1
|
Gong C, Liu X, Nie X, Xu X, Wang X, Xue L, Wang Y. Characterization of atmospheric humic-like substances (HULIS) at a high elevation in North China: Abundance, molecular composition and optical properties. J Environ Sci (China) 2025; 155:673-685. [PMID: 40246500 DOI: 10.1016/j.jes.2024.11.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 11/26/2024] [Accepted: 11/28/2024] [Indexed: 04/19/2025]
Abstract
The optical absorption of large molecular compounds HULIS (humic-like substances) can significantly impact the aerosol light absorption and radiative forcing, influencing cloud condensation nuclei formation and thus the climate and atmospheric environment. This study collected aerosol (PM2.5) samples from the summit of Mount Tai in North China to investigate the concentration, molecular composition, and optical properties of HULIS. The average concentration of HULIS in the PM2.5 in this study was 1.26 ± 0.54 µg/m3, comprising for 56 % of the water-soluble organic carbon (WSOC), with levels lower than urban areas but higher than other mountainous regions. Mass spectrometry revealed that CHO and CHON components, with high aromaticity and phenolic groups, are major contributors to absorption and fluorescence. These results indicate that HULIS is mainly composed of lignin and proteins/amino sugars, derived from combustion and secondary formation, and possesses a high light absorption capacity (with MAE365 (mass absorption efficiency) and AAE (Ångström exponent) indices of 0.62 m2/g and 4.99, respectively). Parallel factor analysis identified three fluorescence components of HULIS, with proportions of 60.8 % for less oxygen humic-like substances, 21.0 % for high oxygen humic-like substances, and 18.2 % for protein-like substances. Our study highlights the significance of the light-absorbing capacity and secondary formation of HULIS at Mount Tai, laying the groundwork for investigation into the climate effects, formation mechanisms, and sources of HULIS generation.
Collapse
Affiliation(s)
- Chaofan Gong
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Xinghui Liu
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Xiaoling Nie
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China.
| | - Xinmiao Xu
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Xinfeng Wang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Likun Xue
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Yan Wang
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| |
Collapse
|
2
|
Yuan W, Zhang L, Zhao W, Yang B, Jiao X, Zhou L, Shen H, Ye J, Zhu L, Fu TM, Yang X, Wang C. Multiphase Reaction of Ozone with HONO/NO 2- on Surfaces: Effects on Indoor HONO and Ozone. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:7246-7255. [PMID: 40173101 DOI: 10.1021/acs.est.5c01450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
Nitrous acid (HONO) and ozone (O3) are two important indoor pollutants that affect the indoor oxidation capacity. Previous field studies have observed an inverse correlation between these two pollutants indoors, but the specific mechanism remains unclear. Given the semivolatile behavior of HONO, a possible mechanism is its multiphase reaction with ozone. In this study, we measured ozone uptake on surface HONO/NO2- under environmentally relevant conditions in a flow tube. The ozone deposition velocities (vd = 0.002 ± 0.001-0.3 ± 0.005 cm s-1) and uptake coefficients (γ = (0.2 ± 0.1) × 10-6-(2.0 ± 0.2) × 10-4) depend on reactant concentrations, relative humidity, and reaction time but are less affected by illumination. The lifetimes of gaseous HONO and ozone are approximately 10 min due to this multiphase reaction under indoor conditions, which is a significant sink for HONO and O3 as compared to those of other indoor reactions and air exchange. This study for the first time revealed the previously overlooked vital role of the reaction of surface HONO/NO2- with O3 in affecting both indoor HONO and O3 and has significance for understanding the multiphase chemistry of HONO and O3, with implications for outdoor surfaces and model studies to better constrain HONO sinks.
Collapse
Affiliation(s)
- Wenting Yuan
- Coastal Atmosphere and Climate of the Greater Bay Area Observation and Research Station of Guangdong Province, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Lifang Zhang
- Coastal Atmosphere and Climate of the Greater Bay Area Observation and Research Station of Guangdong Province, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wangchao Zhao
- Coastal Atmosphere and Climate of the Greater Bay Area Observation and Research Station of Guangdong Province, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Bo Yang
- Coastal Atmosphere and Climate of the Greater Bay Area Observation and Research Station of Guangdong Province, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiaoqiao Jiao
- Coastal Atmosphere and Climate of the Greater Bay Area Observation and Research Station of Guangdong Province, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Li Zhou
- Coastal Atmosphere and Climate of the Greater Bay Area Observation and Research Station of Guangdong Province, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Huizhong Shen
- Coastal Atmosphere and Climate of the Greater Bay Area Observation and Research Station of Guangdong Province, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jianhuai Ye
- Coastal Atmosphere and Climate of the Greater Bay Area Observation and Research Station of Guangdong Province, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Lei Zhu
- Coastal Atmosphere and Climate of the Greater Bay Area Observation and Research Station of Guangdong Province, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Tzung-May Fu
- Coastal Atmosphere and Climate of the Greater Bay Area Observation and Research Station of Guangdong Province, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xin Yang
- Coastal Atmosphere and Climate of the Greater Bay Area Observation and Research Station of Guangdong Province, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chen Wang
- Coastal Atmosphere and Climate of the Greater Bay Area Observation and Research Station of Guangdong Province, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
3
|
Wang W, Liu Y, Wang T, Ge Q, Li K, Liu J, You W, Wang L, Xie L, Fu H, Chen J, Zhang L. Significantly Accelerated Photosensitized Formation of Atmospheric Sulfate at the Air-Water Interface of Microdroplets. J Am Chem Soc 2024; 146:6580-6590. [PMID: 38427385 DOI: 10.1021/jacs.3c11892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The multiphase oxidation of sulfur dioxide (SO2) to form sulfate is a complex and important process in the atmosphere. While the conventional photosensitized reaction mainly explored in the bulk medium is reported to be one of the drivers to trigger atmospheric sulfate production, how this scheme functionalizes at the air-water interface (AWI) of aerosol remains an open question. Herein, employing an advanced size-controllable microdroplet-printing device, surface-enhanced Raman scattering (SERS) analysis, nanosecond transient adsorption spectrometer, and molecular level theoretical calculations, we revealed the previously overlooked interfacial role in photosensitized oxidation of SO2 in humic-like substance (HULIS) aerosol, where a 3-4 orders of magnitude increase in sulfate formation rate was speculated in cloud and aerosol relevant-sized particles relative to the conventional bulk-phase medium. The rapid formation of a battery of reactive oxygen species (ROS) comes from the accelerated electron transfer process at the AWI, where the excited triplet state of HULIS (3HULIS*) of the incomplete solvent cage can readily capture electrons from HSO3- in a way that is more efficient than that in the bulk medium fully blocked by water molecules. This phenomenon could be explained by the significantly reduced desolvation energy barrier required for reagents residing in the AWI region with an open solvent shell.
