1
|
Hussain M, Hussaini SS, Shariq M, AlMasoud N, AlZaidy GA, Hassan KF, Ali SK, Azooz RE, Siddiqui MA, Seku K. Frankincense-Based Functionalized Multiwalled Carbon Nanotubes with Iron Oxide Composites for Efficient Removal of Crystal Violet: Kinetic and Equilibrium Analysis. ACS OMEGA 2024; 9:11459-11470. [PMID: 38497024 PMCID: PMC10938398 DOI: 10.1021/acsomega.3c08011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 03/19/2024]
Abstract
In this study, novel adsorbents were developed by functionalizing multiwalled carbon nanotubes with frankincense (Fr-fMWCNT) and adding iron oxide (Fe3O4) to the adsorbent (Fr-fMWCNT-Fe3O4). The morphology, surface characteristics, and chemical nature of the synthesized samples were analyzed by using various characterization techniques. The prepared adsorbents were then applied for the elimination of the toxic dye, crystal violet (CV), from water-based solutions by employing a batch adsorption method. The effectiveness of materials for the adsorption of CV was investigated by tuning various effective experimental parameters (adsorbent dosage, dye quantity, pH, and contact time). In order to derive adsorption isotherms, the Langmuir and Freundlich adsorption models were investigated and compared. The Fr-fMWCNT and Fr-fMWCNT-Fe3O4 were found to remove 85 and 95% of the CV dye within 30 min of the adsorption experiment at pH 6, respectively. It was found that a pseudo-second-order reaction rate was consistent with the experimental adsorption kinetics. The equilibrium data demonstrated that the Langmuir model adequately explained the adsorption behavior of the CV dye on the Fr-fMWCNT and Fr-fMWCNT-Fe3O4 surfaces, respectively. According to the Langmuir study, the highest adsorption capacities of the dye are 434 mg/g for Fr-fMWCNT and 500 mg/g for Fr-fMWCNT-Fe3O4. Remediation of the CV dye using our novel composite materials has not been reported previously in the literature. The synthesized Fr-fMWCNT and Fr-fMWCNT-Fe3O4 adsorbents can be economical and green materials for the adsorptive elimination of CV dye from wastewater.
Collapse
Affiliation(s)
- Mushtaq Hussain
- Engineering
Department, College of Engineering and Technology, University of Technology and Applied Sciences, Shinas 324, Oman
| | - Syed Sulaiman Hussaini
- Engineering
Department, College of Engineering and Technology, University of Technology and Applied Sciences, Shinas 324, Oman
| | - Mohammad Shariq
- Department
of Physics, Faculty of Science, Integral
University, Lucknow 226026, India
| | - Najla AlMasoud
- Department
of Chemistry, College of Science, Princess
Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Ghadah Abdulrahman AlZaidy
- Department
of Physics, Faculty of Applied Science, Umm Al-Qura University, AlZahir Branch, Makkah 24383, Saudi Arabia
| | - Khaled F. Hassan
- Department
of Chemistry, College of Science, Jazan
University, Jazan 45142, Saudi Arabia
| | - Syed Kashif Ali
- Department
of Chemistry, College of Science, Jazan
University, Jazan 45142, Saudi Arabia
| | - Rehab E. Azooz
- Department
of Chemistry, College of Science, Jazan
University, Jazan 45142, Saudi Arabia
| | - Mohd Asim Siddiqui
- Engineering
Department, College of Engineering and Technology, University of Technology and Applied Sciences, Shinas 324, Oman
| | - Kondaiah Seku
- Engineering
Department, College of Engineering and Technology, University of Technology and Applied Sciences, Shinas 324, Oman
| |
Collapse
|
2
|
Majumder S, Dhara B, Mitra AK, Dey S. Applications and implications of carbon nanotubes for the sequestration of organic and inorganic pollutants from wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:124934-124949. [PMID: 36719577 DOI: 10.1007/s11356-023-25431-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
The rapid growth in the population, industrial developments, and climate change over the century have contributed to a significant rise in aquatic pollution leading to a scarcity of clean, reliable, and sustainable water sources and supply. Exposure through ingestion, inhalation, and dermal absorption of organic/inorganic compounds such as heavy metals, pharmaceuticals, dyes, and persistent organic pollutants (POPs) discharged from municipalities, hospitals, textile industries, food, and agricultural sectors has caused adverse health outcomes in aquatic and terrestrial organisms. Owing to the high surface area, photocatalytic activity, antimicrobial, antifouling, optical, electronic, and magnetic properties, the application of nanotechnology offers unique opportunities in advanced wastewater management strategies over traditional approaches. Carbon nanomaterials and associated composites such as single-walled carbon nanotubes (SWCNT), multiwalled carbon nanotubes (MWCNT), and carbon nanotubes (CNT) buckypaper membranes have demonstrated efficiency in adsorption, photocatalytic activity, and filtration of contaminants and thus show immense potentiality in wastewater management. This review focuses on the application of CNTs in the sequestration of organic and inorganic contaminants from the aquatic environment. It also sheds light on the aquatic pollutant desorption processes, current safety regulations, and toxic responses associated with CNTs. Critical knowledge gaps involving CNT synthesis, surface modification processes, CNT-environment interactions, and risk assessments are further identified and discussed.
