1
|
Fuller ME, Zhao Y, Hedman PC, Schaefer CE. Cathodic electrochemical degradation of legacy (HMX, RDX, TNT) and insensitive (NTO, NQ, DNAN) munitions constituents. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:137789. [PMID: 40120267 DOI: 10.1016/j.jhazmat.2025.137789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/22/2025] [Accepted: 02/27/2025] [Indexed: 03/25/2025]
Abstract
This research evaluated the cathodic electrochemical treatment of wastewater contaminated with energetic compounds, including "legacy" explosives octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), hexahydro-1,3,5-trinitro-s-triazine (RDX), and trinitrotoluene (TNT), as well as compounds insensitive munitions constituents, including 3-nitro-1,2,4-triazol-5-one (NTO), nitroguanidine (NQ), 2,4-dinitroanisole (DNAN). Rate constants and transformation products observed using electrochemical degradation performed under constant voltage (4 V) and constant current (0.5 A), as well as degradation via alkaline hydrolysis, were compared. Electrochemical degradation rate constants for all the energetics were greater than rate constants measured during alkaline hydrolysis. Degradation rate constants for individual energetics were generally similar to those observed in a mixture of all six compounds, with the exception of TNT (0.41 vs. 1.08 h-1). Many of the transformation products detected (e.g., HCHO, dinitrophenol (DNP), NH4+) evidenced further electrochemical degradation, but remained as residuals during alkaline hydrolysis. Utilizing 13C/15N labeled parent compounds, varying degrees of mineralization to 13CO2 and 15N2O were confirmed for RDX, NTO, and DNAN. The calculated electrical energy per order of removal (EEO) was generally lower under constant voltage compared to constant current conditions, and ranged from 2 Wh/L for TNT to 10 Wh/L for NTO. These results provide proof-of-concept data for cathodic electrochemical treatment of mixed energetics wastewater.
Collapse
Affiliation(s)
- Mark E Fuller
- Aptim Federal Services, 17 Princess Road, Lawrenceville, NJ 08648, United States.
| | - Yuwei Zhao
- Aptim Federal Services, 17 Princess Road, Lawrenceville, NJ 08648, United States
| | - Paul C Hedman
- Aptim Federal Services, 17 Princess Road, Lawrenceville, NJ 08648, United States
| | - Charles E Schaefer
- CDM Smith, 110 Fieldcrest Avenue, #8, Sixth Floor, Edison, NJ 08837, United States
| |
Collapse
|
2
|
Kim J, Fuller ME, Hatzinger PB, Chu KH. Isolation and characterization of nitroguanidine-degrading microorganisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169184. [PMID: 38092196 DOI: 10.1016/j.scitotenv.2023.169184] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023]
Abstract
Nitroguanidine (NQ) is a component of newly developed insensitive munition (IM) formulations which are more resistant to impact, friction, heat, or sparks than conventional explosives. NQ is also used to synthesize various organic compounds and herbicides, and has both human and environmental health impacts. Despite the wide application and associated health concerns, limited information is known regarding NQ biodegradation, and only one NQ-degrading pure culture identified as Variovorax strain VC1 has been characterized. Here, we present results for three new NQ-degrading bacterial strains isolated from soil, sediment, and a lab-scale aerobic membrane bioreactor (MBR), respectively. Each of these strains -utilizes NQ as a nitrogen (N) source rather than as a source of carbon or energy. The MBR strain, identified as Pseudomonas extremaustralis strain NQ5, is capable of degrading NQ at a rate of approximately 150 μmole L-1 h-1 under aerobic conditions with glucose as a sole carbon source - and NQ as a sole N source. The addition of NH4+ to strain NQ5 during active growth with NQ as a sole N source slowed the growth rate for several hours, and the strain released NH4+, presumably from NQ. When NO3- was added as an alternate N source under similar conditions, the NO3- was not consumed, but NH4+ release into the culture medium was again observed. Strain NQ5 was also able to utilize guanylurea, guanidine, and ethyl allophanate as N sources, and - tolerate salt concentrations as high as 4 % (as NaCl). The other two stains, NQ4 and NQ7, both identified as Arthrobacter spp., grew significantly slower than strain NQ5 under similar culture conditions and tolerated only ∼1 % NaCl. In addition, neither strain NQ4 nor strain NQ7 was able to degrade guanlyurea or ethyl allophanate, but each degraded guanidine. These strains, particularly strain NQ5, may have practical applications for in-situ and ex-situ NQ bioremediation.
