1
|
Piskorz T, Lee B, Zhan S, Duarte F. Metallicious: Automated Force-Field Parameterization of Covalently Bound Metals for Supramolecular Structures. J Chem Theory Comput 2024; 20:9060-9071. [PMID: 39373209 PMCID: PMC11500408 DOI: 10.1021/acs.jctc.4c00850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 10/08/2024]
Abstract
Metal ions play a central, functional, and structural role in many molecular structures, from small catalysts to metal-organic frameworks (MOFs) and proteins. Computational studies of these systems typically employ classical or quantum mechanical approaches or a combination of both. Among classical models, only the covalent metal model reproduces both geometries and charge transfer effects but requires time-consuming parameterization, especially for supramolecular systems containing repetitive units. To streamline this process, we introduce metallicious, a Python tool designed for efficient force-field parameterization of supramolecular structures. Metallicious has been tested on diverse systems including supramolecular cages, knots, and MOFs. Our benchmarks demonstrate that parameters accurately reproduce the reference properties obtained from quantum calculations and crystal structures. Molecular dynamics simulations of the generated structures consistently yield stable simulations in explicit solvent, in contrast to similar simulations performed with nonbonded and cationic dummy models. Overall, metallicious facilitates the atomistic modeling of supramolecular systems, key for understanding their dynamic properties and host-guest interactions. The tool is freely available on GitHub (https://github.com/duartegroup/metallicious).
Collapse
Affiliation(s)
| | - Bernadette Lee
- Department
of Chemistry, University of Oxford, Oxford OX1 3QZ, U.K.
| | - Shaoqi Zhan
- Department
of Chemistry, University of Oxford, Oxford OX1 3QZ, U.K.
- Department
of Chemistry—Ångström, Ångströmlaboratoriet Box
523, Uppsala S-751 20, Sweden
| | - Fernanda Duarte
- Department
of Chemistry, University of Oxford, Oxford OX1 3QZ, U.K.
| |
Collapse
|
2
|
Huang H, Zhao DX, Zhao J, Chen X, Liu C, Yang ZZ. Origin of Enantioselectivity in Engineered Cytochrome c-Catalyzed Carbon-Radical FePP Hydrolysis Revealed Using QM/MM (ABEEM Polarizable Force Field) and MD Simulations. J Phys Chem B 2024; 128:3807-3823. [PMID: 38605466 DOI: 10.1021/acs.jpcb.3c07158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
The origin of highly efficient asymmetric aminohydroxylation of styrene catalyzed by engineered cytochrome c is investigated by the developed Atom-Bond Electronegativity Equalization Method polarizable force field (ABEEM PFF), which is a combined outcome of electronic and steric effects. Model molecules were used to establish the charge parameters of the ABEEM PFF, for which the bond-stretching and angle-bending parameters were obtained by using a combination of modified Seminario and scan methods. The interactions between carbon-radical Fe-porphyrin (FePP) and waters are simulated by molecular dynamics, which shows a clear preference for the pre-R over the pre-S. This preference is attributed to the hydrogen-bond between the mutated 100S and 101P residues as well as van der Waals interactions, enforcing a specific conformation of the carbon-radical FePP complex within the binding pocket. Meanwhile, the hydrogen-bond between water and the nitrogen atom in the active intermediate dictates the stereochemical outcome. Quantum mechanics/molecular mechanics (QM/MM (ABEEM PFF)) and free-energy perturbation calculations elucidate that the 3RTS is characterized by sandwich-like structure among adjacent amino acid residues, which exhibits greater stability than crowed arrangement in 3STS and enables the R enantiomer to form more favorably. Thus, this study provides mechanistic insight into the catalytic reaction of hemoproteins.
Collapse
Affiliation(s)
- Hong Huang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| | - Dong-Xia Zhao
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| | - Jian Zhao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Xin Chen
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| | - Cui Liu
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| | - Zhong-Zhi Yang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| |
Collapse
|
3
|
Tassoulas LJ, Wackett LP. Insights into the action of the pharmaceutical metformin: Targeted inhibition of the gut microbial enzyme agmatinase. iScience 2024; 27:108900. [PMID: 38318350 PMCID: PMC10839685 DOI: 10.1016/j.isci.2024.108900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/06/2023] [Accepted: 01/09/2024] [Indexed: 02/07/2024] Open
Abstract
Metformin is the first-line treatment for type 2 diabetes, yet its mechanism of action is not fully understood. Recent studies suggest metformin's interactions with gut microbiota are responsible for exerting therapeutic effects. In this study, we report that metformin targets the gut microbial enzyme agmatinase, as a competitive inhibitor, which may impair gut agmatine catabolism. The metformin inhibition constant (Ki) of E. coli agmatinase is 1 mM and relevant in the gut where the drug concentration is 1-10 mM. Metformin analogs phenformin, buformin, and galegine are even more potent inhibitors of E. coli agmatinase (Ki = 0.6, 0.1, and 0.007 mM, respectively) suggesting a shared mechanism. Agmatine is a known effector of human host metabolism and has been reported to augment metformin's therapeutic effects for type 2 diabetes. This gut-derived inhibition mechanism gives new insights on metformin's action in the gut and may lead to significant discoveries in improving metformin therapy.
