1
|
Wang N, Müller T, Ernle L, Bekö G, Wargocki P, Williams J. How Does Personal Hygiene Influence Indoor Air Quality? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:9750-9759. [PMID: 38780915 PMCID: PMC11155237 DOI: 10.1021/acs.est.4c01698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
Humans are known to be a continuous and potent indoor source of volatile organic compounds (VOCs). However, little is known about how personal hygiene, in terms of showering frequency, can influence these emissions and their impact on indoor air chemistry involving ozone. In this study, we characterized the VOC composition of the air in a controlled climate chamber (22.5 m3 with an air change rate at 3.2 h-1) occupied by four male volunteers on successive days under ozone-free (∼0 ppb) and ozone-present (37-40 ppb) conditions. The volunteers either showered the evening prior to the experiments or skipped showering for 24 and 48 h. Reduced shower frequency increased human emissions of gas-phase carboxylic acids, possibly originating from skin bacteria. With ozone present, increasing the number of no-shower days enhanced ozone-skin surface reactions, yielding higher levels of oxidation products. Wearing the same clothing over several days reduced the level of compounds generated from clothing-ozone reactions. When skin lotion was applied, the yield of the skin ozonolysis products decreased, while other compounds increased due to ozone reactions with lotion ingredients. These findings help determine the degree to which personal hygiene choices affect the indoor air composition and indoor air exposures.
Collapse
Affiliation(s)
- Nijing Wang
- Atmospheric
Chemistry Department, Max Planck Institute
for Chemistry, 55128 Mainz, Germany
| | - Tatjana Müller
- Atmospheric
Chemistry Department, Max Planck Institute
for Chemistry, 55128 Mainz, Germany
| | - Lisa Ernle
- Atmospheric
Chemistry Department, Max Planck Institute
for Chemistry, 55128 Mainz, Germany
| | - Gabriel Bekö
- International
Centre for Indoor Environment and Energy, Department of Environmental
and Resource Engineering, Technical University
of Denmark, 2800 Lyngby, Denmark
| | - Pawel Wargocki
- International
Centre for Indoor Environment and Energy, Department of Environmental
and Resource Engineering, Technical University
of Denmark, 2800 Lyngby, Denmark
| | - Jonathan Williams
- Atmospheric
Chemistry Department, Max Planck Institute
for Chemistry, 55128 Mainz, Germany
- Climate
& Atmosphere Research Centre, The Cyprus
Institute, 1645 Nicosia, Cyprus
| |
Collapse
|
2
|
Deng H, Qiu J, Zhang R, Xu J, Qu Y, Wang J, Liu Y, Gligorovski S. Ozone Chemistry on Greasy Glass Surfaces Affects the Levels of Volatile Organic Compounds in Indoor Environments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:8393-8403. [PMID: 38691770 DOI: 10.1021/acs.est.3c08196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
The chemistry of ozone (O3) on indoor surfaces leads to secondary pollution, aggravating the air quality in indoor environments. Here, we assess the heterogeneous chemistry of gaseous O3 with glass plates after being 1 month in two different kitchens where Chinese and Western styles of cooking were applied, respectively. The uptake coefficients of O3 on the authentic glass plates were measured in the dark and under UV light irradiation typical for indoor environments (320 nm < λ < 400 nm) at different relative humidities. The gas-phase product compounds formed upon reactions of O3 with the glass plates were evaluated in real time by a proton-transfer-reaction quadrupole-interface time-of-flight mass spectrometer. We observed typical aldehydes formed by the O3 reactions with the unsaturated fatty acid constituents of cooking oils. The formation of decanal, 6-methyl-5-hepten-2-one (6-MHO), and 4-oxopentanal (4-OPA) was also observed. The employed dynamic mass balance model shows that the estimated mixing ratios of hexanal, octanal, nonanal, decanal, undecanal, 6-MHO, and 4-OPA due to O3 chemistry with authentic grime-coated kitchen glass surfaces are higher in the kitchen where Chinese food was cooked compared to that where Western food was cooked. These results show that O3 chemistry on greasy glass surfaces leads to enhanced VOC levels in indoor environments.
Collapse
Affiliation(s)
- Huifan Deng
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China
- Chinese Academy of Science, Center for Excellence in Deep Earth Science, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jia Qiu
- Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering and Center for Environment and Health, Peking University, Beijing 100871, China
| | - Runqi Zhang
- Department of Materials Environmental Engineering, Shanxi Polytechnic College, Shanxi 237016, China
| | - Jinli Xu
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China
- Chinese Academy of Science, Center for Excellence in Deep Earth Science, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuekun Qu
- Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering and Center for Environment and Health, Peking University, Beijing 100871, China
| | - Jixuan Wang
- Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering and Center for Environment and Health, Peking University, Beijing 100871, China
| | - Yingjun Liu
- Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering and Center for Environment and Health, Peking University, Beijing 100871, China
| | - Sasho Gligorovski
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China
- Chinese Academy of Science, Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| |
Collapse
|
3
|
Qu Y, Xie D, Liu Y. Emissions of Volatile Organic Compounds from Human Occupants in a Student Office: Dependence on Ozone Concentration. ACS ENVIRONMENTAL AU 2024; 4:3-11. [PMID: 38250339 PMCID: PMC10797682 DOI: 10.1021/acsenvironau.3c00043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/07/2023] [Accepted: 10/24/2023] [Indexed: 01/23/2024]
Abstract
Human occupants themselves constitute an important source of volatile organic compounds (VOCs) in indoor environments through breath and dermal emissions. In order to quantify VOC emissions from occupants under real-world settings, previous indoor observational studies often determined emission factors (i.e., average emission rates per person). However, the values obtained across these studies exhibited large variability, and the causes of this variability still need to be understood. Herein we report 10-day real-time VOC measurements in a university student office, using a proton transfer reaction-quadrupole interface-time-of-flight mass spectrometer. A method was developed to identify VOCs of primary human origin and to quantify the corresponding emission factors, accounting for the dynamically changing occupancy level and ventilation rate in the assessed office. We found that the emission factors of many dermally emitted VOCs strongly increased as the ozone concentration increased from <3 to 10-15 ppb. These VOCs include geranyl acetone, 6-methyl-5-hepten-2-one (6-MHO), and C10-C12 saturated aldehydes, which align with characteristic first-generation ozonolysis products of skin oil. The strongest increase occurred for 6-MHO, from 113 to 337 μg/h/p. In comparison, acetone and isoprene, which are primarily emitted from human breath, varied little with the ozone level. In light of this finding, we conducted an integrated analysis of emission factors reported in the literature for two frequently reported species, namely, 6-MHO and decanal. Ozone concentration alone can explain 94-97% of the variation in their emission factors across previous studies, and the best-estimated ozone dependence obtained using the literature data is consistent with those obtained in the current study. These results suggest that the ozone concentration is a key factor regulating emission factors of many dermally emitted VOCs in real indoor environments, which has to be considered when reporting or using the emission factors.