Collapse
Affiliation(s)
- Jinha Kim
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX 77843-3136, USA
| | - Mark E Fuller
- Aptim Federal Services, 17 Princess Road, Lawrenceville, NJ 08648, USA
| | - Paul B Hatzinger
- Aptim Federal Services, 17 Princess Road, Lawrenceville, NJ 08648, USA
| | - Kung-Hui Chu
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX 77843-3136, USA.
| |
Collapse
|
3
|
Wang J, Zhang Y, Liu T, Shi Y, Ding Y, Zhang Y, Xu W, Zhang X, Wang Y, Li D. A biodegradable chitosan-based polymer for sustained nutrient release to stimulate groundwater hydrocarbon-degrading microflora. CHEMOSPHERE 2023; 344:140346. [PMID: 37832890 DOI: 10.1016/j.chemosphere.2023.140346] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/21/2023] [Accepted: 09/30/2023] [Indexed: 10/15/2023]
Abstract
Petroleum hydrocarbon-contaminated groundwater often has a low indigenous microorganism population and lacks the necessary nutrient substrates for biodegradation reaction, resulting in a weak natural remediation ability within the groundwater ecosystem. In this paper, we utilized the principle of petroleum hydrocarbon degradation by microorganisms to identify effective nutrients (NaH2PO4, K2HPO4, NH4NO3, CaCl2, MgSO4·7H2O, FeSO4·7H2O, and VB12) and optimize nutrient substrate allocation through a combination of actual surveys of petroleum hydrocarbon-contaminated sites and microcosm experiments. Building on this, combining biostimulation and controlled-release technology, we developed a biodegradable chitosan-based encapsulated targeted biostimulant (i.e., YZ-1) characterized by easy uptake, good stability, controllable slow-release migration, and longevity to stimulate indigenous microflora in groundwater to efficiently degrade petroleum hydrocarbon. Results showed that YZ-1 extended the active duration of nutrient components by 5-6 times, with a sustainable release time exceeding 2 months. Under YZ-1 stimulation, microorganisms grew rapidly, increasing the degradation rate of petroleum hydrocarbon (10 mg L-1) by indigenous microorganisms from 43.03% to 79.80% within 7 d. YZ-1 can easily adapt to varying concentrations of petroleum hydrocarbon-contaminated groundwater. Specifically, in the range of 2-20 mg L-1 of petroleum hydrocarbon, the indigenous microflora was able to degrade 71.73-80.54% of the petroleum hydrocarbon within a mere 7 d. YZ-1 injection facilitated the delivery of nutrient components into the underground environment, improved the conversion ability of inorganic electron donors/receptors in the indigenous microbial community system, and strengthened the co-metabolism mechanism among microorganisms, achieving the goal of efficient petroleum hydrocarbon degradation.
Collapse
Affiliation(s)
- Jili Wang
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China; College of New Energy and Environment, Jilin University, Changchun 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun 130021,China
| | - Yuling Zhang
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China; College of New Energy and Environment, Jilin University, Changchun 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun 130021,China.
| | - Ting Liu
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China; College of New Energy and Environment, Jilin University, Changchun 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun 130021,China
| | - Yujia Shi
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China; College of New Energy and Environment, Jilin University, Changchun 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun 130021,China; Changchun Gold Research Institute Co., Ltd, Changchun 130021, China
| | - Yang Ding
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China; College of New Energy and Environment, Jilin University, Changchun 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun 130021,China
| | - Yi Zhang
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China; College of New Energy and Environment, Jilin University, Changchun 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun 130021,China
| | - Weiqing Xu
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China; College of New Energy and Environment, Jilin University, Changchun 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun 130021,China
| | - Xinying Zhang
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China; College of New Energy and Environment, Jilin University, Changchun 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun 130021,China
| | - Yiliang Wang
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China; College of New Energy and Environment, Jilin University, Changchun 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun 130021,China
| | - Dong Li
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China; College of New Energy and Environment, Jilin University, Changchun 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun 130021,China
