1
|
Jiang A, Schaefer HF, Turney JM. Linear-scaling quadruple excitations in local pair natural orbital coupled-cluster theory. J Chem Phys 2025; 162:144102. [PMID: 40197569 DOI: 10.1063/5.0257672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Accepted: 03/20/2025] [Indexed: 04/10/2025] Open
Abstract
We present a fast, asymptotically linear-scaling implementation of the perturbative quadruples energy correction in coupled-cluster theory using local natural orbitals. Our work follows the domain-based local pair natural orbital (DLPNO) approach previously applied to lower levels of excitations in coupled-cluster theory. Our DLPNO-CCSDT(Q) algorithm uses converged doubles and triples amplitudes from a preceding DLPNO-CCSDT computation to compute the quadruples amplitude and energy in the quadruples natural orbital (QNO) basis. We demonstrate the compactness of the QNO space, showing that more than 95% of the (Q) correction can be recovered using relatively loose natural orbital cutoffs, compared to the tighter cutoffs used in pair and triples natural orbitals at lower levels of coupled-cluster theory. We also highlight the accuracy of our algorithm in the computation of relative energies, which yields deviations of sub-kJ mol-1 in relative energy compared to the canonical CCSDT(Q). Timings are conducted on a series of growing linear alkanes (up to 10 carbons and 608 basis functions) and water clusters (up to 49 water molecules and 2842 basis functions) to establish the asymptotic linear-scaling of our DLPNO-(Q) algorithm.
Collapse
Affiliation(s)
- Andy Jiang
- Center for Computational Quantum Chemistry, Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
| | - Henry F Schaefer
- Center for Computational Quantum Chemistry, Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
| | - Justin M Turney
- Center for Computational Quantum Chemistry, Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
| |
Collapse
|
2
|
Jiang A, Schaefer HF, Turney JM. Linear-Scaling Local Natural Orbital-Based Full Triples Treatment in Coupled-Cluster Theory. J Chem Theory Comput 2025; 21:2386-2401. [PMID: 39981711 PMCID: PMC11912218 DOI: 10.1021/acs.jctc.4c01716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/12/2025] [Accepted: 02/13/2025] [Indexed: 02/22/2025]
Abstract
We present an efficient, asymptotically linear-scaling implementation of the canonically O ( N 8 ) coupled-cluster method with singles, doubles, and full triples excitations (CCSDT) method. We apply the domain-based local pair natural orbital (DLPNO) approach for computing CCSDT amplitudes. Our method, called DLPNO-CCSDT, uses the converged coupled-cluster amplitudes from a preceding DLPNO-CCSD(T) computation as a starting point for the solution of the CCSDT equations in the local natural orbital basis. To simplify the working equations, we t1-dress our two-electron integrals and Fock matrices, allowing our equations to take on the form of CCDT. With appropriate parameters, our method can recover more than 99.99% of the total canonical CCSDT correlation energy. In addition, we demonstrate that our method consistently yields sub-kJ mol-1 errors in relative energies when compared to canonical CCSDT, and, likewise, when computing the difference between CCSDT and CCSD(T). Finally, to highlight the low scaling of our algorithm, we present timings on linear alkanes (up to 30 carbons and 730 basis functions) and water clusters (up to 131 water molecules and 3144 basis functions).
Collapse
Affiliation(s)
- Andy Jiang
- Center for Computational
Quantum Chemistry, Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Henry F. Schaefer
- Center for Computational
Quantum Chemistry, Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Justin M. Turney
- Center for Computational
Quantum Chemistry, Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
3
|
Song Y, Zhang N, Lei Y, Guo Y, Liu W. QUEST#4X: An Extension of QUEST#4 for Benchmarking Multireference Wave Function Methods. J Chem Theory Comput 2025; 21:1119-1135. [PMID: 39874298 DOI: 10.1021/acs.jctc.4c01143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Given a number of data sets for evaluating the performance of single reference methods for the low-lying excited states of closed-shell molecules, a comprehensive data set for assessing the performance of multireference methods for the low-lying excited states of open-shell systems is still lacking. For this reason, we propose an extension (QUEST#4X) of the radical subset of QUEST#4 (J. Chem. Theory Comput. 2020, 16, 3720) to cover 110 doublet and 39 quartet excited states. Near-exact results obtained by iterative configuration interaction with selection and second-order perturbation correction (iCIPT2) are taken as benchmark to calibrate static-dynamic-static configuration interaction (SDSCI) and static-dynamic-static second-order perturbation theory (SDSPT2), which are minimal MRCI and CI-like perturbation theory, respectively. It is found that SDSCI is very close in accuracy to internally contracted multireference configuration interaction with singles and doubles (ic-MRCISD), although its computational cost is just that of one iteration of the latter. Unlike most variants of MRPT2, SDSPT2 treats single and multiple states in the same way and performs similarly to multistate n-electron valence second-order perturbation theory (MS-NEVPT2). These findings put SDSCI and SDSPT2 on a firm basis.