Collapse
Affiliation(s)
- Yuekun Qu
- Key
Joint Laboratory of Environmental Simulation and Pollution Control,
College of Environmental Science and Engineering, Peking University, Beijing 100871, PR China
| | - Di Xie
- Key
Joint Laboratory of Environmental Simulation and Pollution Control,
College of Environmental Science and Engineering, Peking University, Beijing 100871, PR China
| | - Yingjun Liu
- Key
Joint Laboratory of Environmental Simulation and Pollution Control,
College of Environmental Science and Engineering, Peking University, Beijing 100871, PR China
- Center
for Environment and Health, Peking University, Beijing 100871, PR China
| |
Collapse
|
4
|
Qu Y, Zou Z, Weschler CJ, Liu Y, Yang X. Quantifying Ozone-Dependent Emissions of Volatile Organic Compounds from the Human Body. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13104-13113. [PMID: 37610659 DOI: 10.1021/acs.est.3c02340] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Ozone reactions on human body surfaces produce volatile organic compounds (VOCs) that influence indoor air quality. However, the dependence of VOC emissions on the ozone concentration has received limited attention. In this study, we conducted 36 sets of single-person chamber experiments with three volunteers exposed to ozone concentrations ranging from 0 to 32 ppb. Emission fluxes from human body surfaces were measured for 11 targeted skin-oil oxidation products. For the majority of these products, the emission fluxes linearly correlated with ozone concentration, indicating a constant surface yield (moles of VOC emitted per mole of ozone deposited). However, for the second-generation oxidation product 4-oxopentanal, a higher surface yield was observed at higher ozone concentrations. Furthermore, many VOCs have substantial emissions in the absence of ozone. Overall, these results suggest that the complex surface reactions and mass transfer processes involved in ozone-dependent VOC emissions from the human body can be represented using a simplified parametrization based on surface yield and baseline emission flux. Values of these two parameters were quantified for targeted products and estimated for other semiquantified VOC signals, facilitating the inclusion of ozone/skin oil chemistry in indoor air quality models and providing new insights on skin oil chemistry.
Collapse
Affiliation(s)
- Yuekun Qu
- Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Ziwei Zou
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Department of Building Science, Tsinghua University, Beijing 100084, People's Republic of China
| | - Charles J Weschler
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey 08854, United States
- International Centre for Indoor Environment and Energy, Technical University of Denmark, Lyngby 2800, Denmark
| | - Yingjun Liu
- Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, People's Republic of China
- Center for Environment and Health, Peking University, Beijing 100871, People's Republic of China
| | - Xudong Yang
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Department of Building Science, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
5
|
He J, Yin Y, Pei J, Sun Y, Liu Z, Chen Q, Yang X. A model to evaluate ozone distribution and reaction byproducts in aircraft cabin environments. INDOOR AIR 2022; 32:e13178. [PMID: 36437656 DOI: 10.1111/ina.13178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Ozone and byproducts of ozone-initiated reactions are among the primary pollutants in aircraft cabins. However, investigations of the spatial distribution and reaction mechanisms of these pollutants are insufficient. This study established a computational fluid dynamics-based model to evaluate ozone and byproduct distribution, considering ozone reactions in air, adsorption onto surfaces, and byproduct desorption from surfaces. The model was implemented in an authentic single-aisle aircraft cabin and validated by measurements recorded during the aircraft cruise phase. Ozone concentrations in the supply air-dominated area were approximately 50% higher than that in the passenger breathing zone, suggesting that human surfaces represent a significant ozone sink. The deposition velocity onto human bodies was 21.83 m/h, surpassing 3.97 m/h on other cabin interior surface areas. Our model provides a mechanistic tool to analyze ozone and byproduct concentration distributions, which would be useful for assessing passenger health risks and for developing strategies for healthier aircraft cabin environments.
Collapse
Affiliation(s)
- Junzhou He
- Department of Power Engineering, North China Electric Power University, Baoding, Hebei, People's Republic of China
- Department of Building Science, Tsinghua University, Beijing, China
| | - Yihui Yin
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Jingjing Pei
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Yuexia Sun
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Zhijian Liu
- Department of Power Engineering, North China Electric Power University, Baoding, Hebei, People's Republic of China
| | - Qingyan Chen
- Department of Building Environment and Energy Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Xudong Yang
- Department of Building Science, Tsinghua University, Beijing, China
| |
Collapse
|
6
|
Coffaro B, Weisel CP. Reactions and Products of Squalene and Ozone: A Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:7396-7411. [PMID: 35648815 PMCID: PMC9231367 DOI: 10.1021/acs.est.1c07611] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 05/13/2022] [Accepted: 05/13/2022] [Indexed: 05/15/2023]
Abstract
This critical review describes the squalene-ozone (SqOz) reaction, or squalene ozonolysis. Ambient ozone penetrates indoors and drives indoor air chemistry. Squalene, a component of human skin oil, contains six carbon-carbon double bonds and is very reactive with ozone. Bioeffluents from people contribute to indoor air chemistry and affect the indoor air quality, resulting in exposures because people spend the majority of their time indoors. The SqOz reaction proceeds through various formation pathways and produces compounds that include aldehydes, ketones, carboxylic acids, and dicarbonyl species, which have a range of volatilities. In this critical review of SqOz chemistry, information on the mechanism of reaction, reaction probability, rate constants, and reaction kinetics are compiled. Characterizations of SqOz reaction products have been done in laboratory experiments and real-world settings. The effect of multiple environmental parameters (ozone concentration, air exchange rate (AER), temperature, and relative humidity (RH)) in indoor settings are summarized. This critical review concludes by identifying the paucity of available exposure, health, and toxicological data for known reaction products. Key knowledge gaps about SqOz reactions leading to indoor exposures and adverse health outcomes are provided as well as an outlook on where the field is headed.
Collapse
Affiliation(s)
- Breann Coffaro
- Environmental
and Health Sciences Institute and Graduate Program in Exposure Science, Rutgers, The State University of New Jersey, Piscataway Township, New
Jersey 08854, United
States
| | - Clifford P. Weisel
- Environmental
and Health Sciences Institute and School of Public Health, Rutgers, The State University of New Jersey, Piscataway Township, New
Jersey 08854, United
States
| |
Collapse
|
7
|
Yin Y, He J, Pei J, Yang X, Sun Y, Cui X, Lin CH, Wei D, Chen Q. Influencing factors of carbonyl compounds and other VOCs in commercial airliner cabins: On-board investigation of 56 flights. INDOOR AIR 2021; 31:2084-2098. [PMID: 34240486 DOI: 10.1111/ina.12903] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
Volatile organic compounds (VOCs) as a non-negligible aircraft cabin air quality (CAQ) factor influence the health and comfort of passengers and crew members. On-board measurements of carbonyls (short-chain (C1 -C6 )) and other volatile organic compounds (VOCs, long-chain (C6 -C16 )) with a total of 350 samples were conducted in 56 commercial airliner cabins covering 8 aircraft models in this study. The mean concentration for each individual carbonyl compound was between 0.3 and 8.3 μg/m3 (except for acrolein & acetone, average = 20.7 μg/m3 ) similar to the mean concentrations of other highly detected VOCs (long-chain (C6 -C16 ), 97% of which ranged in 0-10 μg/m3 ) in aircraft cabins. Formaldehyde concentrations in flights were significantly lower than in residential buildings, where construction materials are known formaldehyde sources. Acetone is a VOC emitted by humans, and its concentration in flights was similar to that in other high-occupant density transportation vehicles. The variation of VOC concentrations in different flight phases of long-haul flights was the same as that of CO2 concentration except for the meal phase, which indicates the importance of cabin ventilation in diluting the gaseous contaminants, while the sustained and slow growth of the VOC concentrations during the cruising phase in short-haul flights indicated that the ventilation could not adequately dilute the emission of VOCs. For the different categories of VOCs, the mean concentration during the cruising phase of benzene series, aldehydes, alkanes, other VOCs (detection rate > 50%), and carbonyls in long-haul flights was 44.2 µg/m3 , 17.9 µg/m3 , 18.6 µg/m3 , 31.5 µg/m3 , and 20.4 µg/m3 lower than those in short-haul flights, respectively. Carbonyls and d-limonene showed a significant correlation with meal service (p < 0.05). Unlike the newly decorated rooms or new vehicles, the inner materials were not the major emission sources in aircraft cabins. Practical Implications. The on-board measurements of 56 flights enrich the VOC database of cabin environment, especially for carbonyls. The literature review of carbonyls in the past 20 years contributes to the understanding the current status of cabin air quality (CAQ). The analysis of VOC concentration variation for different flight phases, flight duration, and aircraft age lays a foundation for exploring effective control methods, including ventilation and purification for cabin VOC pollution. The enriched VOC data is helpful to explore the key VOCs of aircraft cabin environment and to evaluate the acute/chronic health exposure risk of pollutants for passengers and crew members.
