1
|
Li G, Jaisi DP, Wang M, Yan F, Zhang X, Jin Y, Zheng Z, Feng X. Zeolite facilitates sequestration of heavy metals via lagged Fe(II) oxidation during sediment aeration. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133961. [PMID: 38490148 DOI: 10.1016/j.jhazmat.2024.133961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/21/2024] [Accepted: 03/04/2024] [Indexed: 03/17/2024]
Abstract
Aeration of sediments could induce the release of endogenous heavy metals (HMs) into overlying water. In this study, experiments involving FeS oxygenation and contaminated sediment aeration were conducted to explore the sequestering role of zeolite in the released HMs during sediment aeration. The results reveal that the dynamic processes of Fe(II) oxidation play a crucial role in regulating HMs migration during both FeS oxygenation and sediment aeration in the absence of zeolite. Based on the release of HMs, Fe(II) oxidation can be delineated into two stages: stage I, where HMs (Mn2+, Zn2+, Cd2+, Ni2+, Cu2+) are released from minerals or sediments into suspension, and stage II, released HMs are partially re-sequestered back to mineral phases or sediments due to the generation of Fe-(oxyhydr) oxide. In contrast, the addition of zeolite inhibits the increase of HMs concentration in suspension during stage I. Subsequently, the redistribution of HMs between zeolite and the newly formed Fe-(oxyhydr) oxide occurs during stage II. This redistribution of HMs generates new sorption sites in zeolite, making them available for resorbing a new load of HMs. The outcomes of this study provide potential solutions for sequestering HMs during the sediment aeration.
Collapse
Affiliation(s)
- Gen Li
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Deb P Jaisi
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19716, United States
| | - Meng Wang
- Chang Jiang Water Resources Protection Institute, Wuhan 430051, China
| | - Fengling Yan
- Chang Jiang Water Resources Protection Institute, Wuhan 430051, China
| | - Xin Zhang
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Yaxuan Jin
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Zheng Zheng
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China.
| | - Xionghan Feng
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
2
|
Huang Y, Huangfu X, Ma C, Liu Z. Sequestration and oxidation of heavy metals mediated by Mn(II) oxidizing microorganisms in the aquatic environment. CHEMOSPHERE 2023; 329:138594. [PMID: 37030347 DOI: 10.1016/j.chemosphere.2023.138594] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/30/2023] [Accepted: 04/01/2023] [Indexed: 05/03/2023]
Abstract
Microorganisms can oxidize Mn(II) to biogenic Mn oxides (BioMnOx), through enzyme-mediated processes and non-enzyme-mediated processes, which are generally considered as the source and sink of heavy metals due to highly reactive to sequestrate and oxidize heavy metals. Hence, the summary of interactions between Mn(II) oxidizing microorganisms (MnOM) and heavy metals is benefit for further work on microbial-mediated self-purification of water bodies. This review comprehensively summarizes the interactions between MnOM and heavy metals. The processes of BioMnOx production by MnOM has been firstly discussed. Moreover, the interactions between BioMnOx and various heavy metals are critically discussed. On the one hand, modes for heavy metals adsorbed on BioMnOx are summarized, such as electrostatic attraction, oxidative precipitation, ion exchange, surface complexation, and autocatalytic oxidation. On the other hand, adsorption and oxidation of representative heavy metals based on BioMnOx/Mn(II) are also discussed. Thirdly, the interactions between MnOM and heavy metals are also focused on. Finally, several perspectives which will contribute to future research are proposed. This review provides insight into the sequestration and oxidation of heavy metals mediated by Mn(II) oxidizing microorganisms. It might be helpful to understand the geochemical fate of heavy metals in the aquatic environment and the process of microbial-mediated water self-purification.
Collapse
Affiliation(s)
- Yuheng Huang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment, and Ecology, Chongqing University, Chongqing, 400044, China
| | - Xiaoliu Huangfu
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment, and Ecology, Chongqing University, Chongqing, 400044, China.
