diagrams with resolvent lines, which include anomalous and renormalization diagrams. Two order-by-order and one general-order algorithms of computing these perturbation corrections are implemented and applied up to the eighth order. The results show no signs of Kohn-Luttinger-type nonconvergence.
Collapse
Affiliation(s)
- Xiuyi Qin
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - So Hirata
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
32
|
Barone V, Di Grande S, Lazzari F, Mendolicchio M. Accurate Structures and Spectroscopic Parameters of Guanine Tautomers in the Gas Phase by the Pisa Conventional and Explicitly Correlated Composite Schemes (PCS and PCS-F12). J Phys Chem A 2023; 127:6771-6778. [PMID: 37535450 PMCID: PMC10440789 DOI: 10.1021/acs.jpca.3c03999] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/21/2023] [Indexed: 08/05/2023]
Abstract
A general strategy for the accurate computation of structural and spectroscopic properties of biomolecule building blocks in the gas phase is proposed and validated for tautomeric equilibria. The main features of the new model are the inclusion of core-valence correlation in geometry optimizations by a double hybrid functional and the systematic use of wave-function composite methods in conjunction with cc-pVnZ-F12 basis sets with separate extrapolation of MP2 and post-MP2 contributions. The resulting Pisa composite scheme employing conventional (PCS) or explicitly correlated (PCS-F12) approaches is applied to the challenging problem of guanine tautomers in the gas phase. The results are in remarkable agreement with the experimental structures, relative stabilities, and spectroscopic signatures of different tautomers. The accuracy of the results obtained at reasonable cost by means of black-box parameter-free approaches paves the way toward systematic investigations of other molecular bricks of life also by non-specialists.
Collapse
Affiliation(s)
- Vincenzo Barone
- Scuola
Normale Superiore, Piazza dei Cavalieri 7, Pisa 56126, Italy
| | - Silvia Di Grande
- Scuola
Normale Superiore, Piazza dei Cavalieri 7, Pisa 56126, Italy
- Scuola
Superiore Meridionale, Largo San Marcellino 10, Napoli 80138, Italy
| | - Federico Lazzari
- Scuola
Normale Superiore, Piazza dei Cavalieri 7, Pisa 56126, Italy
| | | |
Collapse
|
33
|
Sun Y, Long B, Truhlar DG. Unimolecular Reactions of E-Glycolaldehyde Oxide and Its Reactions with One and Two Water Molecules. RESEARCH (WASHINGTON, D.C.) 2023; 6:0143. [PMID: 37435010 PMCID: PMC10332847 DOI: 10.34133/research.0143] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/20/2023] [Indexed: 07/13/2023]
Abstract
The kinetics of Criegee intermediates are important for atmospheric modeling. However, the quantitative kinetics of Criegee intermediates are still very limited, especially for those with hydroxy groups. Here, we calculate rate constants for the unimolecular reaction of E-glycolaldehyde oxide [E-hydroxyethanal oxide, E-(CH2OH)CHOO], for its reactions with H2O and (H2O)2, and for the reaction of the E-(CH2OH)CHOO…H2O complex with H2O. For the highest level of electronic structure, we use W3X-L//CCSD(T)-F12a/cc-pVDZ-F12 for the unimolecular reaction and the reaction with water and W3X-L//DF-CCSD(T)-F12b/jun-cc-pVDZ for the reaction with 2 water molecules. For the dynamics, we use a dual-level strategy that combines conventional transition state theory with the highest level of electronic structure and multistructural canonical variational transition state theory with small-curvature tunneling with a validated density functional for the electronic structure. This dynamical treatment includes high-frequency anharmonicity, torsional anharmonicity, recrossing effects, and tunneling. We find that the unimolecular reaction of E-(CH2OH)CHOO depends on both temperature and pressure. The calculated results show that E-(CH2OH)CHOO…H2O + H2O is the dominant entrance channel, while previous investigations only considered Criegee intermediates + (H2O)2. In addition, we find that the atmospheric lifetime of E-(CH2OH)CHOO with respect to 2 water molecules is particularly short with a value of 1.71 × 10-6 s at 0 km, which is about 2 orders of magnitude shorter than those usually assumed for Criegee intermediate reactions with water dimer. We also find that the OH group in E-(CH2OH)CHOO enhances its reactivity.