Collapse
Affiliation(s)
- Yihui Yin
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Junzhou He
- Department of Building Science, Tsinghua University, Beijing, China
| | - Jingjing Pei
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Xudong Yang
- Department of Building Science, Tsinghua University, Beijing, China
| | - Yuexia Sun
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Xikang Cui
- COMAC Beijing Aircraft Technology Research Institute, Beijing, China
| | - Chao-Hsin Lin
- Environmental Control Systems, Boeing Commercial Airplanes, WA, USA
| | - Daniel Wei
- Boeing Research & Technology, Beijing, China
| | - Qingyan Chen
- School of Mechanical Engineering, Purdue University, IN, USA
| |
Collapse
|
8
|
Swesi Y, Gillet A, Guérin A, Zanota ML, Bornette F, Philippe R, Meille V. Comparison of Structured Reactors for Ozone Abatement in Aircrafts at Low Temperature. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c02901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yousef Swesi
- CP2M (UMR 5128), CNRS, CPE Lyon, Université Claude Bernard Lyon 1 and Université Lyon, Villeurbanne F-69616, France
| | - Amaury Gillet
- CP2M (UMR 5128), CNRS, CPE Lyon, Université Claude Bernard Lyon 1 and Université Lyon, Villeurbanne F-69616, France
| | - Alexandre Guérin
- CP2M (UMR 5128), CNRS, CPE Lyon, Université Claude Bernard Lyon 1 and Université Lyon, Villeurbanne F-69616, France
| | - Marie-Line Zanota
- CP2M (UMR 5128), CNRS, CPE Lyon, Université Claude Bernard Lyon 1 and Université Lyon, Villeurbanne F-69616, France
| | - Frédéric Bornette
- CP2M (UMR 5128), CNRS, CPE Lyon, Université Claude Bernard Lyon 1 and Université Lyon, Villeurbanne F-69616, France
| | - Régis Philippe
- CP2M (UMR 5128), CNRS, CPE Lyon, Université Claude Bernard Lyon 1 and Université Lyon, Villeurbanne F-69616, France
| | - Valérie Meille
- CP2M (UMR 5128), CNRS, CPE Lyon, Université Claude Bernard Lyon 1 and Université Lyon, Villeurbanne F-69616, France
- IRCELYON (UMR 5256), CNRSUniversité Claude Bernard Lyon 1 and Université Lyon, Villeurbanne F-69626, France
| |
Collapse
|
9
|
Ma J, Cao R, Dang Y, Wang J. A recent progress of room–temperature airborne ozone decomposition catalysts. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.03.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
10
|
Chen R, Fang L, Liu J, Herbig B, Norrefeldt V, Mayer F, Fox R, Wargocki P. Cabin air quality on non-smoking commercial flights: A review of published data on airborne pollutants. INDOOR AIR 2021; 31:926-957. [PMID: 33896039 DOI: 10.1111/ina.12831] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/15/2021] [Indexed: 05/24/2023]
Abstract
We reviewed 47 documents published 1967-2019 that reported measurements of volatile organic compounds (VOCs) on commercial aircraft. We compared the measurements with the air quality standards and guidelines for aircraft cabins and in some cases buildings. Average levels of VOCs for which limits exist were lower than the permissible levels except for benzene with average concentration at 5.9 ± 5.5 μg/m3 . Toluene, benzene, ethylbenzene, formaldehyde, acetaldehyde, limonene, nonanal, hexanal, decanal, octanal, acetic acid, acetone, ethanol, butanal, acrolein, isoprene and menthol were the most frequently measured compounds. The concentrations of semi-volatile organic compounds (SVOCs) and other contaminants did not exceed standards and guidelines in buildings except for the average NO2 concentration at 12 ppb. Although the focus was on VOCs, we also retrieved the data on other parameters characterizing cabin environment. Ozone concentration averaged 38 ppb below the upper limit recommended for aircraft. The outdoor air supply rate ranged from 1.7 to 39.5 L/s per person and averaged 6.0 ± 0.8 L/s/p (median 5.8 L/s/p), higher than the minimum level recommended for commercial aircraft. Carbon dioxide concentration averaged 1315 ± 232 ppm, lower than what is permitted in aircraft and close to what is permitted in buildings. Measured temperatures averaged 23.5 ± 0.8°C and were generally within the ranges recommended for avoiding thermal discomfort. Relative humidity averaged 16% ± 5%, lower than what is recommended in buildings.
Collapse
Affiliation(s)
- Ruiqing Chen
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Lei Fang
- International Centre for Indoor Environment and Energy, Department of Civil Engineering, Technical University of Denmark, Lyngby, Denmark
| | - Junjie Liu
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Britta Herbig
- LMU University Hospital Munich, Institute and Clinic for Occupational, Social and Environmental Medicine, Munich, Germany
| | - Victor Norrefeldt
- Fraunhofer Institute for Building Physics IBP, Holzkirchen Branch, Valley, Germany
| | - Florian Mayer
- Fraunhofer Institute for Building Physics IBP, Holzkirchen Branch, Valley, Germany
| | - Richard Fox
- Aircraft Environment Solutions Inc., San Tan Valley, Arizona, USA
| | - Pawel Wargocki
- International Centre for Indoor Environment and Energy, Department of Civil Engineering, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
11
|
Zhang L, Wang S, Lv L, Ding Y, Tian D, Wang S. Insights into the Reactive and Deactivation Mechanisms of Manganese Oxides for Ozone Elimination: The Roles of Surface Oxygen Species. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:1410-1419. [PMID: 33486953 DOI: 10.1021/acs.langmuir.0c02841] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Manganese oxides with varied Mn valance states but identical morphologies were synthesized via a facile thermal treatment of γ-MnOOH. Also, their catalytic performance on ozone decomposition was investigated following the order of Mn3O4 < Mn2O3 < MnO2 < MnO2-H-200. In combination with X-ray diffraction (XRD), scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET), transmission electron microscopy (TEM), H2-temperature-programmed reduction (TPR), O2-temperature-programmed desorption (TPD), and X-ray photoelectron spectroscopy (XPS) characterization, it was deduced that the superior O3 decomposition capacity for MnO2-H-200 was strongly associated with abundant oxygen vacancies on its surface. Among Mn3O4, Mn2O3, and MnO2, the difference in O3 decomposition efficiency was dependent on the divergent nature of oxygen vacancy. Density functional theory (DFT) calculation revealed that Mn3O4 and MnO2 possessed lower formation energy of oxygen vacancy, while MnO2 had the minimum desorption energy of peroxide species (O2*). It was deduced that the promotion of the O3 decomposition capability was attributed to the easier O2* desorption. Insights into the deactivation mechanism for MnO2-H-200 further validated the assumptions. As the reaction proceeded, adsorbed oxygen species accumulated on the catalyst surface, and a portion of them were transformed to lattice oxygen. The consumption of oxygen vacancy led to the deactivation of the catalyst.
Collapse
Affiliation(s)
- Lei Zhang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Sheng Wang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Lirong Lv
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Ya Ding
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Dongxu Tian
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Shudong Wang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| |
Collapse
|
12
|
Morrison GC, Eftekhari A, Majluf F, Krechmer JE. Yields and Variability of Ozone Reaction Products from Human Skin. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:179-187. [PMID: 33337871 DOI: 10.1021/acs.est.0c05262] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The skin of 20 human participants was exposed to ∼110 ppb O3 and volatile products of the resulting chemistry were quantified in real time. Yields (ppb product emitted/ppb ozone consumed) for 40 products were quantified. Major products of the primary reaction of ozone-squalene included 6-methyl 5-hepten-2-one (6-MHO) and geranyl acetone (GA) with average yields of 0.22 and 0.16, respectively. Other major products included decanal, methacrolein (or methyl vinyl ketone), nonanal, and butanal. Yields varied widely among participants; summed yields ranged from 0.33 to 0.93. The dynamic increase in emission rates during ozone exposure also varied among participants, possibly indicative of differences in the thickness of the skin lipid layer. Factor analysis indicates that much of the variability among participants is due to factors associated with the relative abundance of (1) "fresh" skin lipid constituents (such as squalene and fatty acids), (2) oxidized skin lipids, and (3) exogenous compounds. This last factor appears to be associated with the presence of oleic and linoleic acids and could be accounted for by uptake of cooking oils or personal care products to skin lipids.