| | - Chengxue Ma
- State Key Laboratory of Urban Water Resource, and Environment, School of Municipal, and Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, China
| | - Ziqiang Liu
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment, and Ecology, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
3
|
Takeda A, Oki T, Yokoo H, Kawamoto K, Nakano Y, Ochiai A, Winarni ID, Kitahara M, Miyoshi K, Fukuyama K, Ohara Y, Yamaji K, Ohnuki T, Hochella MF, Utsunomiya S. Direct observation of Mn distribution/speciation within and surrounding a basidiomycete fungus in the production of Mn-oxides important in toxic element containment. CHEMOSPHERE 2023; 313:137526. [PMID: 36513194 DOI: 10.1016/j.chemosphere.2022.137526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Biogenic manganese (Mn) oxides occur ubiquitously in the environment including the uranium (U) mill tailings at the Ningyo-toge U mine in Okayama, Japan, being important in the sequestration of radioactive radium. To understand the nanoscale processes in Mn oxides formation at the U mill tailings site, Mn2+ absorption by a basidiomycete fungus, Coprinopsis urticicola, isolated from Ningyo-toge mine water samples, was investigated in the laboratory under controlled conditions utilizing electron microscopy, synchrotron-based X-ray analysis, and fluorescence microscopy with a molecular pH probe. The fungus' growth was first investigated in an agar-solidified medium supplemented with 1.0 mmol/L Mn2+, and Cu2+ (0-200 μM), Zn2+ (0-200 μM), or diphenyleneiodonium (DPI) chloride (0-100 μM) at 25 °C. The results revealed that Zn2+ has no significant effects on Mn oxide formation, whereas Cu2+ and DPI significantly inhibit both fungal growth and Mn oxidation, indicating superoxide-mediated Mn oxidation. Indeed, nitroblue tetrazolium and diaminobenzidine assays on the growing fungus revealed the production of superoxide and peroxide. During the interaction of Mn2+ with the fungus in solution medium at the initial pH of 5.67, a small fraction of Mn2+ infiltrated the fungal hyphae within 8 h, forming a few tens of nm-sized concentrates of soluble Mn2+ in the intracellular pH of ∼6.5. After 1 day of incubation, Mn oxides began to precipitate on the hyphae, which were characterized as fibrous nanocrystals with a hexagonal birnessite-structure, these forming spherical aggregates with a diameter of ∼1.5 μm. These nanoscale processes associated with the fungal species derived from the Ningyo-toge mine area provide additional insights into the existing mechanisms of Mn oxidation by filamentous fungi at other U mill tailings sites under circumneutral pH conditions. Such processes add to the class of reactions important to the sequestration of toxic elements.
Collapse
Affiliation(s)
- Ayaka Takeda
- Department of Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Takumi Oki
- Department of Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Hiroki Yokoo
- Department of Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Keisuke Kawamoto
- Department of Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Yuriko Nakano
- Department of Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Asumi Ochiai
- Department of Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Ilma Dwi Winarni
- Department of Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Mitsuki Kitahara
- Department of Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Kenta Miyoshi
- Department of Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Kenjin Fukuyama
- Ningyo-toge Environmental Engineering Center, Japan Atomic Energy Agency, 1550 Kamisaibara, Kagamino-cho, Tomata-gun, Okayama-ken, 708-0601, Japan
| | - Yoshiyuki Ohara
- Ningyo-toge Environmental Engineering Center, Japan Atomic Energy Agency, 1550 Kamisaibara, Kagamino-cho, Tomata-gun, Okayama-ken, 708-0601, Japan
| | - Keiko Yamaji
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1, Tennoudai, Tsukuba, 305-8572, Japan
| | - Toshihiko Ohnuki
- Laboratory for Advanced Nuclear Energy, Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Michael F Hochella
- Department of Geosciences, Virginia Tech, Blacksburg, VA, 24061, USA; Earth Systems Science Division, Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Satoshi Utsunomiya
- Department of Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| |
Collapse
|
4
|
Tajima S, Fuchida S, Tokoro C. Coprecipitation mechanisms of Zn by birnessite formation and its mineralogy under neutral pH conditions. J Environ Sci (China) 2022; 121:136-147. [PMID: 35654505 DOI: 10.1016/j.jes.2021.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/15/2021] [Accepted: 09/15/2021] [Indexed: 06/15/2023]
Abstract
Birnessite (δ-Mn(IV)O2) is a great manganese (Mn) adsorbent for dissolved divalent metals. In this study, we investigated the coprecipitation mechanism of δ-MnO2 in the presence of Zn(II) and an oxidizing agent (sodium hypochlorite) under two neutral pH values (6.0 and 7.5). The mineralogical characteristics and Zn-Mn mixed products were compared with simple surface complexation by adsorption modeling and structural analysis. Batch coprecipitation experiments at different Zn/Mn molar ratios showed a Langmuir-type isotherm at pH 6.0, which was similar to the result of adsorption experiments at pH 6.0 and 7.5. X-ray diffraction and X-ray absorption fine structure analysis revealed triple-corner-sharing inner-sphere complexation on the vacant sites was the dominant Zn sorption mechanism on δ-MnO2 under these experimental conditions. A coprecipitation experiment at pH 6.0 produced some hetaerolite (ZnMn(III)2O4) and manganite (γ-Mn(III)OOH), but only at low Zn/Mn molar ratios (< 1). These secondary precipitates disappeared because of crystal dissolution at higher Zn/Mn molar ratios because they were thermodynamically unstable. Woodruffite (ZnMn(IV)3O7•2H2O) was produced in the coprecipitation experiment at pH 7.5 with a high Zn/Mn molar ratio of 5. This resulted in a Brunauer-Emmett-Teller (BET)-type sorption isotherm, in which formation was explained by transformation of the crystalline structure of δ-MnO2 to a tunnel structure. Our experiments demonstrate that abiotic coprecipitation reactions can induce Zn-Mn compound formation on the δ-MnO2 surface, and that the pH is an important controlling factor for the crystalline structures and thermodynamic stabilities.