Collapse
Affiliation(s)
- Wei Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, Peoples' Republic of China
| | - Yangyang Liu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, Peoples' Republic of China
| | - Tao Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, Peoples' Republic of China
| | - Qiuyue Ge
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, Peoples' Republic of China
| | - Kejian Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, Peoples' Republic of China
| | - Juan Liu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, Peoples' Republic of China
| | - Wenbo You
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, Peoples' Republic of China
| | - Longqian Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, Peoples' Republic of China
| | - Lifang Xie
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, Peoples' Republic of China
| | - Hongbo Fu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, Peoples' Republic of China
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, Peoples' Republic of China
| | - Liwu Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, Peoples' Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, Peoples' Republic of China
| |
Collapse
|
4
|
Xu Z, Li R, Zhang X, Wang S, Xu X, Ho Daniel Tang K, Emmanuel Scriber K, Zhang Z, Quan F. Molecular mechanisms of humus formation mediated by new ammonifying microorganisms in compost. CHEMICAL ENGINEERING JOURNAL 2024; 483:149341. [DOI: 10.1016/j.cej.2024.149341] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
|
5
|
Abou-Ghanem M, Nodeh-Farahani D, McGrath DT, VandenBoer TC, Styler SA. Emerging investigator series: ozone uptake by urban road dust and first evidence for chlorine activation during ozone uptake by agro-based anti-icer: implications for wintertime air quality in high-latitude urban environments. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:2070-2084. [PMID: 36044235 DOI: 10.1039/d1em00393c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
High-latitude urban regions provide a unique and complex range of environmental surfaces for uptake of trace pollutant gases, including winter road maintenance materials (e.g., gravel, rock salts, and anti-icer, a saline solution applied to roads during winter). In an effort to reduce the negative environmental and economic impacts of road salts, many municipalities have turned to agro-based anti-icing materials that are rich in organic material. To date, the reactivity of both anti-icer and saline road dust with pollutant gases remain unexplored, which limits our ability to assess the potential impacts of these materials on air quality in high-latitude regions. Here, we used a coated-wall flow tube to investigate the uptake of ozone, an important air pollutant, by road dust collected in Edmonton, Canada. At 25% relative humidity (RH) and 50 ppb ozone, γBET for ozone uptake by this sample is (8.0 ± 0.7) × 10-8 under dark conditions and (2.1 ± 0.1) × 10-7 under illuminated conditions. These values are 2-4× higher than those previously obtained by our group for natural mineral dusts, but are not large enough for suspended road dust to influence local ozone mixing ratios. In a separate set of experiments, we also investigated the uptake of ozone by calcium chloride (i.e., road salt) and commercial anti-icer solution. Although ozone uptake by pure calcium chloride was negligible, ozone uptake by anti-icer was significant, which implies that the reactivity of anti-icer is conferred by its organic content. Importantly, ozone uptake by anti-icer-and, to a lesser extent, road dust doped with anti-icer-leads to the release of inorganic chlorine gas, which we collected using inline reductive trapping and quantified using ion chromatography. To explain these results, we propose a novel pathway for chlorine activation: here, ozone oxidation of the anti-icer organic fraction (in this case, molasses) yields reactive OH radicals that can oxidize chloride. In summary, this study demonstrates the ability of road dust and anti-icer to influence atmospheric oxidant mixing ratios in cold-climate urban areas, and highlights previously unidentified air quality impacts of winter road maintenance decisions.