| |
Collapse
|
4
|
Xin D, Girón J, Fuller ME, Chiu PC. Abiotic reduction of 3-nitro-1,2,4-triazol-5-one (NTO) and other munitions constituents by wood-derived biochar through its rechargeable electron storage capacity. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:316-329. [PMID: 35050280 DOI: 10.1039/d1em00447f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The environmental fate of 3-nitro-1,2,4-triazol-5-one (NTO) and other insensitive munitions constituents (MCs) is of significant concern due to their high water solubility and mobility relative to legacy MCs. Plant-based biochars have been shown to possess a considerable electron storage capacity (ESC), which enables them to undergo reversible electron transfer reactions. We hypothesized biochar can act as a rechargeable electron donor to effect abiotic reduction of MCs repeatedly through its ESC. To test this hypothesis, MC reduction experiments were performed using wood-derived biochars that were oxidized with dissolved oxygen or reduced with dithionite. Removal of aqueous NTO, an anion at circumneutral pH, by oxidized biochar was minimal and occurred through reversible adsorption. In contrast, NTO removal by reduced biochar was much more pronounced and occurred predominantly through reduction, with concomitant formation of 3-amino-1,2,4-triazol-5-one (ATO). Mass balance and electron recovery with ferricyanide further showed that (1) the amount of NTO reduced to ATO was relatively constant (85-100 μmol per gram of biochar) at pH 6-10; (2) the fraction of biochar ESC reactive toward NTO was ca. 30% of that toward ferricyanide; (3) the NTO-reactive fraction of the ESC was regenerable over multiple redox cycles. We also evaluated biochar transformation of other MCs, including nitroguanidine (NQ), 2,4-dinitroanisole (DNAN), and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). While mass and electron balances could not be established due to sorption, DNAN and RDX reduction by reduced biochar was confirmed via detection of multiple reduction products. In contrast, NQ was not reduced under any of the conditions tested. This study is the first demonstration of organic contaminant degradation through biochar's rechargeable ESC. Our results indicate biochar is a regenerable electron storage medium and sorbent that can remove MCs from water through concurrent reduction and sorption, and is thus potentially useful for pollution control and remediation at military facilities.
Collapse
Affiliation(s)
- Danhui Xin
- Department of Civil and Environmental Engineering, University of Delaware, Newark, DE 19716, USA.
| | - Julián Girón
- Department of Civil and Environmental Engineering, University of Delaware, Newark, DE 19716, USA.
| | - Mark E Fuller
- Aptim Federal Services, 17 Princess Road, Lawrenceville, NJ 08648, USA.
| | - Pei C Chiu
- Department of Civil and Environmental Engineering, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
5
|
Tong Y, Berens MJ, Ulrich BA, Bolotin J, Strehlau JH, Hofstetter TB, Arnold WA. Exploring the Utility of Compound-Specific Isotope Analysis for Assessing Ferrous Iron-Mediated Reduction of RDX in the Subsurface. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:6752-6763. [PMID: 33900746 DOI: 10.1021/acs.est.0c08420] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Subsurface contamination with the explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) at ordnance production and testing sites is a problem because of the persistence, mobility, and toxicity of RDX and the formation of toxic products under anoxic conditions. While the utility of compound-specific isotope analysis for inferring natural attenuation pathways from stable isotope ratios has been demonstrated, the stable isotope fractionation for RDX reduction by iron-bearing minerals remains unknown. Here, we evaluated N and C isotope fractionation of RDX during reduction by Fe(II) associated with Fe minerals and natural sediments and applied N isotope ratios to the assessment of mineral-catalyzed RDX reduction in a contaminant plume and in sediment columns treated by in situ chemical reduction. Laboratory studies revealed that RDX was reduced to nitroso compounds without denitration and the concomitant ring cleavage. Fe(II)/iron oxide mineral-catalyzed reactions exhibited N isotope enrichment factors, εN, between -6.3±0.3‰ and -8.2±0.2‰, corresponding to an apparent 15N kinetic isotope effect of 1.04-1.05. The observed variations of the δ15N of ∼15‰ in RDX from groundwater samples suggested an extent of reductive transformation of 85% at an ammunition plant. Conversely, we observed masking of N isotope fractionation after RDX reduction in laboratory flow-through systems, which was presumably due to limited accessibility to reactive Fe(II).
