1
|
Zhou S, Li Y, Yang S, Lin L, Deng T, Gan C, An W, Xu M. The role of electroactive biofilms in enhanced para-chlorophenol transformation collaborated with biosynthetic palladium nanoparticles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 375:126312. [PMID: 40288628 DOI: 10.1016/j.envpol.2025.126312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 04/21/2025] [Accepted: 04/24/2025] [Indexed: 04/29/2025]
Abstract
Bioremediation is a cost-effective strategy for decomposition of chlorinated organic contaminants, but its application is often hindered by the generation of toxic chlorinated byproducts. Though the design of functional biofilms, incorporating microbially-inspired catalytic materials, has emerged as a promising solution for tackling the byproducts issues, the microbial mechanisms driving these processes remain inadequately understood. This study demonstrates a hybrid electroactive biofilm (EAB)-palladium nanoparticles (Pd NPs) system that effectively separates the dechlorination and mineralization of para-chlorophenol (4-CP), and most importantly, it provides new insights into the microbial and genetic roles of EABs in this process. Under an applied potential of -0.6 V, Pd NPs via palladate reduction were biogenically synthesized and deposited on the cytomembranes within the biofilm, achieving an 82 % decrease in 4-CP concentration within 48 h. The ultra-performance liquid chromatogram and mass spectrum confirmed that 4-CP was initially dechlorinated to phenol by the biogenic Pd NPs before undergoing further degradation by the biofilm, effectively preventing toxic chlorinated byproducts. The Dechloromonas, Pseudomonas, and Geobacter were identified as predominant genera in the system and the metagenomics analysis noted increased relative abundance of ring-cleavage genes like pcaG, dmpB/xylE, and catA. Importantly, the abundance of dmpB/xylE was primarily associated with Dechloromonas and Pseudomonas, further highlighted that the dmpB/xylE-pathway was important for rapid 4-CP decomposition in the system. This study advances the understanding of EAB-Pd NPs synergy, showcasing an innovative and sustainable approach for the efficient removal of halogenated pollutants.
Collapse
Affiliation(s)
- Shaofeng Zhou
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Yanjing Li
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Shan Yang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Lizhou Lin
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Tongchu Deng
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Cuifen Gan
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Wenwen An
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Meiying Xu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China.
| |
Collapse
|
2
|
Chavez M, MacLean MA, Sukenik N, Yadav S, Marks C, El-Naggar MY. Synthesis of Palladium Nanoparticles by Electrode-Respiring Geobacter sulfurreducens Biofilms. ACS Biomater Sci Eng 2025; 11:298-307. [PMID: 39660657 PMCID: PMC11733918 DOI: 10.1021/acsbiomaterials.4c01183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/21/2024] [Accepted: 12/03/2024] [Indexed: 12/12/2024]
Abstract
Electroactive microorganisms such as Geobacter sulfurreducens can couple organic electron donor oxidation to the respiration of electrode surfaces, colonizing them in the process. These microbes can also reduce soluble metal ions, such as soluble Pd, resulting in metallic nanoparticle (NP) synthesis. Such NPs are valuable catalysts for industrially relevant chemical production; however, their chemical and solid-state syntheses are often energy-intensive and result in hazardous byproducts. Utilizing electroactive microbes for precious metal NP synthesis has the advantage of operating under more sustainable conditions. By combining G. sulfurreducens's ability to colonize electrodes and synthesize NPs, we performed electrode cultivation ahead of biogenic Pd NP synthesis for the self-assembled fabrication of a cell-Pd biomaterial. G. sulfurreducens biofilms were grown in electrochemical reactors with added soluble Pd, and electrochemistry, spectroscopy, and electron microscopy were used to confirm (1) metabolic current production before and after Pd addition, (2) simultaneous electrode respiration and soluble Pd reduction over time, and (3) biofilm-localized Pd NP synthesis. Utilizing electroactive microbes for the controlled synthesis of NPs can enable the self-assembly of novel cell-nanoparticle biomaterials with unique electron transport and catalytic properties.