Collapse
Affiliation(s)
- Yangyang Song
- Qingdao Institute for Theoretical and Computational Sciences and Center for Optics Research and Engineering, Shandong University, Qingdao 266237, China
| | - Ning Zhang
- Qingdao Institute for Theoretical and Computational Sciences and Center for Optics Research and Engineering, Shandong University, Qingdao 266237, China
| | - Yibo Lei
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Shaanxi key Laboratory of Physico-Inorganic Chemistry, Northwest University, Xi'an 710127, P. R. China
| | - Yang Guo
- School of Chemistry and Chemical Engineering, Shandong University, Qingdao 266237, China
| | - Wenjian Liu
- Qingdao Institute for Theoretical and Computational Sciences and Center for Optics Research and Engineering, Shandong University, Qingdao 266237, China
| |
Collapse
|
4
|
Lao KU. Canonical coupled cluster binding benchmark for nanoscale noncovalent complexes at the hundred-atom scale. J Chem Phys 2024; 161:234103. [PMID: 39679503 DOI: 10.1063/5.0242359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 11/27/2024] [Indexed: 12/17/2024] Open
Abstract
In this study, we introduce two datasets for nanoscale noncovalent binding, featuring complexes at the hundred-atom scale, benchmarked using coupled cluster with single, double, and perturbative triple [CCSD(T)] excitations extrapolated to the complete basis set (CBS) limit. The first dataset, L14, comprises 14 complexes with canonical CCSD(T)/CBS benchmarks, extending the applicability of CCSD(T)/CBS binding benchmarks to systems as large as 113 atoms. The second dataset, vL11, consists of 11 even larger complexes, evaluated using the local CCSD(T)/CBS method with stringent thresholds, covering systems up to 174 atoms. We compare binding energies obtained from local CCSD(T) and fixed-node diffusion Monte Carlo (FN-DMC), which have previously shown discrepancies exceeding the chemical accuracy threshold of 1 kcal/mol in large complexes, with the new canonical CCSD(T)/CBS results. While local CCSD(T)/CBS agrees with canonical CCSD(T)/CBS within binding uncertainties, FN-DMC consistently underestimates binding energies in π-π complexes by over 1 kcal/mol. Potential sources of error in canonical CCSD(T)/CBS are discussed, and we argue that the observed discrepancies are unlikely to originate from CCSD(T) itself. Instead, the fixed-node approximation in FN-DMC warrants further investigation to elucidate these binding discrepancies. Using these datasets as reference, we evaluate the performance of various electronic structure methods, semi-empirical approaches, and machine learning potentials for nanoscale complexes. Based on computational accuracy and stability across system sizes, we recommend MP2+aiD(CCD), PBE0+D4, and ωB97X-3c as reliable methods for investigating noncovalent interactions in nanoscale complexes, maintaining their promising performance observed in smaller systems.
Collapse
Affiliation(s)
- Ka Un Lao
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, USA
| |
Collapse
|
5
|
Li H, Brémond E, Sancho-García JC, Pérez-Jiménez ÁJ, Scalmani G, Frisch MJ, Adamo C. Axial-equatorial equilibrium in substituted cyclohexanes: a DFT perspective on a small but complex problem. Phys Chem Chem Phys 2024; 26:8094-8105. [PMID: 38384253 DOI: 10.1039/d3cp06141h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
In Chemistry, complexity is not necessarily associated to large systems, as illustrated by the textbook example of axial-equatorial equilibrium in mono-substituted cyclohexanes. The difficulty in modelling such a simple isomerization is related to the need for reproducing the delicate balance between two forces, with opposite effects, namely the attractive London dispersion and the repulsive steric interactions. Such balance is a stimulating challenge for density-functional approximations and it is systematically explored here by considering 20 mono-substituted cyclohexanes. In comparison to highly accurate CCSD(T) reference calculations, their axial-equatorial equilibrium is studied with a large set of 48 exchange-correlation approximations, spanning from semilocal to hybrid to more recent double hybrid functionals. This dataset, called SAV20 (as Steric A-values for 20 molecules), allows to highlight the difficulties encountered by common and more original DFT approaches, including those corrected for dispersion with empirical potentials, the 6-31G*-ACP model, and our cost-effective PBE-QIDH/DH-SVPD protocol, in modeling these challenging interactions. Interestingly, the performance of the approaches considered in this contribution on the SAV20 dataset does not correlate with that obtained with other more standard datasets, such as S66, IDISP or NC15, thus indicating that SAV20 covers physicochemical features not already considered in previous noncovalent interaction benchmarks.
Collapse
Affiliation(s)
- Hanwei Li
- Chimie ParisTech, PSL Research University, CNRS, Institute of Chemistry for Health and Life Sciences, F-75005 Paris, France.
| | - Eric Brémond
- Université Paris Cité, ITODYS, CNRS, F-75006 Paris, France
| | | | | | | | | | - Carlo Adamo
- Chimie ParisTech, PSL Research University, CNRS, Institute of Chemistry for Health and Life Sciences, F-75005 Paris, France.
| |
Collapse
|
6
|
Abstract
![]()
In this paper, we extend the rank-reduced coupled-cluster
formalism
to the calculation of non-iterative energy corrections due to quadruple
excitations. There are two major components of the proposed formalism.
The first is an approximate compression of the quadruple excitation
amplitudes using the Tucker format. The second is a modified functional
used for the evaluation of the corrections which gives exactly the
same results for the exact amplitudes, but is less susceptible to
errors resulting from the aforementioned compression. We show, both
theoretically and numerically, that the computational cost of the
proposed method scales as the seventh power of the system size. Using
reference results for a set of small molecules, the method is calibrated
to deliver relative accuracy of a few percent in energy corrections.
To illustrate the potential of the theory, we calculate the isomerization
energy of ortho/meta benzyne (C6H4) and the barrier height for the Cope rearrangement
in bullvalene (C10H10). The method retains a
near-black-box nature of the conventional coupled-cluster formalism
and depends on only one additional parameter that controls the accuracy.
Collapse
Affiliation(s)
- Michał Lesiuk
- Faculty of Chemistry, University of Warsaw, Pasteura 1, Warsaw 02-093, Poland
| |
Collapse
|
7
|
Sparrow ZM, Ernst BG, Quady TK, DiStasio RA. Uniting Nonempirical and Empirical Density Functional Approximation Strategies Using Constraint-Based Regularization. J Phys Chem Lett 2022; 13:6896-6904. [PMID: 35863751 DOI: 10.1021/acs.jpclett.2c00643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this work, we present a general framework that unites the two primary strategies for constructing density functional approximations (DFAs): nonempirical (NE) constraint satisfaction and empirical (E) data-driven optimization. The proposed method employs B-splines, bell-shaped spline functions with compact support, to construct each inhomogeneity correction factor (ICF). This choice offers several distinct advantages over traditional polynomial expansions by enabling explicit enforcement of linear and nonlinear constraints as well as ICF smoothness using Tikhonov and penalized B-splines (P-splines) regularization. As proof-of-concept, we use the so-called CASE (constrained and smoothed empirical) framework to construct a constraint-satisfying and data-driven global hybrid that exhibits enhanced performance across a diverse set of chemical properties. We argue that the CASE approach can be used to generate DFAs that maintain the physical rigor and transferability of NE-DFAs while leveraging high-quality quantum-mechanical data to remove the arbitrariness of ansatz selection and improve performance.