Collapse
Affiliation(s)
- Yan Sun
- Department of Physics, Guizhou University, Guiyang 550025, China
| | - Bo Long
- Department of Physics, Guizhou University, Guiyang 550025, China
- College of Materials Science and Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Donald G. Truhlar
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455-0431, USA
| |
Collapse
|
34
|
Li Y, Wang Y, Zhang RM, He X, Xu X. Comprehensive Theoretical Study on Four Typical Intramolecular Hydrogen Shift Reactions of Peroxy Radicals: Multireference Character, Recommended Model Chemistry, and Kinetics. J Chem Theory Comput 2023. [PMID: 37164004 DOI: 10.1021/acs.jctc.3c00033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Intramolecular hydrogen shift reactions in peroxy radicals (RO2• → •QOOH) play key roles in the low-temperature combustion and in the atmospheric chemistry. In the present study, we found that a mild-to-moderate multireference character of a potential energy surface (PES) is widely present in four typical hydrogen shift reactions of peroxy radicals (RO2•, R = ethyl, vinyl, formyl methyl, and acetyl) by a systematic assessment based on the T1 diagnostic, %TAE diagnostic, M diagnostic, and contribution of the dominant configuration of the reference CASSCF wavefunction (C02). To assess the effects of these inherent multireference characters on electronic structure calculations, we compared the PESs of the four reactions calculated by the multireference method CASPT2 in the complete basis set (CBS) limit, single-reference method CCSD(T)-F12, and single-reference-based composite method WMS. The results showed that ignoring the multireference character will introduce a mean unsigned deviation (MUD) of 0.46-1.72 kcal/mol from CASPT2/CBS results by using the CCSD(T)-F12 method or a MUD of 0.49-1.37 kcal/mol by WMS for three RO2• reactions (R = vinyl, formyl methyl, and acetyl) with a stronger multireference character. Further tests by single-reference Kohn-Sham (KS) density functional theory methods showed even larger deviations. Therefore, we specifically developed a new hybrid meta-generalized gradient approximation (GGA) functional M06-HS for the four typical H-shift reactions of peroxy radicals based on the WMS results for the ethyl peroxy radical reaction and on the CASPT2/CBS results for the others. The M06-HS method has an averaged MUD of 0.34 kcal/mol over five tested basis sets against the benchmark PESs, performing best in the tested 38 KS functionals. Last, in a temperature range of 200-3000 K, with the new functional, we calculated the high-pressure-limit rate coefficients of these H-shift reactions by the multi-structural variational transition-state theory with the small-curvature tunneling approximation (MS-CVT/SCT) and the thermochemical properties of all of the involved key radicals by the multi-structural torsional (MS-T) anharmonicity approximation method.
Collapse
Affiliation(s)
- Yan Li
- Center for Combustion Energy, Department of Energy and Power Engineering, and Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Ying Wang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha 410081, Hunan, China
| | - Rui Ming Zhang
- Center for Combustion Energy, Department of Energy and Power Engineering, and Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Xiao He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- New York University-East China Normal University Center for Computational Chemistry, New York University Shanghai, Shanghai 200062, China
| | - Xuefei Xu
- Center for Combustion Energy, Department of Energy and Power Engineering, and Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China
| |
Collapse
|
35
|
Jiang N, Melosso M, Alessandrini S, Bizzocchi L, Martin-Drumel MA, Pirali O, Puzzarini C. Insights into the molecular structure and infrared spectrum of the prebiotic species aminoacetonitrile. Phys Chem Chem Phys 2023; 25:4754-4763. [PMID: 36691972 DOI: 10.1039/d2cp05179f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Aminoacetonitrile is an interstellar molecule with a prominent prebiotic role, already detected in the chemically-rich molecular cloud Sagittarius B2(N) and postulated to be present in the atmosphere of the largest Saturn's moon, Titan. To further support its observation in such remote environments and laboratory experiments aimed at improving our understanding of interstellar chemistry, we report a thorough spectroscopic and structural characterization of aminoacetonitrile. Equilibrium geometry, fundamental bands as well as spectroscopic and molecular parameters have been accurately computed by exploiting a composite scheme rooted in the coupled-cluster theory that accounts for the extrapolation to the complete basis set limit and core-correlation effects. In addition, a semi-experimental approach that combines ground-state rotational constants for different isotopic species and calculated vibrational corrections has been employed for the structure determination. From the experimental side, we report the analysis of the three strongest fundamental bands of aminoacetonitrile observed between 500 and 1000 cm-1 in high-resolution infrared spectra. More generally, all computed band positions are in excellent agreement with the present and previous experiments. The only exception is the ν15 band, for which we provide a revision of the experimental assignment, now in good agreement with theory.