Collapse
Affiliation(s)
- Shota Tajima
- Graduate School of Creative Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Shigeshi Fuchida
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Chiharu Tokoro
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan; Faculty of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| |
Collapse
|
5
|
Zhao S, Wang J, Feng S, Xiao Z, Chen C. Effects of ecohydrological interfaces on migrations and transformations of pollutants: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:150140. [PMID: 34509841 DOI: 10.1016/j.scitotenv.2021.150140] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/24/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
With the rapid development of society, the soil and water environments in many countries are suffering from severe pollution. Pollutants in different phases will eventually gather into the soil and water environments, and a series of migrations and transformations will take place at ecohydrological interfaces with water flow. However, it is still not clear how ecohydrological interfaces affect the migration and the transformation of pollutants. Therefore, this paper summarizes the physical, ecological, and biogeochemical characteristics of ecohydrological interfaces on the basis of introducing the development history of ecohydrology and the concept of ecohydrological interfaces. The effects of ecohydrological interfaces on the migration and transformation of heavy metals, organic pollutants, and carbon‑nitrogen‑phosphorus (C-N-P) pollutants are emphasized. Lastly, the prospects of applying ecohydrological interfaces for the removal of pollutants from the soil and water environment are put forward, including strengthening the ability to monitor and simulate ecohydrological systems at micro and macro scales, enhancing interdisciplinary research, and identifying main influencing factors that can provide theoretical basis and technical support.
Collapse
Affiliation(s)
- Shan Zhao
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China; College of Civil Engineering, Tongji University, Shanghai 200092, China
| | - Jianhua Wang
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Shijin Feng
- College of Civil Engineering, Tongji University, Shanghai 200092, China.
| | - Zailun Xiao
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Chunyan Chen
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| |
Collapse
|
6
|
Zhang T, Liu L, Tan W, Suib SL, Qiu G. Formation and transformation of manganese(III) intermediates in the photochemical generation of manganese(IV) oxide minerals. CHEMOSPHERE 2021; 262:128082. [PMID: 33182100 DOI: 10.1016/j.chemosphere.2020.128082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 08/15/2020] [Accepted: 08/19/2020] [Indexed: 06/11/2023]
Abstract
As important natural oxidants and adsorbents, manganese (Mn) oxide minerals affect the speciation, bioavailability and fate of pollutants and nutrient elements. It was found that birnessite-type Mn(IV) oxide minerals can be formed in the presence of NO3- and solar irradiation. However, the photochemical formation and transformation processes from Mn2+ to Mn(IV) oxide minerals remain unclear. In this work, the Mn(IV) oxide minerals were confirmed to be photochemically formed mainly due to the disproportionation of Mn(III) intermediates generated from the oxidation of Mn2+ in the presence of NO3- under UV light irradiation. The oxidation rate of Mn2+ to Mn(IV) oxide minerals decreased with increasing initial Mn2+ concentration due to the lower disproportionation rate. The increase in NO3- concentration, pH and temperature promoted Mn2+ photochemical oxidation. The photochemical formation rate of Mn(IV) oxide minerals increased with increasing ligand concentrations at low ligand concentrations. Ligands affected the formation of Mn(IV) oxide minerals by promoting the formation and reducing the reactivity of Mn(III) intermediates. Overall, this work reveals the important role of Mn(III) intermediates in the formation of natural Mn oxide minerals.
Collapse
Affiliation(s)
- Tengfei Zhang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Lihu Liu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Wenfeng Tan
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Steven L Suib
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut, 06269-3060, USA
| | - Guohong Qiu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China.
| |
Collapse
|
7
|
Kato T, Yu Q, Tanaka K, Kozai N, Saito T, Ohnuki T. Reduction behaviors of permanganate by microbial cells and concomitant accumulation of divalent cations of Mg 2+, Zn 2+, and Co 2. J Environ Sci (China) 2019; 86:78-86. [PMID: 31787192 DOI: 10.1016/j.jes.2019.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/10/2019] [Accepted: 05/10/2019] [Indexed: 06/10/2023]
Abstract
Permanganate treatment is widely used for disinfection of bacteria in surface-contaminated water. In this paper, the fate of the dissolved permanganate in aqueous solution after contact with cells of Pseudomonas fluorescens was studied. Concomitant accumulation of divalent cations of Mg2+, Zn2+, and Co2+ during precipitation of Mn oxides was also studied. The time course of the Mn concentration in solution showed an abrupt decrease after contact of Mn(VII) with microbial cells, followed by an increase after ~24 hr. XRD analysis of the precipitated Mn oxides, called biomass Mn oxides, showed the formation of low-crystalline birnessite. Visible spectroscopy and X-ray absorption near edge structure (XANES) analyses indicated that dissolved Mn(VII) was reduced to form biomass Mn oxides involving Mn(IV) and Mn(III), followed by reduction to soluble Mn(II). The numbers of electron transferred from microbial cells to permanganate and to biomass Mn oxides for 24 hr after the contact indicated that the numbers of electron transfer from microbial cell was approximately 50 times higher to dissolved permanganate than to the biomass Mn oxides in present experimental conditions. The 24 hr accumulation of divalent cations during formation of biomass Mn oxides was in the order of Co2+ > Zn2+ > Mg2+. XANES analysis of Co showed that oxidation of Co2+ to Co3+ resulted in higher accumulation of Co than Zn and Mg. Thus, treatment of surface water by KMnO4 solution is effective not only for disinfection of microorganisms, but also for the elimination of metal cations from surface water.