Collapse
Affiliation(s)
- Zachary M Sparrow
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Brian G Ernst
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Trine K Quady
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Robert A DiStasio
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
8
|
Altun A, Neese F, Bistoni G. Open-Shell Variant of the London Dispersion-Corrected Hartree-Fock Method (HFLD) for the Quantification and Analysis of Noncovalent Interaction Energies. J Chem Theory Comput 2022; 18:2292-2307. [PMID: 35167304 PMCID: PMC9009084 DOI: 10.1021/acs.jctc.1c01295] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The London dispersion
(LD)-corrected Hartree–Fock (HF) method
(HFLD) is an ab initio approach for the quantification
and analysis of noncovalent interactions (NCIs) in large systems that
is based on the domain-based local pair natural orbital coupled-cluster
(DLPNO-CC) theory. In the original HFLD paper, we discussed the implementation,
accuracy, and efficiency of its closed-shell variant. Herein, an extension
of this method to open-shell molecular systems is presented. Its accuracy
is tested on challenging benchmark sets for NCIs, using CCSD(T) energies
at the estimated complete basis set limit as reference. The HFLD scheme
was found to be as accurate as the best-performing dispersion-corrected
exchange-correlation functionals, while being nonempirical and equally
efficient. In addition, it can be combined with the well-established
local energy decomposition (LED) for the analysis of NCIs, thus yielding
additional physical insights.
Collapse
Affiliation(s)
- Ahmet Altun
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Giovanni Bistoni
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany.,Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy
| |
Collapse
|
9
|
Lesiuk M. Near-Exact CCSDT Energetics from Rank-Reduced Formalism Supplemented by Non-iterative Corrections. J Chem Theory Comput 2021; 17:7632-7647. [PMID: 34860018 DOI: 10.1021/acs.jctc.1c00933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We introduce a non-iterative energy correction, added on top of the rank-reduced coupled-cluster method with single, double, and triple substitutions, that accounts for excitations excluded from the parent triple excitation subspace. The formula for the correction is derived by employing the coupled-cluster Lagrangian formalism, with an additional assumption that the parent excitation subspace is closed under the action of the Fock operator. Owing to the rank-reduced form of the triple excitation amplitudes tensor, the computational cost of evaluating the correction scales as N7, where N is the system size. The accuracy and computational efficiency of the proposed method is assessed for both total and relative correlation energies. We show that the non-iterative correction can fulfill two separate roles. If the accuracy level of a fraction of kJ/mol is sufficient for a given system, the correction significantly reduces the dimension of the parent triple excitation subspace needed in the iterative part of the calculations. Simultaneously, it enables reproducing the exact CCSDT results to an accuracy level below 0.1 kJ/mol, with a larger, yet still reasonable, dimension of the parent excitation subspace. This typically can be achieved at a computational cost only several times larger than required for the CCSD(T) method. The proposed method retains the black-box features of the single-reference coupled-cluster theory; the dimension of the parent excitation subspace remains the only additional parameter that has to be specified.
Collapse
Affiliation(s)
- Michał Lesiuk
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| |
Collapse
|
10
|
Loipersberger M, Bertels LW, Lee J, Head-Gordon M. Exploring the Limits of Second- and Third-Order Møller-Plesset Perturbation Theories for Noncovalent Interactions: Revisiting MP2.5 and Assessing the Importance of Regularization and Reference Orbitals. J Chem Theory Comput 2021; 17:5582-5599. [PMID: 34382394 PMCID: PMC9948597 DOI: 10.1021/acs.jctc.1c00469] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This work systematically assesses the influence of reference orbitals, regularization, and scaling on the performance of second- and third-order Møller-Plesset perturbation theory wave function methods for noncovalent interactions (NCIs). Testing on 19 data sets (A24, DS14, HB15, HSG, S22, X40, HW30, NC15, S66, AlkBind12, CO2Nitrogen16, HB49, Ionic43, TA13, XB18, Bauza30, CT20, XB51, and Orel26rad) covers a wide range of different NCIs including hydrogen bonding, dispersion, and halogen bonding. Inclusion of potential energy surfaces from different hydrogen bonds and dispersion-bound complexes gauges accuracy for nonequilibrium geometries. Fifteen methods are tested. In notation where nonstandard choices of orbitals are denoted as methods:orbitals, these are MP2, κ-MP2, SCS-MP2, OOMP2, κ-OOMP2, MP3, MP2.5, MP3:OOMP2, MP2.5:OOMP2, MP3:κ-OOMP2, MP2.5:κ-OOMP2, κ-MP3:κ-OOMP2, κ-MP2.5:κ-OOMP2, MP3:ωB97X-V, and MP2.5:ωB97X-V. Furthermore, we compare these methods to the ωB97M-V and B3LYP-D3 density functionals, as well as CCSD. We find that the κ-regularization (κ = 1.45 au was used throughout) improves the energetics in almost all data sets for both MP2 (in 17 out of 19 data sets) and OOMP2 (16 out of 19). The improvement is significant (e.g., the root-mean-square deviation (RMSD) for the S66 data set is 0.29 kcal/mol for κ-OOMP2 versus 0.67 kcal/mol for MP2) and for interactions between stable closed-shell molecules, not strongly dependent on the reference orbitals. Scaled MP3 (with a factor of 0.5) using κ-OOMP2 reference orbitals (MP2.5:κ-OOMP2) provides significantly more accurate results for NCIs across all data sets with noniterative O(N6) scaling (S66 data set RMSD: 0.10 kcal/mol). Across the entire data set of 356 points, the improvement over standard MP2.5 is approximately a factor of 2: RMSD for MP3:κ-OOMP2 is 0.25 vs 0.50 kcal/mol for MP2.5. The use of high-quality density functional reference orbitals (ωB97X-V) also significantly improves the results of MP2.5 for NCI over a Hartree-Fock orbital reference. All our assessments and conclusions are based on the use of the medium-sized aug-cc-pVTZ basis to yield results that are directly compared against complete basis set limit reference values.