Collapse
Affiliation(s)
- Satwik Majumder
- Department of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University, 21111 Lakeshore, Sainte Anne de Bellevue, H9X 3V9, Quebec, Canada
| | - Bikram Dhara
- Department of Microbiology, St. Xavier's College (Autonomous), Kolkata, 30 Park St., Mullick Bazar, Park Street Area, West Bengal, 700016, Kolkata, India
| | - Arup Kumar Mitra
- Department of Microbiology, St. Xavier's College (Autonomous), Kolkata, 30 Park St., Mullick Bazar, Park Street Area, West Bengal, 700016, Kolkata, India
| | - Satarupa Dey
- Department of Botany, Shyampur Siddheswari Mahavidyalaya, Ajodhya, Howrah, West Bengal, 711312, India.
| |
Collapse
|
3
|
Zhang J, Zheng H, Li X, Li N, Liu Y, Li T, Wang Y, Xing B. Direct Spectroscopic Evidence for Charge-Assisted Hydrogen-Bond Formation between Ionizable Organic Chemicals and Carbonaceous Materials. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:9356-9366. [PMID: 35729743 DOI: 10.1021/acs.est.2c00417] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The direct evidence for the formation of charge-assisted hydrogen bond (CAHB) between the charged groups of ionizable organic chemicals (IOCs) and carbonaceous materials with similar proton affinity remains elusive. We therefore selected three pharmaceutical contaminants (PCs) as representative IOCs to provide the direct evidence of CAHB formation between IOCs and functionalized carbon nanotubes (CNTs) and its intensity/contribution to PC sorption on CNTs by NMR, FTIR, and DFT analyses. Sorption of PCs on functionalized CNTs resulted in the FTIR characteristic peak that appeared at a higher frequency (3787 cm-1) and the 1H NMR characteristic peak that emerged at an extremely low-field region (<18.0 ppm), which can be used as the direct spectroscopic evidence for CAHB formation. Both homonuclear CAHB (HM-CAHB, e.g., [O-H···O]-) and heteronuclear CAHB (HT-CAHB, e.g., [N+-H···O-]/[O-H···N]+) exhibited a much higher sorption energy (|Eads| ≥ 56.24 kJ/mol) than ordinary hydrogen bond (OHB, |Eads| ≤ 6.136 kJ/mol), leading to a greater sorption contribution (HM-/HT-CAHB ≥ 42.3%, OHB ≤ 36.5%) and irreversibility (hysteresis index: HM-/HT-CAHB ≥ 1.69, OHB ≤ 0.43) of PCs on CNTs. This work presents the direct evidence for CAHB formation between IOCs and CNTs, which is significant for understanding and predicting the environmental fate and risk of IOCs, thus providing new insights for controlling their pollution using specifically designed carbonaceous materials.