Collapse
Affiliation(s)
- Yiran Tong
- Department of Civil, Environmental, and Geo- Engineering, University of Minnesota, 500 Pillsbury Drive SE, Minneapolis, Minnesota 55455-0116, United States
| | - Matthew J Berens
- Department of Civil, Environmental, and Geo- Engineering, University of Minnesota, 500 Pillsbury Drive SE, Minneapolis, Minnesota 55455-0116, United States
| | - Bridget A Ulrich
- Department of Environmental Chemistry, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, CH-8600 Dübendorf, Switzerland
| | - Jakov Bolotin
- Department of Environmental Chemistry, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, CH-8600 Dübendorf, Switzerland
| | - Jennifer H Strehlau
- Department of Civil, Environmental, and Geo- Engineering, University of Minnesota, 500 Pillsbury Drive SE, Minneapolis, Minnesota 55455-0116, United States
| | - Thomas B Hofstetter
- Department of Environmental Chemistry, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, CH-8600 Dübendorf, Switzerland
| | - William A Arnold
- Department of Civil, Environmental, and Geo- Engineering, University of Minnesota, 500 Pillsbury Drive SE, Minneapolis, Minnesota 55455-0116, United States
| |
Collapse
|
6
|
Fuller ME, Koster van Groos PG, Jarrett M, Kucharzyk KH, Minard-Smith A, Heraty LJ, Sturchio NC. Application of a multiple lines of evidence approach to document natural attenuation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in groundwater. CHEMOSPHERE 2020; 250:126210. [PMID: 32109698 DOI: 10.1016/j.chemosphere.2020.126210] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/10/2020] [Accepted: 02/13/2020] [Indexed: 06/10/2023]
Abstract
This study utilized innovative analyses to develop multiple lines of evidence for natural attenuation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in groundwater at the U.S. Department of Energy's Pantex Plant. RDX, as well as the degradation product 4-nitro-2,4-diazabutanal (NDAB; produced by aerobic biodegradation or alkaline hydrolysis) were detected in a large portion of the plume, with lower concentrations of the nitroso-containing metabolites produced during anaerobic biodegradation. 16S metagenomic sequencing detected the presence of bacteria known to aerobically degrade RDX (e.g., Gordonia, Rhodococcus) and NDAB (Methylobacterium), as well as the known anoxic RDX degrader Pseudomonas fluorescens I-C. Proteomic analysis detected both the aerobic RDX degradative enzyme XplA, and the anoxic RDX degradative enzyme XenB. Groundwater enrichment cultures supplied with low concentrations of labile carbon confirmed the potential of the extant groundwater community to aerobically degrade RDX and produce NDAB. Compound-specific isotope analysis (CSIA) of RDX collected at the site showed fractionation of nitrogen isotopes with δ15N values ranging from approximately -5‰ to +9‰, providing additional evidence of RDX degradation. Taken together, these results provide evidence of in situ RDX degradation in the Pantex Plant groundwater. Furthermore, they demonstrate the benefit of multiple lines of evidence in supporting natural attenuation assessments, especially with the application of innovative isotopic and -omic technologies.
Collapse
Affiliation(s)
- Mark E Fuller
- Aptim Federal Services, Lawrenceville, NJ, 08648, USA.
| | | | | | | | | | | | | |
Collapse
|
7
|
Pi Y, Chen B, Bao M, Fan F, Cai Q, Ze L, Zhang B. Microbial degradation of four crude oil by biosurfactant producing strain Rhodococcus sp. BIORESOURCE TECHNOLOGY 2017; 232:263-269. [PMID: 28236759 DOI: 10.1016/j.biortech.2017.02.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 02/02/2017] [Accepted: 02/03/2017] [Indexed: 06/06/2023]
Abstract
Rhodococcus erythropolis M-25, one of the representative biosurfactant producers, performed effectively during the biodegradation of four crude oil. The microbial degradation efficiency is positively relevant to the API of the crude oil. The chemical dispersant Corexit 9500A did not enhance the biodegradation of the petroleum hydrocarbons during the experimental period. 70.7% of the N-4 oil was degraded after 30days, while in the Corexit 9500A plus sample the biodegradation removal was 42.8%. The Corexit-derived compounds were metabolized by M-25 at the same time of the petroleum hydrocarbons biodegrading. Neither biodegradation nor chemical dispersion process has almost no effect on the biomarker (m/z=231). The saturated methyl-branched fatty acids increased from 37.3%, to 49.4%, when M-25 was exposed with the N-4 crude oil. Similarly, the saturated methyl-branched fatty acids in the membrane of N3-2P increased from 20.25% to 44.1%, when exposed it with the N-4 crude oil.