Collapse
Affiliation(s)
| | - Luke W. Bertels
- Department of Chemistry, University of California, Berkeley, California 94720, USA,Present Address: Department of Chemistry, Virginia Tech, Blacksburg, VA 24061, USA
| | - Joonho Lee
- Department of Chemistry, University of California, Berkeley, California 94720, USA,Present Address: Department of Chemistry, Columbia University, NY
| | - Martin Head-Gordon
- Department of Chemistry, University of California, Berkeley, California 94720, USA,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
11
|
Jankowski P, Grabowska E, Szalewicz K. On the role of coupled-clusters' full triple and perturbative quadruple excitations on rovibrational spectra of van der Waals complexes. Mol Phys 2021. [DOI: 10.1080/00268976.2021.1955989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Piotr Jankowski
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Ewelina Grabowska
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Krzysztof Szalewicz
- Department of Physics and Astronomy, University of Delaware, Newark, DE, USA
| |
Collapse
|
12
|
Madajczyk K, Żuchowski PS, Brzȩk F, Rajchel Ł, Kȩdziera D, Modrzejewski M, Hapka M. Dataset of noncovalent intermolecular interaction energy curves for 24 small high-spin open-shell dimers. J Chem Phys 2021; 154:134106. [PMID: 33832261 DOI: 10.1063/5.0043793] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We introduce a dataset of 24 interaction energy curves of open-shell noncovalent dimers, referred to as the O24 × 5 dataset. The dataset consists of high-spin dimers up to 11 atoms selected to assure diversity with respect to interaction types: dispersion, electrostatics, and induction. The benchmark interaction energies are obtained at the restricted open-shell CCSD(T) level of theory with complete basis set extrapolation (from aug-cc-pVQZ to aug-cc-pV5Z). We have analyzed the performance of selected wave function methods MP2, CCSD, and CCSD(T) as well as the F12a and F12b variants of coupled-cluster theory. In addition, we have tested dispersion-corrected density functional theory methods based on the PBE exchange-correlation model. The O24 × 5 dataset is a challenge to approximate methods due to the wide range of interaction energy strengths it spans. For the dispersion-dominated and mixed-type subsets, any tested method that does not include the triples contribution yields errors on the order of tens of percent. The electrostatic subset is less demanding with errors that are typically an order of magnitude smaller than the mixed and dispersion-dominated subsets.
Collapse
Affiliation(s)
- Katarzyna Madajczyk
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, ul. Grudzia̧dzka 5, 87-100 Toruń, Poland
| | - Piotr S Żuchowski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, ul. Grudzia̧dzka 5, 87-100 Toruń, Poland
| | - Filip Brzȩk
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, ul. Grudzia̧dzka 5, 87-100 Toruń, Poland
| | - Łukasz Rajchel
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, ul. Grudzia̧dzka 5, 87-100 Toruń, Poland
| | - Dariusz Kȩdziera
- Faculty of Chemistry, Nicolaus Copernicus University, ul. Gagarina 7, Toruń, Poland
| | - Marcin Modrzejewski
- Faculty of Chemistry, University of Warsaw, ul. L. Pasteura 1, 02-093 Warsaw, Poland
| | - Michał Hapka
- Faculty of Chemistry, University of Warsaw, ul. L. Pasteura 1, 02-093 Warsaw, Poland
| |
Collapse
|
13
|
Karton A, Martin JML. Prototypical π-π dimers re-examined by means of high-level CCSDT(Q) composite ab initio methods. J Chem Phys 2021; 154:124117. [PMID: 33810692 DOI: 10.1063/5.0043046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The benzene-ethene and parallel-displaced (PD) benzene-benzene dimers are the most fundamental systems involving π-π stacking interactions. Several high-level ab initio investigations calculated the binding energies of these dimers using the coupled-cluster with singles, doubles, and quasi-perturbative triple excitations [CCSD(T)] method at the complete basis set [CBS] limit using various approaches such as reduced virtual orbital spaces and/or MP2-based basis set corrections. Here, we obtain CCSDT(Q) binding energies using a Weizmann-3-type approach. In particular, we extrapolate the self-consistent field (SCF), CCSD, and (T) components using large heavy-atom augmented Gaussian basis sets [namely, SCF/jul-cc-pV{5,6}Z, CCSD/jul-cc-pV{Q,5}Z, and (T)/jul-cc-pV{T,Q}Z]. We consider post-CCSD(T) contributions up to CCSDT(Q), inner-shell, scalar-relativistic, and Born-Oppenheimer corrections. Overall, our best relativistic, all-electron CCSDT(Q) binding energies are ∆Ee,all,rel = 1.234 (benzene-ethene) and 2.550 (benzene-benzene PD), ∆H0 = 0.949 (benzene-ethene) and 2.310 (benzene-benzene PD), and ∆H298 = 0.130 (benzene-ethene) and 1.461 (benzene-benzene PD) kcal mol-1. Important conclusions are reached regarding the basis set convergence of the SCF, CCSD, (T), and post-CCSD(T) components. Explicitly correlated calculations are used as a sanity check on the conventional binding energies. Overall, post-CCSD(T) contributions are destabilizing by 0.028 (benzene-ethene) and 0.058 (benzene-benzene) kcal mol-1, and thus, they cannot be neglected if sub-chemical accuracy is sought (i.e., errors below 0.1 kcal mol-1). CCSD(T)/aug-cc-pwCVTZ core-valence corrections increase the binding energies by 0.018 (benzene-ethene) and 0.027 (benzene-benzene PD) kcal mol-1. Scalar-relativistic and diagonal Born-Oppenheimer corrections are negligibly small. We use our best CCSDT(Q) binding energies to evaluate the performance of MP2-based, CCSD-based, and lower-cost composite ab initio procedures for obtaining these challenging π-π stacking binding energies.