Collapse
Affiliation(s)
- Jinlong Zhang
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
- International Joint Research Centre of Shaanxi Province for Pollutants Exposure and Eco-environmental Health, Xi'an 710119, China
| | - Hao Zheng
- Institute of Coastal Environmental Pollution Control, Ministry of Education Key Laboratory of Marine Environment and Ecology, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China
| | - Xiaoyun Li
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
- International Joint Research Centre of Shaanxi Province for Pollutants Exposure and Eco-environmental Health, Xi'an 710119, China
| | - Nana Li
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Yifan Liu
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Tao Li
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Yue Wang
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
4
|
Kan H, Zhang H, Lu M, Zhao F, Gao S, Yan G, Huang J, Zhang XX. Effects of carboxylated multi-walled carbon nanotubes on bioconcentration of pentachlorophenol and hepatic damages in goldfish. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:1389-1398. [PMID: 33420882 DOI: 10.1007/s10646-020-02328-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/27/2020] [Indexed: 06/12/2023]
Abstract
Carboxylated multi-walled carbon nanotubes (MWCNT-COOH) exerts strong adsorption capacity for pentachlorophenol (PCP) and they inevitably co-occur in the environment, but few studies have characterized the effects of MWCNT-COOH on the bioavailability of PCP and its oxidative and tissue damages to fish. In this work, we assessed the PCP accumulation in different organs and the induced oxidative and tissue damages of goldfish following 50-d in vivo exposure to PCP alone or co-exposure with MWCNT-COOH. Our results indicated that PCP bioaccumulation in goldfish liver, gill, muscle, intestine and gut contents was inhibited after co-exposure with MWCNT-COOH in uptake phase. PCP exposure alone and co-exposure with MWCNT-COOH evoked severe oxidative and tissue damages in goldfish bodies, as indicated by significant inhibition of activities of antioxidant enzymes, remarkable decrease in glutathione level, simultaneous elevation of malondialdehyde content, and obvious histological damages to liver and gill. The decreased accumulation of PCP in the presence of MWCNT-COOH led to the reduction of PCP-induced toxicity to liver tissues, as confirmed by the alleviation of hepatic oxidative damages. However, co-exposure groups had higher concentrations of PCP in the tissues than PCP treatment alone (p < 0.05 each) in the depuration phase, revealing that MWCNT-COOH-bound pollutants might pose higher risk once desorbed from the nanoparticles. These results provided substantial information regarding the combined effects of PCP and MWCNT-COOH on aquatic species, which helps to deeply understand the potential ecological risks of the emerging pollutants.
Collapse
Affiliation(s)
- Haifeng Kan
- Fujian Provincial Key Laboratory of Featured Materials in Biochemical Industry, Fujian Province University Key Laboratory of Green Energy and Environment Catalysis, College of Chemistry and Materials, Ningde Normal University, Ningde, Fujian, 352100, China
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Haiyun Zhang
- Institute of Eco-environmental Protection, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Mingxia Lu
- Fujian Provincial Key Laboratory of Featured Materials in Biochemical Industry, Fujian Province University Key Laboratory of Green Energy and Environment Catalysis, College of Chemistry and Materials, Ningde Normal University, Ningde, Fujian, 352100, China
| | - Fuzheng Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Shixiang Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
| | - Guiyang Yan
- Fujian Provincial Key Laboratory of Featured Materials in Biochemical Industry, Fujian Province University Key Laboratory of Green Energy and Environment Catalysis, College of Chemistry and Materials, Ningde Normal University, Ningde, Fujian, 352100, China
| | - Jitao Huang
- Fujian Provincial Key Laboratory of Featured Materials in Biochemical Industry, Fujian Province University Key Laboratory of Green Energy and Environment Catalysis, College of Chemistry and Materials, Ningde Normal University, Ningde, Fujian, 352100, China
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
5
|
Deline AR, Frank BP, Smith CL, Sigmon LR, Wallace AN, Gallagher MJ, Goodwin DG, Durkin DP, Fairbrother DH. Influence of Oxygen-Containing Functional Groups on the Environmental Properties, Transformations, and Toxicity of Carbon Nanotubes. Chem Rev 2020; 120:11651-11697. [DOI: 10.1021/acs.chemrev.0c00351] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Alyssa R. Deline
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Benjamin P. Frank
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Casey L. Smith
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Leslie R. Sigmon
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Alexa N. Wallace
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Miranda J. Gallagher
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - David G. Goodwin
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - David P. Durkin
- Department of Chemistry, United States Naval Academy, 572M Holloway Road, Annapolis, Maryland 21402, United States
| | - D. Howard Fairbrother