Collapse
Affiliation(s)
- Maya Abou-Ghanem
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | | | - Devon T McGrath
- Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | | | - Sarah A Styler
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
6
|
Aregahegn KZ, Felber T, Tilgner A, Hoffmann EH, Schaefer T, Herrmann H. Kinetics and Mechanisms of Aqueous-Phase Reactions of Triplet-State Imidazole-2-carboxaldehyde and 3,4-Dimethoxybenzaldehyde with α,β-Unsaturated Carbonyl Compounds. J Phys Chem A 2022; 126:8727-8740. [DOI: 10.1021/acs.jpca.2c05015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Kifle Z. Aregahegn
- Department of Chemistry, Debre Berhan University, P.O. Box 445, 1000 Debre Berhan, Ethiopia
| | - Tamara Felber
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), Permoserstraße 15, 04318 Leipzig, Germany
| | - Andreas Tilgner
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), Permoserstraße 15, 04318 Leipzig, Germany
| | - Erik H. Hoffmann
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), Permoserstraße 15, 04318 Leipzig, Germany
| | - Thomas Schaefer
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), Permoserstraße 15, 04318 Leipzig, Germany
| | - Hartmut Herrmann
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), Permoserstraße 15, 04318 Leipzig, Germany
| |
Collapse
|
7
|
Zhou Y, Chen J, Fan F, Feng Y, Wang S, Fu Q, Feng J. Deconvolving light absorption properties and influencing factors of carbonaceous aerosol in Shanghai. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156280. [PMID: 35644399 DOI: 10.1016/j.scitotenv.2022.156280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/23/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Black carbon (BC) and brown carbon (BrC) have intensive impacts on atmospheric visibility and global climate change. In this study, PM2.5 samples were collected at Pudong (PD) and Qingpu (QP) of Shanghai in 2017, and characterized typical organic molecular tracers by gas chromatography-mass spectrometer. The light absorption (Abs) of carbonaceous aerosol and water-soluble organic matter was analyzed by a multi-wavelength thermal/optical carbon analyzer and a long-range ultraviolet-visible spectrophotometer. An improved two-component model integrated with both optical and chemical fingerprints of carbonaceous aerosol was applied to analyze the Abs of BC, water-soluble organic carbon (WSOC) and water-insoluble organic carbon (WISOC), with which the potential influencing factors including emission source and atmospheric aging were investigated. Results indicated that BrC contributed 19% at PD and 16% at QP of the total light absorption of the carbonaceous aerosol at 405 nm wavelength. Meanwhile, AbsWSOC(405)/AbsBrC(405) showed significant seasonal variations (27-50%) at both sites. Positive matrix factorization (PMF) analysis showed that vehicle emissions (60-61%) and biomass combustion (38-39%) were the major contributors to AbsBC(405), while biomass burning (34-40%), nitrate-relevant secondary processes (22-23%), vehicle emissions (18-19%) and biogenic SOA (13-19%) were major contributors to AbsWSOC(405). Hybrid combustion source (94-96%) had a predominant contribution to AbsWISOC(405). Statistical analysis showed that biomass burning had a great impact on the enhancement of AbsWISOC. Absorption Ångström exponent (AAE) and mass absorption efficiency (MAE) of each factor (source) using PMF analysis indicated that WSOC from combustion sources had higher AAEWSOC(350-550) values (8.11 and 8.29 for coal and biomass burning, respectively) and MAEWSOC(365) values (0.63-0.99) compared to other sources. Atmospheric aging process can lower the MAEWSOC(365) value (0.24-0.52). Overall, our study facilitates a better understanding of the relationships among source, optical properties, and atmospheric transformation processes of the carbonaceous aerosols in Shanghai.
Collapse
Affiliation(s)
- Yi Zhou
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Junwei Chen
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Fan Fan
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yi Feng
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Shunyao Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Qingyan Fu
- Shanghai Environmental Monitoring Center, Shanghai 200235, China
| | - Jialiang Feng
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
8
|
Pani SK, Lee CT, Griffith SM, Lin NH. Humic-like substances (HULIS) in springtime aerosols at a high-altitude background station in the western North Pacific: Source attribution, abundance, and light-absorption. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:151180. [PMID: 34699812 DOI: 10.1016/j.scitotenv.2021.151180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/19/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Atmospheric humic-like substances (HULIS) are important components of biomass-burning (BB) emissions and highly associated with light-absorbing organic aerosols (often referred to as brown carbon). This study highlights the importance of BB-emitted HULIS aerosols in peninsular Southeast Asian outflow to the subtropical western North Pacific. We determined various key light-absorbing characteristics of HULIS i.e. mass absorption cross-section (MACHULIS), absorbing component of the refractive index (kHULIS), and absorption Ångström exponent (AAEHULIS) based on ground-based aerosol light absorption measurements along with HULIS concentrations in springtime aerosols at Lulin Atmospheric Background Station (LABS; 2862 m above mean sea level), which is a representative high-altitude remote site in the western North Pacific. Daily variations of HULIS (0.58-12.92 μg m-3) at LABS were mostly linked with the influence from incoming air-masses, while correlations with BB tracers and secondary aerosols indicated the attribution of primary and secondary sources. Stronger light absorption capability of HULIS was clearly evident from MACHULIS and kHULIS values at 370 nm, which were about ~1.5 times higher during BB-dominated days (1.16 ± 0.75 m2 g-1 and 0.05 ± 0.03, respectively) than that during non-BB days (0.77 ± 0.89 m2 g-1 and 0.03 ± 0.04, respectively). Estimates from a simple radiative transfer model showed that HULIS absorption can add as much as 15.13 W g-1 to atmospheric warming, and ~46% more during BB-dominated than non-BB period, highlighting that HULIS light absorption may significantly affect the Earth-atmosphere system and tropospheric photochemistry over the western North Pacific.