Collapse
Affiliation(s)
- Amir Karton
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Jan M L Martin
- Department of Organic Chemistry, Weizmann Institute of Science, 76100 Reḥovot, Israel
| |
Collapse
|
14
|
Quintas-Sánchez E, Dawes R. Spectroscopy and Scattering Studies Using Interpolated Ab Initio Potentials. Annu Rev Phys Chem 2021; 72:399-421. [PMID: 33503385 DOI: 10.1146/annurev-physchem-090519-051837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The Born-Oppenheimer potential energy surface (PES) has come a long way since its introduction in the 1920s, both conceptually and in predictive power for practical applications. Nevertheless, nearly 100 years later-despite astonishing advances in computational power-the state-of-the-art first-principles prediction of observables related to spectroscopy and scattering dynamics is surprisingly limited. For example, the water dimer, (H2O)2, with only six nuclei and 20 electrons, still presents a formidable challenge for full-dimensional variational calculations of bound states and is considered out of reach for rigorous scattering calculations. The extremely poor scaling of the most rigorous quantum methods is fundamental; however, recent progress in development of approximate methodologies has opened the door to fairly routine high-quality predictions, unthinkable 20 years ago. In this review, in relation to the workflow of spectroscopy and/or scattering studies, we summarize progress and challenges in the component areas of electronic structure calculations, PES fitting, and quantum dynamical calculations.
Collapse
Affiliation(s)
- Ernesto Quintas-Sánchez
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, USA;
| | - Richard Dawes
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, USA;
| |
Collapse
|
15
|
Lesiuk M. Implementation of the Coupled-Cluster Method with Single, Double, and Triple Excitations using Tensor Decompositions. J Chem Theory Comput 2019; 16:453-467. [DOI: 10.1021/acs.jctc.9b00985] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Michał Lesiuk
- Faculty of Chemistry, University of Warsaw, Pasteura 1, Warsaw, 02-093, Poland
| |
Collapse
|
16
|
Kodrycka M, Patkowski K. Platinum, gold, and silver standards of intermolecular interaction energy calculations. J Chem Phys 2019; 151:070901. [DOI: 10.1063/1.5116151] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Monika Kodrycka
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, USA
| | - Konrad Patkowski
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, USA
| |
Collapse
|
17
|
Townsend J, Braunscheidel NM, Vogiatzis KD. Understanding the Nature of Weak Interactions between Functionalized Boranes and N2/O2, Promising Functional Groups for Gas Separations. J Phys Chem A 2019; 123:3315-3325. [DOI: 10.1021/acs.jpca.9b00912] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jacob Townsend
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996-1600, United States
| | - Nicole M. Braunscheidel
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996-1600, United States
| | | |
Collapse
|
18
|
Lesiuk M, Przybytek M, Balcerzak JG, Musiał M, Moszynski R. Ab initio Potential Energy Curve for the Ground State of Beryllium Dimer. J Chem Theory Comput 2019; 15:2470-2480. [DOI: 10.1021/acs.jctc.8b00845] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Michał Lesiuk
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Michał Przybytek
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | | | - Monika Musiał
- Institute of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland
| | - Robert Moszynski
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| |
Collapse
|
19
|
Morgante P, Peverati R. ACCDB: A collection of chemistry databases for broad computational purposes. J Comput Chem 2018; 40:839-848. [DOI: 10.1002/jcc.25761] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/09/2018] [Accepted: 11/11/2018] [Indexed: 01/04/2023]
Affiliation(s)
- Pierpaolo Morgante
- Chemistry Program; Florida Institute of Technology, 150 W. University Blvd.; Melbourne Florida, 32901
| | - Roberto Peverati
- Chemistry Program; Florida Institute of Technology, 150 W. University Blvd.; Melbourne Florida, 32901
| |
Collapse
|
20
|
Mardirossian N, Head-Gordon M. Survival of the most transferable at the top of Jacob's ladder: Defining and testing the ωB97M(2) double hybrid density functional. J Chem Phys 2018; 148:241736. [PMID: 29960332 PMCID: PMC5991970 DOI: 10.1063/1.5025226] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 05/09/2018] [Indexed: 01/19/2023] Open
Abstract
A meta-generalized gradient approximation, range-separated double hybrid (DH) density functional with VV10 non-local correlation is presented. The final 14-parameter functional form is determined by screening trillions of candidate fits through a combination of best subset selection, forward stepwise selection, and random sample consensus (RANSAC) outlier detection. The MGCDB84 database of 4986 data points is employed in this work, containing a training set of 870 data points, a validation set of 2964 data points, and a test set of 1152 data points. Following an xDH approach, orbitals from the ωB97M-V density functional are used to compute the second-order perturbation theory correction. The resulting functional, ωB97M(2), is benchmarked against a variety of leading double hybrid density functionals, including B2PLYP-D3(BJ), B2GPPLYP-D3(BJ), ωB97X-2(TQZ), XYG3, PTPSS-D3(0), XYGJ-OS, DSD-PBEP86-D3(BJ), and DSD-PBEPBE-D3(BJ). Encouragingly, the overall performance of ωB97M(2) on nearly 5000 data points clearly surpasses that of all of the tested density functionals. As a Rung 5 density functional, ωB97M(2) completes our family of combinatorially optimized functionals, complementing B97M-V on Rung 3, and ωB97X-V and ωB97M-V on Rung 4. The results suggest that ωB97M(2) has the potential to serve as a powerful predictive tool for accurate and efficient electronic structure calculations of main-group chemistry.