Collapse
Affiliation(s)
- Tomoaki Kato
- School of Environment and Society, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan; Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan
| | - Qianqian Yu
- School of Earth Science, China University of Geosciences, Wuhan 430074, China
| | - Kazuya Tanaka
- Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan
| | - Naofumi Kozai
- Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan
| | - Takumi Saito
- The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Toshihiko Ohnuki
- Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan; Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
| |
Collapse
|
8
|
Jarvis AP, Davis JE, Orme PHA, Potter HAB, Gandy CJ. Predicting the Benefits of Mine Water Treatment under Varying Hydrological Conditions using a Synoptic Mass Balance Approach. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:702-709. [PMID: 30566333 DOI: 10.1021/acs.est.8b06047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Geochemical and hydrological data from abandoned mine watersheds demonstrated that (1) point sources of pollution fail to account for total receiving watercourse metal load at higher flows and (2) an inverse relationship exists between river flow and pH due to peatland runoff. Quantifying the varying importance of point and diffuse pollution sources enabled prediction of treatment benefits for a major point source of pollution in one watershed. Instream zinc load increases with river flow (∼3 to 14 kg Zn/d) due to diffuse groundwater and surface runoff pollution sources at higher flows. Lab tests demonstrated that metal release from the streambed, driven by pH decreases at higher flows, also contribute to increased downstream metal loads. Predicting point source treatment benefits demonstrates major instream improvements at low flow (zinc decreases from >800 to 120 μg Zn/L). At higher flows treatment benefits diminish (Zn decreases from 240 to only 200 μg Zn/L) due to the greater influence of diffuse sources. A quantitative understanding of the variable importance of point and diffuse sources of pollution, and instream processes of metal attenuation and release, is crucial to evaluating the benefits of treatment to downstream water quality.
Collapse
Affiliation(s)
- Adam P Jarvis
- School of Engineering , Newcastle University , Newcastle upon Tyne NE1 7RU , U.K
| | - Jane E Davis
- School of Engineering , Newcastle University , Newcastle upon Tyne NE1 7RU , U.K
| | - Patrick H A Orme
- School of Engineering , Newcastle University , Newcastle upon Tyne NE1 7RU , U.K
| | | | - Catherine J Gandy
- School of Engineering , Newcastle University , Newcastle upon Tyne NE1 7RU , U.K
| |
Collapse
|
9
|
Leven A, Vlassopoulos D, Kanematsu M, Goin J, O'Day PA. Characterization of manganese oxide amendments for in situ remediation of mercury-contaminated sediments. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2018; 20:1761-1773. [PMID: 30398226 DOI: 10.1039/c7em00576h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Addition of Mn(iv)-oxide phases pyrolusite or birnessite was investigated as a remedial amendment for Hg-contaminated sediments. Because inorganic Hg methylation is a byproduct of bacterial sulfate reduction, reaction of Mn(iv) oxide with pore water should poise sediment oxidation potential at a level higher than favorable for Hg methylation. Changes in Mn(iv)-oxide mineralogy and oxidation state over time were investigated in sediment tank mesocosm experiments in which Mn(iv)-oxide amendment was either mixed into Hg-contaminated sediment or applied as a thin-layer sand cap on top of sediment. Mesocosms were sampled between 4 and 15 months of operation and solid phases were characterized by X-ray absorption spectroscopy (XAS). For pyrolusite-amended sediments, Mn(iv) oxide was altered to a mixture of Mn(iii)-oxyhydroxide and Mn, Fe(iii, ii)-oxide phases, with a progressive increase in the Mn(ii)-carbonate fraction over time as mesocosm sediments became more reduced. For birnessite-amended sediments, both Mn(iii) oxyhydroxide and Mn(ii) carbonate were identified at 4 months, indicating a faster rate of Mn reduction compared to pyrolusite. After 15 months of reaction, birnessite was converted completely to Mn(ii) carbonate, whereas residual Mn, Fe(iii, ii)-oxide phases were still present in addition to Mn(ii) carbonate in the pyrolusite mesocosm. In the thin-layer sand cap mesocosms, no changes in either pyrolusite or birnessite XAS spectra were observed after 10 months of reaction. Equilibrium phase relationships support the interpretation of mineral redox buffering by mixed-valent (Mn, Fe)(iii, ii)-oxide phases. Results suggest that amendment longevity for redox buffering can be controlled by adjusting the mass and type of Mn(iv) oxide applied, mineral crystallinity, surface area, and particle size. For a given site, amendment capping versus mixing with sediment should be evaluated to determine the optimum treatment approach, which may vary depending on application constraints, rate of Mn(iv) oxide transformation, and frequency of reapplication to maintain desired oxidation state and pH.