Collapse
Affiliation(s)
- Lambros J. Tassoulas
- Department of Biochemistry, Biophysics & Molecular Biology, University of Minnesota, Minneapolis, MN 55455, USA
- BioTechnology Institute, University of Minnesota, St. Paul, MN 55108, USA
| | - Lawrence P. Wackett
- Department of Biochemistry, Biophysics & Molecular Biology, University of Minnesota, Minneapolis, MN 55455, USA
- BioTechnology Institute, University of Minnesota, St. Paul, MN 55108, USA
| |
Collapse
|
4
|
Arzani H, Rafii-Tabar H, Ramezani F. The investigation into the effect of the length of RGD peptides and temperature on the interaction with the αIIbβ3 integrin: a molecular dynamic study. J Biomol Struct Dyn 2022; 40:9701-9712. [PMID: 34060983 DOI: 10.1080/07391102.2021.1932602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The tripeptide Arg-Gly-Asp acid (RGD) is a protein sequence in the binding of proteins to cell surfaces, and is involved in various biological processes such as cell adhesion to the extracellular matrix, platelet activation, hemostasis, etc. The C2 domain of the Von Willebrand Factor (VWF), containing the RGD motif, plays an important role in the initial homeostasis process. It binds to the αIIbβ3 integrin and stimulates platelet aggregation. We have investigated, using the molecular Dynamic (MD) simulation method, the effect of the RGD-peptide length, and temperature variation, on the binding to the αIIbβ3 integrin receptor. We examined 10 different structural modes of the αIIbβ3 at three different temperatures; 237 K, 310 K and 318 K. Our findings show that the amino acids that form a binding pocket include Asp224, Tyr234, Ser226, Tyr190, Tyr189, Trp260, Trp262, Asp259, Lys253, Arg214, Asp217, Ser161 and Ala218 and that the ligand-receptor interaction was increased at higher temperatures. It was also found that the increase in the number of ligands' amino acids and their types (% glycine) plays an important role in the stability, conformation, and ligand-receptor interaction.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Hossein Arzani
- Department of Medical Physics and Biomedical Engineering, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hashem Rafii-Tabar
- Department of Medical Physics and Biomedical Engineering, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,The Physics Branch of Iran Academy of Sciences, Tehran, Iran
| | - Fatemeh Ramezani
- Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Lu LN, Liu C, Yang ZZ, Zhao DX. Refined models of coordination between Al3+/Mg2+ and enzyme in molecular dynamics simulation in terms of ABEEM polarizable force field. J Mol Graph Model 2022; 114:108190. [DOI: 10.1016/j.jmgm.2022.108190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 10/18/2022]
|
6
|
Kumar A, Satpati P. Divalent-Metal-Ion Selectivity of the CRISPR-Cas System-Associated Cas1 Protein: Insights from Classical Molecular Dynamics Simulations and Electronic Structure Calculations. J Phys Chem B 2021; 125:11943-11954. [PMID: 34694813 DOI: 10.1021/acs.jpcb.1c07744] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
CRISPR-associated protein 1 (Cas1) is a universally conserved essential metalloenzyme of the clustered regularly interspaced short palindromic repeat (CRISPR) immune system of prokaryotes (bacteria, archaea) that can cut and integrate a part of viral DNA to its host genome with the help of other proteins. The integrated DNA acts as a memory of viral infection, which can be transcribed to RNA and stop future infection by recognition (based on the RNA/DNA complementarity principle) followed by protein-mediated degradation of the viral DNA. It has been proposed that the presence of a single manganese (Mn2+) ion in a conserved divalent-metal-ion binding pocket (key residues: E190, H254, D265, D268) of Cas1 is crucial for its function. Cas1-mediated DNA degradation was proposed to be hindered by metal substitution, metal chelation, or mutation of the binding pocket residues. Cas1 is active toward dsDNA degradation with both Mn2+ and Mg2+. X-ray structures of Cas1 revealed an intricate atomic interaction network of the divalent-metal-ion binding pocket and opened up the possibility of modeling related metal ions (viz., Mg2+, Ca2+) in the binding pocket of wild-type (WT) and mutated Cas1 proteins for computational analysis, which includes (1) quantitative estimation of the energetics of the divalent-metal-ion preference and (2) exploring the structural and dynamical aspects of the protein in response to divalent-metal-ion substitution or amino acid mutation. Using the X-ray structure of the Cas1 protein from Pseudomonas aeruginosa as a template (PDB 3GOD), we performed (∼2.23 μs) classical molecular dynamics (MD) simulations to compare structural and dynamical differences between Mg2+- and Ca2+-bound binding pockets of wild-type (WT) and mutant (E190A, H254A, D265A, D268A) Cas1. Furthermore, reduced binding pocket models were generated from X-ray and molecular dynamics (MD) trajectories, and the resulting structures were subjected to quantum chemical calculations. Results suggest that Cas1 prefers Mg2+ binding relative to Ca2+ and the preference is the strongest for WT and the weakest for the D268A mutant. Quantum chemical calculations indicate that Mn2+ is the most preferred relative to both Mg2+ and Ca2+ in the wild-type and mutant Cas1. Substitution of Mg2+ by Ca2+ does not alter the interaction network between Cas1 and the divalent metal ion but increases the wetness of the binding pocket by introducing a single water molecule in the first coordination shell of the latter. The strength of metal-ion preference (Mg2+ versus Ca2+) seems to be dependent on the solvent accessibility of the divalent-metal-ion binding pocket, strongest for wild-type Cas1 (in which the metal-ion binding pocket is dry, which includes two water molecules) and the weakest for the D268A mutant (in which the metal-ion binding pocket is wet, which includes four water molecules).
Collapse
Affiliation(s)
- Abhishek Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Priyadarshi Satpati
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
7
|
The milk-derived lactoferrin inhibits V-ATPase activity by targeting its V1 domain. Int J Biol Macromol 2021; 186:54-70. [PMID: 34237360 DOI: 10.1016/j.ijbiomac.2021.06.200] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/20/2021] [Accepted: 06/29/2021] [Indexed: 11/20/2022]
Abstract
Lactoferrin (Lf), a bioactive milk protein, exhibits strong anticancer and antifungal activities. The search for Lf targets and mechanisms of action is of utmost importance to enhance its effective applications. A common feature among Lf-treated cancer and fungal cells is the inhibition of a proton pump called V-ATPase. Lf-driven V-ATPase inhibition leads to cytosolic acidification, ultimately causing cell death of cancer and fungal cells. Given that a detailed elucidation of how Lf and V-ATPase interact is still missing, herein we aimed to fill this gap by employing a five-stage computational approach. Molecular dynamics simulations of both proteins were performed to obtain a robust sampling of their conformational landscape, followed by clustering, which allowed retrieving representative structures, to then perform protein-protein docking. Subsequently, molecular dynamics simulations of the docked complexes and free binding energy calculations were carried out to evaluate the dynamic binding process and build a final ranking based on the binding affinities. Detailed atomist analysis of the top ranked complexes clearly indicates that Lf binds to the V1 cytosolic domain of V-ATPase. Particularly, our data suggest that Lf binds to the interfaces between A/B subunits, where the ATP hydrolysis occurs, thus inhibiting this process. The free energy decomposition analysis further identified key binding residues that will certainly aid in the rational design of follow-up experimental studies, hence bridging computational and experimental biochemistry.