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
6
|
Ge X, Wu Z, Manzoli M, Wu Z, Cravotto G. Feasibility and the Mechanism of Desorption of Phenolic Compounds from Activated Carbons. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c01402] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xinyu Ge
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Turin 10125, Italy
| | - Zhilin Wu
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Turin 10125, Italy
- Nanjing Institute of Environmental Science of the Ministry of Environment Protection of China, Nanjing 210042, China
| | - Maela Manzoli
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Turin 10125, Italy
| | - Zhansheng Wu
- School of Environmental and Chemical Engineering, Xi’an Polytechnic University, Xi’an 710048, China
| | - Giancarlo Cravotto
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Turin 10125, Italy
| |
Collapse
|
7
|
Metzelder F, Funck M, Hüffer T, Schmidt TC. Comparison of Sorption to Carbon-Based Materials and Nanomaterials Using Inverse Liquid Chromatography. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:9731-9740. [PMID: 30075076 DOI: 10.1021/acs.est.8b01653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Sorption studies of carbon-based materials and nanomaterials are typically conducted using batch experiments, but the analysis of weakly sorbing compounds may be challenging. Column chromatography represents a promising complement as higher sorbent to solution ratios can be applied. The sorbent is packed in a column, and sorption data are calculated by relating sorbate retention times to that of a nonretarded tracer. In this study, sorption of heterocyclic organic compounds (pyrazole, pyrrole, furan, and thiophene) by carbon-based materials (activated carbon, biochar, and graphite) and nanomaterials (functionalized carbon nanotubes and graphene platelets) was compared for the first time using column chromatography. D2O was used as nonretarded tracer. Sorption isotherms were nonlinear and described well by the Freundlich model. Sorption differed between the materials regarding determined Freundlich coefficients ( Kf) by more than two orders of magnitude for isotherms in a similar concentration range. Normalization of Kf with the surface area of the sorbent significantly reduced but did not remove the differences between the sorbents. Overall, column chromatography represents the opportunity to study sorption of weakly sorbing compounds to diverse carbon-based sorbent materials with a single experimental approach, which is challenging in batch experiments because of the very different sorption properties of some sorbent materials.
Collapse
Affiliation(s)
- Florian Metzelder
- Instrumental Analytical Chemistry , University of Duisburg-Essen , Universitätsstrasse 5 , 45141 Essen , Germany
| | - Matin Funck
- Instrumental Analytical Chemistry , University of Duisburg-Essen , Universitätsstrasse 5 , 45141 Essen , Germany
- Institut für Energie- und Umwelttechnik e. V. (IUTA) , Bliersheimer Straße 59-60 , 47229 Duisburg , Germany
| | - Thorsten Hüffer
- Department of Environmental Geosciences and Environmental Science Research Network , University of Vienna , Althanstrasse 14 , 1090 Vienna , Austria
- Centre for Water and Environmental Research (ZWU) , University of Duisburg-Essen , Universitätsstrasse 2 , 45141 Essen , Germany
| | - Torsten C Schmidt
- Instrumental Analytical Chemistry , University of Duisburg-Essen , Universitätsstrasse 5 , 45141 Essen , Germany
- Centre for Water and Environmental Research (ZWU) , University of Duisburg-Essen , Universitätsstrasse 2 , 45141 Essen , Germany
- IWW Water Centre , Moritzstraße 26 , 45476 Mülheim an der Ruhr , Germany
| |
Collapse
|
8
|
Metzelder F, Funck M, Schmidt TC. Sorption of Heterocyclic Organic Compounds to Multiwalled Carbon Nanotubes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:628-637. [PMID: 29257678 DOI: 10.1021/acs.est.7b05205] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Sorption is an important natural and technical process. Sorption coefficients are typically determined in batch experiments, but this may be challenging for weakly sorbing compounds. An alternative method enabling analysis of those compounds is column chromatography. A column packed with the sorbent is used and sorption data are determined by relating sorbate retention to that of a nonretarded tracer. In this study, column chromatography was applied for the first time to study sorption of previously hardly investigated heterocyclic organic compounds to multiwalled carbon nanotubes (MWCNTs). Sorption data for these compounds are very limited in literature, and weak sorption is expected from predictions. Deuterium oxide was used as nonretarded tracer. Sorption isotherms were well described by the Freundlich model and data showed reasonable agreement with predicted values. Sorption was exothermic and physisorption was observed. H-bonding may contribute to overall sorption, which is supported by reduced sorption with increasing ionic strength due to blocking of functional groups. Lowering pH reduced sorption of ionizable compounds, due to electrostatic repulsion at pH 3 where sorbent as well as sorbates were positively charged. Overall, column chromatography was successfully used to study sorption of heterocyclic compounds to MWCNTs and could be applied for other carbon-based sorbents.