Collapse
Affiliation(s)
- Alexander Leven
- Environmental Systems Program, University of California Merced, CA, USA 95343.
| | | | | | | | | |
Collapse
|
10
|
Zhang T, Liu L, Tan W, Suib SL, Qiu G, Liu F. Photochemical Formation and Transformation of Birnessite: Effects of Cations on Micromorphology and Crystal Structure. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:6864-6871. [PMID: 29792324 DOI: 10.1021/acs.est.7b06592] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
As important components with excellent oxidation and adsorption activity in soils and sediments, manganese oxides affect the transportation and fate of nutrients and pollutants in natural environments. In this work, birnessite was formed by photocatalytic oxidation of Mn2+aq in the presence of nitrate under solar irradiation. The effects of concentrations and species of interlayer cations (Na+, Mg2+, and K+) on birnessite crystal structure and micromorphology were investigated. The roles of adsorbed Mn2+ and pH in the transformation of the photosynthetic birnessite were further studied. The results indicated that Mn2+aq was oxidized to birnessite by superoxide radicals (O2•-) generated from the photolysis of NO3- under UV irradiation. The particle size and thickness of birnessite decreased with increasing cation concentration. The birnessite showed a plate-like morphology in the presence of K+, while exhibited a rumpled sheet-like morphology when Na+ or Mg2+ was used. The different micromorphologies of birnessites could be ascribed to the position of cations in the interlayer. The adsorbed Mn2+ and high pH facilitated the reduction of birnessite to low-valence manganese oxides including hausmannite, feitknechtite, and manganite. This study suggests that interlayer cations and Mn2+ play essential roles in the photochemical formation and transformation of birnessite in aqueous environments.
Collapse
Affiliation(s)
- Tengfei Zhang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment , Huazhong Agricultural University , Wuhan 430070 , Hubei Province China
| | - Lihu Liu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment , Huazhong Agricultural University , Wuhan 430070 , Hubei Province China
| | - Wenfeng Tan
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment , Huazhong Agricultural University , Wuhan 430070 , Hubei Province China
| | - Steven L Suib
- Department of Chemistry , University of Connecticut , 55 North Eagleville Road , Storrs , Connecticut 06269-3060 , United States
| | - Guohong Qiu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment , Huazhong Agricultural University , Wuhan 430070 , Hubei Province China
| | - Fan Liu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment , Huazhong Agricultural University , Wuhan 430070 , Hubei Province China
| |
Collapse
|
11
|
Yin H, Wang X, Qin Z, Ginder-Vogel M, Zhang S, Jiang S, Liu F, Li S, Zhang J, Wang Y. Coordination geometry of Zn 2+ on hexagonal turbostratic birnessites with different Mn average oxidation states and its stability under acid dissolution. J Environ Sci (China) 2018; 65:282-292. [PMID: 29548399 DOI: 10.1016/j.jes.2017.02.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 02/23/2017] [Accepted: 02/24/2017] [Indexed: 06/08/2023]
Abstract
Hexagonal turbostratic birnessite, with the characteristics of high contents of vacancies, varying amounts of structural and adsorbed Mn3+, and small particle size, undergoes strong adsorption reactions with trace metal (TM) contaminants. While the interactions of TM, i.e., Zn2+, with birnessite are well understood, the effect of birnessite structural characteristics on the coordination and stability of Zn2+ on the mineral surfaces under proton attack is as yet unclear. In the present study, the effects of a series of synthesized hexagonal turbostratic birnessites with different Mn average oxide states (AOSs) on the coordination geometry of adsorbed Zn2+ and its stability under acidic conditions were investigated. With decreasing Mn AOS, birnessite exhibits smaller particle sizes and thus larger specific surface area, higher amounts of layer Mn3+ and thus longer distances for the first MnO and MnMn shells, but a low quantity of available vacancies and thus low adsorption capacity for Zn2+. Zn K-edge EXAFS spectroscopy demonstrates that birnessite with low Mn AOS has smaller adsorption capacity but more tetrahedral Zn (IVZn) complexes on vacancies than octahedral (VIZn) complexes, and Zn2+ is more unstable under acidic conditions than that adsorbed on birnessite with high Mn AOS. High Zn2+ loading favors the formation of VIZn complexes over IVZn complexes, and the release of Zn2+ is faster than at low loading. These results will deepen our understanding of the interaction mechanisms of various TMs with natural birnessites, and the stability and thus the potential toxicity of heavy metal pollutants sequestered by engineered nano-sized metal oxide materials.