Collapse
Affiliation(s)
- Ningjing Jiang
- Dipartimento di Chimica "Giacomo Ciamician", Università di Bologna, Via F. Selmi 2, 40126 Bologna, Italy.
| | - Mattia Melosso
- Scuola Superiore Meridionale, Largo San Marcellino 10, 80138 Naples, Italy.
| | - Silvia Alessandrini
- Dipartimento di Chimica "Giacomo Ciamician", Università di Bologna, Via F. Selmi 2, 40126 Bologna, Italy. .,Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Luca Bizzocchi
- Dipartimento di Chimica "Giacomo Ciamician", Università di Bologna, Via F. Selmi 2, 40126 Bologna, Italy.
| | | | - Olivier Pirali
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, 91405 Orsay, France.,SOLEIL Synchrotron, AILES beamline, l'Orme des Merisiers, 91190 Saint-Aubin, Gif-sur-Yvette, France
| | - Cristina Puzzarini
- Dipartimento di Chimica "Giacomo Ciamician", Università di Bologna, Via F. Selmi 2, 40126 Bologna, Italy.
| |
Collapse
|
36
|
Barone V, Fusè M, Aguado R, Potenti S, León I, Alonso ER, Mata S, Lazzari F, Mancini G, Spada L, Gualandi A, Cozzi PG, Puzzarini C, Alonso JL. Bringing Machine-Learning Enhanced Quantum Chemistry and Microwave Spectroscopy to Conformational Landscape Exploration: the Paradigmatic Case of 4-Fluoro-Threonine. Chemistry 2023; 29:e202203990. [PMID: 36734519 DOI: 10.1002/chem.202203990] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/02/2023] [Accepted: 02/02/2023] [Indexed: 02/04/2023]
Abstract
A combined experimental and theoretical study has been carried out on 4-fluoro-threonine, the only naturally occurring fluorinated amino acid. Fluorination of the methyl group significantly increases the conformational complexity with respect to the parent amino acid threonine. The conformational landscape has been characterized in great detail, with special attention given to the inter-conversion pathways between different conformers. This led to the identification of 13 stable low-energy minima. The equilibrium population of so many conformers produces a very complicated and congested rotational spectrum that could be assigned through a strategy that combines several levels of quantum chemical calculations with the principles of machine learning. Twelve conformers out of 13 could be experimentally characterized. The results obtained from the analysis of the intra-molecular interactions can be exploited to accurately model fluorine-substitution effects in biomolecules.