Collapse
|
8
|
Peng J, Zhang Y, Jiang Y, Zhang H. Developing and Assessing Nonbonded Dummy Models of Magnesium Ion with Different Hydration Free Energy References. J Chem Inf Model 2021; 61:2981-2997. [PMID: 34080414 DOI: 10.1021/acs.jcim.1c00281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A large diversity in the targeted hydration free energies (HFEs) during model parameterization of metal ions was reported in the literature with a difference by dozens of kcal/mol. Here, we developed a series of nonbonded dummy models of the Mg2+ ion targeting different HFE references in TIP3P water, followed by assessments of the designed models in the simulations of MgCl2 solution and biological systems. Together with the comparison of existing models, we conclude that the difference in the targeted HFEs has a limited influence on the model performance, while the usability of these models differs from case to case. The feasibility of reproducing more properties of Mg2+ such as diffusion constants and water exchange rates using a nonbonded dummy model is demonstrated. Underestimated activity derivative and osmotic coefficient of MgCl2 solutions in high concentration reveal a necessity for further optimization of ion-pair interactions. The developed dummy models are applicable to metal coordination with Asp, Glu, and His residues in metalloenzymes, and the performance in predicting monodentate or bidentate binding modes of Asp/Glu residues depends on the complexity of metal centers and the choice of protein force fields. When both the binding modes coexist, the nonbonded dummy models outperform point charge models, probably in need of considering polarization of metal-binding residues by, for instance, charge calibration in classical force fields. This work is valuable for the use and further development of magnesium ion models for simulations of metal-containing systems with good accuracy.
Collapse
Affiliation(s)
- Jiarong Peng
- Department of Biological Science and Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 100083 Beijing, China
| | - Yongguang Zhang
- Department of Biological Science and Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 100083 Beijing, China
| | - Yang Jiang
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Haiyang Zhang
- Department of Biological Science and Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 100083 Beijing, China
| |
Collapse
|
9
|
Sousa CF, Coimbra JTS, Ferreira M, Pereira-Leite C, Reis S, Ramos MJ, Fernandes PA, Gameiro P. Passive Diffusion of Ciprofloxacin and its Metalloantibiotic: A Computational and Experimental study. J Mol Biol 2021; 433:166911. [PMID: 33676927 DOI: 10.1016/j.jmb.2021.166911] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/19/2021] [Accepted: 02/26/2021] [Indexed: 11/17/2022]
Abstract
Fluoroquinolones (FQ) are antibiotics widely used in clinical practise, but the development of bacterial resistance to these drugs is currently a critical public health problem. In this context, ternary copper complexes of FQ (CuFQPhen) have been studied as a potential alternative. In this study, we compared the passive diffusion across the lipid bilayer of one of the most used FQ, ciprofloxacin (Cpx), and its ternary copper complex, CuCpxPhen, that has shown previous promising results regarding antibacterial activity and membrane partition. A combination of spectroscopic studies and molecular dynamics simulations were used and two different model membranes tested: one composed of anionic phospholipids, and the other composed of zwitterionic phospholipids. The obtained results showed a significantly higher membrane permeabilization activity, larger partition, and a more favourable free energy landscape for the permeation of CuCpxPhen across the membrane, when compared to Cpx. Furthermore, the computational results indicated a more favourable translocation of CuCpxPhen across the anionic membrane, when compared to the zwitterionic one, suggesting a higher specificity towards the former. These findings are important to decipher the influx mechanism of CuFQPhen in bacterial cells, which is crucial for the ultimate use of CuFQPhen complexes as an alternative to FQ to tackle multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Carla F Sousa
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal.
| | - João T S Coimbra
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal.
| | - Mariana Ferreira
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal.
| | - Catarina Pereira-Leite
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Salette Reis
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Maria J Ramos
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal.
| | - Pedro A Fernandes
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal.
| | - Paula Gameiro
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal.
| |
Collapse
|
10
|
Lu LN, Liu C, Yang ZZ. Systematic Parameterization and Simulation of Boronic Acid-β-Lactamase Aqueous Solution in Developing the ABEEMσπ Polarizable Force Field. J Phys Chem A 2020; 124:8614-8632. [PMID: 32910648 DOI: 10.1021/acs.jpca.0c06806] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Boronic acid, an inhibitor of β-lactamase, has begun to be applied to the treatment of biological infections and tumors. Scientists are working to develop new and more effective boronic acid. Molecular dynamics (MD) simulation provides a powerful auxiliary tool for drug design. However, the current force fields have no boron-related parameters. In this work, an atom-bond electronegativity equalization method at the σπ level (ABEEMσπ) polarizable force field (ABEEMσπ PFF) of boronic acid and β-lactamase has been developed to determine the potential functions and parameters. The interaction between boron and serine in β-lactamase is regarded as a bonded mode. The interaction between them is simulated by the Morse potential energy function, which is close to the experimental change of the stretching potential energy in a large range. The potential energy surfaces of the bond length, bond angle, and dihedral angle of boronic acid-β-lactamase have the same stability point and change trend as M06-2X/6-311G**. For 47 boronic acid-β-lactamase training molecules, the linear correlation coefficient (R) of the charge distribution between the ABEEMσπ PFF and HF/STO-3G is greater than 0.96. Attributed to the fact that the charge distribution of the ABEEMσπ PFF can fluctuate with the change of geometry and environment, the polarization effect and charge-transfer effect are well reflected. The binding ability of different boronic acids with the same β-lactamase is different. A total of 10 boronic acid-β-lactamase model molecules and 10 boronic acid-β-lactamase and water complexes are simulated. The order of binding energy of five large model molecules calculated by the ABEEMσπ PFF is consistent with that of the MP2 method. The binding energies of boronic acid-β-lactamase and water complexes are close to those of the MP2 method. The results of MD simulation of five aqueous boronic acid-β-lactamase complexes in the NVT ensemble verify the rationality of boron-related parameters of the ABEEMσπ PFF, which have a good application prospect. This study lays a solid theoretical foundation for further study of the inhibition of boronic acid on β-lactamase.
Collapse
Affiliation(s)
- Li-Nan Lu
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, People's Republic of China
| | - Cui Liu
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, People's Republic of China
| | - Zhong-Zhi Yang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, People's Republic of China
| |
Collapse
|
11
|
Reilley DJ, Hennefarth MR, Alexandrova AN. The Case for Enzymatic Competitive Metal Affinity Methods. ACS Catal 2020; 10:2298-2307. [PMID: 34012720 PMCID: PMC8130888 DOI: 10.1021/acscatal.9b04831] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- David J Reilley
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, CA 90095-1569, USA
| | - Matthew R Hennefarth
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, CA 90095-1569, USA
| | - Anastassia N Alexandrova
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, CA 90095-1569, USA
- California NanoSystems Institute, University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095-1569, USA
| |
Collapse
|
12
|
Haghshenas H, Tavakol H, Kaviani B, Mohammadnezhad G. AMBER Force Field Parameters for Cobalt-Containing Biological Systems: A Systematic Derivation Study. J Phys Chem B 2020; 124:777-787. [PMID: 31912730 DOI: 10.1021/acs.jpcb.9b10739] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the present work, the parameterization of a set of cobalt-containing systems has been performed to create a comprehensive library for bonding parameters of biological Co-containing systems. A standard process for the extraction and validation of parameters was employed, which could be used to create force field parameters for the other metal-containing systems. All protein data banks were searched to extract common chemical groups in bonding with cobalt, and finally, 16 structures were designed to represent the binding model of the chemical moieties with cobalt. The Hessian matrix of each structure was computed at the B3LYP/6-311++G(2d,2p) level of theory and the Seminario method was employed to compute cobalt bond stretching and angle bending parameters. Validation of the derived parameters was performed using structural minimization and molecular dynamics (MD) simulations of four models. Further validation was performed using an extensive MD simulation on carbonic anhydrase II as a common cobalt-containing metalloprotein. The results demonstrated that among models, the bonded model in combination with the RESP charges can produce the most reliable and accurate structural conformations for the metal site of cobalt-containing systems.
