1
|
Park KJ, Park HC, Lee YR, Mitchell G, Choi YP, Sohn HJ. Detection of chronic wasting disease prions in the farm soil of the Republic of Korea. mSphere 2025; 10:e0086624. [PMID: 39882869 PMCID: PMC11852723 DOI: 10.1128/msphere.00866-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/15/2025] [Indexed: 01/31/2025] Open
Abstract
Chronic wasting disease (CWD) is a highly contagious prion disease occurring in free-ranging and farmed cervids. CWD continues to spread uncontrolled across North America, and cases continue to be detected almost every year in the Republic of Korea. CWD-infected animals contaminate the soil by releasing infectious prions through their excreta, and shed prions accumulate and remain infectious in the soil for years. Given that the upper soil levels can become contaminated with prions and serve as infectivity reservoirs facilitating horizontal transmission of CWD, the ability to detect prions in the soil is needed for monitoring and managing CWD spread. Using the protein misfolding cyclic amplification (PMCA) technique, we investigated whether prions could be amplified and detected in farm soil experimentally exposed to CWD-infected brain homogenate as well as in the soil of CWD-affected farms. From each soil sample, we performed 10 serial extractions and used these 10 extracts as PMCA templates. Here, we show that prion seeding activity was detected in extracts from farm soil following 4 years of incubation with CWD-infected brain homogenate. More importantly, 13 of 38 soil samples collected from six CWD-affected farms displayed prion seeding activity, with at least one soil sample in each farm being PMCA positive. Mouse bioassays confirmed the presence of prion infectivity in the soil extracts in which PMCA seeding activity was detected. This is the first report describing the successful detection of prions in soil collected from CWD-affected farms, suggesting that PMCA conducted on serial soil extracts is a sensitive means for prion detection in CWD-contaminated soil.IMPORTANCEChronic wasting disease (CWD) is a highly contagious prion disease affecting free-ranging and farmed cervids. CWD continues to spread uncontrollably across North America, and multiple cases are detected annually in the Republic of Korea. Prions shed from CWD-infected animals remain infectious in the soil for years, serving as infectivity reservoirs that facilitate horizontal transmission of the disease. Therefore, the ability to detect CWD prions in soil is crucial for monitoring and managing the spread of the disease. In this study, we have demonstrated for the first time that prions in the soil of CWD-affected farms can be reliably detected using a combination of serial soil extraction and a prion amplification technique. Our data, in which at least one soil sample tested positive for CWD in each of the six CWD-affected farms analyzed, suggest that the approach employed in this study is a sensitive method for prion detection in CWD-contaminated soil.
Collapse
Affiliation(s)
- Kyung-Je Park
- WOAH Reference Laboratory for CWD, Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon, South Korea
| | - Hoo-Chang Park
- WOAH Reference Laboratory for CWD, Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon, South Korea
| | - Yu-Ran Lee
- WOAH Reference Laboratory for CWD, Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon, South Korea
| | - Gordon Mitchell
- National and WOAH Reference Laboratory for Scrapie and CWD, Canadian Food Inspection Agency, Ottawa, Ontario, Canada
| | - Young Pyo Choi
- Division of Research Strategy, Korea Brain Research Institute, Daegu, South Korea
| | - Hyun-Joo Sohn
- WOAH Reference Laboratory for CWD, Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon, South Korea
| |
Collapse
|
2
|
Ernst S, Nonno R, Langeveld J, Andreoletti O, Acin C, Papasavva-Stylianou P, Sklaviadis T, Acutis PL, van Keulen L, Spiropoulos J, Keller M, Groschup MH, Fast C. Characterisation of European Field Goat Prion Isolates in Ovine PrP Overexpressing Transgenic Mice (Tgshp IX) Reveals Distinct Prion Strains. Pathogens 2024; 13:629. [PMID: 39204230 PMCID: PMC11357236 DOI: 10.3390/pathogens13080629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 09/03/2024] Open
Abstract
After the detection of bovine spongiform encephalopathy (BSE), and a zoonotic transmissible spongiform encephalopathy (TSE) caused by the pathological prion protein (PrPSc) in two goats, the investigation of goat prions became of greater interest. Therefore, a broad collection of European goat TSE isolates, including atypical scrapie, CH1641 and goat BSE as reference prion strains were biochemically characterised and subsequently inoculated into seven rodent models for further analysis (already published results of this comprehensive study are reviewed here for comparative reasons). We report here the histopathological and immunohistochemical data of this goat TSE panel, obtained after the first passage in Tgshp IX (tg-shARQ) mice, which overexpress the ovine prion protein. In addition to the clear-cut discrimination of all reference prion strains from the classical scrapie (CS) isolates, we were further able to determine three categories of CS strains. The investigation further indicates the occurrence of sub-strains that slightly resemble distant TSE strains, such as BSE or CH1641, reinforcing the theory that CS is not a single strain but a mixture of sub-strains, existing at varying extents in one isolate. This study further proved that Tgshp IX is a potent and reliable tool for the in-depth characterisation of prion strains.