Collapse
Affiliation(s)
- Narbe Mardirossian
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Martin Head-Gordon
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, USA
| |
Collapse
|
21
|
Dutta NN, Patkowski K. Improving “Silver-Standard” Benchmark Interaction Energies with Bond Functions. J Chem Theory Comput 2018; 14:3053-3070. [DOI: 10.1021/acs.jctc.8b00204] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Narendra Nath Dutta
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Konrad Patkowski
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
22
|
Hu L, Chen K, Chen H. Modeling σ-Bond Activations by Nickel(0) Beyond Common Approximations: How Accurately Can We Describe Closed-Shell Oxidative Addition Reactions Mediated by Low-Valent Late 3d Transition Metal? J Chem Theory Comput 2017; 13:4841-4853. [PMID: 28881134 DOI: 10.1021/acs.jctc.7b00708] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Accurate modelings of reactions involving 3d transition metals (TMs) are very challenging to both ab initio and DFT approaches. To gain more knowledge in this field, we herein explored typical σ-bond activations of H-H, C-H, C-Cl, and C-C bonds promoted by nickel(0), a low-valent late 3d TM. For the key parameters of activation energy (ΔE‡) and reaction energy (ΔER) for these reactions, various issues related to the computational accuracy were systematically investigated. From the scrutiny of convergence issue with one-electron basis set, augmented (A) basis functions are found to be important, and the CCSD(T)/CBS level with complete basis set (CBS) limit extrapolation based on augmented double-ζ and triple-ζ basis pair (ADZ and ATZ), which produces deviations below 1 kcal/mol from the reference, is recommended for larger systems. As an alternative, the explicitly correlated F12 method can accelerate the basis set convergence further, especially after its CBS extrapolations. Thus, the CCSD(T)-F12/CBS(ADZ-ATZ) level with computational cost comparable to the conventional CCSD(T)/CBS(ADZ-ATZ) level, is found to reach the accuracy of the conventional CCSD(T)/A5Z level, which produces deviations below 0.5 kcal/mol from the reference, and is also highly recommendable. Scalar relativistic effects and 3s3p core-valence correlation are non-negligible for achieving chemical accuracy of around 1 kcal/mol. From the scrutiny of convergence issue with the N-electron basis set, in comparison with the reference CCSDTQ result, CCSD(T) is found to be able to calculate ΔE‡ quite accurately, which is not true for the ΔER calculations. Using highest-level CCSD(T) results of ΔE‡ in this work as references, we tested 18 DFT methods and found that PBE0 and CAM-B3LYP are among the three best performing functionals, irrespective of DFT empirical dispersion correction. With empirical dispersion correction included, ωB97XD is also recommendable due to its improved performance.
Collapse
Affiliation(s)
- Lianrui Hu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
| | - Kejuan Chen
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
| | - Hui Chen
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
| |
Collapse
|
23
|
Witte J, Neaton JB, Head-Gordon M. Effective empirical corrections for basis set superposition error in the def2-SVPD basis: gCP and DFT-C. J Chem Phys 2017. [DOI: 10.1063/1.4986962] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
24
|
Mardirossian N, Head-Gordon M. Thirty years of density functional theory in computational chemistry: an overview and extensive assessment of 200 density functionals. Mol Phys 2017. [DOI: 10.1080/00268976.2017.1333644] [Citation(s) in RCA: 709] [Impact Index Per Article: 88.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Narbe Mardirossian
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, CA, USA
| | - Martin Head-Gordon
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, CA, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
25
|
Witte J, Mardirossian N, Neaton JB, Head-Gordon M. Assessing DFT-D3 Damping Functions Across Widely Used Density Functionals: Can We Do Better? J Chem Theory Comput 2017; 13:2043-2052. [DOI: 10.1021/acs.jctc.7b00176] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | | | - Jeffrey B. Neaton
- Kavli Energy
Nanosciences
Institute at Berkeley, Berkeley, California 94720, United States
| | | |
Collapse
|
26
|
Kuchenbecker D, Uhl F, Forbert H, Jansen G, Marx D. Constructing accurate interaction potentials to describe the microsolvation of protonated methane by helium atoms. Phys Chem Chem Phys 2017; 19:8307-8321. [DOI: 10.1039/c7cp00652g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An ab initio-derived interaction potential is derived and used in path integral Monte Carlo simulations to investigate stationary-point structures of CH5+ microsolvated by up to four helium atoms.
Collapse
Affiliation(s)
| | - Felix Uhl
- Lehrstuhl für Theoretische Chemie
- Ruhr-Universität Bochum
- 44780 Bochum
- Germany
| | - Harald Forbert
- Lehrstuhl für Theoretische Chemie
- Ruhr-Universität Bochum
- 44780 Bochum
- Germany
| | - Georg Jansen
- Theoretische Organische Chemie
- Universität Duisburg-Essen
- 45141 Essen
- Germany
| | - Dominik Marx
- Lehrstuhl für Theoretische Chemie
- Ruhr-Universität Bochum
- 44780 Bochum
- Germany
| |
Collapse
|
27
|
Mardirossian N, Head-Gordon M. How Accurate Are the Minnesota Density Functionals for Noncovalent Interactions, Isomerization Energies, Thermochemistry, and Barrier Heights Involving Molecules Composed of Main-Group Elements? J Chem Theory Comput 2016; 12:4303-25. [PMID: 27537680 DOI: 10.1021/acs.jctc.6b00637] [Citation(s) in RCA: 304] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The 14 Minnesota density functionals published between the years 2005 and early 2016 are benchmarked on a comprehensive database of 4986 data points (84 data sets) involving molecules composed of main-group elements. The database includes noncovalent interactions, isomerization energies, thermochemistry, and barrier heights, as well as equilibrium bond lengths and equilibrium binding energies of noncovalent dimers. Additionally, the sensitivity of the Minnesota density functionals to the choice of basis set and integration grid is explored for both noncovalent interactions and thermochemistry. Overall, the main strength of the hybrid Minnesota density functionals is that the best ones provide very good performance for thermochemistry (e.g., M06-2X), barrier heights (e.g., M08-HX, M08-SO, MN15), and systems heavily characterized by self-interaction error (e.g., M06-2X, M08-HX, M08-SO, MN15), while the main weakness is that none of them are state-of-the-art for the full spectrum of noncovalent interactions and isomerization energies (although M06-2X is recommended from the 10 hybrid Minnesota functionals). Similarly, the main strength of the local Minnesota density functionals is that the best ones provide very good performance for thermochemistry (e.g., MN15-L), barrier heights (e.g., MN12-L), and systems heavily characterized by self-interaction error (e.g., MN12-L and MN15-L), while the main weakness is that none of them are state-of-the-art for the full spectrum of noncovalent interactions and isomerization energies (although M06-L is clearly the best from the four local Minnesota functionals). As an overall guide, M06-2X and MN15 are perhaps the most broadly useful hybrid Minnesota functionals, while M06-L and MN15-L are perhaps the most broadly useful local Minnesota functionals, although each has different strengths and weaknesses.