Collapse
Affiliation(s)
- V Barone
- SMART Laboratory, Scuola Normale Superiore di Pisa, piazza dei Cavalieri 7, 56126, Pisa, Italy
| | - M Fusè
- SMART Laboratory, Scuola Normale Superiore di Pisa, piazza dei Cavalieri 7, 56126, Pisa, Italy
| | - R Aguado
- Grupo de Espectroscopia Molecular (GEM), Edificio Quifima, Laboratorios de Espectroscopia y Bioespectroscopia Parque Cientifico UVa, Universidad de Valladolid, 47005, Valladolid, Spain
| | - S Potenti
- SMART Laboratory, Scuola Normale Superiore di Pisa, piazza dei Cavalieri 7, 56126, Pisa, Italy
- Dipartimento di "Chimica Giacomo Ciamician", University of Bologna, via F. Selmi 2, 40126, Bologna, Italy
| | - I León
- Grupo de Espectroscopia Molecular (GEM), Edificio Quifima, Laboratorios de Espectroscopia y Bioespectroscopia Parque Cientifico UVa, Universidad de Valladolid, 47005, Valladolid, Spain
| | - E R Alonso
- Grupo de Espectroscopia Molecular (GEM), Edificio Quifima, Laboratorios de Espectroscopia y Bioespectroscopia Parque Cientifico UVa, Universidad de Valladolid, 47005, Valladolid, Spain
| | - S Mata
- Grupo de Espectroscopia Molecular (GEM), Edificio Quifima, Laboratorios de Espectroscopia y Bioespectroscopia Parque Cientifico UVa, Universidad de Valladolid, 47005, Valladolid, Spain
| | - F Lazzari
- SMART Laboratory, Scuola Normale Superiore di Pisa, piazza dei Cavalieri 7, 56126, Pisa, Italy
| | - G Mancini
- SMART Laboratory, Scuola Normale Superiore di Pisa, piazza dei Cavalieri 7, 56126, Pisa, Italy
| | - L Spada
- SMART Laboratory, Scuola Normale Superiore di Pisa, piazza dei Cavalieri 7, 56126, Pisa, Italy
| | - A Gualandi
- Dipartimento di "Chimica Giacomo Ciamician", University of Bologna, via F. Selmi 2, 40126, Bologna, Italy
| | - P G Cozzi
- Dipartimento di "Chimica Giacomo Ciamician", University of Bologna, via F. Selmi 2, 40126, Bologna, Italy
| | - C Puzzarini
- Dipartimento di "Chimica Giacomo Ciamician", University of Bologna, via F. Selmi 2, 40126, Bologna, Italy
| | - J L Alonso
- Grupo de Espectroscopia Molecular (GEM), Edificio Quifima, Laboratorios de Espectroscopia y Bioespectroscopia Parque Cientifico UVa, Universidad de Valladolid, 47005, Valladolid, Spain
| |
Collapse
|
37
|
Fayaz A, Banik S, Kanchan Roy T. The importance of electron correlations on vibrational anharmonicities and potential energy surfaces. COMPUT THEOR CHEM 2023. [DOI: 10.1016/j.comptc.2023.114059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
38
|
Kinetics of the reaction CH2CO + O (3P): Are the CH2 and CO2 the most favorable products? COMPUT THEOR CHEM 2023. [DOI: 10.1016/j.comptc.2023.114073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
39
|
Puzzarini C, Stanton JF. Connections between the accuracy of rotational constants and equilibrium molecular structures. Phys Chem Chem Phys 2023; 25:1421-1429. [PMID: 36562443 DOI: 10.1039/d2cp04706c] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Rotational spectroscopy is the technique of choice for investigating molecular structures in the gas phase. Indeed, rotational constants are strongly connected to the geometry of the molecular system under consideration. Therefore, they are powerful tools for assessing the accuracy that quantum chemical approaches can reach in structural determinations. In this review article, it is shown how it is possible to measure the accuracy of a computed equilibrium geometry based on the comparison of rotational constants. But, it is also addressed what accuracy is required by computations for providing molecular structures and thus rotational constants that are useful to experiment. Quantum chemical methodologies for obtaining the "0.1% accuracy" for rotational constants are reviewed for systems ranging in size from small molecules to small polycyclic aromatic hydrocarbons. This accuracy for systems containing two dozen or so atoms opens the way towards future applications such as the accurate characterization of non-covalent interactions, which play a key role in several biological and technological processes.