Collapse
Affiliation(s)
- Sonja Ernst
- Friedrich-Loeffler-Institut, 17493 Greifswald-Isle of Riems, Germany; (S.E.)
| | - Romolo Nonno
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Jan Langeveld
- Wageningen BioVeterinary Research, Wageningen University & Research, P.O. Box 65, 8200 AB Lelystad, The Netherlands
| | - Olivier Andreoletti
- UMR INRAe/ENVT 1225, Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, 31076 Toulouse, France
| | - Cristina Acin
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Universidad de Zaragoza IA2 IIS Aragón, C/ Miguel Servet 177, 50013 Zaragoza, Spain
| | | | - Theodoros Sklaviadis
- School of Pharmacy, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Pier Luigi Acutis
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Torino, Italy
| | - Lucien van Keulen
- Wageningen BioVeterinary Research, Wageningen University & Research, P.O. Box 65, 8200 AB Lelystad, The Netherlands
| | - John Spiropoulos
- Department of Pathology and Animal Science, APHA Weybridge, Addlestone KT15 3NB, Surrey, UK
| | - Markus Keller
- Friedrich-Loeffler-Institut, 17493 Greifswald-Isle of Riems, Germany; (S.E.)
| | - Martin H. Groschup
- Friedrich-Loeffler-Institut, 17493 Greifswald-Isle of Riems, Germany; (S.E.)
| | - Christine Fast
- Friedrich-Loeffler-Institut, 17493 Greifswald-Isle of Riems, Germany; (S.E.)
| |
Collapse
|
3
|
Alarcon P, Marco-Jimenez F, Horigan V, Ortiz-Pelaez A, Rajanayagam B, Dryden A, Simmons H, Konold T, Marco C, Charnley J, Spiropoulos J, Cassar C, Adkin A. A review of cleaning and disinfection guidelines and recommendations following an outbreak of classical scrapie. Prev Vet Med 2021; 193:105388. [PMID: 34098231 DOI: 10.1016/j.prevetmed.2021.105388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/27/2021] [Accepted: 05/21/2021] [Indexed: 10/21/2022]
Abstract
Classical scrapie is a prion disease of small ruminants, the infectious agent of which has been shown to be extremely persistent in the environment. Cleaning and disinfection (C&D) after a scrapie outbreak is currently recommended by many governments' veterinary advisors and implemented in most farms affected. Yet, the effectiveness of these procedures remains unclear. The aim of this study was to review existing literature and guidelines regarding farm C&D protocols following classical scrapie outbreaks and assess their effectiveness and the challenges that translation of policy and legislative requirements present at a practical level. A review of the literature was conducted to identify the on-farm C&D protocols used following outbreaks of scrapie, assess those materials with high risk for persistence of the scrapie agent on farms, and review the existing evidence of the effectiveness of recommended C&D protocols. An expert workshop was also organised in Great Britain (GB) to assess: the decision-making process used when implementing C&D protocols on GB farms, the experts' perceptions on the effectiveness of these protocols and changes needed, and their views on potential recommendations for policy and research. Outputs of the literature review revealed that the current recommended protocol for C&D [1 h treatment with sodium hypochlorite containing 20,000 ppm free chlorine or 2 M sodium hydroxide (NaOH)] is based on laboratory experiments. Only four field farm experiments have been conducted, indicating a lack of data on effectiveness of C&D protocols on farms by the re-occurrence of scrapie infection post re-stocking. Recommendations related to the control of outdoor environment, which are difficult and expensive to implement, vary between countries. The expert workshop concluded that there are no practical, cost-effective C&D alternatives to be considered at this time, with control therefore based on C&D only in combination with additional time restrictions on re-stocking and replacement with non-susceptible livestock or more genetically resistant types, where available. Participants agreed that C&D should still be completed on scrapie affected farms, as it is considered to be "good disease practice" and likely to reduce the levels of the prion protein. Participants felt that any additional protocols developed should not be "too prescriptive" (should not be written down in specific policies) because of significant variation in farm types, farm equipment and installations. Under this scenario, control of classical scrapie on farms should be designed with a level of C&D in combination with re-stocking temporal ban and replacement with livestock of limited susceptibility.
Collapse
Affiliation(s)
- Pablo Alarcon
- Department of Epidemiological Sciences, Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, Surrey, KT15 3NB, UK; Veterinary Epidemiology, Economics and Public Health Group, Department of Pathobiology and Population Sciences, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire, AL9 7TA, UK.
| | - Francisco Marco-Jimenez
- Department of Epidemiological Sciences, Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, Surrey, KT15 3NB, UK; Department of Animal Sciences, Universitat Politècnica de València, C/Camino de vera s/n, Valencia, 46071, Spain
| | - Verity Horigan
- Department of Epidemiological Sciences, Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, Surrey, KT15 3NB, UK
| | | | - Brenda Rajanayagam
- Department of Epidemiological Sciences, Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, Surrey, KT15 3NB, UK
| | - Aidan Dryden
- APHA, Worcester CSC, County Hall, Spetchley Road, Worcester, WR5 2NP, UK
| | - Hugh Simmons
- Department of Pathology and Animal Sciences, Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, Surrey, KT15 3NB, UK
| | - Timm Konold
- Department of Pathology and Animal Sciences, Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, Surrey, KT15 3NB, UK.