Collapse
Affiliation(s)
- Florian Metzelder
- Instrumental Analytical Chemistry, University of Duisburg-Essen , Universitätsstrasse 5, 45141 Essen, Germany
| | - Matin Funck
- Instrumental Analytical Chemistry, University of Duisburg-Essen , Universitätsstrasse 5, 45141 Essen, Germany
| | - Torsten C Schmidt
- Instrumental Analytical Chemistry, University of Duisburg-Essen , Universitätsstrasse 5, 45141 Essen, Germany
- Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen Universitätsstrasse 2, 45141 Essen, Germany
- IWW Water Centre , Moritzstraße 26, 45476 Mülheim an der Ruhr, Germany
| |
Collapse
|
9
|
Metzelder F, Schmidt TC. Environmental Conditions Influencing Sorption of Inorganic Anions to Multiwalled Carbon Nanotubes Studied by Column Chromatography. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:4928-4935. [PMID: 28383258 DOI: 10.1021/acs.est.6b06386] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Sorption to carbon-based nanomaterials is typically studied in batch experiments. An alternative method offering advantages to study sorption is column chromatography. Sorbent packed columns are used and sorption data are determined by relating sorbate retention to that of a nonretarded tracer. We have now for the first time applied this technique to study the influence of environmental conditions on sorption of inorganic anions (bromide, nitrite, nitrate, and iodide) to multiwalled carbon nanotubes. Deuterium oxide was used as nonretarded tracer. Sorption isotherms were best described by the Freundlich model. Sorption increased in the order bromide < nitrite < nitrate < iodide. Increasing ionic strength from 1 mM to 100 mM sodium chloride significantly reduced or completely suppressed sorption (bromide, nitrite) due to competition with chloride. pH strongly affected sorption as negatively charged analytes were attracted by the positively charged surface at pH 3. At pH > 4.5 the surface charge was negative, but sorption was still detectable at pH 6 and 9. Consequently, other forces than electrostatic attraction contributed to sorption. These forces may include H-bonding as indicated by sorption enthalpy determined by variation of column temperature. Overall, column chromatography represents a promising alternative in sorption studies to reveal sorbent properties.
Collapse
Affiliation(s)
- Florian Metzelder
- Instrumental Analytical Chemistry, University of Duisburg-Essen , Universitätsstrasse 5, 45141 Essen, Germany
| | - Torsten C Schmidt
- Instrumental Analytical Chemistry, University of Duisburg-Essen , Universitätsstrasse 5, 45141 Essen, Germany
- Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen , Universitätsstrasse 2, 45141 Essen, Germany
- IWW Water Centre, Moritzstraße 26, 45476 Mülheim an der Ruhr, Germany
| |
Collapse
|
10
|
Lan T, Wang H, Liao J, Yang Y, Chai Z, Liu N, Wang D. Dynamics of Humic Acid and Its Interaction with Uranyl in the Presence of Hydrophobic Surface Implicated by Molecular Dynamics Simulations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:11121-11128. [PMID: 27666876 DOI: 10.1021/acs.est.6b03583] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This work targeted a molecular level of understanding on the dynamics of humic acid (HA) and its interaction with uranyl in the presence of hydrophobic surface mimicked by a carbon nanotube (CNT), which also represents a potential intruder in the environment accompanying with the development of nanotechnology. In aqueous phase, uranyl and HA were observed to build close contact spontaneously, driven by electrostatic interaction, leading to a more compact conformation of HA. The presence of CNT unfolds HA via π-π interactions with the aromatic rings of HA without significant perturbation on the interaction strength between HA and uranyl. These results show that the hydrophilic uranyl and the hydrophobic CNT influence the folding behavior of HA in distinct manners, which represents two fundamental mechanisms that the folding behavior of HA may be modulated in the environment, that is, uranyl enhances the folding of HA via electrostatic interactions, whereas CNT impedes its spontaneous folding via van der Waals (vdW) interactions. The work also provides molecular level of evidence on the transformation of a hydrophobic surface into a hydrophilic one via noncovalent functionalization by HA, which in turn affects the migration of HA and the cations it binds to.