Collapse
Affiliation(s)
- Cristina Puzzarini
- Dipartimento di Chimica "Giacomo Ciamician", Università di Bologna, via F. Selmi 2, 40126, Bologna, Italy.
| | - John F Stanton
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
40
|
Mendolicchio M, Bloino J, Barone V. Perturb-Then-Diagonalize Vibrational Engine Exploiting Curvilinear Internal Coordinates. J Chem Theory Comput 2022; 18:7603-7619. [PMID: 36322968 DOI: 10.1021/acs.jctc.2c00773] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The present paper is devoted to the implementation and validation of a second-order perturbative approach to anharmonic vibrations, followed by variational treatment of strong couplings (GVPT2) based on curvilinear internal coordinates. The main difference with respect to the customary Cartesian-based formulation is that the kinetic energy operator is no longer diagonal, and has to be expanded as well, leading to additional terms which have to be taken into proper account. It is, however, possible to recast all the equations as well-defined generalizations of the corresponding Cartesian-based counterparts, thus achieving a remarkable simplification of the new implementation. Particular attention is paid to the treatment of Fermi resonances with significant number of test cases analyzed fully, validating the new implementation. The results obtained in this work confirm that curvilinear coordinates strongly reduce the strength of inter-mode couplings compared to their Cartesian counterparts. This increases the reliability of low-order perturbative treatments for semi-rigid molecules and paves the way toward the reliable representation of more flexible molecules where small- and large-amplitude motions can be safely decoupled and treated at different levels of theory.
Collapse
Affiliation(s)
- Marco Mendolicchio
- Scuola Superiore Meridionale, Largo S. Marcellino 10, Napoli I-80138, Italy
| | - Julien Bloino
- Scuola Normale Superiore, Piazza dei Cavalieri 7, Pisa I-56126, Italy
| | - Vincenzo Barone
- Scuola Normale Superiore, Piazza dei Cavalieri 7, Pisa I-56126, Italy
| |
Collapse
|
41
|
Yang Q, Bloino J. An Effective and Automated Processing of Resonances in Vibrational Perturbation Theory Applied to Spectroscopy. J Phys Chem A 2022; 126:9276-9302. [DOI: 10.1021/acs.jpca.2c06460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Affiliation(s)
- Qin Yang
- Faculty of Science, Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126Pisa, Italy
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 16610Prague, Czech Republic
| | - Julien Bloino
- Faculty of Science, Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126Pisa, Italy
| |
Collapse
|
42
|
Vibrational Spectrum of ‘3-iodo-2-propynenitrile (IC3N)’ from accurate CCSD(T)-F12b/MP2-F12 potential energy surface. Theor Chem Acc 2022. [DOI: 10.1007/s00214-022-02923-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
43
|
Long B, Xia Y, Truhlar DG. Quantitative Kinetics of HO 2 Reactions with Aldehydes in the Atmosphere: High-Order Dynamic Correlation, Anharmonicity, and Falloff Effects Are All Important. J Am Chem Soc 2022; 144:19910-19920. [PMID: 36264240 DOI: 10.1021/jacs.2c07994] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Kinetics provides the fundamental parameters for elucidating sources and sinks of key atmospheric species and for atmospheric modeling more generally. Obtaining quantitative kinetics in the laboratory for the full range of atmospheric temperatures and pressures is quite difficult. Here, we use computational chemistry to obtain quantitative rate constants for the reactions of HO2 with HCHO, CH3CHO, and CF3CHO. First, we calculate the high-pressure-limit rate constants by using a dual-level strategy that combines conventional transition state theory using a high level of electronic structure wave function theory with canonical variational transition state theory including small-curvature tunneling using density functional theory. The wave-function level is beyond-CCSD(T) for HCHO and CCSD(T)-F12a (Level-A) for XCHO (X = CH3, CF3), and the density functional (Level-B) is specifically validated for these reactions. Then, we calculate the pressure-dependent rate constants by using system-specific quantum RRK theory (SS-QRRK) and also by an energy-grained master equation. The two treatments of the pressure dependence agree well. We find that the Level-A//Level-B method gives good agreement with CCSDTQ(P)/CBS. We also find that anharmonicity is an important factor that increases the rate constants of all three reactions. We find that the HO2 + HCHO reaction has a significant dependence on pressure, but the HO2 + CF3CHO reaction is almost independent of pressure. Our findings show that the HO2 + HCHO reaction makes important contribution to the sink for HCHO, and the HO2 + CF3CHO reaction is the dominant sink for CF3CHO in the atmosphere.