| | - Carmen Marco
- APHA Advice Services, Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, Surrey, KT15 3NB, UK
| | - Judith Charnley
- APHA Foundry House, Carleton Rd, Skipton North Yorks, BD23 2BE, UK
| | - John Spiropoulos
- Department of Pathology and Animal Sciences, Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, Surrey, KT15 3NB, UK
| | - Claire Cassar
- Laboratory Services, Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, Surrey, KT15 3NB, UK
| | - Amie Adkin
- Food Standards Agency, Clive House, 70 Petty France, London, SW1H 9EX, UK
| |
Collapse
|
4
|
Kuznetsova A, McKenzie D, Cullingham C, Aiken JM. Long-Term Incubation PrP CWD with Soils Affects Prion Recovery but Not Infectivity. Pathogens 2020; 9:pathogens9040311. [PMID: 32340296 PMCID: PMC7238116 DOI: 10.3390/pathogens9040311] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 01/12/2023] Open
Abstract
Chronic wasting disease (CWD) is a contagious prion disease of cervids. The infectious agent is shed from animals at the preclinical and clinical stages of disease where it persists in the environment as a reservoir of CWD infectivity. In this study, we demonstrate that long-term incubation of CWD prions (generated from tg-mice infected with deer or elk prions) with illite, montmorillonite (Mte) and whole soils results in decreased recovery of PrPCWD, suggesting that binding becomes more avid and irreversible with time. This continual decline of immunoblot PrPCWD detection did not correlate with prion infectivity levels. Bioassay showed no significant differences in incubation periods between mice inoculated with 1% CWD brain homogenate (BH) and with the CWD-BH pre-incubated with quartz or Luvisolic Ae horizon for 1 or 30 weeks. After 55 weeks incubation with Chernozem and Luvisol, bound PrPCWD was not detectable by immunoblotting but remained infectious. This study shows that although recovery of PrPCWD bound to soil minerals and whole soils with time become more difficult, prion infectivity is not significantly altered. Detection of prions in soil is, therefore, not only affected by soil type but also by length of time of the prion–soil interaction.
Collapse
Affiliation(s)
- Alsu Kuznetsova
- Agricultural, Life and Environmental Sciences Faculty, University of Alberta, Edmonton, AB T6G 2G8, Canada;
| | - Debbie McKenzie
- Faculty of Science, University of Alberta, Edmonton, AB T6G 2M8, Canada;
| | | | - Judd M. Aiken
- Agricultural, Life and Environmental Sciences Faculty, University of Alberta, Edmonton, AB T6G 2G8, Canada;
- Correspondence:
| |
Collapse
|
5
|
Somerville RA, Fernie K, Smith A, Bishop K, Maddison BC, Gough KC, Hunter N. BSE infectivity survives burial for five years with only limited spread. Arch Virol 2019; 164:1135-1145. [PMID: 30799509 PMCID: PMC6420460 DOI: 10.1007/s00705-019-04154-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 12/21/2018] [Indexed: 11/22/2022]
Abstract
The carcasses of animals infected with bovine spongiform encephalopathy (BSE), scrapie or chronic wasting disease (CWD) that remain in the environment (exposed or buried) may continue to act as reservoirs of infectivity. We conducted two experiments under near-field conditions to investigate the survival and dissemination of BSE infectivity after burial in a clay or sandy soil. BSE infectivity was either contained within a bovine skull or buried as an uncontained bolus of BSE-infected brain. Throughout the five-year period of the experiment, BSE infectivity was recovered in similar amounts from heads exhumed annually from both types of soil. Very low levels of infectivity were detected in the soil immediately surrounding the heads, but not in samples remote from them. Similarly, there was no evidence of significant lateral movement of infectivity from the buried bolus over 4 years although there was a little vertical movement in both directions. However, bioassay analysis of limited numbers of samples of rain water that had drained through the bolus clay lysimeter indicated that infectivity was present in filtrates. sPMCA analysis also detected low levels of PrPSc in the filtrates up to 25 months following burial, raising the concern that leakage of infectivity into ground water could occur. We conclude that transmissible spongiform encephalopathy infectivity is likely to survive burial for long periods of time, but not to migrate far from the site of burial unless a vector or rain water drainage transports it. Risk assessments of contaminated sites should take these findings into account.
Collapse
Affiliation(s)
- Robert A Somerville
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, Scotland, UK
| | - Karen Fernie
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, Scotland, UK
| | - Allister Smith
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, Scotland, UK
| | - Keith Bishop
- ADAS Biotechnology, School of Veterinary Medicine and Science, The University of Nottingham, College Rd., Sutton Bonington, Leicestershire, LE12 5RD, UK
| | - Ben C Maddison
- ADAS Biotechnology, School of Veterinary Medicine and Science, The University of Nottingham, College Rd., Sutton Bonington, Leicestershire, LE12 5RD, UK
| | - Kevin C Gough
- School of Veterinary Medicine and Science, The University of Nottingham, College Rd., Sutton Bonington, Leicestershire, LE12 5RD, UK.
| | - Nora Hunter
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, Scotland, UK.