Collapse
Affiliation(s)
- Marko
S. Chavez
- Department
of Physics and Astronomy, University of
Southern California, Los Angeles, California 90089, United States
| | - Magdalene A. MacLean
- Department
of Physics and Astronomy, University of
Southern California, Los Angeles, California 90089, United States
| | - Nir Sukenik
- Department
of Physics and Astronomy, University of
Southern California, Los Angeles, California 90089, United States
| | - Sukrampal Yadav
- Department
of Physics and Astronomy, University of
Southern California, Los Angeles, California 90089, United States
| | - Carolyn Marks
- Core
Center of Excellence in Nano Imaging, University
of Southern California, Los Angeles, California 90089, United States
| | - Mohamed Y. El-Naggar
- Department
of Physics and Astronomy, University of
Southern California, Los Angeles, California 90089, United States
- Department
of Biological Sciences, University of Southern
California, Los Angeles, California 90089, United States
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
3
|
Morriss CE, Cheung CK, Nunn E, Parmeggiani F, Powell NA, Kimber RL, Haigh SJ, Lloyd JR. Biosynthesis Parameters Control the Physicochemical and Catalytic Properties of Microbially Supported Pd Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311016. [PMID: 38461530 DOI: 10.1002/smll.202311016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/12/2024] [Indexed: 03/12/2024]
Abstract
The biosynthesis of Pd nanoparticles supported on microorganisms (bio-Pd) is achieved via the enzymatic reduction of Pd(II) to Pd(0) under ambient conditions using inexpensive buffers and electron donors, like organic acids or hydrogen. Sustainable bio-Pd catalysts are effective for C-C coupling and hydrogenation reactions, but their industrial application is limited by challenges in controlling nanoparticle properties. Here, using the metal-reducing bacterium Geobacter sulfurreducens, it is demonstrated that synthesizing bio-Pd under different Pd loadings and utilizing different electron donors (acetate, formate, hydrogen, no e- donor) influences key properties such as nanoparticle size, Pd(II):Pd(0) ratio, and cellular location. Controlling nanoparticle size and location controls the activity of bio-Pd for the reduction of 4-nitrophenol, whereas high Pd loading on cells synthesizes bio-Pd with high activity, comparable to commercial Pd/C, for Suzuki-Miyaura coupling reactions. Additionally, the study demonstrates the novel synthesis of microbially-supported ≈2 nm PdO nanoparticles due to the hydrolysis of biosorbed Pd(II) in bicarbonate buffer. Bio-PdO nanoparticles show superior activity in 4-nitrophenol reduction compared to commercial Pd/C catalysts. Overall, controlling biosynthesis parameters, such as electron donor, metal loading, and solution chemistry, enables tailoring of bio-Pd physicochemical and catalytic properties.
Collapse
Affiliation(s)
- Christopher Egan Morriss
- Department of Earth and Environmental Sciences, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
- Department of Materials, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Casey K Cheung
- Department of Materials, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Elliot Nunn
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Fabio Parmeggiani
- Dipartimento di Chimica, Materiali ed Ingegneria Chimica "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci, Milan, 20133, Italy
| | | | - Richard L Kimber
- Department of Earth and Environmental Sciences, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Sarah J Haigh
- Department of Materials, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Jonathan R Lloyd
- Department of Earth and Environmental Sciences, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| |
Collapse
|
4
|
Liu C, Guo D, Wen S, Dang Y, Sun D, Li P. Transcriptomic insights unveil the crucial roles of cytochromes, NADH, and pili in Ag(I) reduction by Geobacter sulfurreducens. CHEMOSPHERE 2024; 358:142174. [PMID: 38685325 DOI: 10.1016/j.chemosphere.2024.142174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 03/03/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
Silver (Ag) is a pivotal transition metal with applications in multiple industries, necessitating efficient recovery techniques. Despite various proposed methods for silver recovery from wastewaters, challenges persist especially for low concentrations. In this context, bioreduction by bacteria like Geobacter sulfurreducens, offers a promising approach by converting Ag(I) to Ag nanoparticles. To reveal the mechanisms driving microbial Ag(I) reduction, we conducted transcriptional profiling of G. sulfurreducens under Ag(I)-reducing condition. Integrated transcriptomic and protein-protein interaction network analyses identified significant transcriptional shifts, predominantly linked to c-type cytochromes, NADH, and pili. When compared to a pilus-deficient strain, the wild-type strain exhibited distinct cytochrome gene expressions, implying specialized functional roles. Additionally, despite a down-regulation in NADH dehydrogenase genes, we observed up-regulation of specific downstream cytochrome genes, highlighting NADH's potential role as an electron donor in the Ag(I) reduction process. Intriguingly, our findings also highlight the significant influence of pili on the morphology of the resulting Ag nanoparticles. The presence of pili led to the formation of smaller and more crystallized Ag nanoparticles. Overall, our findings underscore the intricate interplay of cytochromes, NADH, and pili in Ag(I) reduction. Such insights suggest potential strategies for further enhancing microbial Ag(I) reduction.