Collapse
Affiliation(s)
- Glenn C Morrison
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Azin Eftekhari
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Francesca Majluf
- Aerodyne Research Inc., Billerica, Massachusetts 01821, United States
| | - Jordan E Krechmer
- Aerodyne Research Inc., Billerica, Massachusetts 01821, United States
| |
Collapse
|
13
|
Ozone elimination over oxygen-deficient MnOx based catalysts: Effect of different transition metal dopants. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2020.116011] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Shi Z, Bai J, Han Y. Distribution of ozone and its volatiles in indoor environment: a numerical simulation with CFD for the aircraft cabin. ENVIRONMENTAL TECHNOLOGY 2020; 41:3146-3156. [PMID: 30905310 DOI: 10.1080/09593330.2019.1600044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 03/18/2019] [Indexed: 06/09/2023]
Abstract
Ozone and its reactants are the main factors of air pollution in cabin environment, their distribution and propagation were influenced by different air supply modes in the cabin. Based the B767 aircraft cabin mode, a computational fluid dynamics (CFD) model of aircraft cabin had been built to study the distribution of ozone and the reaction product in the breathing zone, and the ozone risk under different air supply modes was evaluated. By comparing the three air supply modes, the simulation results show that the aisle air supply mode and personalized air supply mode made a high concentration of ozone and volatile organic compounds and increased absorbing risk in the breathing zone. Mixed air-supply mode made lower ozone risk in the breathing zone. But mixed air-supply mode can make a bad air mixture and makes a high ozone concentration near the cabin walls, which is needed to be improved. Ozone distribution for Y-Z section under the corridor air supply mode.
Collapse
Affiliation(s)
- Zhibo Shi
- Tianjin Key Laboratory of Civil Aircraft Airworthiness and Maintenance, Civil Aviation University of China, Tianjin, People's Republic of China
| | - Jie Bai
- Tianjin Key Laboratory of Civil Aircraft Airworthiness and Maintenance, Civil Aviation University of China, Tianjin, People's Republic of China
| | - Yong Han
- School of Electrical Engineering, Yanshan University, Qinhuangdao, People's Republic of China
| |
Collapse
|
15
|
Li X, Ma J, He H. Recent advances in catalytic decomposition of ozone. J Environ Sci (China) 2020; 94:14-31. [PMID: 32563478 DOI: 10.1016/j.jes.2020.03.058] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 03/31/2020] [Accepted: 03/31/2020] [Indexed: 06/11/2023]
Abstract
Ozone (O3), as a harmful air pollutant, has been of wide concern. Safe, efficient, and economical O3 removal methods urgently need to be developed. Catalytic decomposition is the most promising method for O3 removal, especially at room temperature or even subzero temperatures. Great efforts have been made to develop high-efficiency catalysts for O3 decomposition that can operate at low temperatures, high space velocity and high humidity. First, this review describes the general reaction mechanism of O3 decomposition on noble metal and transition metal oxide catalysts. Then, progress on the O3 decomposition performance of various catalysts in the past 30 years is summarized in detail. The main focus is the O3 decomposition performance of manganese oxides, which are divided into supported manganese oxides and non-supported manganese oxides. Methods to improve the activity, stability, and humidity resistance of manganese oxide catalysts for O3 decomposition are also summarized. The deactivation mechanisms of manganese oxides under dry and humid conditions are discussed. The O3 decomposition performance of monolithic catalysts is also summarized from the perspective of industrial applications. Finally, the future development directions and prospects of O3 catalytic decomposition technology are put forward.
Collapse
Affiliation(s)
- Xiaotong Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinzhu Ma
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Hong He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
16
|
Wolkoff P. Indoor air chemistry: Terpene reaction products and airway effects. Int J Hyg Environ Health 2020; 225:113439. [PMID: 32044535 DOI: 10.1016/j.ijheh.2019.113439] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/04/2019] [Accepted: 12/18/2019] [Indexed: 12/15/2022]
Abstract
Reactive chemistry is ubiquitous indoors with a wealth of complex oxidation reactions; some of these are initiated by both homogeneous and heterogeneous reaction of ozone with unsaturated organic compounds and subsequent the hydroxyl radical, either in the gas-phase or on reactive surfaces. One major focus has been the reaction of common and abundant terpene-based fragrances in indoor air emitted from many wood-based materials, a variety of consumer products, and citrus fruits and flowers. Inhalation of the terpenes themselves are generally not considered a health concern (both acute and long-term) due to their low indoor air concentrations; however, their gas- and surface reactions with ozone and the hydroxyl radical produce a host of products, both gaseous, i. a. formaldehyde, and ultrafine particles formed by condensation/nucleation processes. These reaction products may be of health concern. Human cell bioassays with key reaction products from ozone-initiated terpene reactions have shown some inflammatory reactions, but results are difficult to interpret for human exposure and risk assessment. Acute effects like sensory irritation in eyes and airways are unlikely or present at very low intensity in real life conditions based on rodent and human exposure studies and known thresholds for sensory irritation in eyes and airways and derived human reference values for airflow limitation and pulmonary irritation. Some fragrances and their ozone-initiated reaction products may possess anti-inflammatory properties. However, long-term effects of the reaction products as ultrafine particles are poorly explored. Material and product surfaces with high ozone deposition velocities may significantly impact the perceived air quality by altered emissions from both homogeneous and heterogeneous surface reactions.
Collapse
Affiliation(s)
- Peder Wolkoff
- National Research Centre for the Working Environment, NRCWE, Lersø Parkallé 105, 2920, Copenhagen, Denmark.
| |
Collapse
|
17
|
In-Vehicle Exposures at Transportation and the Health Concerns. CURRENT TOPICS IN ENVIRONMENTAL HEALTH AND PREVENTIVE MEDICINE 2020. [PMCID: PMC7123345 DOI: 10.1007/978-981-32-9182-9_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In-vehicle environment is a special indoor environment, which is mobile, either open or closed. This chapter reviewed in-vehicle air quality and passenger exposures for roadway commuters, commercial airplanes, and marine transportation. The sources of pollutants in-vehicle can be categorized as the same as other indoor environments, including outdoor air, human activity, emission from building material and interior furnisher, and biological metabolic process from animals and microbes. However, the exposure in vehicles varies from now and then, influenced by window open/closed, speed, air flow, ventilation on/off, air conditioner on/off, pollutants from ambient outdoor air, interior material, and number of passengers. There are few studies on health condition of passengers, except infectious disease during airway transportation. Some health studies of related occupations are reviewed.
Collapse
|
18
|
Avery AM, Waring MS, DeCarlo PF. Human occupant contribution to secondary aerosol mass in the indoor environment. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2019; 21:1301-1312. [PMID: 30997458 DOI: 10.1039/c9em00097f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Humans impact indoor air quality directly via emissions from skin, breath, or personal care products, and indirectly via reactions of oxidants with skin constituents, or with skin that has been shed. However, separating the influence of the many emissions and their oxidation products from the influence of outdoor-originated aerosols has been a challenge. Indoor and outdoor aerosols were alternatively sampled at 4 minute time resolution with a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) in a classroom with student occupants at regular intervals per university class schedule. Mass spectral analysis showed aerosol enhancements of oxidized and unoxidized hydrocarbon ion families during occupied periods, especially at ion fragments larger than m/z 100 and double bond equivalents consistent with squalene (C30H50) and its oxidized products from reaction with ozone, indicative of the secondary nature of the aerosol mass. Individual hydrocarbon mass fragments consistent with squalene fragmentation, including C5H9+, and C6H9+ were especially enhanced with room occupancy. Emissions of individual organic fragment ions were estimated using a model accounting for outdoor aerosols and air exchange. This showed occupancy related emissions at smaller fragments (C3H5+, C4H9+) that despite reflecting mostly outdoor-originated aerosols transported indoors, also show enhancements from occupant emissions indoors. Total emission of all fragments was 17.6 μg β-1 h-1 above unoccupied levels, translating to approximately 25% increase in organic aerosol mass concentration in the classroom during an occupied hour with a median occupied ozone loss (β). Human occupants, therefore, represent an additional mass burden of organic aerosol, especially in poorly ventilated or highly occupied indoor spaces.