Collapse
Affiliation(s)
- Hui Yin
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River) Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Xinping Wang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River) Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhangjie Qin
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River) Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Matthew Ginder-Vogel
- Department of Civil and Environmental Engineering, Environmental Chemistry and Technology Program, The University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Shuang Zhang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River) Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuqi Jiang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River) Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Fan Liu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River) Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Shiwei Li
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River) Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing Zhang
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100039, China
| | - Yan Wang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River) Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
12
|
Liu Y, Liu C, Nelson WC, Shi L, Xu F, Liu Y, Yan A, Zhong L, Thompson C, Fredrickson JK, Zachara JM. Effect of Water Chemistry and Hydrodynamics on Nitrogen Transformation Activity and Microbial Community Functional Potential in Hyporheic Zone Sediment Columns. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:4877-4886. [PMID: 28391700 DOI: 10.1021/acs.est.6b05018] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Hyporheic zones (HZ) are active biogeochemical regions where groundwater and surface water mix. N transformations in HZ sediments were investigated in columns with a focus on understanding how the dynamic changes in groundwater and surface water mixing affect microbial community and its biogeochemical function with respect to N transformations. The results indicated that denitrification, DNRA, and nitrification rates and products changed quickly in response to changes in water and sediment chemistry, fluid residence time, and groundwater-surface water exchange. These changes were accompanied by the zonation of denitrification functional genes along a 30 cm advective flow path after a total of 6 days' elution of synthetic groundwater with fluid residence time >9.8 h. The shift of microbial functional potential toward denitrification was correlated with rapid NO3- reduction collectively affected by NO3- concentration and fluid residence time, and was resistant to short-term groundwater-surface water exchange on a daily basis. The results implied that variations in microbial functional potential and associated biogeochemical reactions in the HZ may occur at space scales where steep concentration gradients present along the flow path and the variations would respond to dynamic HZ water exchange over different time periods common to natural and managed riverine systems.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Pacific Northwest National Laboratory , Richland, Washington 99354, United States
- School of Earth Sciences and Engineering, Nanjing University , Nanjing, Jiangsu 210023, China
| | - Chongxuan Liu
- Pacific Northwest National Laboratory , Richland, Washington 99354, United States
- School of Environmental Science and Engineering, Southern University of Science and Technology , Shenzhen, Guangzhou 518055, China
| | - William C Nelson
- Pacific Northwest National Laboratory , Richland, Washington 99354, United States
| | - Liang Shi
- Pacific Northwest National Laboratory , Richland, Washington 99354, United States
- School of Environmental Studies, China University of Geosciences , Wuhan, Hubei 430074, China
| | - Fen Xu
- Pacific Northwest National Laboratory , Richland, Washington 99354, United States
- School of Environmental Studies, China University of Geosciences , Wuhan, Hubei 430074, China
| | - Yunde Liu
- Pacific Northwest National Laboratory , Richland, Washington 99354, United States
- School of Environmental Studies, China University of Geosciences , Wuhan, Hubei 430074, China
| | - Ailan Yan
- Pacific Northwest National Laboratory , Richland, Washington 99354, United States
- Institute of Hydraulic and Environmental Engineering, Zhejiang University of Water Resources and Electric Power , Hangzhou, Zhejiang 310018, China
| | - Lirong Zhong
- Pacific Northwest National Laboratory , Richland, Washington 99354, United States
| | - Christopher Thompson
- Pacific Northwest National Laboratory , Richland, Washington 99354, United States
| | - James K Fredrickson
- Pacific Northwest National Laboratory , Richland, Washington 99354, United States
| | - John M Zachara
- Pacific Northwest National Laboratory , Richland, Washington 99354, United States
| |
Collapse
|
13
|
Hinkle MAG, Dye KG, Catalano JG. Impact of Mn(II)-Manganese Oxide Reactions on Ni and Zn Speciation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:3187-3196. [PMID: 28195711 DOI: 10.1021/acs.est.6b04347] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Layered Mn oxide minerals (phyllomanganates) often control trace metal fate in natural systems. The strong uptake of metals such as Ni and Zn by phyllomanganates results from adsorption on or incorporation into vacancy sites. Mn(II) also binds to vacancies and subsequent comproportionation with structural Mn(IV) may alter sheet structures by forming larger and distorted Mn(III)O6 octahedra. Such Mn(II)-phyllomanganate reactions may thus alter metal uptake by blocking key reactive sites. Here we investigate the effect of Mn(II) on Ni and Zn binding to phyllomanganates of varying initial vacancy content (δ-MnO2, hexagonal birnessite, and triclinic birnessite) at pH 4 and 7 under anaerobic conditions. Dissolved Mn(II) decreases macroscopic Ni and Zn uptake at pH 4 but not pH 7. Extended X-ray absorption fine structure spectroscopy demonstrates that decreased uptake at pH 4 corresponds with altered Ni and Zn adsorption mechanisms. These metals transition from binding in the interlayer to sheet edges, with Zn increasing its tetrahedrally coordinated fraction. These effects on metal uptake and binding correlate with Mn(II)-induced structural changes, which are more substantial at pH 4 than 7. Through these structural effects and the pH-dependence of Mn(II)-metal competitive adsorption, system pH largely controls metal binding to phyllomanganates in the presence of dissolved Mn(II).