| |
Collapse
|
6
|
Kuznetsova A, Cullingham C, McKenzie D, Aiken JM. Soil humic acids degrade CWD prions and reduce infectivity. PLoS Pathog 2018; 14:e1007414. [PMID: 30496301 PMCID: PMC6264147 DOI: 10.1371/journal.ppat.1007414] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/17/2018] [Indexed: 12/25/2022] Open
Abstract
Chronic wasting disease (CWD), an environmentally transmissible, fatal prion disease is endemic in North America, present in South Korea and has recently been confirmed in northern Europe. The expanding geographic range of this contagious disease of free-ranging deer, moose, elk and reindeer has resulted in increasing levels of prion infectivity in the environment. Soils are involved in CWD horizontal transmission, acting as an environmental reservoir, and soil mineral and organic compounds have the ability to bind prions. Upper horizons of soils are usually enriched with soil organic matter (SOM), however, the role of SOM in prion conservation and mobility remains unclear. In this study, we show that incubation of PrPCWD with humic acids (HA), a major SOM compound, affects both the molecular weight and recovery of PrPCWD. Detection of PrPCWD is reduced as HA concentration increases. Native HA extracted from pristine soils also reduces or entirely eliminates PrPCWD signal. Incubation of CWD prions with HA significantly increased incubation periods in tgElk mice demonstrating that HA can reduce CWD infectivity. Chronic wasting disease (CWD) is a contagious prion disease affecting several species of captive and wild cervids. Environmental prion contamination plays a major role in increasing incidence of CWD, with CWD infectivity being released into the environment by decaying carcasses, or shedding of biological fluids including urine, feces, and saliva. Horizontal transmission of CWD involves soils as an environmental reservoir of infectivity. Here, we tested the role of a soil organic matter compound, humic acid, for its ability to bind CWD prions and impact infectivity. A wide range of humic acid concentrations were examined representing the extensive spectrum of humic acid levels present in native soils. We found that incubation of CWD prions with high concentrations of humic acids (>2.5 g L-1) decreases the both CWD-prion signal and infectivity, whereas lower levels of humic acids did not significantly impact protein stability or infectivity. Our study provides new insights into soil-prion interactions, prions persistence in soil, and their bioavailability to grazing animals.
Collapse
Affiliation(s)
- Alsu Kuznetsova
- Agricultural, Life and Environmental Sciences Faculty, University of Alberta, Edmonton, AB, Canada
| | | | - Debbie McKenzie
- Faculty of Science, University of Alberta, Edmonton, AB, Canada
| | - Judd M. Aiken
- Agricultural, Life and Environmental Sciences Faculty, University of Alberta, Edmonton, AB, Canada
- * E-mail:
| |
Collapse
|
7
|
Mabbott NA. How do PrP Sc Prions Spread between Host Species, and within Hosts? Pathogens 2017; 6:pathogens6040060. [PMID: 29186791 PMCID: PMC5750584 DOI: 10.3390/pathogens6040060] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 11/16/2017] [Accepted: 11/21/2017] [Indexed: 12/22/2022] Open
Abstract
Prion diseases are sub-acute neurodegenerative diseases that affect humans and some domestic and free-ranging animals. Infectious prion agents are considered to comprise solely of abnormally folded isoforms of the cellular prion protein known as PrPSc. Pathology during prion disease is restricted to the central nervous system where it causes extensive neurodegeneration and ultimately leads to the death of the host. The first half of this review provides a thorough account of our understanding of the various ways in which PrPSc prions may spread between individuals within a population, both horizontally and vertically. Many natural prion diseases are acquired peripherally, such as by oral exposure, lesions to skin or mucous membranes, and possibly also via the nasal cavity. Following peripheral exposure, some prions accumulate to high levels within the secondary lymphoid organs as they make their journey from the site of infection to the brain, a process termed neuroinvasion. The replication of PrPSc prions within secondary lymphoid organs is important for their efficient spread to the brain. The second half of this review describes the key tissues, cells and molecules which are involved in the propagation of PrPSc prions from peripheral sites of exposure (such as the lumen of the intestine) to the brain. This section also considers how additional factors such as inflammation and aging might influence prion disease susceptibility.
Collapse
Affiliation(s)
- Neil A Mabbott
- The Roslin Institute & Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| |
Collapse
|
8
|
An in vitro model for assessing effective scrapie decontamination. Vet Microbiol 2017; 207:138-142. [DOI: 10.1016/j.vetmic.2017.05.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/10/2017] [Accepted: 05/20/2017] [Indexed: 11/17/2022]
|
9
|
Ricci A, Allende A, Bolton D, Chemaly M, Davies R, Fernández Escámez PS, Gironés R, Herman L, Koutsoumanis K, Lindqvist R, Nørrung B, Robertson L, Sanaa M, Simmons M, Skandamis P, Snary E, Speybroeck N, Kuile BT, Threlfall J, Wahlström H, Adkin A, De Koeijer A, Ducrot C, Griffin J, Ortiz Pelaez A, Latronico F, Ru G. Bovine spongiform encephalopathy (BSE) cases born after the total feed ban. EFSA J 2017; 15:e04885. [PMID: 32625550 PMCID: PMC7010122 DOI: 10.2903/j.efsa.2017.4885] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Sixty bovine spongiform encephalopathy (BSE) cases of Classical or unknown type (BARB‐60 cases) were born after the date of entry into force of the EU total feed ban on 1 January 2001. The European Commission has requested EFSA to provide a scientific opinion on the most likely origin(s) of these BARB‐60 cases; whether feeding with material contaminated with the BSE agent can be excluded as the origin of any of these cases and, if so, whether there is enough scientific evidence to conclude that such cases had a spontaneous origin. The source of infection cannot be ascertained at the individual level for any BSE case, including these BARB‐60 cases, so uncertainty remains high about the origin of disease in each of these animals, but when compared with other biologically plausible sources of infection (maternal, environmental, genetic, iatrogenic), feed‐borne exposure is the most likely. This exposure was apparently excluded for only one of these BARB‐60 cases. However, there is considerable uncertainty associated with the data collected through the field investigation of these cases, due to a time span of several years between the potential exposure of the animal and the confirmation of disease, recall difficulty, and the general paucity of documented objective evidence available in the farms at the time of the investigation. Thus, feeding with material contaminated with the BSE agent cannot be excluded as the origin of any of the BARB‐60 cases, nor is it possible to definitively attribute feed as the cause of any of the BARB‐60 cases. A case of disease is classified as spontaneous by a process of elimination, excluding all other definable possibilities; with regard to the BARB‐60 cases, it is not possible to conclude that any of them had a spontaneous origin.