Collapse
Affiliation(s)
- Shantanu Kumar Pani
- Department of Atmospheric Sciences, National Central University, Taoyuan 32001, Taiwan
| | - Chung-Te Lee
- Graduate Institute of Environmental Engineering, National Central University, Taoyuan 32001, Taiwan; Center for Environmental Monitoring and Technology, National Central University, Taoyuan 32001, Taiwan
| | - Stephen M Griffith
- Department of Atmospheric Sciences, National Central University, Taoyuan 32001, Taiwan
| | - Neng-Huei Lin
- Department of Atmospheric Sciences, National Central University, Taoyuan 32001, Taiwan; Center for Environmental Monitoring and Technology, National Central University, Taoyuan 32001, Taiwan.
| |
Collapse
|
9
|
Qin Y, Qin J, Zhou X, Yang Y, Chen R, Tan J, Xiao K, Wang X. Effects of pH on light absorption properties of water-soluble organic compounds in particulate matter emitted from typical emission sources. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127688. [PMID: 34775306 DOI: 10.1016/j.jhazmat.2021.127688] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/21/2021] [Accepted: 10/30/2021] [Indexed: 06/13/2023]
Abstract
Water-soluble organic compounds (WSOC) have a significant impact on aerosol radiative forcing and climate change, and there is considerable uncertainty in predicting and mitigating their climate and environmental effects. Here, the effects of pH on the light absorption properties of WSOC in particulate matter from different typical emission sources and ambient aerosols were systematically investigated using UV-vis spectrophotometer. pH (2-10) had an important impact on the light absorption properties of WSOC. The absorption, aromaticity, and the light absorption capacity of WSOC increased significantly with increasing pH for all samples. The difference absorbance spectra (∆absorbance) showed that the change of light absorption properties with pH was related to the deprotonate of carboxyl and phenolic groups resonating with aromatic and conjugated systems, with the most likely structures being carboxylic acids and phenols. Coal combustion and summer samples exhibited much higher susceptibility of light absorption properties to pH variation (increased by 27.0% and 65.9% relative to the pH 2 level, respectively). Absorption indices of almost all samples were significantly correlated with pH, indicating that the light absorption properties of WSOC may be quantitatively related to pH. The pH-dependent light absorption properties may have profound implications for evaluating the climate impacts of aerosol WSOC such as radiative forcing.
Collapse
Affiliation(s)
- Yuanyuan Qin
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Juanjuan Qin
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Xueming Zhou
- Faculty of Earth Resources, China University of Geosciences, Wuhan 430074, China
| | - Yanrong Yang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rongzhi Chen
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jihua Tan
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Kang Xiao
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xinming Wang
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
10
|
Chen Q, Hua X, Dyussenova A. Evolution of the chromophore aerosols and its driving factors in summertime Xi'an, Northwest China. CHEMOSPHERE 2021; 281:130838. [PMID: 33991904 DOI: 10.1016/j.chemosphere.2021.130838] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 06/12/2023]
Abstract
Atmospheric chromophores have photo-sensitiveness that can participate in photochemical reactions, so they may have the potential to make an important contribution in organic aerosols aging. This study attempts to explain the effects of oxidation reaction and photochemical reaction on atmospheric chromophores. For this study, the summer period (higher sunshine intensity) was selected to observe the mechanisms by the online excitation emission matrix (EEM) fluorescence. The results showed that a lot of secondary organic aerosols were produced in the afternoon, but a large portion of them is non-chromophore. We observed that the secondary chromophores of highly-oxygenated humic-like substances (HULIS) were produced, which suggests a degradation product of less-oxygenated HULIS. The photochemical reaction and oxidation reaction were the important reactions that occur in the afternoon, which drives the oxidation state evolution of the atmospheric chromophores. Atmospheric oxidation processes are the mainly driving reaction for the transformation of atmospheric chromophore. The aged aerosol has a lower fluorescence index and a high degree of humification. It is speculated that the aerosol from night to morning is in the accumulation process dominated by local sources, and then it is mainly in the process of being gradually aged at noon and afternoon. This study will guide to better understand the atmospheric chemical processes of chromophore aerosols and provide guidance for the EEM approach to trace the aerosol aging in the atmosphere.
Collapse
Affiliation(s)
- Qingcai Chen
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | - Xiaoyu Hua
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Ainur Dyussenova
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| |
Collapse
|
11
|
Yang W, Zhang T, Han C, Tang N, Yang H, Xue X. Photoenhanced heterogeneous reaction of O 3 with humic acid: Focus on O 3 uptake and changes in the composition and optical property. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115696. [PMID: 33010673 DOI: 10.1016/j.envpol.2020.115696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 06/11/2023]
Abstract
Heterogeneous photochemical reaction of O3 with humic acid (HA) under simulated sunlight was performed using a flow tube reactor coupled to an O3 analyzer at ambient pressure. It was confirmed that light significantly enhanced the uptake of O3 on HA. The initial uptake coefficient (γi) and the steady-state uptake coefficient (γss) of O3 under irradiation increased by 1.6 and 3.8 times compared to those in the dark, respectively. The γi and γss on HA varied in the range of 0.76-2.77 × 10-5 and 1.50-9.55 × 10-6, respectively, which were dependent on various environmental factors including HA mass, total irradiance, initial O3 concentration, O2 content, temperature, relative humidity (RH) and HA solution pH. Both γi and γss showed linear dependence on the total irradiance (0-2.07 × 1016 photons/(cm2⋅s)) of the light source, and increased with the HA mass (0-3.2 μg/cm2), temperature (278-298 K) and HA solution pH (4.0-9.6). However, they showed negative correlations with the initial O3 concentration and O2 content. The γi remained constant in the RH range of 7%-60%, while γss exhibited the maximum value at RH = 20%. During the ozonization of HA under irradiation, some functional groups were consumed, including CH2, CH3, aromatic CC, OH, CO, COOH and COO-. HA aged by O3 exhibited a decrease in the mass absorption efficiency (MAE) and a small increase in the absorption Ångström exponent between 300 and 600 nm wavelength (AAE300,600), which was ascribed to changes in the composition of HA during the photochemical ozonization process.
