1
|
Win MS, Tian Z, Zhao H, Xiao K, Peng J, Shang Y, Wu M, Xiu G, Lu S, Yonemochi S, Wang Q. Atmospheric HULIS and its ability to mediate the reactive oxygen species (ROS): A review. J Environ Sci (China) 2018; 71:13-31. [PMID: 30195672 DOI: 10.1016/j.jes.2017.12.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 11/26/2017] [Accepted: 12/02/2017] [Indexed: 06/08/2023]
Abstract
Atmospheric humic-like substances (HULIS) are not only an unresolved mixture of macro-organic compounds but also powerful chelating agents in atmospheric particulate matters (PMs); impacting on both the properties of aerosol particles and health effects by generating reactive oxygen species (ROS). Currently, the interests of HULIS are intensively shifting to the investigations of HULIS-metal synergic effects and kinetics modeling studies, as well as the development of HULIS quantification, findings of possible HULIS sources and generation of ROS from HULIS. In light of HULIS studies, we comprehensively review the current knowledge of isolation and physicochemical characterization of HULIS from atmospheric samples as well as HULIS properties (hygroscopic, surface activity, and colloidal) and possible sources of HULIS. This review mainly highlights the generation of reactive oxygen species (ROS) from PMs, HULIS and transition metals, especially iron. This review also summarized the mechanism of iron-organic complexation and recent findings of OH formation from HULIS-metal complexes. This review will be helpful to carry out the modeling studies that concern with HULIS-transition metals and for further studies in the generation of ROS from HULIS-metal complexes.
Collapse
Affiliation(s)
- Myat Sandar Win
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Zhengyang Tian
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Hui Zhao
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Kai Xiao
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Jiaxian Peng
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yu Shang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Minghong Wu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Guangli Xiu
- East China University of Science and Technology (ECUST), Shanghai 200237, China
| | - Senlin Lu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| | - Shinich Yonemochi
- Centers for Environmental Science in Saitama, Saitama 374-0115, Japan
| | - Qingyue Wang
- School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| |
Collapse
|
2
|
Hamdun AM, Higaonna Y, Uehara H, Arakaki T. Role of the Fenton Reaction in Coastal Seawater Samples Collected in Okinawa, Japan. CHEM LETT 2017. [DOI: 10.1246/cl.160894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Asha M. Hamdun
- University of Dar es Salaam, P. O. Box 35064, Dar es Salaam, Tanzania 758 351 078
| | - Yumi Higaonna
- University of the Ryukyus, 1 Senbaru, Nishihara-cho, Okinawa 903-0213
| | - Hiroyuki Uehara
- University of the Ryukyus, 1 Senbaru, Nishihara-cho, Okinawa 903-0213
| | - Takemitsu Arakaki
- University of the Ryukyus, 1 Senbaru, Nishihara-cho, Okinawa 903-0213
| |
Collapse
|
3
|
Carbon kinetic isotope effects at natural abundances during iron-catalyzed photolytic cleavage of C C bonds in aqueous phase α,ω-dicarboxylic acids. Chem Phys Lett 2016. [DOI: 10.1016/j.cplett.2016.08.051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
4
|
Fu HB, Shang GF, Lin J, Hu YJ, Hu QQ, Guo L, Zhang YC, Chen JM. Fractional iron solubility of aerosol particles enhanced by biomass burning and ship emission in Shanghai, East China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 481:377-391. [PMID: 24607631 DOI: 10.1016/j.scitotenv.2014.01.118] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 01/27/2014] [Accepted: 01/28/2014] [Indexed: 06/03/2023]
Abstract
In terms of understanding Fe mobilization from aerosol particles in East China, the PM2.5 particles were collected in spring at Shanghai. Combined with the backtrajectory analysis, the PM2.5/PM10 and Ca/Al ratios, a serious dust-storm episode (DSE) during the sampling was identified. The single-particle analysis showed that the major iron-bearing class is the aluminosilicate dust during DSE, while the Fe-bearing aerosols are dominated by coal fly ash, followed by a minority of iron oxides during the non-dust storm days (NDS). Chemical analyses of samples showed that the fractional Fe solubility (%FeS) is much higher during NDS than that during DSE, and a strong inverse relationship of R(2)=0.967 between %FeS and total atmospheric iron loading were found, suggested that total Fe (FeT) is not controlling soluble Fe (FeS) during the sampling. Furthermore, no relationship between FeS and any of acidic species was established, suggesting that acidic process on aerosol surfaces are not involved in the trend of iron solubility. It was thus proposed that the source-dependent composition of aerosol particles is a primary determinant for %FeS. Specially, the Al/Fe ratio is poorly correlated (R(2)=0.113) with %FeS, while the apparent relationship between %FeS and the calculated KBB(+)/Fe ratio (R(2)=0.888) and the V/Fe ratio (R(2)=0.736) were observed, reflecting that %FeS could be controlled by both biomass burning and oil ash from ship emission, rather than mineral particles and coal fly ash, although the latter two are the main contributors to the atmospheric Fe loading during the sampling. Such information can be useful improving our understanding on iron solubility on East China, which may further correlate with iron bioavailability to the ocean, as well as human health effects associated with exposure to fine Fe-rich particles in densely populated metropolis in China.