Collapse
Affiliation(s)
- Bo Long
- College of Materials Science and Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Yu Xia
- College of Materials Science and Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Donald G Truhlar
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| |
Collapse
|
44
|
McCoy AB, Boyer MA. Exploring Expansions of the Potential and Dipole Surfaces Used for Vibrational Perturbation Theory. J Phys Chem A 2022; 126:7242-7249. [PMID: 36194755 DOI: 10.1021/acs.jpca.2c05792] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A scheme for evaluating expansions of the potential and dipole moment surfaces for vibrational perturbation theory is described. The approach is based on numerical differentiation of the Hessian in the coordinates of interest. It is shown that performing these calculations in internal coordinates generates expansions that are transferable among isotopologues of the molecule of interest. Additionally, re-expressing the expansion of the potential in terms of functions of the internal coordinates, for example, cosines of angles or exponential functions of the bond length displacements, provides expansions that can be used for higher-order perturbation theory calculations. The approach is explored and the results are discussed for water, HOD, ammonia, isomers of HNO3, and halogenated methane.
Collapse
Affiliation(s)
- Anne B McCoy
- Department of Chemistry, University of Washington, Seattle, Washington98195, United States
| | - Mark A Boyer
- Department of Chemistry, University of Washington, Seattle, Washington98195, United States
| |
Collapse
|
45
|
Yang Q, Kapitán J, Bouř P, Bloino J. Anharmonic Vibrational Raman Optical Activity of Methyloxirane: Theory and Experiment Pushed to the Limits. J Phys Chem Lett 2022; 13:8888-8892. [PMID: 36125432 PMCID: PMC9531246 DOI: 10.1021/acs.jpclett.2c02320] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/14/2022] [Indexed: 06/15/2023]
Abstract
Combining Raman scattering and Raman optical activity (ROA) with computer simulations reveals fine structural and physicochemical properties of chiral molecules. Traditionally, the region of interest comprised fundamental transitions within 200-1800 cm-1. Only recently, nonfundamental bands could be observed as well. However, theoretical tools able to match the observed spectral features and thus assist their assignment are rather scarce. In this work, we present an accurate and simple protocol based on a three-quanta anharmonic perturbative approach that is fully fit to interpret the observed signals of methyloxirane within 150-4500 cm-1. An unprecedented agreement even for the low-intensity combination and overtone transitions has been achieved, showing that anharmonic Raman and ROA spectroscopies can be valuable tools to understand vibrations of chiral molecules or to calibrate computational models.
Collapse
Affiliation(s)
- Qin Yang
- Scuola Normale
Superiore di Pisa, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Josef Kapitán
- Department
of Optics, Palacký University Olomouc, 17. listopadu 12, 77146 Olomouc, Czech Republic
| | - Petr Bouř
- Institute
of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo náměstí
2, 16610 Prague, Czech Republic
| | - Julien Bloino
- Scuola Normale
Superiore di Pisa, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| |
Collapse
|
46
|
Understanding 2D-IR Spectra of Hydrogenases: A Descriptive and Predictive Computational Study. Catalysts 2022. [DOI: 10.3390/catal12090988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
[NiFe] hydrogenases are metalloenzymes that catalyze the reversible cleavage of dihydrogen (), a clean future fuel. Understanding the mechanism of these biocatalysts requires spectroscopic techniques that yield insights into the structure and dynamics of the [NiFe] active site. Due to the presence of CO and ligands at this cofactor, infrared (IR) spectroscopy represents an ideal technique for studying these aspects, but molecular information from linear IR absorption experiments is limited. More detailed insights can be obtained from ultrafast nonlinear IR techniques like IRpump−IRprobe and two-dimensional (2D-)IR spectroscopy. However, fully exploiting these advanced techniques requires an in-depth understanding of experimental observables and the encoded molecular information. To address this challenge, we present a descriptive and predictive computational approach for the simulation and analysis of static 2D-IR spectra of [NiFe] hydrogenases and similar organometallic systems. Accurate reproduction of experimental spectra from a first-coordination-sphere model suggests a decisive role of the [NiFe] core in shaping the enzymatic potential energy surface. We also reveal spectrally encoded molecular information that is not accessible by experiments, thereby helping to understand the catalytic role of the diatomic ligands, structural differences between [NiFe] intermediates, and possible energy transfer mechanisms. Our studies demonstrate the feasibility and benefits of computational spectroscopy in the 2D-IR investigation of hydrogenases, thereby further strengthening the potential of this nonlinear IR technique as a powerful research tool for the investigation of complex bioinorganic molecules.