Collapse
Affiliation(s)
- Wangjin Yang
- School of Metallurgy, Northeastern University, Shenyang, 110819, China
| | - Tingting Zhang
- School of Metallurgy, Northeastern University, Shenyang, 110819, China
| | - Chong Han
- School of Metallurgy, Northeastern University, Shenyang, 110819, China.
| | - Ning Tang
- Institute of Nature and Environmental Technology, Kanazawa University, Kanazawa, 920-1192, Japan
| | - He Yang
- School of Metallurgy, Northeastern University, Shenyang, 110819, China
| | - Xiangxin Xue
- School of Metallurgy, Northeastern University, Shenyang, 110819, China
| |
Collapse
|
12
|
Mukherjee A, Dey S, Rana A, Jia S, Banerjee S, Sarkar S. Sources and atmospheric processing of brown carbon and HULIS in the Indo-Gangetic Plain: Insights from compositional analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115440. [PMID: 32858437 DOI: 10.1016/j.envpol.2020.115440] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/11/2020] [Accepted: 08/14/2020] [Indexed: 06/11/2023]
Abstract
We present here spectroscopic compositional analysis of brown carbon (BrC) and humic-like substances (HULIS) in the Indian context under varying conditions of source emissions and atmospheric processing. To this end, we study bulk water-soluble organic matter (WSOM), neutral- and acidic-HULIS (HULIS-n and HULIS-a), and high-polarity (HP)-WSOM collected in the eastern Indo-Gangetic Plain (IGP) with respect to UV-Vis, fluorescence, FT-IR, 1H NMR and 13C characteristics under three aerosol regimes: photochemistry-dominated summer, aged biomass burning (BB)-dominated post-monsoon, and fresh BB-dominated winter. Absorption coefficients (babs_365 nm; Mm-1) of WSOM and HULIS fractions increase by a factor of 2-9 during winter as compared to summer, with HULIS-n dominating total HULIS + HP-WSOM absorption (73-81%). Fluorophores in HULIS-n appear to contain near-similar levels of aromatic and unsaturated aliphatic conjugation across seasons, while HULIS-a exhibits distinctively smaller-chain structures in summer and post-monsoon. FT-IR spectra reveals, among others, strong signatures of aromatic phenols in winter WSOM suggesting a BB-related origin. 1H NMR-based source attribution coupled with back trajectory analysis indicate the presence of secondary and BB-related organic aerosol (SOA and BBOA) in the post-monsoon and winter, and marine-derived OA (MOA) in the summer, which is supported by 13C measurements. Overall, these observations uncover a complex interplay of emissions and atmospheric processing of carbonaceous aerosols in the IGP.
Collapse
Affiliation(s)
- Arya Mukherjee
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, Nadia, India
| | - Supriya Dey
- Department of Earth Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, Nadia, India
| | - Archita Rana
- Department of Earth Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, Nadia, India
| | - Shiguo Jia
- Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, Sun Yat-sen University, Guangzhou, 510275, PR China; School of Atmospheric Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Supratim Banerjee
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, Nadia, India
| | - Sayantan Sarkar
- Department of Earth Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, Nadia, India; School of Engineering, Indian Institute of Technology (IIT) Mandi, Kamand, Himachal Pradesh, 175075, India.
| |
Collapse
|
13
|
Tang J, Li J, Mo Y, Safaei Khorram M, Chen Y, Tang J, Zhang Y, Song J, Zhang G. Light absorption and emissions inventory of humic-like substances from simulated rainforest biomass burning in Southeast Asia. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 262:114266. [PMID: 32155548 DOI: 10.1016/j.envpol.2020.114266] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 02/23/2020] [Accepted: 02/24/2020] [Indexed: 06/10/2023]
Abstract
Humic-like substances (HULIS) are complex mixtures that are highly associated with brown carbon (BrC) and are important components of biomass burning (BB) emissions. In this study, we investigated the light absorption, emission factors (EFs), and amounts of HULIS emitted from the simulated burning of 27 types of regionally important rainforest biomass in Southeast Asia. We observed that HULIS had a high mass absorption efficiency at 365 nm (MAE365), with an average value of 2.6 ± 0.83 m2 g-1 C. HULIS emitted from BB accounted for 65% ± 13% of the amount of water-soluble organic carbon (WSOC) and 85% ± 10% of the light absorption of WSOC at 365 nm. The EFs of HULIS from BB averaged 2.3 ± 2.1 g kg-1 fuel, and the burning of the four vegetation subtypes (herbaceous plants, shrubs, evergreen trees, and deciduous trees) exhibited different characteristics. The differences in EFs among the subtypes were likely due to differences in lignin content in the vegetation, the burning conditions, or other factors. The light absorption characteristics of HULIS were strongly associated with the EFs. The annual emissions (minimum-maximum) of HULIS from BB in this region in 2016 were 200-371 Gg. Furthermore, the emissions from January to April accounted for 99% of the total annual emissions of HULIS, which is likely the result of the burning activities during this season. The most significant emission regions were Cambodia, Burma, Thailand, and Laos. This study, which evaluated emissions of HULIS by simulating open BB, contributes to a better understanding of the light-absorbing properties and regional budgets of BrC in this region.