Collapse
Affiliation(s)
- Margaret A G Hinkle
- Department of Earth and Planetary Sciences, Washington University , 1 Brookings Drive, Saint Louis, Missouri 63130 United States
| | - Katherine G Dye
- Department of Earth and Planetary Sciences, Washington University , 1 Brookings Drive, Saint Louis, Missouri 63130 United States
| | - Jeffrey G Catalano
- Department of Earth and Planetary Sciences, Washington University , 1 Brookings Drive, Saint Louis, Missouri 63130 United States
| |
Collapse
|
14
|
Croteau MN, Cain DJ, Fuller CC. Assessing the Dietary Bioavailability of Metals Associated with Natural Particles: Extending the Use of the Reverse Labeling Approach to Zinc. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:2803-2810. [PMID: 28187251 DOI: 10.1021/acs.est.6b06253] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We extend the use of a novel tracing technique to quantify the bioavailability of zinc (Zn) associated with natural particles using snails enriched with a less common Zn stable isotope. Lymnaea stagnalis is a model species that has relatively fast Zn uptake rates from the dissolved phase, enabling their rapid enrichment in 67Zn during the initial phase of labeling. Isotopically enriched snails were subsequently exposed to algae mixed with increasing amounts of metal-rich particles collected from two acid mine drainage impacted rivers. Zinc bioavailability from the natural particles was inferred from calculations of 66Zn assimilation into the snail's soft tissues. Zinc assimilation efficiency (AE) varied from 28% for the Animas River particles to 45% for the Snake River particles, indicating that particle-bound, or sorbed Zn, was bioavailable from acid mine drainage wastes. The relative binding strength of Zn sorption to the natural particles was inversely related to Zn bioavailability; a finding that would not have been possible without using the reverse labeling approach. Differences in the chemical composition of the particles suggest that their geochemical properties may influence the extent of Zn bioavailability.
Collapse
Affiliation(s)
- Marie-Noële Croteau
- U.S. Geological Survey, MS 496, 345 Middlefield Road Menlo Park, California 94025, United States
| | - Daniel J Cain
- U.S. Geological Survey, MS 496, 345 Middlefield Road Menlo Park, California 94025, United States
| | - Christopher C Fuller
- U.S. Geological Survey, MS 496, 345 Middlefield Road Menlo Park, California 94025, United States
| |
Collapse
|
15
|
Elzinga EJ. (54)Mn Radiotracers Demonstrate Continuous Dissolution and Reprecipitation of Vernadite (δ-MnO2) during Interaction with Aqueous Mn(II). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:8670-7. [PMID: 27403960 DOI: 10.1021/acs.est.6b02874] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
(54)Mn radiotracers were used to assess Mn atom exchange between aqueous Mn(II) and vernadite (δ-MnO2) at pH 5.0. Continuous solid-liquid redistribution of (54)Mn atoms occurred, and systems are near isotopic equilibrium after reaction for 3 months. Despite this extensive exchange, X-ray diffraction and X-ray absorption spectroscopy data showed no major changes in vernadite bulk mineralogy. These results demonstrate that the vernadite-Mn(II) interface is dynamic, with the substrate undergoing continuous dissolution and reprecipitation mediated by aqueous Mn(II) without observable impacts on its mineralogy. Interfacial redox reactions between adsorbed Mn(II) and solid-phase Mn(IV) and Mn(III) are proposed as the main drivers of this process. Interaction between aqueous Mn(II) and structural Mn(III) likely involves interfacial electron transfer coupled with Mn atom exchange. The exchange of aqueous Mn(II) and solid-phase Mn(IV) is more complex and is proposed to result from coupled interfacial comproportionation-disproportionation reactions, where electron transfer from adsorbed Mn(II) to lattice Mn(IV) produces transient Mn(III) species that disproportionate to regenerate aqueous Mn(II) and structural Mn(IV). These findings provide further evidence of the importance of Mn(II)(aq)-MnO2(s) interactions and the attendant production of transient Mn(III) intermediates to the geochemical functioning of phyllomanganates in environments undergoing Mn redox cycling.