Collapse
Affiliation(s)
- Hamed Haghshenas
- Division of Biochemistry, Department of Biology, Faculty of Sciences , Shahrekord University , Shahrekord 038 , Iran
| | - Hossein Tavakol
- Department of Chemistry , Isfahan University of Technology , Isfahan 84156-83111 , Iran
| | - Bita Kaviani
- Division of Genetics, Department of Biology, Faculty of Sciences , Islamic Azad University , Shahrekord Branch , Shahrekord 65234-98712 , Iran
| | | |
Collapse
|
13
|
Naz Z, Moin ST, Hofer TS. Hydration of Closely Related Manganese and Magnesium Porphyrins in Aqueous Solutions: Ab Initio Quantum Mechanical Charge Field Molecular Dynamics Simulation Study. J Phys Chem B 2019; 123:10769-10779. [PMID: 31738566 DOI: 10.1021/acs.jpcb.9b07639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To the best of our knowledge, the current study based on ab initio quantum mechanical charge field molecular dynamics (QMCF-MD) is the first to explore the difference in the hydration behavior between Mn(II)- and Mg(II)-associated porphyrins (Mn(II)-POR and Mg(II)-POR) in aqueous solution. The simulation study highlights similar and dissimilar characteristics of the structural, dynamical, and thermodynamical properties of these closely related metals bound to porphyrins in aqueous solution. The structural analysis is based on radial and angular distribution functions, coordination number distributions, and angular-radial distributions. Both hydrated systems demonstrate similar pentacoordinated structures formed via the axial coordination of one water molecule to the metal ion in addition to the four nitrogen atoms of the porphyrin ring. However, in the case of Mn(II)-POR, the formation of a distorted square pyramidal geometry was observed. It was envisaged as a weak coordination of the water molecule to the Mn(II) atom and thus higher atomic fluctuation for all atoms in contrast to that for the hydrated Mg(II)-POR. The dynamical data in terms of the mean residence times, velocity autocorrelation function, free energy, and other parameters revealed the difference in the metal binding effect because the Mn(II) atom was observed to inhibit H-bond formation more than the presence of Mg(II) atoms in the core of the porphyrin. The current study thus highlights the significant differences in the structural and dynamical properties of Mn(II)- and Mg(II)-associated porphyrin systems.
Collapse
Affiliation(s)
- Zobia Naz
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences , University of Karachi , Karachi 75270 , Pakistan
| | - Syed Tarique Moin
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences , University of Karachi , Karachi 75270 , Pakistan
| | - Thomas S Hofer
- Theoretical Chemistry Division, Institute of General, Inorganic and Theoretical Chemistry , University of Innsbruck , Innrain 80-82 , A-6020 Innsbruck , Austria
| |
Collapse
|
14
|
Speciale I, Duncan GA, Unione L, Agarkova IV, Garozzo D, Jimenez-Barbero J, Lin S, Lowary TL, Molinaro A, Noel E, Laugieri ME, Tonetti MG, Van Etten JL, De Castro C. The N-glycan structures of the antigenic variants of chlorovirus PBCV-1 major capsid protein help to identify the virus-encoded glycosyltransferases. J Biol Chem 2019; 294:5688-5699. [PMID: 30737276 DOI: 10.1074/jbc.ra118.007182] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 02/07/2019] [Indexed: 11/06/2022] Open
Abstract
The chlorovirus Paramecium bursaria chlorella virus 1 (PBCV-1) is a large dsDNA virus that infects the microalga Chlorella variabilis NC64A. Unlike most other viruses, PBCV-1 encodes most, if not all, of the machinery required to glycosylate its major capsid protein (MCP). The structures of the four N-linked glycans from the PBCV-1 MCP consist of nonasaccharides, and similar glycans are not found elsewhere in the three domains of life. Here, we identified the roles of three virus-encoded glycosyltransferases (GTs) that have four distinct GT activities in glycan synthesis. Two of the three GTs were previously annotated as GTs, but the third GT was identified in this study. We determined the GT functions by comparing the WT glycan structures from PBCV-1 with those from a set of PBCV-1 spontaneous GT gene mutants resulting in antigenic variants having truncated glycan structures. According to our working model, the virus gene a064r encodes a GT with three domains: domain 1 has a β-l-rhamnosyltransferase activity, domain 2 has an α-l-rhamnosyltransferase activity, and domain 3 is a methyltransferase that decorates two positions in the terminal α-l-rhamnose (Rha) unit. The a075l gene encodes a β-xylosyltransferase that attaches the distal d-xylose (Xyl) unit to the l-fucose (Fuc) that is part of the conserved N-glycan core region. Last, gene a071r encodes a GT that is involved in the attachment of a semiconserved element, α-d-Rha, to the same l-Fuc in the core region. Our results uncover GT activities that assemble four of the nine residues of the PBCV-1 MCP N-glycans.