Collapse
Affiliation(s)
- Anita M Avery
- Department of Civil, Architectural, and Environmental Engineering, Drexel University, Philadelphia, PA, USA.
| | | | | |
Collapse
|
19
|
Slezakova K, Peixoto C, Pereira MDC, Morais S. Indoor air quality in health clubs: Impact of occupancy and type of performed activities on exposure levels. JOURNAL OF HAZARDOUS MATERIALS 2018; 359:56-66. [PMID: 30014915 DOI: 10.1016/j.jhazmat.2018.07.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 07/02/2018] [Accepted: 07/03/2018] [Indexed: 06/08/2023]
Abstract
Associations between indoor air quality (IAQ) and health in sport practise environments are not well understood due to limited knowledge of magnitude of inhaled pollutants. Thus, this study assessed IAQ in four health clubs (HC1-HC4) and estimated inhaled doses during different types of activities. Gaseous (TVOCs, CO, O3, CO2) and particulate pollutants (PM1, PM4) were continuously collected during 40 days. IAQ was influenced both by human occupancy and the intensity of the performed exercises. Levels of all pollutants were higher when clubs were occupied (p < 0.05) than for vacant periods, with higher medians in main workout areas rather than in spaces/studios for group activities. In all spaces, TVOCs highly exceeded legislative limit (600 μg/m3), even when unoccupied, indicating possible risks for the respective occupants. CO2 levels were well correlated with relative humidity (rs 0.534-0.625) and occupancy due to human exhalation and perspiration during exercising. Clubs with natural ventilations exhibited twice higher PM, with PM1 accounting for 93-96% of PM4; both PM were highly correlated (rs 0.936-0.995) and originated from the same sources. Finally, cardio classes resulted in higher inhalation doses than other types of exercising (1.7-2.6).
Collapse
Affiliation(s)
- Klara Slezakova
- REQUIMTE-LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, R. Dr. António Bernardino de Almeida 431, 4200-072 Porto, Portugal; LEPABE, Departamento de Engenharia Química, Faculdade de Engenharia, Universidade do Porto, R. Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Cátia Peixoto
- REQUIMTE-LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, R. Dr. António Bernardino de Almeida 431, 4200-072 Porto, Portugal
| | - Maria do Carmo Pereira
- LEPABE, Departamento de Engenharia Química, Faculdade de Engenharia, Universidade do Porto, R. Dr. Roberto Frias, 4200-465 Porto, Portugal.
| | - Simone Morais
- REQUIMTE-LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, R. Dr. António Bernardino de Almeida 431, 4200-072 Porto, Portugal.
| |
Collapse
|
20
|
Weisel CP, Fiedler N, Weschler CJ, Ohman-Strickland P, Mohan KR, McNeil K, Space D. Human symptom responses to bioeffluents, short-chain carbonyls/acids, and long-chain carbonyls in a simulated aircraft cabin environment. INDOOR AIR 2017; 27:1154-1167. [PMID: 28440000 PMCID: PMC5638674 DOI: 10.1111/ina.12392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 04/14/2017] [Indexed: 05/04/2023]
Abstract
Occupants of aircraft have reported an array of symptoms related to general discomfort and irritation. Volatile organic compounds (VOCs) have been suggested to contribute to the reported symptoms. VOCs are from products used, bioeffluents from people and oxidation reaction products. Thirty-six healthy, young female subjects rated symptoms and environmental quality during an eight-hour exposure to groups of compounds often present in aircraft: (i) long-chain carbonyls, (ii) simulated bioeffluents, and (iii) short-chain carbonyls/organic acids. Statistically more symptoms were identified for the simulated bioeffluents and, to a lesser extent, short-chain carbonyls/organic acids compared to a control condition, although they remained in the acceptable range. There were three temporal patterns in the environmental quality and symptom reports: (i) an adaptive response (immediate increases followed by a decline); (ii) an apparent physiological effect (increases one to three hours into the exposure that remained elevated); and (iii) no statistical differences in reported environmental quality or symptom severity compared to the control air conditions. Typical concentrations found in aircraft can cause transitory symptoms in healthy individuals questioning the adequacy of current standards. Understanding the effects on individuals sensitive to air pollutants and methods to remove the compounds causing the greatest symptom responses are needed.
Collapse
Affiliation(s)
- Clifford P. Weisel
- Environmental and Occupational Health Sciences Institute, School of Public Health, Rutgers University, Piscataway, NJ 08854
- Corresponding Author:
| | - Nancy Fiedler
- Environmental and Occupational Health Sciences Institute, School of Public Health, Rutgers University, Piscataway, NJ 08854
| | - Charles J. Weschler
- Environmental and Occupational Health Sciences Institute, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854
| | - Pamela Ohman-Strickland
- Environmental and Occupational Health Sciences Institute, School of Public Health, Rutgers University, Piscataway, NJ 08854
| | - Krishnan R. Mohan
- Environmental and Occupational Health Sciences Institute, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854
| | - Kathy McNeil
- Environmental and Occupational Health Sciences Institute, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854
| | - David Space
- Environmental Control Systems, Boeing Commercial Aircraft Group, Seattle, WA 98203
| |
Collapse
|
21
|
Tang X, Misztal PK, Nazaroff WW, Goldstein AH. Volatile Organic Compound Emissions from Humans Indoors. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:12686-12694. [PMID: 27934268 DOI: 10.1021/acs.est.6b04415] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Research on the sources of indoor airborne chemicals has traditionally focused on outdoor air, building materials, furnishings, and activities such as smoking, cooking, and cleaning. Relatively little research has examined the direct role of occupant emissions, even though this source clearly contributes to indoor volatile organic compounds (VOCs) and influences indoor chemistry. In this work, we quantify occupant-related gaseous VOC emissions in a university classroom using a proton-transfer-reaction time-of-flight mass spectrometer. Time-resolved concentrations of VOCs in room air and supply air were measured continuously during occupied and unoccupied periods. The emission factor for each human-emitted VOC was determined by dividing the occupant-associated source rate by the corresponding occupancy. Among the most abundant species detected were compounds associated with personal care products. Also prominent were human metabolic emissions, such as isoprene, methanol, acetone, and acetic acid. Additional sources included human skin oil oxidation by ozone, producing compounds such as 4-oxopentanal (4-OPA) and 6-methyl-5-hepten-2-one (6-MHO). By mass, human-emitted VOCs were the dominant source (57%) during occupied periods in a well-ventilated classroom, with ventilation supply air the second most important (35%), and indoor nonoccupant emissions the least (8%). The total occupant-associated VOC emission factor was 6.3 mg h-1 per person.