Collapse
Affiliation(s)
- Narbe Mardirossian
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California , Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| | - Martin Head-Gordon
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California , Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| |
Collapse
|
28
|
On the importance of full-dimensionality in low-energy molecular scattering calculations. Sci Rep 2016; 6:28449. [PMID: 27333870 PMCID: PMC4917847 DOI: 10.1038/srep28449] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 06/02/2016] [Indexed: 11/29/2022] Open
Abstract
Scattering of H2 on CO is of great importance in astrophysics and also is a benchmark system for comparing theory to experiment. We present here a new 6-dimensional potential energy surface for the ground electronic state of H2-CO with an estimated uncertainty of about 0.6 cm−1 in the global minimum region, several times smaller than achieved earlier. This potential has been used in nearly exact 6-dimensional quantum scattering calculations to compute state-to-state cross-sections measured in low-energy crossed-beam experiments. Excellent agreement between theory and experiment has been achieved in all cases. We also show that the fully 6-dimensional approach is not needed with the current accuracy of experimental data since an equally good agreement with experiment was obtained using only a 4-dimensional treatment, which validates the rigid-rotor approach widely used in scattering calculations. This finding, which disagrees with some literature statements, is important since for larger systems full-dimensional scattering calculations are currently not possible.
Collapse
|
29
|
Mardirossian N, Head-Gordon M. ωB97M-V: A combinatorially optimized, range-separated hybrid, meta-GGA density functional with VV10 nonlocal correlation. J Chem Phys 2016; 144:214110. [DOI: 10.1063/1.4952647] [Citation(s) in RCA: 370] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Affiliation(s)
- Narbe Mardirossian
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Martin Head-Gordon
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
30
|
Affiliation(s)
- Matúš Dubecký
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacký University Olomouc, tř.
17 listopadu 12, 771 46 Olomouc, Czech Republic
| | - Lubos Mitas
- Department
of Physics and CHiPS, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Petr Jurečka
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacký University Olomouc, tř.
17 listopadu 12, 771 46 Olomouc, Czech Republic
| |
Collapse
|
31
|
Van Dornshuld E, Tschumper GS. Big Changes for Small Noncovalent Dimers: Revisiting the Potential Energy Surfaces of (P2)2 and (PCCP)2 with CCSD(T) Optimizations and Vibrational Frequencies. J Chem Theory Comput 2016; 12:1534-41. [PMID: 26999433 DOI: 10.1021/acs.jctc.5b01105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This article details the re-examination of low-lying stationary points on the potential energy surfaces (PESs) of two challenging noncovalent homogeneous dimers, (P2)2 and (PCCP)2. The work was motivated by the rather large differences between MP2 and CCSD(T) energetics that were recently reported for these systems (J. Comput. Chem. 2014, 35, 479-487). The current investigation reveals significant qualitative and quantitative changes when the CCSD(T) method is used to characterize the stationary points instead of MP2. For example, CCSD(T) optimizations and harmonic vibrational frequency computations with the aug-cc-pVTZ basis set indicate that the parallel-slipped (PS) structure is the only P2 dimer stationary point examined that is a minimum (zero imaginary frequencies, ni = 0), whereas prior MP2 computations indicated that it was a transition state (ni = 1). Furthermore, the L-shaped structure of (P2)2 was the only minimum according to MP2 computations, but it collapses to the PS structure on the CCSD(T)/aug-cc-pVTZ PES. For the larger PCCP dimer, the CCSD(T) computations reveal that four rather than just two of the six stationary points characterized are minima. A series of explicitly correlated single-point energies were computed for all of the optimized structures to estimate the MP2 and CCSD(T) electronic energies at the complete basis set limit. CCSDT(Q) computations were also performed to assess the effects of dynamical electron correlation beyond the CCSD(T) level. For both (P2)2 and (PCCP)2, dispersion remains the dominant attractive component to the interaction energy according to symmetry-adapted perturbation theory analyses, and it is also the most challenging component to accurately evaluate.