Collapse
Affiliation(s)
- Tu Lan
- Key Laboratory of Radiation Physics and Technology (Sichuan University), Ministry of Education; Institute of Nuclear Science and Technology, Sichuan University , Chengdu 610064, P.R.China
- CAS Key Laboratory of Nuclear Radiation and Nuclear Techniques, Multidisciplinary Initiative Center, Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049, P.R.China
| | - Hui Wang
- CAS Key Laboratory of Nuclear Radiation and Nuclear Techniques, Multidisciplinary Initiative Center, Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049, P.R.China
| | - Jiali Liao
- Key Laboratory of Radiation Physics and Technology (Sichuan University), Ministry of Education; Institute of Nuclear Science and Technology, Sichuan University , Chengdu 610064, P.R.China
| | - Yuanyou Yang
- Key Laboratory of Radiation Physics and Technology (Sichuan University), Ministry of Education; Institute of Nuclear Science and Technology, Sichuan University , Chengdu 610064, P.R.China
| | - Zhifang Chai
- CAS Key Laboratory of Nuclear Radiation and Nuclear Techniques, Multidisciplinary Initiative Center, Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049, P.R.China
- School of Radiation Medicine and Interdisciplinary Sciences (RAD-X), Soochow University , Suzhou 215123, P.R.China
| | - Ning Liu
- Key Laboratory of Radiation Physics and Technology (Sichuan University), Ministry of Education; Institute of Nuclear Science and Technology, Sichuan University , Chengdu 610064, P.R.China
| | - Dongqi Wang
- CAS Key Laboratory of Nuclear Radiation and Nuclear Techniques, Multidisciplinary Initiative Center, Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049, P.R.China
| |
Collapse
|
11
|
Ling C, Li X, Zhang Z, Liu F, Deng Y, Zhang X, Li A, He L, Xing B. High Adsorption of Sulfamethoxazole by an Amine-Modified Polystyrene-Divinylbenzene Resin and Its Mechanistic Insight. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:10015-23. [PMID: 27574832 DOI: 10.1021/acs.est.6b02846] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Sulfamethoxazole (SMZ) adsorption by a series of amine-modified polystyrene-divinylbenzene resins (PSA/B/C/D) was investigated. All resins showed a similar pH dependent adsorption of SMZ but their capacities were linearly related with the contents of primary amines (-NH2) rather than secondary amines (-NH-). Mechanisms of SMZ adsorption by PSA (highest -NH2 content) were discussed as an example. Due to comparable pKa, H-bonding interactions of -NH2(0) with SMZ(0) (regular H-bond) and SMZ(-) (negative charge-assisted H-bond, (-)CAHB) successively contributed most adsorption (pH 4-9). At weakly acidic pH, -NH2(0) was partially protonated and electrostatic attraction between -NH3(+) and SMZ(-) occurred concurrently, but could be hindered by increased loading of SMZ(0). Hydrophobic/ π-π interactions were not major mechanisms as phenanthrene and nitrobenzenes had little effect on SMZ adsorption. At alkaline pH, where SMZ(-) and -NH2(0) prevailed, adsorption was accompanied by the stoichiometric (∼1.0) proton exchange with water, leading to OH(-) release and the formation of (-)CAHB [SO2N(-)···H···NH2]. The interaction and SMZ spatial distribution in the resin-phase were further confirmed by FTIR and Raman spectra. SMZ was uniformly adsorbed on external and interior surfaces. SMZ adsorption by PSA had low-interference from other coexistent matter, but high stability after multiple regenerations. The findings will guide new adsorbent designs for selectively removing target organics.