Collapse
|
10
|
Requena JR, Kristensson K, Korth C, Zurzolo C, Simmons M, Aguilar-Calvo P, Aguzzi A, Andreoletti O, Benestad SL, Böhm R, Brown K, Calgua B, del Río JA, Espinosa JC, Girones R, Godsave S, Hoelzle LE, Knittler MR, Kuhn F, Legname G, Laeven P, Mabbott N, Mitrova E, Müller-Schiffmann A, Nuvolone M, Peters PJ, Raeber A, Roth K, Schmitz M, Schroeder B, Sonati T, Stitz L, Taraboulos A, Torres JM, Yan ZX, Zerr I. The Priority position paper: Protecting Europe's food chain from prions. Prion 2016; 10:165-81. [PMID: 27220820 PMCID: PMC4981192 DOI: 10.1080/19336896.2016.1175801] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 03/28/2016] [Accepted: 04/01/2016] [Indexed: 01/09/2023] Open
Abstract
Bovine spongiform encephalopathy (BSE) created a global European crisis in the 1980s and 90s, with very serious health and economic implications. Classical BSE now appears to be under control, to a great extent as a result of a global research effort that identified the sources of prions in meat and bone meal (MBM) and developed new animal-testing tools that guided policy. Priority ( www.prionpriority.eu ) was a European Union (EU) Framework Program 7 (FP7)-funded project through which 21 European research institutions and small and medium enterprises (SMEs) joined efforts between 2009 and 2014, to conduct coordinated basic and applied research on prions and prion diseases. At the end of the project, the Priority consortium drafted a position paper ( www.prionpriority.eu/Priority position paper) with its main conclusions. In the present opinion paper, we summarize these conclusions. With respect to the issue of re-introducing ruminant protein into the feed-chain, our opinion is that sustaining an absolute ban on feeding ruminant protein to ruminants is essential. In particular, the spread and impact of non-classical forms of scrapie and BSE in ruminants is not fully understood and the risks cannot be estimated. Atypical prion agents will probably continue to represent the dominant form of prion diseases in the near future in Europe. Atypical L-type BSE has clear zoonotic potential, as demonstrated in experimental models. Similarly, there are now data indicating that the atypical scrapie agent can cross various species barriers. More epidemiological data from large cohorts are necessary to reach any conclusion on the impact of its transmissibility on public health. Re-evaluations of safety precautions may become necessary depending on the outcome of these studies. Intensified searching for molecular determinants of the species barrier is recommended, since this barrier is key for important policy areas and risk assessment. Understanding the structural basis for strains and the basis for adaptation of a strain to a new host will require continued fundamental research, also needed to understand mechanisms of prion transmission, replication and how they cause nervous system dysfunction and death. Early detection of prion infection, ideally at a preclinical stage, also remains crucial for development of effective treatment strategies.
Collapse
Affiliation(s)
- Jesús R. Requena
- CIMUS Biomedical Research Institute, University of Santiago de Compostela, Santiago de Compostela, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Sue Godsave
- Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | | | | | | - Paul Laeven
- University of Maastricht, Maastricht, The Netherlands
| | | | - Eva Mitrova
- Medical University of Slovakia, Bratislava, Slovakia
| | | | | | - Peter J. Peters
- The Maastricht Multimodal Molecular Imaging Institute, University of Maastricht, Maastricht, The Netherlands
| | | | | | | | | | | | - Lothar Stitz
- Friedrich Löffler Institut, Insel Reims, Germany
| | | | | | | | - Inga Zerr
- Universitätmedizin Göttingen, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| |
Collapse
|
11
|
Maddison BC, Spiropoulos J, Vickery CM, Lockey R, Owen JP, Bishop K, Baker CA, Gough KC. Incubation of ovine scrapie with environmental matrix results in biological and biochemical changes of PrP(Sc) over time. Vet Res 2015; 46:46. [PMID: 25928902 PMCID: PMC4415298 DOI: 10.1186/s13567-015-0179-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 04/02/2015] [Indexed: 11/15/2022] Open
Abstract
Ovine scrapie can be transmitted via environmental reservoirs. A pool of ovine scrapie isolates were incubated on soil for one day or thirteen months and eluted prion was used to challenge tg338 mice transgenic for ovine PrP. After one-day incubation on soil, two PrPSc phenotypes were present: G338 or Apl338ii. Thirteen months later some divergent PrPSc phenotypes were seen: a mixture of Apl338ii with either G338 or P338, and a completely novel PrPSc deposition, designated Cag338. The data show that prolonged ageing of scrapie prions within an environmental matrix may result in changes in the dominant PrPSc biological/biochemical properties.