Collapse
Affiliation(s)
- Jiao Tang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Li
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yangzhi Mo
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Mahdi Safaei Khorram
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yingjun Chen
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200092, PR China
| | - Jianhui Tang
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Yanlin Zhang
- Yale-NUIST Center on Atmospheric Environment, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Jianzhong Song
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| |
Collapse
|
14
|
Wang X, Gemayel R, Hayeck N, Perrier S, Charbonnel N, Xu C, Chen H, Zhu C, Zhang L, Wang L, Nizkorodov SA, Wang X, Wang Z, Wang T, Mellouki A, Riva M, Chen J, George C. Atmospheric Photosensitization: A New Pathway for Sulfate Formation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:3114-3120. [PMID: 32022545 DOI: 10.1021/acs.est.9b06347] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Northern China is regularly subjected to intense wintertime "haze events", with high levels of fine particles that threaten millions of inhabitants. While sulfate is a known major component of these fine haze particles, its formation mechanism remains unclear especially under highly polluted conditions, with state-of-the-art air quality models unable to reproduce or predict field observations. These haze conditions are generally characterized by simultaneous high emissions of SO2 and photosensitizing materials. In this study, we find that the excited triplet states of photosensitizers could induce a direct photosensitized oxidation of hydrated SO2 and bisulfite into sulfate S(VI) through energy transfer, electron transfer, or hydrogen atom abstraction. This photosensitized pathway appears to be a new and ubiquitous chemical route for atmospheric sulfate production. Compared to other aqueous-phase sulfate formation pathways with ozone, hydrogen peroxide, nitrogen dioxide, or transition-metal ions, the results also show that this photosensitized oxidation of S(IV) could make an important contribution to aerosol sulfate formation in Asian countries, particularly in China.
Collapse
Affiliation(s)
- Xinke Wang
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, F-69626 Villeurbanne, France
| | - Rachel Gemayel
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, F-69626 Villeurbanne, France
| | - Nathalie Hayeck
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, F-69626 Villeurbanne, France
| | - Sebastien Perrier
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, F-69626 Villeurbanne, France
| | - Nicolas Charbonnel
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, F-69626 Villeurbanne, France
| | - Caihong Xu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
| | - Hui Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
| | - Chao Zhu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
| | - Liwu Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
| | - Lin Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
| | - Sergey A Nizkorodov
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Xinming Wang
- State Key Laboratory of Organic Geochemistry and Guangdong province Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Zhe Wang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Tao Wang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Abdelwahid Mellouki
- Institut de Combustion, Aérothermique, Réactivité et Environnement (ICARE), CNRS/OSUC, 45071 Orléans, Cedex 2, France
| | - Matthieu Riva
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, F-69626 Villeurbanne, France
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
- Institute of Eco-Chongming, 3663 Zhongshan Road, Shanghai 200062, China
| | - Christian George
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, F-69626 Villeurbanne, France
| |
Collapse
|
15
|
Srivastava D, Tomaz S, Favez O, Lanzafame GM, Golly B, Besombes JL, Alleman LY, Jaffrezo JL, Jacob V, Perraudin E, Villenave E, Albinet A. Speciation of organic fraction does matter for source apportionment. Part 1: A one-year campaign in Grenoble (France). THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 624:1598-1611. [PMID: 29275933 DOI: 10.1016/j.scitotenv.2017.12.135] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/11/2017] [Accepted: 12/12/2017] [Indexed: 05/07/2023]
Abstract
PM10 source apportionment was performed by positive matrix factorization (PMF) using specific primary and secondary organic molecular markers on samples collected over a one year period (2013) at an urban station in Grenoble (France). The results provided a 9-factor optimum solution, including sources rarely apportioned in the literature, such as two types of primary biogenic organic aerosols (fungal spores and plant debris), as well as specific biogenic and anthropogenic secondary organic aerosols (SOA). These sources were identified thanks to the use of key organic markers, namely, polyols, odd number higher alkanes, and several SOA markers related to the oxidation of isoprene, α-pinene, toluene and polycyclic aromatic hydrocarbons (PAHs). Primary and secondary biogenic contributions together accounted for at least 68% of the total organic carbon (OC) in the summer, while anthropogenic primary and secondary sources represented at least 71% of OC during wintertime. A very significant contribution of anthropogenic SOA was estimated in the winter during an intense PM pollution event (PM10>50μgm-3 for several days; 18% of PM10 and 42% of OC). Specific meteorological conditions with a stagnation of pollutants over 10days and possibly Fenton-like chemistry and self-amplification cycle of SOA formation could explain such high anthropogenic SOA concentrations during this period. Finally, PMF outputs were also used to investigate the origins of humic-like substances (HuLiS), which represented 16% of OC on an annual average basis. The results indicated that HuLiS were mainly associated with biomass burning (22%), secondary inorganic (22%), mineral dust (15%) and biogenic SOA (14%) factors. This study is probably the first to state that HuLiS are significantly associated with mineral dust.