Collapse
Affiliation(s)
- Xiaochen Tang
- Department of Civil and Environmental Engineering, University of California , Berkeley, California 94720-1710 United States
| | - Pawel K Misztal
- Department of Environmental Science, Policy and Management, University of California , Berkeley, California 94720-3114 United States
| | - William W Nazaroff
- Department of Civil and Environmental Engineering, University of California , Berkeley, California 94720-1710 United States
| | - Allen H Goldstein
- Department of Civil and Environmental Engineering, University of California , Berkeley, California 94720-1710 United States
- Department of Environmental Science, Policy and Management, University of California , Berkeley, California 94720-3114 United States
| |
Collapse
|
22
|
Liu S, Li R, Wild RJ, Warneke C, de Gouw JA, Brown SS, Miller SL, Luongo JC, Jimenez JL, Ziemann PJ. Contribution of human-related sources to indoor volatile organic compounds in a university classroom. INDOOR AIR 2016; 26:925-938. [PMID: 26610063 DOI: 10.1111/ina.12272] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 11/18/2015] [Indexed: 05/03/2023]
Abstract
Although significant progress has been made in understanding the sources and chemistry of indoor volatile organic compounds (VOCs) during the past decades, much is unknown about the role of humans in indoor air chemistry. In the spring of 2014, we conducted continuous measurements of VOCs using a proton transfer reaction mass spectrometer (PTR-MS) in a university classroom. Positive matrix factorization (PMF) of the measured VOCs revealed a 'human influence' component, which likely represented VOCs produced from human breath and ozonolysis of human skin lipids. The concentration of the human influence component increased with the number of occupants and decreased with ventilation rate in a similar way to CO2 , with an average contribution of 40% to the measured daytime VOC concentration. In addition, the human skin lipid ozonolysis products were observed to correlate with CO2 and anticorrelate with O3 , suggesting that reactions on human surfaces may be important sources of indoor VOCs and sinks for indoor O3 . Our study suggests that humans can substantially affect VOC composition and oxidative capacity in indoor environments.
Collapse
Affiliation(s)
- S Liu
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO, USA
| | - R Li
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA
- Department of Atmospheric and Oceanic Sciences, University of Colorado, Boulder, CO, USA
- Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO, USA
| | - R J Wild
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA
- Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO, USA
| | - C Warneke
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA
- Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO, USA
| | - J A de Gouw
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA
- Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO, USA
| | - S S Brown
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO, USA
- Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO, USA
| | - S L Miller
- Department of Mechanical Engineering, University of Colorado, Boulder, CO, USA
| | - J C Luongo
- Department of Mechanical Engineering, University of Colorado, Boulder, CO, USA
| | - J L Jimenez
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO, USA
| | - P J Ziemann
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO, USA
| |
Collapse
|
23
|
Dutta T, Kim KH, Uchimiya M, Kumar P, Das S, Bhattacharya SS, Szulejko J. The micro-environmental impact of volatile organic compound emissions from large-scale assemblies of people in a confined space. ENVIRONMENTAL RESEARCH 2016; 151:304-312. [PMID: 27522568 DOI: 10.1016/j.envres.2016.08.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 08/06/2016] [Accepted: 08/08/2016] [Indexed: 06/06/2023]
Abstract
Large-scale assemblies of people in a confined space can exert significant impacts on the local air chemistry due to human emissions of volatile organics. Variations of air-quality in such small scale can be studied by quantifying fingerprint volatile organic compounds (VOCs) such as acetone, toluene, and isoprene produced during concerts, movie screenings, and sport events (like the Olympics and the World Cup). This review summarizes the extent of VOC accumulation resulting from a large population in a confined area or in a small open area during sporting and other recreational activities. Apart from VOCs emitted directly from human bodies (e.g., perspiration and exhaled breath), those released indirectly from other related sources (e.g., smoking, waste disposal, discharge of food-waste, and use of personal-care products) are also discussed. Although direct and indirect emissions of VOCs from human may constitute <1% of the global atmospheric VOCs budget, unique spatiotemporal variations in VOCs species within a confined space can have unforeseen impacts on the local atmosphere to lead to acute human exposure to harmful pollutants.
Collapse
Affiliation(s)
- Tanushree Dutta
- Department of Civil & Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, South Korea
| | - Ki-Hyun Kim
- Department of Civil & Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, South Korea.
| | - Minori Uchimiya
- USDA-ARS Southern Regional Research Center, 1100 Robert E. Lee Boulevard, New Orleans, LA 70124, United States
| | - Pawan Kumar
- Department of Chemical Engineering, Indian Institute of Technology, Hauz Khas, New Delhi 11016, India
| | - Subhasish Das
- Soil & Agro-Bioengineering Lab, Department of Environmental Science, Tezpur University, Napaam 784028, India
| | - Satya Sundar Bhattacharya
- Soil & Agro-Bioengineering Lab, Department of Environmental Science, Tezpur University, Napaam 784028, India
| | - Jan Szulejko
- Department of Civil & Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, South Korea
| |
Collapse
|
24
|
Respiratory Illness and Allergy Related to Work and Home Environment among Commercial Pilots. PLoS One 2016; 11:e0164954. [PMID: 27741314 PMCID: PMC5065138 DOI: 10.1371/journal.pone.0164954] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 10/04/2016] [Indexed: 01/30/2023] Open
Abstract
The aim was to study associations between work and home environment and prevalence and incidence of respiratory health and a history of atopy in a 3-y cohort of commercial pilots. A questionnaire was mailed in 1997 to all pilots in a Scandinavian airline company (N = 622); 577 (93%) participated. The same questionnaire was sent to the participants 3 years later, 436 participated (76%). There were questions on asthma, respiratory symptoms and infections, allergies, the cabin environment, psychosocial environment and the home environment. Associations were analyzed by multiple logistic regression, calculating odds ratios (OR) with 95% confidence intervals (95%CI). The incidence of doctors' diagnosed asthma and atopy were 2.4 and 16.6 per 1000 person years, respectively. Pilots changing type of flight during follow-up got more airway infections (OR = 11.27; 95% CI 2.39-53.14). Those reporting decreased work control (OR = 1.85; 95% CI 1.03-3.31 for 1 unit change) and those with environmental tobacco smoke (ETS) at home (OR = 3.73; 95% CI 1.09-12.83) had a higher incidence of atopy during follow up. Dampness or mould at home was associated with a higher prevalence of asthma symptoms (OR = 3.55; 95% CI 1.43-8.82) and airway infections (OR = 3.12 95% CI 1.27-7.68). Window pane condensation in winter at home, reported at baseline, was associated with increased incidence of asthma symptoms (OR = 4.14; 95% CI 1.32-12.97) and pilots living in newer buildings at baseline had a higher incidence of airway infections (OR = 5.23; 95% CI 1.43-19.10). In conclusion, lack of work control and ETS at home can be a risk factors for development of allergic symptoms in pilots. Window pane condensation at home can be a risk factor for incidence of asthma symptoms. Dampness and mould at home can be a risk factor for prevalence of asthma symptoms and airway infections and living in newer buildings can be a risk factor for incidence of airway infections.
Collapse
|
25
|
Wolkoff P, Crump DR, Harrison PTC. Pollutant exposures and health symptoms in aircrew and office workers: Is there a link? ENVIRONMENT INTERNATIONAL 2016; 87:74-84. [PMID: 26641522 DOI: 10.1016/j.envint.2015.11.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 11/04/2015] [Accepted: 11/09/2015] [Indexed: 06/05/2023]
Abstract
Sensory effects in eyes and airways are common symptoms reported by aircraft crew and office workers. Neurological symptoms, such as headache, have also been reported. To assess the commonality and differences in exposures and health symptoms, a literature search of aircraft cabin and office air concentrations of non-reactive volatile organic compounds (VOCs) and ozone-initiated terpene reaction products were compiled and assessed. Data for tricresyl phosphates, in particular tri-ortho-cresyl phosphate (ToCP), were also compiled, as well as information on other risk factors such as low relative humidity. A conservative health risk assessment for eye, airway and neurological effects was undertaken based on a "worst-case scenario" which assumed a simultaneous constant exposure for 8h to identified maximum concentrations in aircraft and offices. This used guidelines and reference values for sensory irritation for eyes and upper airways and airflow limitation; a tolerable daily intake value was used for ToCP. The assessment involved the use of hazard quotients or indexes, defined as the summed ratio(s) (%) of compound concentration(s) divided by their guideline value(s). The concentration data suggest that, under the assumption of a conservative "worst-case scenario", aircraft air and office concentrations of the compounds in question are not likely to be associated with sensory symptoms in eyes and airways. This is supported by the fact that maximum concentrations are, in general, associated with infrequent incidents and brief exposures. Sensory symptoms, in particular in eyes, appear to be exacerbated by environmental and occupational conditions that differ in aircraft and offices, e.g., ozone incidents, low relative humidity, low cabin pressure, and visual display unit work. The data do not support airflow limitation effects. For ToCP, in view of the conservative approach adopted here and the rareness of reported incidents, the health risk of exposure to this compound in aircraft is considered negligible.