Collapse
Affiliation(s)
- Eric Van Dornshuld
- Department of Chemistry and Biochemistry, University of Mississippi , University, Mississippi 38677-1848, United States
| | - Gregory S Tschumper
- Department of Chemistry and Biochemistry, University of Mississippi , University, Mississippi 38677-1848, United States
| |
Collapse
|
32
|
Řezáč J, Hobza P. Benchmark Calculations of Interaction Energies in Noncovalent Complexes and Their Applications. Chem Rev 2016; 116:5038-71. [DOI: 10.1021/acs.chemrev.5b00526] [Citation(s) in RCA: 281] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jan Řezáč
- Institute
of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 166 10 Prague, Czech Republic
| | - Pavel Hobza
- Institute
of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 166 10 Prague, Czech Republic
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Palacký University, 771 46 Olomouc, Czech Republic
| |
Collapse
|
33
|
Řezáč J, Dubecký M, Jurečka P, Hobza P. Extensions and applications of the A24 data set of accurate interaction energies. Phys Chem Chem Phys 2015; 17:19268-77. [PMID: 26139028 DOI: 10.1039/c5cp03151f] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The A24 data set (Řezáč and Hobza, J. Chem. Theory Comput. 2013, 9, 2151-2155) is a set of noncovalent complexes large enough to showcase various types of interactions yet small enough to make highly accurate calculations possible. It is intended for the testing of accurate computational methods which are then used as a benchmark in larger model systems. In this work, we improve the best estimate of the interaction energies in the set by updating their CCSD(T)/CBS and CCSDT(Q) components with calculations in larger basis sets. The data set is then used to test a large number of composite CCSD(T) approaches. Special attention is paid to the use of the explicitly correlated MP2-F12 method in these composite calculations. It is shown that an accuracy of 1-2% can be achieved with setups applicable to larger molecules. The effect of frozen natural orbital approximation on the accuracy of composite CCSD(T)/CBS calculations is also quantified. In four trivially saturated complexes where CCSDT(Q)/CBS data are now available, the convergence of the many-body correlation effects is assessed by fixed-node diffusion Monte Carlo (FN-DMC) calculations. A good agreement is achieved between FN-DMC and high-level coupled-cluster which represents an important cross-check of both approaches.
Collapse
Affiliation(s)
- Jan Řezáč
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 166 10 Prague, Czech Republic.
| | | | | | | |
Collapse
|
34
|
Parker TM, Sherrill CD. Assessment of Empirical Models versus High-Accuracy Ab Initio Methods for Nucleobase Stacking: Evaluating the Importance of Charge Penetration. J Chem Theory Comput 2015; 11:4197-204. [DOI: 10.1021/acs.jctc.5b00588] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Trent M. Parker
- Center for Computational
Molecular Science and Technology, School of Chemistry and Biochemistry,
and School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
| | - C. David Sherrill
- Center for Computational
Molecular Science and Technology, School of Chemistry and Biochemistry,
and School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
| |
Collapse
|
35
|
Manzer S, Horn PR, Mardirossian N, Head-Gordon M. Fast, accurate evaluation of exact exchange: The occ-RI-K algorithm. J Chem Phys 2015; 143:024113. [PMID: 26178096 PMCID: PMC4506295 DOI: 10.1063/1.4923369] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 06/22/2015] [Indexed: 11/15/2022] Open
Abstract
Construction of the exact exchange matrix, K, is typically the rate-determining step in hybrid density functional theory, and therefore, new approaches with increased efficiency are highly desirable. We present a framework with potential for greatly improved efficiency by computing a compressed exchange matrix that yields the exact exchange energy, gradient, and direct inversion of the iterative subspace (DIIS) error vector. The compressed exchange matrix is constructed with one index in the compact molecular orbital basis and the other index in the full atomic orbital basis. To illustrate the advantages, we present a practical algorithm that uses this framework in conjunction with the resolution of the identity (RI) approximation. We demonstrate that convergence using this method, referred to hereafter as occupied orbital RI-K (occ-RI-K), in combination with the DIIS algorithm is well-behaved, that the accuracy of computed energetics is excellent (identical to conventional RI-K), and that significant speedups can be obtained over existing integral-direct and RI-K methods. For a 4400 basis function C68H22 hydrogen-terminated graphene fragment, our algorithm yields a 14× speedup over the conventional algorithm and a speedup of 3.3× over RI-K.
Collapse
Affiliation(s)
- Samuel Manzer
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Paul R Horn
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Narbe Mardirossian
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Martin Head-Gordon
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
36
|
Temelso B, Renner CR, Shields GC. Importance and Reliability of Small Basis Set CCSD(T) Corrections to MP2 Binding and Relative Energies of Water Clusters. J Chem Theory Comput 2015; 11:1439-48. [DOI: 10.1021/ct500944v] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Berhane Temelso
- Dean’s
Office, College of Arts and Sciences, and Department of Chemistry, Bucknell University, Lewisburg, Pennsylvania 17837, United States
| | - Carla R. Renner
- Dean’s
Office, College of Arts and Sciences, and Department of Chemistry, Bucknell University, Lewisburg, Pennsylvania 17837, United States
| | - George C. Shields
- Dean’s
Office, College of Arts and Sciences, and Department of Chemistry, Bucknell University, Lewisburg, Pennsylvania 17837, United States
| |
Collapse
|
37
|
Mardirossian N, Head-Gordon M. Mapping the genome of meta-generalized gradient approximation density functionals: The search for B97M-V. J Chem Phys 2015; 142:074111. [DOI: 10.1063/1.4907719] [Citation(s) in RCA: 232] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Narbe Mardirossian
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Martin Head-Gordon
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
38
|
Li S, Smith DGA, Patkowski K. An accurate benchmark description of the interactions between carbon dioxide and polyheterocyclic aromatic compounds containing nitrogen. Phys Chem Chem Phys 2015; 17:16560-74. [DOI: 10.1039/c5cp02365c] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We assessed the performance of a large variety of modern density functional theory approaches for the adsorption of carbon dioxide on molecular models of pyridinic N-doped graphene.
Collapse
Affiliation(s)
- Sicheng Li
- Department of Chemistry and Biochemistry
- Auburn University
- Auburn
- USA
| | | | - Konrad Patkowski
- Department of Chemistry and Biochemistry
- Auburn University
- Auburn
- USA
| |
Collapse
|
39
|
Lao KU, Herbert JM. Accurate and Efficient Quantum Chemistry Calculations for Noncovalent Interactions in Many-Body Systems: The XSAPT Family of Methods. J Phys Chem A 2014; 119:235-52. [DOI: 10.1021/jp5098603] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ka Un Lao
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - John M. Herbert
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|