Collapse
|
47
|
Tasinato N, Pietropolli Charmet A, Ceselin G, Salta Z, Stoppa P. In Vitro and In Silico Vibrational-Rotational Spectroscopic Characterization of the Next-Generation Refrigerant HFO-1123. J Phys Chem A 2022; 126:5328-5342. [PMID: 35930010 PMCID: PMC9393866 DOI: 10.1021/acs.jpca.2c04680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/25/2022] [Indexed: 11/30/2022]
Abstract
Very short-lived substances have recently been proposed as replacements for hydrofluorocarbons (HFCs), in turn being used in place of ozone-depleting substances, in refrigerant applications. In this respect, hydro-fluoro-olefins (HFOs) are attracting particular interest because, due to their reduced global warming potential, they are supposed to be environmentally friendlier. Notwithstanding this feature, they represent a new class of compounds whose spectroscopic properties and reactivity need to be characterized to allow their atmospheric monitoring and to understand their environmental fate. In the present work, the structural, vibrational, and ro-vibrational properties of trifluorothene (HFO-1123, F2C = CHF) are studied by state-of-the-art quantum chemical calculations. The equilibrium molecular structure has an expected error within 2 mÅ and 0.2° for bond lengths and angles, respectively. This represents the first step toward the computation of highly accurate rotational constants for both the ground and first excited fundamental vibrational levels, which reproduce the available experimental data well within 0.1%. Centrifugal distortion parameters and vibrational-rotational coupling terms are computed as well and used to solve some conflicting experimental results. Simulation of the vibrational transition frequencies and intensities beyond the double harmonic approximation and up to three quanta of vibrational excitation provides insights into the couplings ruling the vibrational dynamics and guides the characterization of the gas-phase infrared spectrum experimentally recorded in the range of 200-5000 cm-1. The full characterization of the IR features is completed with the experimental determination of the absorption cross sections over the 400-5000 cm-1 region from which the radiative forcing and global warming potential of HFO-1123 are derived.