Collapse
Affiliation(s)
- H B Fu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China
| | - G F Shang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China
| | - J Lin
- Key Laboratory of Nuclear Analysis Techniques, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Y J Hu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China
| | - Q Q Hu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China
| | - L Guo
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China
| | - Y C Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China
| | - J M Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China
| |
Collapse
|
5
|
Arakaki T, Saito K, Okada K, Nakajima H, Hitomi Y. Contribution of fulvic acid to the photochemical formation of Fe(II) in acidic Suwannee River fulvic acid solutions. CHEMOSPHERE 2010; 78:1023-1027. [PMID: 20056515 DOI: 10.1016/j.chemosphere.2009.11.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Revised: 11/22/2009] [Accepted: 11/24/2009] [Indexed: 05/28/2023]
Abstract
We investigated the contribution of fulvic acid to the photoformation of Fe(II) using aqueous Suwannee River fulvic acid (SRFA) as a surrogate for the humic-like substances (HULIS) found in atmospheric condensed phases. The effects of pH (3.2, 4.1, and 5.0) and wavelength (313, 334, 366, and 405nm) on Fe(II) photoformation were studied using monochromatic radiation at 20 degrees C. We calculated the wavelength-dependent Fe(II) photoformation efficiency values ("E-value"), defined here as a weighted sum of the product of the quantum yield and molar absorptivity of each Fe(II)-forming chemical species, and found that the E-values of acidic SRFA solutions were similar to those of Fe(OH)(2+). In addition, a comparison showed that the acidic SRFA solutions did not form Fe(II) fast enough to account for the observed Fe(II) formation efficiencies of the aqueous extracts of authentic aerosol samples. It was observed that 17-73% of Fe(III) had been reduced to Fe(II) in the dark in acidic SRFA solutions with added Fe(III) ranging from 0.5 to 10muM. The results of this study suggest that HULIS is unlikely to be the major reducing ligand in the process of photochemical formation of Fe(II) in acidic atmospheric drops. However, HULIS could reduce Fe(III) to Fe(II) in the dark, which in turn, could be important for night-time ()OH formation via the reaction between Fe(II) and H(2)O(2) (the Fenton reaction).
Collapse
Affiliation(s)
- Takemitsu Arakaki
- Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, 1 Senbaru Nishihara-cho, Okinawa 903-0213, Japan
| | | | | | | | | |
Collapse
|
6
|
Wang Z, Chen X, Ji H, Ma W, Chen C, Zhao J. Photochemical cycling of iron mediated by dicarboxylates: special effect of malonate. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2010; 44:263-268. [PMID: 20000366 DOI: 10.1021/es901956x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Photochemical redox cycling of iron coupled with oxidation of malonate (Mal) ligand has been investigated under conditions that are representative of atmospheric waters. Malonate exhibited significantly different characteristics from oxalate and other dicarboxylates (or monocarboxylates). Both strong chelating ability with Fe(III) and strong molar absorptivities, but much low efficiency of Fe(II) formation (Phi(Fe(II)) = 0.0022 +/- 0.0009, 300-366 nm) were observed for Fe(III)-Mal complexes (FMCs). Fe(III) speciation calculation indicated that Mal is capable of mediating the proportion between two photoactive species of Fe(III)-OH complexes and FMCs by changing the Mal concentration. Spin-trapping electron spin resonance (ESR) experiments proved the formation of both the (.)CH(2)COOH and (.)OH radicals at lower total Mal concentration ([Mal](T)), but only (.)CH(2)COOH at higher concentrations of malonate, providing strong evidence for competition between malonate and OH(-) and subsequent different photoreaction pathways. Once FMCs dominate the Fe(III) speciation, both photoproduction and photocatalyzed oxidation of Fe(II) will be greatly decelerated. There exists an induction period for both formation and decay of Fe(II) until Fe(III)(OH)(2+) species become the prevailing Fe(III) forms over FMCs as Mal ligand is depleted. A quenching mechanism of Mal in the Fe(II) photoproduction is proposed. The present study is meaningful to advance our understanding of iron cycling in acidified carbon-rich atmospheric waters.
Collapse
Affiliation(s)
- Zhaohui Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, China
| | | | | | | | | | | |
Collapse
|
7
|
Ou X, Quan X, Chen S, Zhao H, Zhang Y. Atrazine photodegradation in aqueous solution induced by interaction of humic acids and iron: photoformation of iron(II) and hydrogen peroxide. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2007; 55:8650-6. [PMID: 17892253 DOI: 10.1021/jf0719050] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The photochemical formation of Fe(II) and hydrogen peroxide (H 2O 2) coupled with humic acids (HA) was studied to understand the significance of iron cycling in the photodegradation of atrazine under simulated sunlight. The presence of HA significantly enhanced the formation of Fe(II) and H 2O 2, and their subsequent product, hydroxyl radical ( (*)OH), was the main oxidant responsible for the atrazine photodegradation. During 60 h of irradiation, the fraction of iron presented as Fe(II) (Fe(II)/Fe(t)) decreased from 20-32% in the presence of the Fe(III)-HA complex to 10-22% after adding atrazine. The rate of atrazine photodegradation in solutions containing Fe(III) increased with increasing HA concentration, suggesting that the complexation of Fe(III) with HA accelerated the Fe(III)/Fe(II) cycling. Using fluorescence spectrometry, the quenching constant and the percentage of fluorophores participating in the complexation of HA with Fe(III) were estimated by the modified Stern-Volmer equation. Fourier transform infrared spectroscopy (FTIR) offered the direct evidence that Fe(III)-carboxylate complex could be formed by ligand exchange of HA with Fe(III). Based on all the information, a possible reaction mechanism was proposed.
Collapse
Affiliation(s)
- Xiaoxia Ou
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education. School of Environmental and Biological Science and Technology, Dalian University of Technology, Dalian, China
| | | | | | | | | |
Collapse
|