Collapse
Affiliation(s)
- Deepchandra Srivastava
- INERIS, Parc Technologique Alata, BP 2, 60550 Verneuil-en-Halatte, France; CNRS, EPOC, UMR 5805 CNRS, 33405 Talence, France; Université de Bordeaux, EPOC, UMR 5805 CNRS, 33405 Talence, France
| | - Sophie Tomaz
- INERIS, Parc Technologique Alata, BP 2, 60550 Verneuil-en-Halatte, France; CNRS, EPOC, UMR 5805 CNRS, 33405 Talence, France; Université de Bordeaux, EPOC, UMR 5805 CNRS, 33405 Talence, France
| | - Olivier Favez
- INERIS, Parc Technologique Alata, BP 2, 60550 Verneuil-en-Halatte, France.
| | | | - Benjamin Golly
- Univ. Savoie Mont Blanc, LCME, 73000 Chambéry, France; Univ. Grenoble Alpes, CNRS, IRD, IGE, F-38000 Grenoble, France
| | | | | | | | - Véronique Jacob
- Univ. Grenoble Alpes, CNRS, IRD, IGE, F-38000 Grenoble, France
| | - Emilie Perraudin
- CNRS, EPOC, UMR 5805 CNRS, 33405 Talence, France; Université de Bordeaux, EPOC, UMR 5805 CNRS, 33405 Talence, France
| | - Eric Villenave
- CNRS, EPOC, UMR 5805 CNRS, 33405 Talence, France; Université de Bordeaux, EPOC, UMR 5805 CNRS, 33405 Talence, France
| | - Alexandre Albinet
- INERIS, Parc Technologique Alata, BP 2, 60550 Verneuil-en-Halatte, France.
| |
Collapse
|
16
|
Sun J, Hu C, Zhao K, Li M, Qu J, Liu H. Enhanced membrane fouling mitigation by modulating cake layer porosity and hydrophilicity in an electro-coagulation/oxidation membrane reactor (ECOMR). J Memb Sci 2018. [DOI: 10.1016/j.memsci.2017.12.073] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Saito T, Aoyagi N, Terashima M. Europium binding to humic substances extracted from deep underground sedimentary groundwater studied by time-resolved laser fluorescence spectroscopy. J NUCL SCI TECHNOL 2017. [DOI: 10.1080/00223131.2016.1274688] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Takumi Saito
- Nucler Professional School, School of Engineering, The University of Tokyo, Ibaraki, Japan
| | - Noboru Aoyagi
- Nuclear Science and Engineering Center, Japan Atomic Energy Agency (JAEA), Ibaraki, Japan
| | - Motoki Terashima
- Radioactive Waste Processing and Disposal Research Department, JAEA, Ibaraki, Japan
| |
Collapse
|
18
|
Saito T, Terashima M, Aoyagi N, Nagao S, Fujitake N, Ohnuki T. Physicochemical and ion-binding properties of highly aliphatic humic substances extracted from deep sedimentary groundwater. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2015; 17:1386-1395. [PMID: 26166584 DOI: 10.1039/c5em00176e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Humic substances (HSs) are ubiquitous in various aquatic systems and play important roles in many geochemical processes. There is increasing evidence of the presence of HSs in deep groundwater; nevertheless, their ion binding properties are largely unknown. In this study we investigated the physicochemical and ion-binding properties of humic and fulvic acids extracted from deep sedimentary groundwater. The binding isotherms of protons (H(+)) and copper (Cu(2+)) were measured by potentiometry and fitted to the NICA-Donnan model, and the obtained parameters were compared with the generic parameters of the model, which are the average parameters for HSs from surface environments. The deep groundwater HSs were different from surface HSs, having high aliphaticities, high sulfur contents, and small molecular sizes. Their amounts of acidic functional groups were comparable to or slightly larger than those of surface HSs; however, the magnitude of Cu(2+) binding to the deep groundwater HSs was smaller. The NICA-Donnan model attributed this to the binding of Cu(2+) to chemically homogeneous low affinity sites, which presumably consist of carboxylic groups, via mono-dentate coordination at relatively low pH. The binding mode tended to shift to multi-dentate coordination with carboxylic groups and more heterogeneous alcoholic/phenolic groups at higher pH. X-ray absorption spectroscopy also revealed that Cu(2+) binds to O/N containing functional groups and to a lesser extent S containing functional groups as its divalent from. This study shows the particularity of the deep groundwater HSs in terms of their physicochemical and ion-binding properties, compared with surface HSs.
Collapse
Affiliation(s)
- Takumi Saito
- Nuclear Professional School, School of Engineering, The University of Tokyo, 2-22 Shirakata Shirane, Tokai-mura, Ibaraki, 319-1188, Japan.
