1
|
Zhu K, Suttner B, Knee J, Capone D, Moe CL, Stauber CE, Konstantinidis KT, Wallach TE, Pickering AJ, Brown J. Elevated Fecal Mitochondrial DNA from Symptomatic Norovirus Infections Suggests Potential Health Relevance of Human Mitochondrial DNA in Fecal Source Tracking. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2022; 9:543-550. [PMID: 35719858 PMCID: PMC9202355 DOI: 10.1021/acs.estlett.2c00140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
An end goal of fecal source tracking (FST) is to provide information on risk of transmission of waterborne illnesses associated with fecal contamination. Ideally, concentrations of FST markers in ambient waters would reflect exposure risk. Human mtDNA is an FST marker that is exclusively human in origin and may be elevated in feces of individuals experiencing gastrointestinal inflammation. In this study, we examined whether human mtDNA is elevated in fecal samples from individuals with symptomatic norovirus infections using samples from the United States (US), Mozambique, and Bangladesh. We quantified hCYTB484 (human mtDNA) and HF183/BacR287 (human-associated Bacteroides) FST markers using droplet digital polymerase chain reaction. We observed the greatest difference in concentrations of hCYTB484 when comparing samples from individuals with symptomatic norovirus infections versus individuals without norovirus infections or diarrhea symptoms: log10 increase of 1.42 in US samples (3,820% increase, p-value = 0.062), 0.49 in Mozambique (308% increase, p-value = 0.061), and 0.86 in Bangladesh (648% increase, p-value = 0.035). We did not observe any trends in concentrations of HF183/BacR287 in the same samples. These results suggest concentrations of fecal mtDNA may increase during symptomatic norovirus infection and that mtDNA in environmental samples may represent an unambiguously human source-tracking marker that correlates with enteric pathogen exposure risk.
Collapse
Affiliation(s)
- Kevin
J. Zhu
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Brittany Suttner
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Jackie Knee
- Department
of Disease Control, London School of Hygiene
and Tropical Medicine, London WC1E 7HT,United Kingdom
| | - Drew Capone
- Department
of Environmental Sciences and Engineering, Gillings School of Global
Public Health, University of North Carolina
at Chapel Hill, Chapel
Hill, North Carolina 27599, United States
| | - Christine L. Moe
- Center
for Global Safe Water, Sanitation, and Hygiene, Rollins School of
Public Health, Emory University, Atlanta, Georgia 30322, United States
| | - Christine E. Stauber
- Department
of Population Health Sciences, School of Public Health, Georgia State University, Atlanta, Georgia 30302, United States
| | - Kostas T. Konstantinidis
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Thomas E. Wallach
- Division
of Pediatric Gastroenterology, SUNY Downstate
Health Sciences University, Brooklyn, New York 11203, United States
| | - Amy J. Pickering
- Department
of Civil and Environmental Engineering, University of California, Berkeley, California 94720, United States
| | - Joe Brown
- Department
of Environmental Sciences and Engineering, Gillings School of Global
Public Health, University of North Carolina
at Chapel Hill, Chapel
Hill, North Carolina 27599, United States
| |
Collapse
|
2
|
Ragot R, Villemur R. eDNA profiling of mammals, birds, and fish of surface waters by mitochondrial metagenomics: application for source tracking of fecal contamination in surface waters. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:72. [PMID: 34997305 DOI: 10.1007/s10661-021-09668-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 11/27/2021] [Indexed: 06/14/2023]
Abstract
Knowing the composition of animals present in aquatic ecosystems can tell us about the anthropic pressures on these environments. One of these pressures is the occurrence of fecal contamination. However, this contamination can originate from more than one animal species in areas where urban and agricultural activities overlap. Mitochondrial DNA (mtDNA) has become the standard barcoding tool to identify the presence of animal species in environment. Amplicon-sequencing metagenomics is a powerful approach to derive the animal profile in an environment. However, PCR primers targeting mtDNA of a broad range of animals are highly degenerate or generate short DNA fragments that could cause ambiguous affiliation. Here we report the development of a new set of primers targeting the mitochondrial 16S ribosomal RNA genes of a broad range of terrestrial and aquatic animals, which include mammals, birds, and fishes. These primers successfully amplified mtDNA from environmental DNA (eDNA) extracted from surface waters. Sequencing the resulting amplicons revealed the presence of mammals and birds that may contribute in fecal contamination of surface water. In one of the river samples high in fecal indicator bacteria, human and bovine mtDNA accounted for 40.5% and 4.1% of the sequences, respectively, suggesting fecal contamination by these two animals. These findings indicate that our PCR primers coupled with amplicon-sequencing metagenomics contribute in profiling the animal diversity in the surface waters and its surrounding. This approach could be a valuable tool to identify simultaneously the potential contribution of various animals as sources of fecal contamination in surface waters.
Collapse
Affiliation(s)
- Rose Ragot
- INRS Centre Armand-Frappier Santé Biotechnologie, 531 Boulevard des Prairies, Laval, QC, H7V 1B7, Canada
| | - Richard Villemur
- INRS Centre Armand-Frappier Santé Biotechnologie, 531 Boulevard des Prairies, Laval, QC, H7V 1B7, Canada.
| |
Collapse
|
3
|
Distribution of human-specific bacteroidales and fecal indicator bacteria in an urban watershed impacted by sewage pollution, determined using RNA- and DNA-based quantitative PCR assays. Appl Environ Microbiol 2014; 81:91-9. [PMID: 25326295 DOI: 10.1128/aem.02446-14] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The identification of fecal pollution sources is commonly carried out using DNA-based methods. However, there is evidence that DNA can be associated with dead cells or present as "naked DNA" in the environment. Furthermore, it has been shown that rRNA-targeted reverse transcription-quantitative PCR (RT-qPCR) assays can be more sensitive than rRNA gene-based qPCR assays since metabolically active cells usually contain higher numbers of ribosomes than quiescent cells. To this end, we compared the detection frequency of host-specific markers and fecal bacteria using RNA-based RT-qPCR and DNA-based qPCR methods for water samples collected in sites impacted by combined sewer overflows. As a group, fecal bacteria were more frequently detected in most sites using RNA-based methods. Specifically, 8, 87, and 85% of the samples positive for general enterococci, Enterococcus faecalis, and Enterococcus faecium markers, respectively, were detected using RT-qPCR, but not with the qPCR assay counterpart. On average, two human-specific Bacteroidales markers were not detected when using DNA in 12% of the samples, while they were positive for all samples when using RNA (cDNA) as the template. Moreover, signal intensity was up to three orders of magnitude higher in RT-qPCR assays than in qPCR assays. The human-specific Bacteroidales markers exhibited moderate correlation with conventional fecal indicators using RT-qPCR results, suggesting the persistence of nonhuman sources of fecal pollution or the presence of false-positive signals. In general, the results from this study suggest that RNA-based assays can increase the detection sensitivity of fecal bacteria in urban watersheds impacted with human fecal sources.
Collapse
|