Collapse
Affiliation(s)
- Chen Ling
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing 210023, P. R. China
- Stockbridge School of Agriculture, University of Massachusetts , Amherst, Massachusetts 01003, United States
| | - Xiaoyun Li
- Stockbridge School of Agriculture, University of Massachusetts , Amherst, Massachusetts 01003, United States
- College of Tourism and Environment, Shaanxi Normal University , Xi'an, Shaanxi 710119, P. R. China
| | - Zhiyun Zhang
- Department of Food Science, University of Massachusetts , Amherst, Massachusetts 01003, United States
| | - Fuqiang Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing 210023, P. R. China
| | - Yingqing Deng
- Stockbridge School of Agriculture, University of Massachusetts , Amherst, Massachusetts 01003, United States
| | - Xiaopeng Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing 210023, P. R. China
| | - Aimin Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing 210023, P. R. China
| | - Lili He
- Department of Food Science, University of Massachusetts , Amherst, Massachusetts 01003, United States
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts , Amherst, Massachusetts 01003, United States
| |
Collapse
|
12
|
Wang X, Yang S, Shi W, Li J, Hayat T, Wang X. Different Interaction Mechanisms of Eu(III) and 243Am(III) with Carbon Nanotubes Studied by Batch, Spectroscopy Technique and Theoretical Calculation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:11721-11728. [DOI: https:/doi.org/10.1021/acs.est.5b02679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2023]
Affiliation(s)
- Xiangxue Wang
- School
of Environment and Chemical Engineering, North China Electric Power University, Beijing 102206, P. R. China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, P. R. China
| | - Shubin Yang
- School
of Environment and Chemical Engineering, North China Electric Power University, Beijing 102206, P. R. China
- Key
Laboratory of Novel Thin Film Solar Cells, Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei, 230031, P. R. China
| | - Weiqun Shi
- Institute
of High Energy Physics, Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Jiaxing Li
- School
of Environment and Chemical Engineering, North China Electric Power University, Beijing 102206, P. R. China
- Key
Laboratory of Novel Thin Film Solar Cells, Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei, 230031, P. R. China
| | - Tasawar Hayat
- NAAM
Research Group, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Xiangke Wang
- School
of Environment and Chemical Engineering, North China Electric Power University, Beijing 102206, P. R. China
- NAAM
Research Group, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
13
|
Wang X, Yang S, Shi W, Li J, Hayat T, Wang X. Different Interaction Mechanisms of Eu(III) and (243)Am(III) with Carbon Nanotubes Studied by Batch, Spectroscopy Technique and Theoretical Calculation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:11721-11728. [PMID: 26371690 DOI: 10.1021/acs.est.5b02679] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Herein the sorption of Eu(III) and (243)Am(III) on multiwalled carbon nanotubes (CNTs) are studied, and the results show that Eu(III) and (243)Am(III) could form strong inner-sphere surface complexes on CNT surfaces. However, the sorption of Eu(III) on CNTs is stronger than that of (243)Am(III) on CNTs, suggesting the difference in the interaction mechanisms or properties of Eu(III) and (243)Am(III) with CNTs, which is quite different from the results of Eu(III) and (243)Am(III) interaction on natural clay minerals and oxides. On the basis of the results of density functional theory calculations, the binding energies of Eu(III) on CNTs are much higher than those of (243)Am(III) on CNTs, indicating that Eu(III) could form stronger complexes with the oxygen-containing functional groups of CNTs than (243)Am(III), which is in good agreement with the experimental results of higher sorption capacity of CNTs for Eu(III). The oxygen-containing functional groups contribute significantly to the uptake of Eu(III) and (243)Am(III), and the binding affinity increases in the order of ≡S-OH < ≡S-COOH < ≡S-COO(-). This paper highlights the interaction mechanism of Eu(III) and (243)Am(III) with different oxygen-containing functional groups of CNTs, which plays an important role for the potential application of CNTs in the preconcentration, removal, and separation of trivalent lanthanides and actinides in environmental pollution cleanup.
Collapse
Affiliation(s)
- Xiangxue Wang
- School of Environment and Chemical Engineering, North China Electric Power University , Beijing 102206, P. R. China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , Suzhou, 215123, P. R. China
| | - Shubin Yang
- School of Environment and Chemical Engineering, North China Electric Power University , Beijing 102206, P. R. China
- Key Laboratory of Novel Thin Film Solar Cells, Institute of Plasma Physics, Chinese Academy of Sciences , P.O. Box 1126, Hefei, 230031, P. R. China
| | - Weiqun Shi
- Institute of High Energy Physics, Chinese Academy of Sciences , 100049, Beijing, P. R. China
| | - Jiaxing Li
- School of Environment and Chemical Engineering, North China Electric Power University , Beijing 102206, P. R. China
- Key Laboratory of Novel Thin Film Solar Cells, Institute of Plasma Physics, Chinese Academy of Sciences , P.O. Box 1126, Hefei, 230031, P. R. China
| | - Tasawar Hayat
- NAAM Research Group, Faculty of Science, King Abdulaziz University , Jeddah 21589, Saudi Arabia
| | - Xiangke Wang
- School of Environment and Chemical Engineering, North China Electric Power University , Beijing 102206, P. R. China
- NAAM Research Group, Faculty of Science, King Abdulaziz University , Jeddah 21589, Saudi Arabia
| |
Collapse
|