| | | | | | | | | | | |
Collapse
|
19
|
George C, Ammann M, D’Anna B, Donaldson DJ, Nizkorodov S. Heterogeneous photochemistry in the atmosphere. Chem Rev 2015; 115:4218-58. [PMID: 25775235 PMCID: PMC4772778 DOI: 10.1021/cr500648z] [Citation(s) in RCA: 291] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Indexed: 02/06/2023]
Affiliation(s)
- Christian George
- Université
de Lyon 1, Lyon F-69626, France
- CNRS, UMR5256,
IRCELYON, Institut de Recherches sur la Catalyse et
l’Environnement de Lyon, Villeurbanne F-69626, France
| | - Markus Ammann
- Laboratory
of Radiochemistry and Environmental Chemistry, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Barbara D’Anna
- Université
de Lyon 1, Lyon F-69626, France
- CNRS, UMR5256,
IRCELYON, Institut de Recherches sur la Catalyse et
l’Environnement de Lyon, Villeurbanne F-69626, France
| | - D. J. Donaldson
- Department
of Chemistry and Department of Physical & Environmental Sciences, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Sergey
A. Nizkorodov
- Department
of Chemistry, University of California, Irvine, California 92697, United States
| |
Collapse
|
20
|
Leng C, Hiltner J, Pham H, Kelley J, Mach M, Zhang Y, Liu Y. Kinetics study of heterogeneous reactions of ozone with erucic acid using an ATR-IR flow reactor. Phys Chem Chem Phys 2014; 16:4350-60. [DOI: 10.1039/c3cp54646b] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
21
|
Zheng G, He K, Duan F, Cheng Y, Ma Y. Measurement of humic-like substances in aerosols: a review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2013; 181:301-14. [PMID: 23830737 DOI: 10.1016/j.envpol.2013.05.055] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 05/30/2013] [Accepted: 05/31/2013] [Indexed: 05/20/2023]
Abstract
Aerosol-phase humic-like substances (HULIS) have received increasingly attention due to their universal ambient presence, active participation in atmospheric chemistry and important environmental and health effects. In last decade, intensive field works have promoted development of quantification and analysis method, unearthed spatio-temporal variation, and proved evidence for source identification of HULIS. These important developments were summarized in this review to provide a global perspective of HULIS. The diverse operational HULIS definitions were gradually focused onto several versions. Although found globally in Europe, Asia, Australasia and North America, HULIS are far more typical in continental and near-ground aerosols. HULIS concentrations varied from <1 μg/m(3) to >13 μg/m(3), with their carbon fraction making up 9%-72% of water soluble organic carbon. Dominant HULIS source was suggested as secondary processes and biomass burning, with the detailed formation pathways suggested and verified in laboratory works.
Collapse
Affiliation(s)
- Guangjie Zheng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, People's Republic of China
| | | | | | | | | |
Collapse
|
22
|
Zeng G, Holladay S, Langlois D, Zhang Y, Liu Y. Kinetics of Heterogeneous Reaction of Ozone with Linoleic Acid and its Dependence on Temperature, Physical State, RH, and Ozone Concentration. J Phys Chem A 2013; 117:1963-74. [DOI: 10.1021/jp308304n] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Guang Zeng
- Department of Chemistry, University of Colorado Denver, Denver,
Colorado 80217, United States
- The Institute of Chemical Physics,
Key Laboratory of Cluster Science, School of Chemistry, Beijing Institute of Technology, Beijing
100081, People’s Republic of China
| | - Sara Holladay
- Department of Chemistry, University of Colorado Denver, Denver,
Colorado 80217, United States
| | - Danielle Langlois
- Department of Chemistry, University of Colorado Denver, Denver,
Colorado 80217, United States
| | - Yunhong Zhang
- The Institute of Chemical Physics,
Key Laboratory of Cluster Science, School of Chemistry, Beijing Institute of Technology, Beijing
100081, People’s Republic of China
| | - Yong Liu
- Department of Chemistry, University of Colorado Denver, Denver,
Colorado 80217, United States
| |
Collapse
|
23
|
Voisin D, Jaffrezo JL, Houdier S, Barret M, Cozic J, King MD, France JL, Reay HJ, Grannas A, Kos G, Ariya PA, Beine HJ, Domine F. Carbonaceous species and humic like substances (HULIS) in Arctic snowpack during OASIS field campaign in Barrow. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2011jd016612] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
24
|
Abstract
Credible climate change predictions require reliable fundamental scientific knowledge of the underlying processes. Despite extensive observational data accumulated to date, atmospheric aerosols still pose key uncertainties in the understanding of Earth's radiative balance due to direct interaction with radiation and because they modify clouds' properties. Specifically, major gaps exist in the understanding of the physicochemical pathways that lead to aerosol growth in the atmosphere and to changes in their properties while in the atmosphere. Traditionally, the driving forces for particle growth are attributed to condensation of low vapor pressure species following atmospheric oxidation of volatile compounds by gaseous oxidants. The current study presents experimental evidence of an unaccounted-for new photoinduced pathway for particle growth. We show that heterogeneous reactions activated by light can lead to fast uptake of noncondensable Volatile Organic Compounds (VOCs) at the surface of particles when only traces of a photosensitizer are present in the seed aerosol. Under such conditions, size and mass increase; changes in the chemical composition of the aerosol are also observed upon exposure to volatile organic compounds such as terpenes and near-UV irradiation. Experimentally determined growth rate values match field observations, suggesting that this photochemical process can provide a new, unaccounted-for pathway for atmospheric particle growth and should be considered by models.
Collapse
|
25
|
Krieger UK, Marcolli C, Reid JP. Exploring the complexity of aerosol particle properties and processes using single particle techniques. Chem Soc Rev 2012; 41:6631-62. [DOI: 10.1039/c2cs35082c] [Citation(s) in RCA: 247] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
George C, D’Anna B, Herrmann H, Weller C, Vaida V, Donaldson DJ, Bartels-Rausch T, Ammann M. Emerging Areas in Atmospheric Photochemistry. Top Curr Chem (Cham) 2012; 339:1-53. [DOI: 10.1007/128_2012_393] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|