Collapse
Affiliation(s)
- Chunmao Liu
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Dongchao Guo
- School of Computer Science, Beijing Information Science and Technology University, Beijing, 100101, China
| | - Su Wen
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Yan Dang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Dezhi Sun
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Pengsong Li
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
5
|
Guan C, Guan C, Guo Q, Huang R, Duan J, Wang Z, Wei X, Jiang J. Enhanced oxidation of organic contaminants by Mn(VII) in water. WATER RESEARCH 2022; 226:119265. [PMID: 36279614 DOI: 10.1016/j.watres.2022.119265] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/11/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
Studies that promote chemical oxidation by permanganate (MnO4-; Mn(VII)) as a viable technology for water treatment and environmental purification have been quickly accumulating over the past decades. Various methods to activate Mn(VII) have been proposed and their efficacy in destructing a wide range of emerging organic contaminants has been demonstrated. This article aims to present a state-of-art review on the development of Mn(VII) activation methods, including photoactivation, electrical activation, the addition of redox mediators, carbonaceous materials, and other chemical agents, with a particular focus on the potential activation mechanism and critical influencing factors. Different reaction mechanisms are involved in activated Mn(VII) oxidation processes, including the generation of reactive intermediates derived from Mn(VII) (e.g., Mn(III), Mn(V), and Mn(VI)) or activators (e.g., intermediates of redox mediators and Ru catalysts), reactive oxygen species (ROS) (e.g., •OH, O2•-, and 1O2), as well as electron transfer from organics to Mn(VII) via catalysts as the electron mediator. Except •OH that is generated as one of co-oxidants in UV/Mn(VII) process, other reactive species are relatively mild oxidants, which are more selective toward organic substrates and highly tolerant toward various water matrices (e.g., inorganic ions and natural organic matter) compared to strongly oxidizing radical species. Therefore, activated Mn(VII) oxidation processes show a good prospect for efficient removal of target contaminants in natural and complex environmental matrices. However, there are some disputes about the dominant reactive species generated in these processes, and their identification methods may be not appropriate, causing serious confusion in the mechanistic understanding. So, further efforts are still needed to fill the knowledge gap and also to address the application challenges of these technologies.
Collapse
Affiliation(s)
- Chaoting Guan
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Chaoxu Guan
- School of Electrical Engineering and Intelligentization, Dongguan University of Technology, Dongguan, 523000, China
| | - Qin Guo
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Run Huang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Jiebin Duan
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Zhen Wang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Xipeng Wei
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Jin Jiang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
| |
Collapse
|
6
|
Wang XM, Wang L, Chen L, Tian LJ, Zhu TT, Wu QZ, Hu YR, Zheng LR, Li WW. AQDS Activates Extracellular Synergistic Biodetoxification of Copper and Selenite via Altering the Coordination Environment of Outer-Membrane Proteins. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:13786-13797. [PMID: 36098667 DOI: 10.1021/acs.est.2c04130] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The biotransformation of heavy metals in the environment is usually affected by co-existing pollutants like selenium (Se), which may lower the ecotoxicity of heavy metals, but the underlying mechanisms remain unclear. Here, we shed light on the pathways of copper (Cu2+) and selenite (SeO32-) synergistic biodetoxification by Shewanella oneidensis MR-1 and illustrate how such processes are affected by anthraquinone-2,6-disulfonate (AQDS), an analogue of humic substances. We observed the formation of copper selenide nanoparticles (Cu2-xSe) from synergistic detoxification of Cu2+ and SeO32- in the periplasm. Interestingly, adding AQDS triggered a fundamental transition from periplasmic to extracellular reaction, enabling 14.7-fold faster Cu2+ biodetoxification (via mediated electron transfer) and 11.4-fold faster SeO32- detoxification (via direct electron transfer). This is mainly attributed to the slightly raised redox potential of the heme center of AQDS-coordinated outer-membrane proteins that accelerates electron efflux from the cells. Our work offers a fundamental understanding of the synergistic detoxification of heavy metals and Se in a complicated environmental matrix and unveils an unexpected role of AQDS beyond electron mediation, which may guide the development of more efficient environmental remediation and resource recovery biotechnologies.