Collapse
Affiliation(s)
- Ben C Maddison
- ADAS UK, School of Veterinary Medicine and Science, The University of Nottingham, Sutton Bonington Campus, College Road, Sutton Bonington, Leicestershire, UK.
| | - John Spiropoulos
- Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, Surrey, UK.
| | | | - Richard Lockey
- Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, Surrey, UK. .,Current address: University of Southampton, Southampton, SO17 1BJ, UK.
| | - Jonathan P Owen
- ADAS UK, School of Veterinary Medicine and Science, The University of Nottingham, Sutton Bonington Campus, College Road, Sutton Bonington, Leicestershire, UK.
| | - Keith Bishop
- ADAS UK, School of Veterinary Medicine and Science, The University of Nottingham, Sutton Bonington Campus, College Road, Sutton Bonington, Leicestershire, UK.
| | - Claire A Baker
- ADAS UK, School of Veterinary Medicine and Science, The University of Nottingham, Sutton Bonington Campus, College Road, Sutton Bonington, Leicestershire, UK.
| | - Kevin C Gough
- School of Veterinary Medicine and Science, The University of Nottingham, Sutton Bonington Campus, College Road, Sutton Bonington, Leicestershire, UK.
| |
Collapse
|
12
|
Chapron Y, Charlet L, Sahai N. Fate of pathological prion (PrP(sc)92-138) in soil and water: prion-clay nanoparticle molecular dynamics. J Biomol Struct Dyn 2013; 32:1802-16. [PMID: 24152238 DOI: 10.1080/07391102.2013.836461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Pathogenic prion protein scrapie (PrP(sc)) may contaminate soils for decades and remain in water in colloidal suspension, providing infection pathways for animals through the inhalation of ingested dust and soil particles, and drinking water. We used molecular dynamics simulations to understand the strong binding mechanism of this pathogenic peptide with clay mineral surfaces and compared our results to experimental works. We restricted our model to the moiety PrP(92-138), which is a portion of the whole PrP(sc) molecule responsible for infectivity and modeled it using explicit solvating water molecules in contact with a pyrophyllite cleavage plane. Pyrophyllite is taken as a model for common soil clay, but it has no permanent structural charge. However, partial residual negative charges occur on the cleavage plane slab surface due to a slab charge unbalance. The charge is isotropic in 2D and it was balanced with K(+) ions. After partially removing potassium ions, the peptide anchors to the clay surface via up to 10 hydrogen bonds, between protonated lysine or histidine residues and the oxygen atoms of the siloxane cavities. Our results provide insight to the mechanism responsible for the strong association between the PrP(sc) peptide and clay nanoparticles and the associations present in contaminated soil and water which may lead to the infection of animals.
Collapse
Affiliation(s)
- Yves Chapron
- a AIED, Research , 108 rue du puy, La Terrasse , 38660 , France
| | | | | |
Collapse
|
13
|
Jacobson KH, Kuech TR, Pedersen JA. Attachment of pathogenic prion protein to model oxide surfaces. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:6925-34. [PMID: 23611152 PMCID: PMC4091914 DOI: 10.1021/es3045899] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Prions are the infectious agents in the class of fatal neurodegenerative diseases known as transmissible spongiform encephalopathies, which affect humans, deer, sheep, and cattle. Prion diseases of deer and sheep can be transmitted via environmental routes, and soil is has been implicated in the transmission of these diseases. Interaction with soil particles is expected to govern the transport, bioavailability and persistence of prions in soil environments. A mechanistic understanding of prion interaction with soil components is critical for understanding the behavior of these proteins in the environment. Here, we report results of a study to investigate the interactions of prions with model oxide surfaces (Al2O3, SiO2) using quartz crystal microbalance with dissipation monitoring and optical waveguide light mode spectroscopy. The efficiency of prion attachment to Al2O3 and SiO2 depended strongly on pH and ionic strength in a manner consistent with electrostatic forces dominating interaction with these oxides. The presence of the N-terminal portion of the protein appeared to promote attachment to Al2O3 under globally electrostatically repulsive conditions. We evaluated the utility of recombinant prion protein as a surrogate for prions in attachment experiments and found that its behavior differed markedly from that of the infectious agent. Our findings suggest that prions would tend to associate with positively charged mineral surfaces in soils (e.g., iron and aluminum oxides).