Collapse
Affiliation(s)
- Evert J Elzinga
- Department of Earth & Environmental Sciences, Rutgers University , 101 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
16
|
Skierszkan EK, Mayer KU, Weis D, Beckie RD. Molybdenum and zinc stable isotope variation in mining waste rock drainage and waste rock at the Antamina mine, Peru. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 550:103-113. [PMID: 26808401 DOI: 10.1016/j.scitotenv.2016.01.053] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 01/10/2016] [Accepted: 01/10/2016] [Indexed: 06/05/2023]
Abstract
The stable isotope composition of molybdenum (Mo) and zinc (Zn) in mine wastes at the Antamina Copper-Zn-Mo mine, Peru, was characterized to investigate whether isotopic variation of these elements indicated metal attenuation processes in mine drainage. Waste rock and ore minerals were analyzed to identify the isotopic composition of Mo and Zn sources, namely molybdenites (MoS2) and sphalerites (ZnS). Molybdenum and Zn stable isotope ratios are reported relative to the NIST-SRM-3134 and PCIGR-1 Zn standards, respectively. δ(98)Mo among molybdenites ranged from -0.6 to +0.6‰ (n=9) while sphalerites showed no δ(66)Zn variations (0.11±0.01‰, 2 SD, n=5). Mine drainage samples from field waste rock weathering experiments were also analyzed to examine the extent of isotopic variability in the dissolved phase. Variations spanned 2.2‰ in δ(98)Mo (-0.1 to +2.1‰) and 0.7‰ in δ(66)Zn (-0.4 to +0.3‰) in mine drainage over a wide pH range (pH2.2-8.6). Lighter δ(66)Zn signatures were observed in alkaline pH conditions, which was consistent with Zn adsorption and/or hydrozincite (Zn5(OH)6(CO3)2) formation. However, in acidic mine drainage Zn isotopic compositions reflected the value of sphalerites. In addition, molybdenum isotope compositions in mine drainage were shifted towards heavier values (0.89±1.25‰, 2 SD, n=16), with some overlap, in comparison to molybdenites and waste rock (0.13±0.82‰, 2 SD, n=9). The cause of heavy Mo isotopic signatures in mine drainage was more difficult to resolve due to isotopic heterogeneity among ore minerals and a variety of possible overlapping processes including dissolution, adsorption and secondary mineral precipitation. This study shows that variation in metal isotope ratios are promising indicators of metal attenuation. Future characterization of isotopic fractionation associated to key environmental reactions will improve the power of Mo and Zn isotope ratios to track the fate of these elements in mine drainage.
Collapse
Affiliation(s)
- E K Skierszkan
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, 2020-2207 Main Mall, Vancouver V6T 1Z4, Canada.
| | - K U Mayer
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, 2020-2207 Main Mall, Vancouver V6T 1Z4, Canada
| | - D Weis
- Pacific Centre for Isotopic and Geochemical Research (PCIGR), Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, 2020-2207 Main Mall, Vancouver V6T 1Z4, Canada
| | - R D Beckie
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, 2020-2207 Main Mall, Vancouver V6T 1Z4, Canada
| |
Collapse
|
17
|
Lefkowitz JP, Elzinga EJ. Impacts of aqueous Mn(II) on the sorption of Zn(II) by hexagonal birnessite. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:4886-93. [PMID: 25790186 DOI: 10.1021/es506019j] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
We used a combination of batch studies and spectroscopic analyses to assess the impacts of aqueous Mn(II) on the solubility and speciation of Zn(II) in anoxic suspensions of hexagonal birnessite at pH 6.5 and 7.5. Introduction of aqueous Mn(II) into pre-equilibrated Zn(II)-birnessite suspensions leads to desorption of Zn(II) at pH 6.5, but enhances Zn(II) sorption at pH 7.5. XAS results show that Zn(II) adsorbs as tetrahedral and octahedral triple-corner-sharing complexes at layer vacancy sites when reacted with birnessite in the absence of Mn(II). Addition of aqueous Mn(II) causes no discernible change in Zn(II) surface speciation at pH 6.5, but triggers conversion of adsorbed Zn(II) into spinel Zn(II)1-xMn(II)xMn(III)2O4 precipitates at pH 7.5. This conversion is driven by electron transfer from adsorbed Mn(II) to structural Mn(IV) generating Mn(III) surface species that coprecipitate with Zn(II) and Mn(II). Our results demonstrate substantial production of these reactive Mn(III) surface species within 30 min of contact of the birnessite substrate with aqueous Mn(II). Their importance as a control on the sorption and redox reactivity of Mn-oxides toward Zn(II) and other trace metal(loid)s in environments undergoing biogeochemical manganese redox cycling requires further study.
Collapse
|