Collapse
Affiliation(s)
- Immacolata Speciale
- From the Department of Agricultural Sciences, University of Napoli Federico II, Via Università 100, 80055 Portici NA, Italy
| | - Garry A Duncan
- the Department of Biology, Nebraska Wesleyan University, Lincoln, Nebraska 68504-2794
| | - Luca Unione
- the Chemical Glycobiology Lab, CIC bioGUNE, Bizkaia Technology Park, Bld 800, 48170 Derio, Spain
| | - Irina V Agarkova
- the Nebraska Center for Virology, University of Nebraska, Lincoln, Nebraska 68583-0900.,the Department of Plant Pathology, University of Nebraska, Lincoln, Nebraska 68583-0722
| | - Domenico Garozzo
- Institute for Polymers, Composites, and Biomaterials, CNR, Via P. Gaifami 18, 95126 Catania, Italy
| | - Jesus Jimenez-Barbero
- the Chemical Glycobiology Lab, CIC bioGUNE, Bizkaia Technology Park, Bld 800, 48170 Derio, Spain.,the Basque Foundation for Science (IKERBASQUE), 48940 Bilbao, Spain.,the Department of Organic Chemistry II, Faculty of Science and Technology, University of the Basque Country, EHU-UPV, 48940 Leioa, Spain
| | - Sicheng Lin
- the Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Gunning-Lemieux Chemistry Centre, Edmonton, Alberta T6G 2G2, Canada
| | - Todd L Lowary
- the Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Gunning-Lemieux Chemistry Centre, Edmonton, Alberta T6G 2G2, Canada
| | - Antonio Molinaro
- the Department of Chemical Sciences, Università of Napoli Federico II, 80126 Napoli, Italy
| | - Eric Noel
- the Nebraska Center for Virology, University of Nebraska, Lincoln, Nebraska 68583-0900.,the School of Biological Sciences, University of Nebraska, Lincoln, Nebraska 68588-0118, and
| | - Maria Elena Laugieri
- the Department of Experimental Medicine and Center of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV/1, 16132 Genova, Italy
| | - Michela G Tonetti
- the Department of Experimental Medicine and Center of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV/1, 16132 Genova, Italy
| | - James L Van Etten
- the Nebraska Center for Virology, University of Nebraska, Lincoln, Nebraska 68583-0900, .,the Department of Plant Pathology, University of Nebraska, Lincoln, Nebraska 68583-0722
| | - Cristina De Castro
- From the Department of Agricultural Sciences, University of Napoli Federico II, Via Università 100, 80055 Portici NA, Italy,
| |
Collapse
|
15
|
Ferreira P, Cerqueira NMFSA, Coelho C, Fernandes PA, Romão MJ, Ramos MJ. New insights about the monomer and homodimer structures of the human AOX1. Phys Chem Chem Phys 2019; 21:13545-13554. [DOI: 10.1039/c9cp01040h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We conducted MD simulations to provide a comprehensive study on the human aldehyde oxidase and on the impact that the allosteric inhibitor thioridazine and malonate ions have on its structure, particularly on the catalytic tunnel.
Collapse
Affiliation(s)
- P. Ferreira
- UCIBIO@REQUIMTE
- Departamento de Química e Bioquímica
- Faculdade de Ciências
- Universidade do Porto
- 4169-007 Porto
| | - N. M. F. S. A. Cerqueira
- UCIBIO@REQUIMTE
- Departamento de Química e Bioquímica
- Faculdade de Ciências
- Universidade do Porto
- 4169-007 Porto
| | - C. Coelho
- UCIBIO@REQUIMTE
- Departamento de Química
- Faculdade de Ciências e Tecnologia
- Universidade Nova de Lisboa
- 2829-516 Caparica
| | - P. A. Fernandes
- UCIBIO@REQUIMTE
- Departamento de Química e Bioquímica
- Faculdade de Ciências
- Universidade do Porto
- 4169-007 Porto
| | - M. J. Romão
- UCIBIO@REQUIMTE
- Departamento de Química
- Faculdade de Ciências e Tecnologia
- Universidade Nova de Lisboa
- 2829-516 Caparica
| | - M. J. Ramos
- UCIBIO@REQUIMTE
- Departamento de Química e Bioquímica
- Faculdade de Ciências
- Universidade do Porto
- 4169-007 Porto
| |
Collapse
|
16
|
Ferreira P, Cerqueira NM, Brás NF, Fernandes PA, Ramos MJ. Parametrization of Molybdenum Cofactors for the AMBER Force Field. J Chem Theory Comput 2018; 14:2538-2548. [DOI: 10.1021/acs.jctc.8b00137] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pedro Ferreira
- UCIBIO-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, s/n, 4169-007 Porto, Portugal
| | - Nuno M.F.S.A. Cerqueira
- UCIBIO-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, s/n, 4169-007 Porto, Portugal
| | - Natércia F. Brás
- UCIBIO-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, s/n, 4169-007 Porto, Portugal
| | - Pedro A. Fernandes
- UCIBIO-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, s/n, 4169-007 Porto, Portugal
| | - Maria J. Ramos
- UCIBIO-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, s/n, 4169-007 Porto, Portugal
| |
Collapse
|
17
|
Coimbra JTS, Brás NF, Fernandes PA, Rangel M, Ramos MJ. Membrane partition of bis-(3-hydroxy-4-pyridinonato) zinc(ii) complexes revealed by molecular dynamics simulations. RSC Adv 2018; 8:27081-27090. [PMID: 35539964 PMCID: PMC9083369 DOI: 10.1039/c8ra03602k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 07/23/2018] [Indexed: 12/24/2022] Open
Abstract
The class of 3-hydroxy-4-pyridinone ligands is widely known and valuable for biomedical and pharmaceutical purposes. Their chelating properties towards biologically-relevant transition metal ions highlight their potential biomedical utility. A set of 3-hydroxy-4-pyridinone Zn(ii) complexes at different concentrations was studied for their ability to interact with lipid phases. We employed umbrella sampling simulations to attain the potential-of-mean force for a set of ligands and one Zn(ii) complex, as these permeated a 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) hydrated bilayer system. In addition, we used conventional molecular dynamics simulations to study the behavior of various Zn(ii) complexes in hydrated bilayer systems. This work discusses: (i) the partition of 3-hydroxy-4-pyridinone ligands to bilayer phases; (ii) self-aggregation in crowded environments of Zn(ii) complexes; and (iii) possible mechanisms for the membrane translocation of Zn(ii) complexes. We observed distinct interactions for the studied complexes, and distinct membrane partition coefficients (Kmem) depending on the considered ligand. The more hydrophobic ligand, 1-hexyl-3-hydroxy-2-methyl-4(1H)-pyridinone, partitioned more favorably to lipid phases (at least two orders of magnitude higher Kmem when compared to the other ligands), and the corresponding Zn(ii) complex was also prone to self-aggregation when an increased concentration of the complex was employed. We also observed that the inclusion of a coordinated water molecule in the parameterization of the Zn(ii) coordination sphere, as proposed in the available crystallographic structure of the complex, decreased the partition coefficient and membrane permeability for the tested complex. The membrane partition of hydroxypyridinones and of zinc complexes explored by molecular dynamics.![]()
Collapse
Affiliation(s)
- João T. S. Coimbra
- UCIBIO
- REQUIMTE
- Departamento de Química e Bioquímica
- Faculdade de Ciências
- Universidade do Porto
| | - Natércia F. Brás
- UCIBIO
- REQUIMTE
- Departamento de Química e Bioquímica
- Faculdade de Ciências
- Universidade do Porto
| | - Pedro A. Fernandes
- UCIBIO
- REQUIMTE
- Departamento de Química e Bioquímica
- Faculdade de Ciências
- Universidade do Porto
| | - Maria Rangel
- LAQV
- REQUIMTE
- Instituto de Ciências Biomédicas de Abel Salazar
- Universidade do Porto
- 4050-313 Porto
| | - Maria J. Ramos
- UCIBIO
- REQUIMTE
- Departamento de Química e Bioquímica
- Faculdade de Ciências
- Universidade do Porto
| |
Collapse
|
18
|
Substrate-analog binding and electrostatic surfaces of human manganese superoxide dismutase. J Struct Biol 2017; 199:68-75. [PMID: 28461152 DOI: 10.1016/j.jsb.2017.04.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 04/10/2017] [Accepted: 04/27/2017] [Indexed: 01/22/2023]
Abstract