Collapse
Affiliation(s)
- Yongrui Pi
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, Shandong 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, China; Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL A1B3X5, Canada
| | - Bing Chen
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL A1B3X5, Canada
| | - Mutai Bao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, Shandong 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, China.
| | - Fuqiang Fan
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL A1B3X5, Canada
| | - Qinhong Cai
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL A1B3X5, Canada
| | - Lv Ze
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL A1B3X5, Canada
| | - Baiyu Zhang
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL A1B3X5, Canada
| |
Collapse
|
8
|
Balaban N, Bernstein A, Gelman F, Ronen Z. Microbial degradation of the brominated flame retardant TBNPA by groundwater bacteria: laboratory and field study. CHEMOSPHERE 2016; 156:367-373. [PMID: 27183339 DOI: 10.1016/j.chemosphere.2016.04.127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 04/10/2016] [Accepted: 04/30/2016] [Indexed: 06/05/2023]
Abstract
In the present study, the biodegradation of the brominated flame retardant tribromoneopentylalcohol (TBNPA) by a groundwater enrichment culture was investigated using a dual carbon ((13)C/(12)C)- bromine ((81)Br/(79)Br) stable isotope analysis. An indigenous aerobic bacterial consortium was enriched from the polluted groundwater underlying an industrial site in the northern Negev Desert, Israel, where TBNPA is an abundant pollutant. Aerobic biodegradation was shown to be rapid, with complete debromination within a few days, whereas anaerobic biodegradation was not observed. Biodegradation under aerobic conditions was accompanied by a significant carbon isotope effect with an isotopic enrichment factor of ɛCbulk = -8.8‰ ± 1.5‰, without any detectable bromine isotope fractionation. It was found that molecular oxygen is necessary for biodegradation to occur, suggesting an initial oxidative step. Based on these results, it was proposed that H abstraction from the C-H bond is the first step of TBNPA biodegradation under aerobic conditions, and that the C-H bond cleavage results in the formation of unstable intermediates, which are rapidly debrominated. A preliminary isotopic analysis of TBNPA in the groundwater underlying the industrial area revealed that there are no changes in the carbon and bromine isotope ratio values downstream of the contamination source. Considering that anoxic conditions prevail in the groundwater of the contaminated site, the lack of isotope shifts in TBNPA indicates the lack of TBNPA biodegradation in the groundwater, in accordance with our findings.
Collapse
Affiliation(s)
- Noa Balaban
- Department of Environmental Hydrology & Microbiology (EHM), The Zuckerberg Institute for Water Research (ZIWR), The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Israel.
| | - Anat Bernstein
- Department of Environmental Hydrology & Microbiology (EHM), The Zuckerberg Institute for Water Research (ZIWR), The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Israel.
| | - Faina Gelman
- Geological Survey of Israel, 30 Malkhei Israel St., Jerusalem 95501, Israel.
| | - Zeev Ronen
- Department of Environmental Hydrology & Microbiology (EHM), The Zuckerberg Institute for Water Research (ZIWR), The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Israel.
| |
Collapse
|
9
|
Fuller ME, Heraty L, Condee CW, Vainberg S, Sturchio NC, Böhlke JK, Hatzinger PB. Relating Carbon and Nitrogen Isotope Effects to Reaction Mechanisms during Aerobic or Anaerobic Degradation of RDX (Hexahydro-1,3,5-Trinitro-1,3,5-Triazine) by Pure Bacterial Cultures. Appl Environ Microbiol 2016; 82:3297-3309. [PMID: 27016566 PMCID: PMC4959238 DOI: 10.1128/aem.00073-16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/19/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Kinetic isotopic fractionation of carbon and nitrogen during RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) biodegradation was investigated with pure bacterial cultures under aerobic and anaerobic conditions. Relatively large bulk enrichments in (15)N were observed during biodegradation of RDX via anaerobic ring cleavage (ε(15)N = -12.7‰ ± 0.8‰) and anaerobic nitro reduction (ε(15)N = -9.9‰ ± 0.7‰), in comparison to smaller effects during biodegradation via aerobic denitration (ε(15)N = -2.4‰ ± 0.2‰). (13)C enrichment was negligible during aerobic RDX biodegradation (ε(13)C = -0.8‰ ± 0.5‰) but larger during anaerobic degradation (ε(13)C = -4.0‰ ± 0.8‰), with modest variability among genera. Dual-isotope ε(13)C/ε(15)N analyses indicated that the three biodegradation pathways could be distinguished isotopically from each other and from abiotic degradation mechanisms. Compared to the initial RDX bulk δ(15)N value of +9‰, δ(15)N values of the NO2 (-) released from RDX ranged from -7‰ to +2‰ during aerobic biodegradation and from -42‰ to -24‰ during anaerobic biodegradation. Numerical reaction models indicated that N isotope effects of NO2 (-) production were much larger than, but systematically related to, the bulk RDX N isotope effects with different bacteria. Apparent intrinsic ε(15)N-NO2 (-) values were consistent with an initial denitration pathway in the aerobic experiments and more complex processes of NO2 (-) formation associated with anaerobic ring cleavage. These results indicate the potential for isotopic analysis of residual RDX for the differentiation of degradation pathways and indicate that further efforts to examine the isotopic composition of potential RDX degradation products (e.g., NOx) in the environment are warranted. IMPORTANCE This work provides the first systematic evaluation of the isotopic fractionation of carbon and nitrogen in the organic explosive RDX during degradation by different pathways. It also provides data on the isotopic effects observed in the nitrite produced during RDX biodegradation. Both of these results could lead to better understanding of the fate of RDX in the environment and help improve monitoring and remediation technologies.