Collapse
Affiliation(s)
- Xue-Meng Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
- USTC-CityU Joint Advanced Research Center, Suzhou Institute for Advance Research of USTC, Suzhou 215123, China
| | - Li Wang
- School of Life Sciences and Medical Center, University of Science & Technology of China, Hefei 230026, China
| | - Lin Chen
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
- USTC-CityU Joint Advanced Research Center, Suzhou Institute for Advance Research of USTC, Suzhou 215123, China
| | - Li-Jiao Tian
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Ting-Ting Zhu
- School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Qi-Zhong Wu
- USTC-CityU Joint Advanced Research Center, Suzhou Institute for Advance Research of USTC, Suzhou 215123, China
- School of Life Sciences and Medical Center, University of Science & Technology of China, Hefei 230026, China
| | - Yi-Rong Hu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
- USTC-CityU Joint Advanced Research Center, Suzhou Institute for Advance Research of USTC, Suzhou 215123, China
| | - Li-Rong Zheng
- Beijing Synchrotron Radiation Laboratory, Institute of High Energy Physics, Chinese Academy of Science, Beijing 100049, China
| | - Wen-Wei Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
- USTC-CityU Joint Advanced Research Center, Suzhou Institute for Advance Research of USTC, Suzhou 215123, China
| |
Collapse
|
7
|
He RL, Wu J, Cheng ZH, Li HH, Liu JQ, Liu DF, Li WW. Biomolecular Insights into Extracellular Pollutant Reduction Pathways of Geobacter sulfurreducens Using a Base Editor System. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:12247-12256. [PMID: 35960254 DOI: 10.1021/acs.est.2c02756] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Geobacter species are critically involved in elemental biogeochemical cycling and environmental bioremediation processes via extracellular electron transfer (EET), but the underlying biomolecular mechanisms remain elusive due to lack of effective analytical tools to explore into complicated EET networks. Here, a simple and highly efficient cytosine base editor was developed for engineering of the slow-growing Geobacter sulfurreducens (a doubling time of 5 h with acetate as the electron donor and fumarate as the electron acceptor). A single-plasmid cytosine base editor (pYYDT-BE) was constructed in G. sulfurreducens by fusing cytosine deaminase, Cas9 nickase, and a uracil glycosylase inhibitor. This system enabled single-locus editing at 100% efficiency and showed obvious preference at the cytosines in a TC, AC, or CC context than in a GC context. Gene inactivation tests confirmed that it could effectively edit 87.7-93.4% genes of the entire genome in nine model Geobacter species. With the aid of this base editor to construct a series of G. sulfurreducens mutants, we unveiled important roles of both pili and outer membrane c-type cytochromes in long-range EET, thereby providing important evidence to clarify the long-term controversy surrounding their specific roles. Furthermore, we find that pili were also involved in the extracellular reduction of uranium and clarified the key roles of the ExtHIJKL conduit complex and outer membrane c-type cytochromes in the selenite reduction process. This work developed an effective base editor tool for the genetic modification of Geobacter species and provided new insights into the EET network, which lay a basis for a better understanding and engineering of these microbes to favor environmental applications.
Collapse
Affiliation(s)
- Ru-Li He
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China
- University of Science and Technology of China-City University of Hong Kong Joint Advanced Research Center, Suzhou Institute for Advance Research of USTC, Suzhou 215123, China
| | - Jie Wu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China
- University of Science and Technology of China-City University of Hong Kong Joint Advanced Research Center, Suzhou Institute for Advance Research of USTC, Suzhou 215123, China
| | - Zhou-Hua Cheng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China
| | - Hui-Hui Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China
| | - Jia-Qi Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China
| | - Dong-Feng Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China
| | - Wen-Wei Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China
- University of Science and Technology of China-City University of Hong Kong Joint Advanced Research Center, Suzhou Institute for Advance Research of USTC, Suzhou 215123, China
| |
Collapse
|
8
|
Wang Y, You LX, Zhong HL, Wu GK, Li YP, Yang XJ, Wang AJ, Nealson KH, Herzberg M, Rensing C. Au(III)-induced extracellular electron transfer by Burkholderia contaminans ZCC for the bio-recovery of gold nanoparticles. ENVIRONMENTAL RESEARCH 2022; 210:112910. [PMID: 35151659 DOI: 10.1016/j.envres.2022.112910] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/15/2022] [Accepted: 02/05/2022] [Indexed: 06/14/2023]
Abstract
The biorecovery of gold (Au) by microbial reduction has received increasing attention, however, the biomolecules involved and the mechanisms by which they operate to produce Au nanoparticles have been not resolved. Here we report that Burkholderia contaminans ZCC is capable of reduction of Au(III) to Au nanoparticles on the cell surface. Exposure of B. contaminans ZCC to Au(III) led to significant changes in the functional group of cell proteins, with approximately 11.1% of the (C-C/C-H) bonds being converted to CO (8.1%) and C-OH (3.0%) bonds and 29.4% of the CO bonds being converted to (C-OH/C-O-C/P-O-C) bonds, respectively. In response to Au(III), B. contaminans ZCC also displayed the ability of extracellular electron transfer (EET) via membrane proteins and could produce reduced riboflavin as verified by electrochemical and liquid chromatography-mass spectrometric results, but did not do so without Au(III) being present. Addition of exogenous reduced riboflavin to the medium suggested that B. contaminans ZCC could utilize indirect EET via riboflavin to enhance the rate of reduction of Au(III). Transcriptional analysis of the riboflavin genes (ribBDEFH) supported the view of the importance of riboflavin in the reduction of Au(III) and its importance in the biorecovery of gold.