Superoxide dismutases (SODs) are enzymes that play a key role in protecting cells from toxic oxygen metabolites by disproportionation of two molecules of superoxide into molecular oxygen and hydrogen peroxide via cyclic reduction and oxidation at the active site metal. The azide anion is a potent competitive inhibitor that binds directly to the metal and is used as a substrate analog to superoxide in studies of SOD. The crystal structure of human MnSOD-azide complex was solved and shows the putative binding position of superoxide, providing a model for binding to the active site. Azide is bound end-on at the sixth coordinate position of the manganese ion. Tetrameric electrostatic surfaces were calculated incorporating accurate partial charges for the active site in three states, including a state with superoxide coordinated to the metal using the position of azide as a model. These show facilitation of the anionic ligand to the active site pit via a 'valley' of positively-charged surface patches. Surrounding ridges of negative charge help guide the superoxide anion. Within the active site pit, Arg173 and Glu162 further guide and align superoxide for efficient catalysis. Superoxide coordination at the sixth position causes the electrostatic surface of the active site pit to become nearly neutral. A model for electrostatic-mediated diffusion, and efficient binding of superoxide for catalysis is presented.
Collapse
|
19
|
Abstract
Metal ions play significant roles in numerous fields including chemistry, geochemistry, biochemistry, and materials science. With computational tools increasingly becoming important in chemical research, methods have emerged to effectively face the challenge of modeling metal ions in the gas, aqueous, and solid phases. Herein, we review both quantum and classical modeling strategies for metal ion-containing systems that have been developed over the past few decades. This Review focuses on classical metal ion modeling based on unpolarized models (including the nonbonded, bonded, cationic dummy atom, and combined models), polarizable models (e.g., the fluctuating charge, Drude oscillator, and the induced dipole models), the angular overlap model, and valence bond-based models. Quantum mechanical studies of metal ion-containing systems at the semiempirical, ab initio, and density functional levels of theory are reviewed as well with a particular focus on how these methods inform classical modeling efforts. Finally, conclusions and future prospects and directions are offered that will further enhance the classical modeling of metal ion-containing systems.
Collapse
Affiliation(s)
| | - Kenneth M. Merz
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute of Cyber-Enabled Research, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
20
|
Leonarski F, D’Ascenzo L, Auffinger P. Binding of metals to purine N7 nitrogen atoms and implications for nucleic acids: A CSD survey. Inorganica Chim Acta 2016. [DOI: 10.1016/j.ica.2016.04.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
21
|
Zheng S, Tang Q, He J, Du S, Xu S, Wang C, Xu Y, Lin F. VFFDT: A New Software for Preparing AMBER Force Field Parameters for Metal-Containing Molecular Systems. J Chem Inf Model 2016; 56:811-8. [PMID: 26998926 DOI: 10.1021/acs.jcim.5b00687] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Force fields are fundamental to molecular dynamics simulations. However, the incompleteness of force field parameters has been a long-standing problem, especially for metal-related systems. In our previous work, we adopted the Seminario method based on the Hessian matrix to systematically derive the zinc-related force field parameters for AMBER. In this work, in order to further simplify the whole protocol, we have implemented a user-friendly Visual Force Field Derivation Toolkit (VFFDT) to derive the force field parameters via simply clicking on the bond or angle in the 3D viewer, and we have further extended our previous program to support the Hessian matrix output from a variety of quantum mechanics (QM) packages, including Gaussian 03/09, ORCA 3.0, QChem, GAMESS-US, and MOPAC 2009/2012. In this toolkit, a universal VFFDT XYZ file format containing the raw Hessian matrix is available for all of the QM packages, and an instant force field parametrization protocol based on a semiempirical quantum mechanics (SQM) method is introduced. The new function that can automatically obtain the relevant parameters for zinc, copper, iron, etc., which can be exported in AMBER Frcmod format, has been added. Furthermore, our VFFDT program can read and write files in AMBER Prepc, AMBER Frcmod, and AMBER Mol2 format and can also be used to customize, view, copy, and paste the force field parameters in the context of the 3D viewer, which provides utilities complementary to ANTECHAMBER, MCPB, and MCPB.py in the AmberTools.
Collapse
Affiliation(s)
- Suqing Zheng
- School of Pharmaceutical Sciences, Wenzhou Medical University , Wenzhou 325035, P. R. China
| | - Qing Tang
- School of Pharmaceutical Sciences, Wenzhou Medical University , Wenzhou 325035, P. R. China
| | - Jian He
- Center for Translational Medicine, Department of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , 457 Zhongshan Road, Shahekou, Dalian, Liaoning 116023, P. R. China
| | - Shiyu Du
- Engineering Laboratory of Specialty Fibers and Nuclear Energy Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , 519 Zhuangshi Avenue, Zhenhai, Ningbo, Zhejiang 315201, P. R. China
| | - Shaofang Xu
- School of Pharmaceutical Sciences, Wenzhou Medical University , Wenzhou 325035, P. R. China
| | - Chaojie Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University , Wenzhou 325035, P. R. China
| | - Yong Xu
- Center of Chemical Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , 190 Kaiyuan Avenue, Guangzhou Science Park, Guangzhou, Guangdong 510530, P. R. China
| | - Fu Lin
- School of Pharmaceutical Sciences, Wenzhou Medical University , Wenzhou 325035, P. R. China
| |
Collapse
|
22
|
Komuro Y, Re S, Kobayashi C, Muneyuki E, Sugita Y. CHARMM Force-Fields with Modified Polyphosphate Parameters Allow Stable Simulation of the ATP-Bound Structure of Ca(2+)-ATPase. J Chem Theory Comput 2015; 10:4133-42. [PMID: 26588553 DOI: 10.1021/ct5004143] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Adenosine triphosphate (ATP) is an indispensable energy source in cells. In a wide variety of biological phenomena like glycolysis, muscle contraction/relaxation, and active ion transport, chemical energy released from ATP hydrolysis is converted to mechanical forces to bring about large-scale conformational changes in proteins. Investigation of structure-function relationships in these proteins by molecular dynamics (MD) simulations requires modeling of ATP in solution and ATP bound to proteins with accurate force-field parameters. In this study, we derived new force-field parameters for the triphosphate moiety of ATP based on the high-precision quantum calculations of methyl triphosphate. We tested our new parameters on membrane-embedded sarcoplasmic reticulum Ca(2+)-ATPase and four soluble proteins. The ATP-bound structure of Ca(2+)-ATPase remains stable during MD simulations, contrary to the outcome in shorter simulations using original parameters. Similar results were obtained with the four ATP-bound soluble proteins. The new force-field parameters were also tested by investigating the range of conformations sampled during replica-exchange MD simulations of ATP in explicit water. Modified parameters allowed a much wider range of conformational sampling compared with the bias toward extended forms with original parameters. A diverse range of structures agrees with the broad distribution of ATP conformations in proteins deposited in the Protein Data Bank. These simulations suggest that the modified parameters will be useful in studies of ATP in solution and of the many ATP-utilizing proteins.