Collapse
Affiliation(s)
- Peder Wolkoff
- National Research Centre for the Working Environment, Denmark.
| | | | | |
Collapse
|
26
|
Weschler CJ. Roles of the human occupant in indoor chemistry. INDOOR AIR 2016; 26:6-24. [PMID: 25607256 DOI: 10.1111/ina.12185] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 01/11/2015] [Indexed: 05/03/2023]
Abstract
Over the last decade, influences of the human occupant on indoor chemistry have been investigated in environments ranging from simulated aircraft cabins to actual classrooms. We have learned that ozone reacts rapidly with constituents of skin surface lipids on exposed skin, hair, and clothing, substantially reducing indoor ozone concentrations but increasing airborne levels of mono- and bifunctional compounds that contain carbonyl, carboxyl, or α-hydroxy ketone groups. Moreover, occupants transfer skin oils to and shed skin flakes (desquamation) onto indoor surfaces. Evidence for the presence of skin flakes/oils has been found in airborne particles, settled dust, and wipes of indoor surfaces. These occupant residues are also anticipated to scavenge ozone and produce byproducts. Under typical conditions, occupancy is anticipated to decrease the net level of oxidants in indoor air. When occupants scavenge ozone, the level of SOA derived from ozone/terpene chemistry decreases; the fraction of SVOCs in the gas-phase increases, and the fraction associated with airborne particles decreases. Occupants also remove organic compounds, including certain chemically active species, via bodily intake. Studies reviewed in this paper demonstrate the pronounced influences of humans on chemistry within the spaces they inhabit and the consequences of these influences on their subsequent chemical exposures.
Collapse
Affiliation(s)
- C J Weschler
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA
- International Center for Indoor Environment and Energy, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
27
|
Kwak J, Geier BA, Fan M, Gogate SA, Rinehardt SA, Watts BS, Grigsby CC, Ott DK. Detection of volatile organic compounds indicative of human presence in the air. J Sep Sci 2015; 38:2463-9. [DOI: 10.1002/jssc.201500261] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 04/27/2015] [Accepted: 04/28/2015] [Indexed: 01/11/2023]
Affiliation(s)
- Jae Kwak
- The Henry M. Jackson Foundation for the Advancement of Military Medicine; Air Force Research Laboratory; 711th Human Performance Wing, Wright-Patterson AFB Fairborn OH USA
- Research Institute of Wildlife Ecology, Department of Integrative Biology and Evolution; University of Veterinary Medicine Vienna; Austria
| | - Brian A. Geier
- InfoSciTex Corporation; Air Force Research Laboratory; 711th Human Performance Wing, Wright-Patterson AFB Fairborn OH USA
| | - Maomian Fan
- Air Force Research Laboratory; 711th Human Performance Wing, Wright-Patterson AFB Fairborn OH USA
| | - Sanjay A. Gogate
- Air Force Research Laboratory; U.S. Air Force School of Aerospace Medicine; 711th Human Performance Wing, Wright-Patterson AFB Fairborn OH USA
| | - Sage A. Rinehardt
- UES; Air Force Research Laboratory; 711th Human Performance Wing, Wright-Patterson AFB Fairborn OH USA
| | - Brandy S. Watts
- Air Force Research Laboratory; 711th Human Performance Wing, Wright-Patterson AFB Fairborn OH USA
| | - Claude C. Grigsby
- Air Force Research Laboratory; 711th Human Performance Wing, Wright-Patterson AFB Fairborn OH USA
| | - Darrin K. Ott
- Air Force Research Laboratory; U.S. Air Force School of Aerospace Medicine; 711th Human Performance Wing, Wright-Patterson AFB Fairborn OH USA
| |
Collapse
|
28
|
Bekö G, Allen JG, Weschler CJ, Vallarino J, Spengler JD. Impact of cabin ozone concentrations on passenger reported symptoms in commercial aircraft. PLoS One 2015; 10:e0128454. [PMID: 26011001 PMCID: PMC4444275 DOI: 10.1371/journal.pone.0128454] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 04/27/2015] [Indexed: 11/20/2022] Open
Abstract
Due to elevated ozone concentrations at high altitudes, the adverse effect of ozone on air quality, human perception and health may be more pronounced in aircraft cabins. The association between ozone and passenger-reported symptoms has not been investigated under real conditions since smoking was banned on aircraft and ozone converters became more common. Indoor environmental parameters were measured at cruising altitude on 83 US domestic and international flights. Passengers completed a questionnaire about symptoms and satisfaction with the indoor air quality. Average ozone concentrations were relatively low (median: 9.5 ppb). On thirteen flights (16%) ozone levels exceeded 60 ppb, while the highest peak level reached 256 ppb for a single flight. The most commonly reported symptoms were dry mouth or lips (26%), dry eyes (22.1%) and nasal stuffiness (18.9%). 46% of passengers reported at least one symptom related to the eyes or mouth. A third of the passengers reported at least one upper respiratory symptom. Using multivariate logistic (individual symptoms) and linear (aggregated continuous symptom variables) regression, ozone was consistently associated with symptoms related to the eyes and certain upper respiratory endpoints. A concentration-response relationship was observed for nasal stuffiness and eye and upper respiratory symptom indicators. Average ozone levels, as opposed to peak concentrations, exhibited slightly weaker associations. Medium and long duration flights were significantly associated with more symptoms compared to short flights. The relationship between ultrafine particles and ozone on flights without meal service was indicative of ozone-initiated chemistry.
Collapse
Affiliation(s)
- Gabriel Bekö
- International Centre for Indoor Environment and Energy, Department of Civil Engineering, Technical University of Denmark, Lyngby, Denmark
| | - Joseph G. Allen
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Charles J. Weschler
- International Centre for Indoor Environment and Energy, Department of Civil Engineering, Technical University of Denmark, Lyngby, Denmark
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey, United States of America
| | - Jose Vallarino
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - John D. Spengler
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, United States of America
| |
Collapse
|
29
|
Comparison of the neurotoxicities between volatile organic compounds and fragrant organic compounds on human neuroblastoma SK-N-SH cells and primary cultured rat neurons. Toxicol Rep 2015; 2:729-736. [PMID: 28962408 PMCID: PMC5598150 DOI: 10.1016/j.toxrep.2015.05.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 04/02/2015] [Accepted: 05/04/2015] [Indexed: 11/22/2022] Open
Abstract
These are many volatile organic compounds (VOCs) that are synthesized, produced from petroleum or derived from natural compounds, mostly plants. Fragrant and volatile organic compounds from plants have been used as food additives, medicines and aromatherapy. Several clinical and pathological studies have shown that chronic abuse of VOCs, mainly toluene, causes several neuropsychiatric disorders. Little is known about the mechanisms of neurotoxicity of the solvents. n-Octanal, nonanal, and 2-ethyl-1-hexanol, which are used catalyzers or intermediates of chemical reactions, are released into the environment. Essential oils have the functions of self-defense, sterilization, and antibiosis in plants. When volatile organic compounds enter the body, there is the possibility that they will pass through the blood–brain barrier (BBB) and affect the central nervous system (CNS). However, the direct effects of volatile organic compounds on neural function and their toxicities are still unclear. We compared the toxicities of n-octanal, nonanal and 2-ethyl-1-hexanol with those of five naturally derived fragrant organic compounds (FOCs), linalool, cis-3-hexen-1-ol, isoamyl alcohol, n-propyl alcohol and n-phenethyl alcohol. MTT assay of human neuroblastoma SK-N-SH cells showed that the IC50 values of linalool, cis-3-hexen-1-ol, isoamyl alcohol, n-propyl alcohol and phenethyl alcohol were 1.33, 2.3, >5, >5, and 2.39 mM, respectively, and the IC50 values of toluene, n-octanal, nonanal and 2-ethyl-1-hexanol were 850, 37.2, 8.31 and 15.1 μM, respectively. FOCs showed lower toxicities than those of VOCs. These results indicate that FOCs are safer than other compounds.