Collapse
Affiliation(s)
- Kurt H. Jacobson
- Department of Civil and Environmental Engineering, University of Wisconsin, Madison, WI 53706
| | - Thomas R. Kuech
- Environmental Chemistry and Technology Program, University of Wisconsin, Madison, WI 53706
| | - Joel A. Pedersen
- Department of Civil and Environmental Engineering, University of Wisconsin, Madison, WI 53706
- Environmental Chemistry and Technology Program, University of Wisconsin, Madison, WI 53706
- Department of Soil Science, University of Wisconsin, Madison, WI 53706
- Corresponding author address: Department of Soil Science, University of Wisconsin, 1525 Observatory Drive, Madison, WI 53706 1299; phone: (608) 263-4971; fax: (608) 265-2595;
| |
Collapse
|
14
|
Goss MJ, Tubeileh A, Goorahoo D. A Review of the Use of Organic Amendments and the Risk to Human Health. ADVANCES IN AGRONOMY 2013; 120. [PMCID: PMC7173535 DOI: 10.1016/b978-0-12-407686-0.00005-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Historically, organic amendments—organic wastes—have been the main source of plant nutrients, especially N. Their use allows better management of often-finite resources to counter changes in soils that result from essential practices for crop production. Organic amendments provide macro- and micronutrients, including carbon for the restoration of soil physical and chemical properties. Challenges from the use of organic amendments arise from the presence of heavy metals and the inability to control the transformations required to convert the organic forms of N and P into the minerals available to crops, and particularly to minimize the losses of these nutrients in forms that may present a threat to human health. Animal manure and sewage biosolids, the organic amendments in greatest abundance, contain components that can be hazardous to human health, other animals and plants. Pathogens pose an immediate threat. Antibiotics, other pharmaceuticals and naturally produced hormones may pose a threat if they increase the number of zoonotic disease organisms that are resistant to multiple antimicrobial drugs or interfere with reproductive processes. Some approaches aimed at limiting N losses (e.g. covered liquid or slurry storage, rapid incorporation into the soil, timing applications to minimize delay before plant uptake) also tend to favor survival of pathogens. Risks to human health, through the food chain and drinking water, from the pathogens, antibiotics and hormonal substances that may be present in organic amendments can be reduced by treatment before land application, such as in the case of sewage biosolids. Other sources, such as livestock and poultry manures, are largely managed by ensuring that they are applied at the rate, time and place most appropriate to the crops and soils. A more holistic approach to management is required as intensification of agriculture increases.
Collapse
Affiliation(s)
- Michael J. Goss
- University of Guelph, Kemptville Campus, Kemptville, ON, Canada
- Corresponding author: E-mail:
| | - Ashraf Tubeileh
- University of Guelph, Kemptville Campus, Kemptville, ON, Canada
| | - Dave Goorahoo
- Plant Science Department, California State University, Fresno, CA, USA
| |
Collapse
|
15
|
Maddison BC, Owen JP, Taema MM, Shaw G, Gough KC. Temperature influences the interaction of ruminant PrP (TSE) with soil. Prion 2012; 6:302-8. [PMID: 22561162 DOI: 10.4161/pri.20025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Ovine scrapie and cervid chronic wasting disease can be transmitted in the absence of animal-to-animal contact, and environmental reservoirs of infectivity have been implicated in their spread and persistence. Investigating environmental factors that influence the interaction of disease-associated PrP with soils is imperative to understanding what is likely to be the complex role of soil in disease transmission. Here, we describe the effects of soil temperature on the binding/desorption and persistence of both ovine scrapie- and bovine BSE-PrP (TSE) . Binding of PrP (TSE) to a sandy loam soil at temperatures of 4°C, 8-12°C and 25-30°C demonstrated that an increase in temperature resulted in (1) a decrease in the amount of PrP (TSE) recovered after 24 h of interaction with soil, (2) an increase in the amount of N-terminal cleavage of the prion protein over 11 d and (3) a decrease in the persistence of PrP (TSE) on soil over an 18 mo period.
Collapse
Affiliation(s)
- Ben C Maddison
- ADAS UK, School of Veterinary Medicine and Science, The University of Nottingham, Sutton Bonington, Leicestershire, UK.
| | | | | | | | | |
Collapse
|
16
|
Saunders SE, Bartz JC, Bartelt-Hunt SL. Soil-mediated prion transmission: is local soil-type a key determinant of prion disease incidence? CHEMOSPHERE 2012; 87:661-667. [PMID: 22265680 DOI: 10.1016/j.chemosphere.2011.12.076] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 12/23/2011] [Accepted: 12/28/2011] [Indexed: 05/31/2023]
Abstract
Prion diseases, including chronic wasting disease (CWD) and scrapie, can be transmitted via indirect environmental routes. Animals habitually ingest soil, and results from laboratory experiments demonstrate prions can bind to a wide range of soils and soil minerals, retain the ability to replicate, and remain infectious, indicating soil could serve as a reservoir for natural prion transmission and a potential prion exposure route for humans. Preliminary epidemiological modeling suggests soil texture may influence the incidence of prion disease. These results are supported by experimental work demonstrating variance in prion interactions with soil, including variance in prion soil adsorption and soil-bound prion replication with respect to soil type. Thus, local soil type may be a key determinant of prion incidence. Further experimental and epidemiological work is required to fully elucidate the dynamics of soil-mediated prion transmission, an effort that should lead to effective disease management and mitigation strategies.