Collapse
Affiliation(s)
- Yasuaki Komuro
- Graduate School of Science and Engineering, Chuo University , 1-13-27, Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan.,RIKEN Theoretical Molecular Science Laboratory , 2-1, Hirosawa, Wako-shi, Saitama 351-0198, Japan.,RIKEN Advanced Institute for Computational Science, International Medical Device Alliance (IMDA) 6F , 1-6-5 minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Suyong Re
- RIKEN Theoretical Molecular Science Laboratory , 2-1, Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Chigusa Kobayashi
- RIKEN Advanced Institute for Computational Science, International Medical Device Alliance (IMDA) 6F , 1-6-5 minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Eiro Muneyuki
- Graduate School of Science and Engineering, Chuo University , 1-13-27, Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Yuji Sugita
- RIKEN Theoretical Molecular Science Laboratory , 2-1, Hirosawa, Wako-shi, Saitama 351-0198, Japan.,RIKEN Advanced Institute for Computational Science, International Medical Device Alliance (IMDA) 6F , 1-6-5 minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,RIKEN Quantitative Biology Center, International Medical Device Alliance (IMDA) 6F , 1-6-5 minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,RIKEN iTHES , 2-1, Hirosawa, Wako-shi, Saitama 351-0198, Japan
| |
Collapse
|
23
|
Liu JY, Chen XE, Zhang YL. Insights into the key interactions between human protein phosphatase 5 and cantharidin using molecular dynamics and site-directed mutagenesis bioassays. Sci Rep 2015; 5:12359. [PMID: 26190207 PMCID: PMC4507179 DOI: 10.1038/srep12359] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 05/05/2015] [Indexed: 01/23/2023] Open
Abstract
Serine/threonine protein phosphatase 5 (PP5) is a promising novel target for anticancer therapies. This work aims to uncover the key interactions at the atomic level between PP5 and three inhibitors (cantharidin, norcantharidin and endothall). We found that, unlike previous report, Arg 100 contributes less to PP5-inhibitor binding, and the residues His 69, Asn 128, His 129, Arg 225, His 252 and Arg 250 are of importance to PP5-inhibitor binding. The hydrophobic interactions established between the residues Val 254, Phe 271 and Tyr 276, especially Glu 253, are very important to enhance the inhibitive interaction. We suggested that, to increase the inhibitory activity, the interactions of inhibitor with three negatively charged unfavorable interaction residues, Asp 99, Glu 130 and Asp 213, should be avoided. However, the interactions of inhibitor with favorable interaction residue Arg 250 could enhance the inhibitory activity. The Manganese ion 2 (MN2) unfavorably contribute to the total interaction free energies. The coordination between MN2 and chemical group of inhibitor should be eliminated. This work provides insight into how cantharidin and its analogs bind to PP5c at the atomic level and will facilitate modification of cantharidin-like chemicals to rationally develop more specific and less cytotoxic anti-cancer drugs.
Collapse
Affiliation(s)
- Ji-Yuan Liu
- Key Laboratory of Plant Protection Resources &Pest Management of the Ministry of Education, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xi-En Chen
- Key Laboratory of Plant Protection Resources &Pest Management of the Ministry of Education, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ya-Lin Zhang
- Key Laboratory of Plant Protection Resources &Pest Management of the Ministry of Education, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
24
|
Coimbra JTS, Moniz T, Brás NF, Ivanova G, Fernandes PA, Ramos MJ, Rangel M. Relevant interactions of antimicrobial iron chelators and membrane models revealed by nuclear magnetic resonance and molecular dynamics simulations. J Phys Chem B 2014; 118:14590-601. [PMID: 25482538 DOI: 10.1021/jp509491p] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The dynamics and interaction of 3-hydroxy-4-pyridinone fluorescent iron chelators, exhibiting antimicrobial properties, with biological membranes were evaluated through NMR and molecular dynamics simulations. Both NMR and MD simulation results support a strong interaction of the chelators with the lipid bilayers that seems to be strengthened for the rhodamine containing compounds, in particular for compounds that include ethyl groups and a thiourea link. For the latter type of compounds the interaction reaches the hydrophobic core of the lipid bilayer. The molecular docking and MD simulations performed for the potential interaction of the chelators with DC-SIGN receptors provide valuable information regarding the cellular uptake of these compounds since the results show that the fluorophore fragment of the molecular framework is essential for an efficient binding. Putting together our previous and present results, we put forward the hypothesis that all the studied fluorescent chelators have access to the cell, their uptake occurs through different pathways and their permeation properties correlate with a better access to the cell and its compartments and, consequently, with the chelators antimicrobial properties.