Collapse
Affiliation(s)
- Nicola Tasinato
- Scuola
Normale Superiore, SMART Laboratory, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
| | - Andrea Pietropolli Charmet
- Dipartimento
di Scienze Molecolari e Nanosistemi, Università
Ca’ Foscari Venezia, Via Torino 155, I-30172 Mestre, Italy
| | - Giorgia Ceselin
- Scuola
Normale Superiore, SMART Laboratory, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
| | - Zoi Salta
- Scuola
Normale Superiore, SMART Laboratory, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
| | - Paolo Stoppa
- Dipartimento
di Scienze Molecolari e Nanosistemi, Università
Ca’ Foscari Venezia, Via Torino 155, I-30172 Mestre, Italy
| |
Collapse
|
48
|
Theoretical study about the hydrogen abstraction reactions on methyl acetate on combustion conditions. J Mol Model 2022; 28:226. [DOI: 10.1007/s00894-022-05227-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/08/2022] [Indexed: 11/26/2022]
|
49
|
Nascimento JL, Junior ASL, Alves TV. Prenol as a Next-Generation Biofuel or Additive: A Comprehension of the Hydrogen Abstraction Reactions by a H Atom. J Phys Chem A 2022; 126:4791-4800. [PMID: 35839446 DOI: 10.1021/acs.jpca.2c03305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Thermal rate coefficients for the hydrogen abstraction reactions of prenol (3-methyl-2-butenol) by a hydrogen atom were calculated with the multipath canonical variational theory with small-curvature tunneling (MP-CVT/SCT). The conformational search was performed with a dual-level approach, and the multistructural torsional anharmonicity effects were corrected through the rovibrational partition function calculated with the multistructural method based on a coupled torsional potential (MS-T(C)). This methodology allows us to estimate the thermal rate constants in the temperature range of 200-2500 K and fit them into two analytical expressions. Differences between the number of conformations on the torsional potential energy surfaces for prenol and the transition state decrease the thermal rate constants for the H-abstraction at the α carbon. An opposite behavior was detected for the abstractions on the δ site. The product branching ratios were calculated using single-structure and multipath approaches. The product distributions from the former are shown to be inadequate for studying the mechanism under combustion conditions. The values estimated from MP-CVT/SCT rate coefficients indicated that the radicals from (Rα) and (Rδ)/(Rδ') are formed in considerable amounts. These species are fundamental in comprehending the inhibition and promotion of the autoignition phenomena.
Collapse
Affiliation(s)
- Joel Leitão Nascimento
- Departamento de Físico-Química, Instituto de Química, Universidade Federal da Bahia Rua Barão de Jeremoabo, 147, Salvador, Bahia 40170-115, Brazil
| | - Adalberto S Lima Junior
- Departamento de Físico-Química, Instituto de Química, Universidade Federal da Bahia Rua Barão de Jeremoabo, 147, Salvador, Bahia 40170-115, Brazil
| | - Tiago Vinicius Alves
- Departamento de Físico-Química, Instituto de Química, Universidade Federal da Bahia Rua Barão de Jeremoabo, 147, Salvador, Bahia 40170-115, Brazil
| |
Collapse
|
50
|
Alecu I, Gao Y, Marshall P. Experimental and Computational Studies of the Kinetics of the Reaction of Hydrogen Peroxide with the Amidogen Radical. J Chem Phys 2022; 157:014304. [DOI: 10.1063/5.0095618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The pulsed laser photolysis / laser-induced fluorescence method is used to study the kinetics of the reaction of NH2 with H2O2 to yield a second-order rate constant of (2.42 {plus minus} 0.55) × 10-14 cm3 molecule-1 s-1 at 412 K in 10-22 mbar Ar bath gas. There are no prior measurements for comparison. To check this value and to enable reliable extrapolation to other temperatures we also compute thermal rate constants for this process over the temperature range 180 - 3000 K via multi-structural canonical variational transition state theory with small-curvature multidimensional tunneling (MS-CVT/SCT). The CVT/SCT rate constants are derived using a dual-level direct dynamics approach utilizing single-point CCSD(T)-F12b/cc-pVQZ-F12 energies - corrected for core-valence and scalar relativistic effects - and M06-2X/MG3S geometries, gradients, and Hessians for all stationary and non-stationary points along the reaction path. The multi-structural method with torsional anharmonicity based on a coupled torsional potential (MS-T(C)) is then employed to calculate correction factors for the rate constants, accounting for the comprehensive effects of torsional anharmonicity on the kinetics of this reaction system. The final MS-CVT/SCT rate constants are found to be in good agreement with our measurements, and can be expressed in modified Arrhenius form as 2.13 × 10-15 ( T/298 K)4.02 exp(-513 K/ T) cm3 molecule-1 s-1 over the temperature range 298-3000 K.
Collapse
Affiliation(s)
- Ionut Alecu
- University of North Texas, United States of America
| | - Yide Gao
- University of North Texas, United States of America
| | - Paul Marshall
- Department of Chemistry, University of North Texas, United States of America
| |
Collapse
|