1
|
Ling W, Wang W, Lu D, Liu Q, Jiang G. Unraveling Copper Imbalance in Autism Spectrum Disorder: Mechanistic Insights from the Valproic Acid Mouse Model. ACS Chem Neurosci 2025; 16:66-76. [PMID: 39690107 DOI: 10.1021/acschemneuro.4c00708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024] Open
Abstract
Abnormal copper (Cu) levels are often closely associated with neurological disorders including neurodevelopmental conditions, such as autism spectrum disorder (ASD). However, the mechanisms underlying the disruption of Cu homeostasis in critical organs, such as the brain, remain unclear. In this study, we elucidated the molecular mechanisms of Cu imbalance in the brain of a valproic acid (VPA) mouse model along with the changes in specific metabolites. Significant alterations occurred in proteins associated with primary Cu-related metabolism in specific regions of the brain (prefrontal cortex, amygdala, cerebellum, and hippocampus), resulting in a direct elevation of Cu ions within the brain tissues (control: 5.05 ± 0.61 μg/g vs model: 6.28 ± 0.81 μg/g, p = 0.015). Furthermore, the brain metabolic profiles revealed significant upregulation of lipids, particularly phospholipid metabolites. Typical neurotransmitters, for example, dopamine (DA) (p < 0.0001) and serotonin (5-HT) (p = 0.02) were upregulated in amygdala. Other small metabolites like glutathione (GSH) (p = 0.0004) also exhibited notable variation in brain. The potential impact of Cu toxicity on the signaling pathways of key metabolites was then evaluated, providing new insights into the role of Cu in metabolism of neurotransmitters in the brain. Our finding sheds molecular aberrations associated with essential element metabolism in the brain, providing new elemental perspectives for understanding the pathogenic mechanisms underlying ASD.
Collapse
Affiliation(s)
- Weibo Ling
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weichao Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Dawei Lu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qian Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Running L, Cristobal JR, Karageorgiou C, Camdzic M, Aguilar JMN, Gokcumen O, Aga DS, Atilla-Gokcumen GE. Investigating the Mechanism of Neurotoxic Effects of PFAS in Differentiated Neuronal Cells through Transcriptomics and Lipidomics Analysis. ACS Chem Neurosci 2024; 15:4568-4579. [PMID: 39603830 DOI: 10.1021/acschemneuro.4c00652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024] Open
Abstract
Per- and polyfluorinated alkyl substances (PFAS) are pervasive environmental contaminants that bioaccumulate in tissues and pose risks to human health. Increasing evidence links PFAS to neurodegenerative and behavioral disorders, yet the underlying mechanisms of their effects on neuronal function remain largely unexplored. In this study, we utilized SH-SY5Y neuroblastoma cells, differentiated into neuronal-like cells, to investigate the impact of six PFAS compounds─perfluorooctanoic acid (PFOA), perfluorooctanesulfonic acid (PFOS), perfluorodecanoic acid (PFDA), perfluorodecanesulfonic acid (PFDS), 8:2 fluorotelomer sulfonate (8:2 FTS), and 8:2 fluorotelomer alcohol (8:2 FTOH)─on neuronal health. Following a 30 μM exposure for 24 h, PFAS accumulation ranged from 40-6500 ng/mg of protein. Transcriptomic analysis revealed 721 differentially expressed genes (DEGs) across treatments (padj < 0.05), with 11 DEGs shared among all PFAS exposures, indicating potential biomarkers for neuronal PFAS toxicity. PFOA-treated cells showed downregulation of genes involved in synaptic growth and neural function, while PFOS, PFDS, 8:2 FTS, and 8:2 FTOH exposures resulted in the upregulation of genes related to hypoxia response and amino acid metabolism. Lipidomic profiling further demonstrated significant increases in fatty acid levels with PFDA, PFDS, and 8:2 FTS and depletion of triacylglycerols with 8:2 FTOH treatments. These findings suggest that the neurotoxic effects of PFAS are structurally dependent, offering insights into the molecular processes that may drive PFAS-induced neuronal dysfunction.
Collapse
Affiliation(s)
- Logan Running
- Department of Chemistry, University at Buffalo, The State University of New York (SUNY), Buffalo, New York 14260, United States
| | - Judith R Cristobal
- Department of Chemistry, University at Buffalo, The State University of New York (SUNY), Buffalo, New York 14260, United States
- RENEW Institute, University at Buffalo, The State University of New York (SUNY), Buffalo, New York 14260, United States
| | - Charikleia Karageorgiou
- Department of Biological Sciences, University at Buffalo, The State University of New York (SUNY), Buffalo, New York 14260, United States
| | - Michelle Camdzic
- Department of Chemistry, University at Buffalo, The State University of New York (SUNY), Buffalo, New York 14260, United States
| | - John Michael N Aguilar
- Department of Chemistry, University at Buffalo, The State University of New York (SUNY), Buffalo, New York 14260, United States
| | - Omer Gokcumen
- Department of Biological Sciences, University at Buffalo, The State University of New York (SUNY), Buffalo, New York 14260, United States
| | - Diana S Aga
- Department of Chemistry, University at Buffalo, The State University of New York (SUNY), Buffalo, New York 14260, United States
- RENEW Institute, University at Buffalo, The State University of New York (SUNY), Buffalo, New York 14260, United States
| | - G Ekin Atilla-Gokcumen
- Department of Chemistry, University at Buffalo, The State University of New York (SUNY), Buffalo, New York 14260, United States
| |
Collapse
|
3
|
Nguyen TV, Trang PN, Kumar A. Understanding PFAS toxicity through cell culture metabolomics: Current applications and future perspectives. ENVIRONMENT INTERNATIONAL 2024; 186:108620. [PMID: 38579451 DOI: 10.1016/j.envint.2024.108620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/21/2024] [Accepted: 03/31/2024] [Indexed: 04/07/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS), ubiquitous environmental contaminants, pose significant challenges to ecosystems and human health. While cell cultures have emerged as new approach methodologies (NAMs) in ecotoxicity research, metabolomics is an emerging technique used to characterize the small-molecule metabolites present in cells and to understand their role in various biological processes. Integration of metabolomics with cell cultures, known as cell culture metabolomics, provides a novel and robust tool to unravel the complex molecular responses induced by PFAS exposure. In vitro testing also reduces reliance on animal testing, aligning with ethical and regulatory imperatives. The current review summarizes key findings from recent studies utilizing cell culture metabolomics to investigate PFAS toxicity, highlighting alterations in metabolic pathways, biomarker identification, and the potential linkages between metabolic perturbations. Additionally, the paper discusses different types of cell cultures and metabolomics methods used for studies of environmental contaminants and particularly PFAS. Future perspectives on the combination of metabolomics with other advanced technologies, such as single-cell metabolomics (SCM), imaging mass spectrometry (IMS), extracellular flux analysis (EFA), and multi-omics are also explored, which offers a holistic understanding of environmental contaminants. The synthesis of current knowledge and identification of research gaps provide a foundation for future investigations that aim to elucidate the complexities of PFAS-induced cellular responses and contribute to the development of effective strategies for mitigating their adverse effects on human health.
Collapse
Affiliation(s)
- Thao V Nguyen
- Environment, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Waite Campus, South Australia 5064, Australia; NTT Institute of High Technology, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, Viet Nam.
| | - Phan Nguyen Trang
- Department of Food Technology, Institute of Food and Biotechnology, Can Tho University, Campus II, 3/2 Street, Ninh Kieu District, Can Tho, Viet Nam.
| | - Anu Kumar
- Environment, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Waite Campus, South Australia 5064, Australia.
| |
Collapse
|