Collapse
Affiliation(s)
- João T S Coimbra
- REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto , Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | | | | | | | | | | | | |
Collapse
|
25
|
Cerqueira NMFSA, Coelho C, Brás NF, Fernandes PA, Garattini E, Terao M, Romão MJ, Ramos MJ. Insights into the structural determinants of substrate specificity and activity in mouse aldehyde oxidases. J Biol Inorg Chem 2014; 20:209-17. [PMID: 25287365 DOI: 10.1007/s00775-014-1198-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 09/19/2014] [Indexed: 01/07/2023]
Abstract
In this work, a combination of homology modeling and molecular dynamics (MD) simulations was used to investigate the factors that modulate substrate specificity and activity of the mouse AOX isoforms: mAOX1, mAOX2 (previously mAOX3l1), mAOX3 and mAOX4. The results indicate that the AOX isoform structures are highly preserved and even more conserved than the corresponding amino acid sequences. The only differences are at the protein surface and substrate-binding site region. The substrate-binding site of all isoforms consists of two regions: the active site, which is highly conserved among all isoforms, and a isoform-specific region located above. We predict that mAOX1 accepts a broader range of substrates of different shape, size and nature relative to the other isoforms. In contrast, mAOX4 appears to accept a more restricted range of substrates. Its narrow and hydrophobic binding site indicates that it only accepts small hydrophobic substrates. Although mAOX2 and mAOX3 are very similar to each other, we propose the following pairs of overlapping substrate specificities: mAOX2/mAOX4 and mAOX3/mAXO1. Based on these considerations, we propose that the catalytic activity between all isoforms should be similar but the differences observed in the binding site might influence the substrate specificity of each enzyme. These results also suggest that the presence of several AOX isoforms in mouse allows them to oxidize more efficiently a wider range of substrates. This contrasts with the same or other organisms that only express one isoform and are less efficient or incapable of oxidizing the same type of substrates.
Collapse
Affiliation(s)
- Nuno M F S A Cerqueira
- UCIBIO@REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007, Porto, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Yang ZZ, Wang JJ, Zhao DX. Valence state parameters of all transition metal atoms in metalloproteins-development of ABEEMσπ fluctuating charge force field. J Comput Chem 2014; 35:1690-706. [DOI: 10.1002/jcc.23676] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 06/01/2014] [Accepted: 06/18/2014] [Indexed: 01/08/2023]
Affiliation(s)
- Zhong-Zhi Yang
- School of Chemistry and Chemical Engineering; Department of Chemistry, Liaoning Normal University; Dalian China 116029
| | - Jian-Jiang Wang
- School of Chemistry and Chemical Engineering; Department of Chemistry, Liaoning Normal University; Dalian China 116029
| | - Dong-Xia Zhao
- School of Chemistry and Chemical Engineering; Department of Chemistry, Liaoning Normal University; Dalian China 116029
| |
Collapse
|
27
|
Brás NF, Fernandes PA, Ramos MJ. QM/MM Study and MD Simulations on the Hypertension Regulator Angiotensin-Converting Enzyme. ACS Catal 2014. [DOI: 10.1021/cs500093h] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Natércia F. Brás
- REQUIMTE,
Departamento de
Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Pedro A. Fernandes
- REQUIMTE,
Departamento de
Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Maria J. Ramos
- REQUIMTE,
Departamento de
Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| |
Collapse
|
28
|
Duarte F, Bauer P, Barrozo A, Amrein BA, Purg M, Aqvist J, Kamerlin SCL. Force field independent metal parameters using a nonbonded dummy model. J Phys Chem B 2014; 118:4351-62. [PMID: 24670003 PMCID: PMC4180081 DOI: 10.1021/jp501737x] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
![]()
The cationic dummy atom approach
provides a powerful nonbonded
description for a range of alkaline-earth and transition-metal centers,
capturing both structural and electrostatic effects. In this work
we refine existing literature parameters for octahedrally coordinated
Mn2+, Zn2+, Mg2+, and Ca2+, as well as providing new parameters for Ni2+, Co2+, and Fe2+. In all the cases, we are able to reproduce
both M2+–O distances and experimental solvation
free energies, which has not been achieved to date for transition
metals using any other model. The parameters have also been tested
using two different water models and show consistent performance.
Therefore, our parameters are easily transferable to any force field
that describes nonbonded interactions using Coulomb and Lennard-Jones
potentials. Finally, we demonstrate the stability of our parameters
in both the human and Escherichia coli variants of
the enzyme glyoxalase I as showcase systems, as both enzymes are active
with a range of transition metals. The parameters presented in this
work provide a valuable resource for the molecular simulation community,
as they extend the range of metal ions that can be studied using classical
approaches, while also providing a starting point for subsequent parametrization
of new metal centers.
Collapse
Affiliation(s)
- Fernanda Duarte
- Department of Cell and Molecular Biology, Uppsala University , BMC Box 596, S-751 24 Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
29
|
Mahro M, Brás NF, Cerqueira NMFSA, Teutloff C, Coelho C, Romão MJ, Leimkühler S. Identification of crucial amino acids in mouse aldehyde oxidase 3 that determine substrate specificity. PLoS One 2013; 8:e82285. [PMID: 24358164 PMCID: PMC3864932 DOI: 10.1371/journal.pone.0082285] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 11/01/2013] [Indexed: 01/23/2023] Open
Abstract
In order to elucidate factors that determine substrate specificity and activity of mammalian molybdo-flavoproteins we performed site directed mutagenesis of mouse aldehyde oxidase 3 (mAOX3). The sequence alignment of different aldehyde oxidase (AOX) isoforms identified variations in the active site of mAOX3 in comparison to other AOX proteins and xanthine oxidoreductases (XOR). Based on the structural alignment of mAOX3 and bovine XOR, differences in amino acid residues involved in substrate binding in XORs in comparison to AOXs were identified. We exchanged several residues in the active site to the ones found in other AOX homologues in mouse or to residues present in bovine XOR in order to examine their influence on substrate selectivity and catalytic activity. Additionally we analyzed the influence of the [2Fe-2S] domains of mAOX3 on its kinetic properties and cofactor saturation. We applied UV-VIS and EPR monitored redox-titrations to determine the redox potentials of wild type mAOX3 and mAOX3 variants containing the iron-sulfur centers of mAOX1. In addition, a combination of molecular docking and molecular dynamic simulations (MD) was used to investigate factors that modulate the substrate specificity and activity of wild type and AOX variants. The successful conversion of an AOX enzyme to an XOR enzyme was achieved exchanging eight residues in the active site of mAOX3. It was observed that the absence of the K889H exchange substantially decreased the activity of the enzyme towards all substrates analyzed, revealing that this residue has an important role in catalysis.
Collapse
Affiliation(s)
- Martin Mahro
- Department of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Natércia F. Brás
- REQUIMTE, Departamento de Quimica, Faculdade de Ciencias, Universidade do Porto, Porto, Portugal
| | | | - Christian Teutloff
- Institute for Experimentalphysics, Free University of Berlin, Berlin, Germany
| | - Catarina Coelho
- REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Maria João Romão
- REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Silke Leimkühler
- Department of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| |
Collapse
|