Collapse
Affiliation(s)
- Samuel E Saunders
- Department of Civil Engineering, University of Nebraska-Lincoln, Peter Kiewit Institute, Omaha, NE 68182, USA
| | | | | |
Collapse
|
17
|
Saunders SE, Yuan Q, Bartz JC, Bartelt-Hunt S. Effects of solution chemistry and aging time on prion protein adsorption and replication of soil-bound prions. PLoS One 2011; 6:e18752. [PMID: 21526178 PMCID: PMC3079715 DOI: 10.1371/journal.pone.0018752] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 03/17/2011] [Indexed: 11/18/2022] Open
Abstract
Prion interactions with soil may play an important role in the transmission of chronic wasting disease (CWD) and scrapie. Prions are known to bind to a wide range of soil surfaces, but the effects of adsorption solution chemistry and long-term soil binding on prion fate and transmission risk are unknown. We investigated HY TME prion protein (PrP(Sc)) adsorption to soil minerals in aqueous solutions of phosphate buffered saline (PBS), sodium chloride, calcium chloride, and deionized water using western blotting. The replication efficiency of bound prions following adsorption in these solutions was also evaluated by protein misfolding cyclic amplification (PMCA). Aging studies investigated PrP(Sc) desorption and replication efficiency up to one year following adsorption in PBS or DI water. Results indicate that adsorption solution chemistry can affect subsequent prion replication or desorption ability, especially after incubation periods of 30 d or longer. Observed effects were minor over the short-term (7 d or less). Results of long-term aging experiments demonstrate that unbound prions or prions bound to a diverse range of soil surfaces can readily replicate after one year. Our results suggest that while prion-soil interactions can vary with solution chemistry, prions bound to soil could remain a risk for transmitting prion diseases after months in the environment.
Collapse
Affiliation(s)
- Samuel E. Saunders
- Department of Civil Engineering, University of Nebraska-Lincoln, Peter Kiewit Institute, Omaha, Nebraska, United States of America
| | - Qi Yuan
- Department of Civil Engineering, University of Nebraska-Lincoln, Peter Kiewit Institute, Omaha, Nebraska, United States of America
| | - Jason C. Bartz
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, Nebraska, United States of America
| | - Shannon Bartelt-Hunt
- Department of Civil Engineering, University of Nebraska-Lincoln, Peter Kiewit Institute, Omaha, Nebraska, United States of America
- * E-mail:
| |
Collapse
|
18
|
Smith CB, Booth CJ, Pedersen JA. Fate of prions in soil: a review. JOURNAL OF ENVIRONMENTAL QUALITY 2011; 40:449-461. [PMID: 21520752 PMCID: PMC3160281 DOI: 10.2134/jeq2010.0412] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Prions are the etiological agents of transmissible spongiform encephalopathies (TSSEs), a class of fatal neurodegenerative diseases affecting humans and other mammals. The pathogenic prion protein is a misfolded form of the host-encoded prion protein and represents the predominant, if not sole, component of the infectious agent. Environmental routes of TSE transmission areimplicated in epizootics of sheep scrapie and chronic wasting disease (CWD) of deer, elk, and moose. Soil represents a plausible environmental reservoir of scrapie and CWD agents, which can persist in the environment for years. Attachment to soil particles likely influences the persistence and infectivity of prions in the environment. Effective methods to inactivate TSE agents in soil are currently lacking, and the effects of natural degradation mechanisms on TSE infectivity are largely unknown. An improved understanding of the processes affecting the mobility, persistence, and bioaviailability of prions in soil is needed for the management of TSE-contaminated environments.
Collapse
Affiliation(s)
- Christen B. Smith
- Environmental Chemistry and Technology Program, Univ. of Wisconsin, 1525 Observatory Dr., Madison, WI 53706
| | - Clarissa J. Booth
- Molecular and Environmental Toxicology Center, Univ. of Wisconsin, 1525 Observatory Dr., Madison, WI 53706
| | | |
Collapse
|
19
|
David Walter W, Walsh DP, Farnsworth ML, Winkelman DL, Miller MW. Soil clay content underlies prion infection odds. Nat Commun 2011; 2:200. [PMID: 21326232 PMCID: PMC3105318 DOI: 10.1038/ncomms1203] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Accepted: 01/19/2011] [Indexed: 11/09/2022] Open
Abstract
Environmental factors—especially soil properties—have been suggested as potentially important in the transmission of infectious prion diseases. Because binding to montmorillonite (an aluminosilicate clay mineral) or clay-enriched soils had been shown to enhance experimental prion transmissibility, we hypothesized that prion transmission among mule deer might also be enhanced in ranges with relatively high soil clay content. In this study, we report apparent influences of soil clay content on the odds of prion infection in free-ranging deer. Analysis of data from prion-infected deer herds in northern Colorado, USA, revealed that a 1% increase in the clay-sized particle content in soils within the approximate home range of an individual deer increased its odds of infection by up to 8.9%. Our findings suggest that soil clay content and related environmental properties deserve greater attention in assessing risks of prion disease outbreaks and prospects for their control in both natural and production settings. The infectious prion diseases affect numerous hoofed animal species, and it has been suggested that the properties of the local soil affect transmission of these diseases. Here, the authors studied two North American locations and demonstrate that soil clay content can influence the infection rate in deer.
Collapse
Affiliation(s)
- W David Walter
- United States Department of the Interior, United States Geological Survey, Colorado Cooperative Fish and Wildlife Research Unit, Fort Collins, Colorado 80523-1484, USA
| | | | | | | | | |
Collapse
|