Collapse
|
30
|
Pöschl U, Shiraiwa M. Multiphase chemistry at the atmosphere-biosphere interface influencing climate and public health in the anthropocene. Chem Rev 2015; 115:4440-75. [PMID: 25856774 DOI: 10.1021/cr500487s] [Citation(s) in RCA: 243] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ulrich Pöschl
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany
| | - Manabu Shiraiwa
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany
| |
Collapse
|
31
|
Hsu YC, Chao HR, Shih SI. Human exposure to airborne aldehydes in Chinese medicine clinics during moxibustion therapy and its impact on risks to health. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2015; 50:260-271. [PMID: 25594119 DOI: 10.1080/10934529.2015.981112] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Many air toxicants, and especially aldehydes, are generated by moxibustion, which means burning Artemisia argyi. Our goal was to investigate indoor-air aldehyde emissions in Chinese medicine clinics (CMCs) during moxibustion to further evaluate the potential health risks, including cancer risk and non-cancer risk, to the medical staff and adult patients. First, the indoor-air-quality in 60 public sites, including 15 CMCs, was investigated. Four CMCs with frequent use of moxibustion were selected from the 15 CMCs to gather the indoor airborne aldehydes in the waiting and therapy rooms. The mean values of formaldehyde and acetaldehyde in the CMCs' indoor air were 654 and 4230 μg m(-3), respectively, in the therapy rooms, and 155 and 850 μg m(-3), respectively, in the waiting rooms. The average lifetime cancer risks (Rs) and non-cancer risks (hazard quotients: HQs) of airborne formaldehyde and acetaldehyde among the CMC medical staff exceeded the acceptable criteria (R < 1.00 × 10(-3) and HQ < 1.00) for occupational workers. The patients' Rs and HQs were also slightly higher than the critical values (R = 1.00 × 10(-6) and HQ = 1.00). Our results indicate that airborne aldehydes pose a significant threat to the health of medical staff, and slightly affected the patients' health, during moxibustion in the CMCs.
Collapse
Affiliation(s)
- Yi-Chyun Hsu
- a Department of Environmental Engineering , Kun Shan University , Tainan City , Taiwan
| | | | | |
Collapse
|
32
|
Ji W, Zhao B. Estimation of the contribution of secondary organic aerosol to PM2.0 concentration in aircraft cabins. BUILDING AND ENVIRONMENT 2014; 82:267-273. [DOI: 10.1016/j.buildenv.2014.08.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
33
|
Nørgaard AW, Kofoed-Sørensen V, Mandin C, Ventura G, Mabilia R, Perreca E, Cattaneo A, Spinazzè A, Mihucz VG, Szigeti T, de Kluizenaar Y, Cornelissen HJM, Trantallidi M, Carrer P, Sakellaris I, Bartzis J, Wolkoff P. Ozone-initiated terpene reaction products in five European offices: replacement of a floor cleaning agent. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:13331-13339. [PMID: 25299176 DOI: 10.1021/es504106j] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Cleaning agents often emit terpenes that react rapidly with ozone. These ozone-initiated reactions, which occur in the gas-phase and on surfaces, produce a host of gaseous and particulate oxygenated compounds with possible adverse health effects in the eyes and airways. Within the European Union (EU) project OFFICAIR, common ozone-initiated reaction products were measured before and after the replacement of the regular floor cleaning agent with a preselected low emitting floor cleaning agent in four offices located in four EU countries. One reference office in a fifth country did not use any floor cleaning agent. Limonene, α-pinene, 3-carene, dihydromyrcenol, geraniol, linalool, and α-terpineol were targeted for measurement together with the common terpene oxidation products formaldehyde, 4-acetyl-1-methylcyclohexene (4-AMCH), 3-isopropenyl-6-oxo-heptanal (IPOH), 6-methyl-5-heptene-2-one, (6-MHO), 4-oxopentanal (4-OPA), and dihydrocarvone (DHC). Two-hour air samples on Tenax TA and DNPH cartridges were taken in the morning, noon, and in the afternoon and analyzed by thermal desorption combined with gas chromatography/mass spectrometry and HPLC/UV analysis, respectively. Ozone was measured in all sites. All the regular cleaning agents emitted terpenes, mainly limonene and linalool. After the replacement of the cleaning agent, substantially lower concentrations of limonene and formaldehyde were observed. Some of the oxidation product concentrations, in particular that of 4-OPA, were also reduced in line with limonene. Maximum 2 h averaged concentrations of formaldehyde, 4-AMCH, 6-MHO, and IPOH would not give rise to acute eye irritation-related symptoms in office workers; similarly, 6-AMCH, DHC and 4-OPA would not result in airflow limitation to the airways.
Collapse
Affiliation(s)
- A W Nørgaard
- National Research Centre for the Working Environment, 2100 Copenhagen Ø, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Rai AC, Lin CH, Chen Q. Numerical modeling of volatile organic compound emissions from ozone reactions with human-worn clothing in an aircraft cabin. ACTA ACUST UNITED AC 2014. [DOI: 10.1080/10789669.2014.959428] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
35
|
Vibenholt A, Clausen PA, Wolkoff P. Ozone reaction characteristics of indoor floor dust examined in the emission cell "FLEC". CHEMOSPHERE 2014; 107:230-239. [PMID: 24440040 DOI: 10.1016/j.chemosphere.2013.12.048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 12/10/2013] [Accepted: 12/18/2013] [Indexed: 06/03/2023]
Abstract
Ozone reacts with C-C double bonds in common indoor VOCs and SVOCs contained in indoor dust and may be catalytically degraded on dust surfaces. The reaction between floor dust and ozone was investigated in the FLEC emission cell at different ozone concentrations and relative humidities (0%, 25%, and 50% RH). One gram of dust was spread on a clean stainless steel plate which was placed in the FLEC. Steady state reaction rate (kDust) at 2.2 ppm ozone was determined for four different floor dust samples collected in Danish homes and offices. This high concentration was necessary in order to measure and determine the consumption in the outlet air from the FLEC. Measurements were corrected for FLEC wall effects by subtraction of the steady state reaction rate between ozone and a FLEC on a stainless steel plate without dust (kFLEC). The composition of organic compounds in the dust was analyzed by pressurized liquid extraction and thermal desorption GC-MS before and after ozone exposure. kFLEC was independent of the ozone concentration and the reaction was treated as first order. The same was indicated for kDust since it remained unchanged at 2.2 and 1.6 ppm ozone for one dust sample. However, the measured kDust in the FLEC should be considered an average rate constant due to the FLEC geometry. kDust was in the range 0.039-0.14s(-1) pr. g dust at 50% RH. kDust was 3 times higher at 25% RH than at 50% RH and 6 times higher than at 0% RH. The inhomogeneity of the dust was assessed by experiments in triplicate with a new portion of dust each time. The relative standard deviation of kDust at 50% RH was 6-20%. The major identified compounds before and after ozone exposure included aldehydes, saturated and unsaturated linear alkanoic acids, benzoic acid and their methyl esters, dimethyl esters, phthalates and traces of α-pinene and limonene. Substantial increase of C7-C9 aldehydes was observed after ozone exposure.
Collapse
Affiliation(s)
- Anni Vibenholt
- National Research Centre for the Working Environment, Copenhagen, Denmark.
| | - Per Axel Clausen
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Peder Wolkoff
- National Research Centre for the Working Environment, Copenhagen, Denmark
| |
Collapse
|