Collapse
Affiliation(s)
- Mark E Fuller
- CB&I Federal Services, Lawrenceville, New Jersey, USA
| | | | | | | | | | - J K Böhlke
- U.S. Geological Survey, Reston, Virginia, USA
| | | |
Collapse
|
10
|
Schoenmuth B, Schenke D, Scharnhorst T, Combrinck S, McCrindle RI, Mueller JO, Büttner C, Pestemer W. Binding of RDX to Cell Wall Components of Pinus sylvestris and Picea glauca and Three-Year Mineralisation Study of Tissue-Associated RDX Residues. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2015; 17:716-725. [PMID: 25976886 DOI: 10.1080/15226514.2014.964836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Contamination of soils with the explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX, Research Department Explosive) as a result of military applications is a large-area problem globally. Since coniferous trees dominate the vegetation of large areas of military land in Central Europe, particularly in Germany, the long-term fate of (14)C-RDX in the conifers Scots pine and Dwarf Alberta spruce was studied. Acetic acid was the most effective solvent for the removal of extractable RDX residues from homogenates of RDX-laden tree material (85%, 80-90% and 64-80% for roots, wood and needles, respectively). On average, only a fifth of RDX-derived (14)C was bound in non-extractable residues (NER). Within the main cell wall compartments, lignin was the dominant binding site for NER (needles: 32-62%; roots: 38-42%). Hemicellulose (needles: 11-18%; roots: 6-11%) and cellulose (needles: 12-24%; roots: 1-2%) were less involved in binding and a considerable proportion of NER (needles: 15-24%; roots: 59-51%) was indigestible. After three-year incubation in rot chambers, mineralisation of tree-associated (14)C-RDX to (14)CO2 clearly dominated the mass balance in both tree species with 48-83%. 13-33% of (14)C-RDX-derived radioactivity remained in an unleachable form and the remobilisation by water leaching was negligible (< 2%).
Collapse
Affiliation(s)
- Bernd Schoenmuth
- a Humboldt University Berlin, Faculty of Agriculture and Horticulture , Department of Crop- and Animal Sciences, Division Phytomedicine , Berlin , Germany
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Metagenomic insights into the RDX-degrading potential of the ovine rumen microbiome. PLoS One 2014; 9:e110505. [PMID: 25383623 PMCID: PMC4226467 DOI: 10.1371/journal.pone.0110505] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 09/15/2014] [Indexed: 11/19/2022] Open
Abstract
The manufacturing processes of royal demolition explosive (RDX), or hexahydro-1,3,5-trinitro-1,3,5-triazine, have resulted in serious water contamination. As a potential carcinogen, RDX can cause a broad range of harmful effects to humans and animals. The ovine rumen is capable of rapid degradation of nitroaromatic compounds, including RDX. While ruminal RDX-degrading bacteria have been identified, the genes and pathways responsible for RDX degradation in the rumen have yet to be characterized. In this study, we characterized the metabolic potential of the ovine rumen using metagenomic approaches. Sequences homologous to at least five RDX-degrading genes cloned from environmental samples (diaA, xenA, xenB, xplA, and xplB) were present in the ovine rumen microbiome. Among them, diaA was the most abundant, likely reflective of the predominance of the genus Clostridium in the ovine rumen. At least ten genera known to harbor RDX-degrading microorganisms were detectable. Metagenomic sequences were also annotated using public databases, such as Pfam, COG, and KEGG. Five of the six Pfam protein families known to be responsible for RDX degradation in environmental samples were identified in the ovine rumen. However, increased substrate availability did not appear to enhance the proliferation of RDX-degrading bacteria and alter the microbial composition of the ovine rumen. This implies that the RDX-degrading capacity of the ovine rumen microbiome is likely regulated at the transcription level. Our results provide metagenomic insights into the RDX-degrading potential of the ovine rumen, and they will facilitate the development of novel and economic bioremediation strategies.
Collapse
|