Collapse
Affiliation(s)
- Yi Wang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, PR China
| | - Le-Xing You
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, PR China.
| | - Hong-Lin Zhong
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Gao-Kai Wu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, PR China
| | - Yuan-Ping Li
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Xiao-Jun Yang
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Ai-Jun Wang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, PR China
| | - Kenneth H Nealson
- Department of Earth Science, University of Southern California, Los Angeles, CA, USA
| | - Martin Herzberg
- Molecular Microbiology, Institute for Biology/Microbiology, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120, Halle/Saale, Germany
| | - Christopher Rensing
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China.
| |
Collapse
|
9
|
Egan-Morriss C, Kimber RL, Powell NA, Lloyd JR. Biotechnological synthesis of Pd-based nanoparticle catalysts. NANOSCALE ADVANCES 2022; 4:654-679. [PMID: 35224444 PMCID: PMC8805459 DOI: 10.1039/d1na00686j] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/22/2021] [Indexed: 06/02/2023]
Abstract
Palladium metal nanoparticles are excellent catalysts used industrially for reactions such as hydrogenation and Heck and Suzuki C-C coupling reactions. However, the global demand for Pd far exceeds global supply, therefore the sustainable use and recycling of Pd is vital. Conventional chemical synthesis routes of Pd metal nanoparticles do not meet sustainability targets due to the use of toxic chemicals, such as organic solvents and capping agents. Microbes are capable of bioreducing soluble high oxidation state metal ions to form metal nanoparticles at ambient temperature and pressure, without the need for toxic chemicals. Microbes can also reduce metal from waste solutions, revalorising these waste streams and allowing the reuse of precious metals. Pd nanoparticles supported on microbial cells (bio-Pd) can catalyse a wide array of reactions, even outperforming commercial heterogeneous Pd catalysts in several studies. However, to be considered a viable commercial option, the intrinsic activity and selectivity of bio-Pd must be enhanced. Many types of microorganisms can produce bio-Pd, although most studies so far have been performed using bacteria, with metal reduction mediated by hydrogenase or formate dehydrogenase enzymes. Dissimilatory metal-reducing bacteria (DMRB) possess additional enzymes adapted for extracellular electron transport that potentially offer greater control over the properties of the nanoparticles produced. A recent and important addition to the field are bio-bimetallic nanoparticles, which significantly enhance the catalytic properties of bio-Pd. In addition, systems biology can integrate bio-Pd into biocatalytic processes, and processing techniques may enhance the catalytic properties further, such as incorporating additional functional nanomaterials. This review aims to highlight aspects of enzymatic metal reduction processes that can be bioengineered to control the size, shape, and cellular location of bio-Pd in order to optimise its catalytic properties.
Collapse
Affiliation(s)
- Christopher Egan-Morriss
- Department of Earth and Environmental Sciences, Williamson Research Centre for Molecular Environmental Science, University of Manchester UK
| | - Richard L Kimber
- Department of Environmental Geosciences, Centre for Microbiology and Environmental Systems Science, University of Vienna 1090 Vienna Austria
| | | | - Jonathan R Lloyd
- Department of Earth and Environmental Sciences, Williamson Research Centre for Molecular Environmental Science, University of Manchester UK
| |
Collapse
|
10
|
Merlin JPJ, Li X. Role of Nanotechnology and Their Perspectives in the Treatment of Kidney Diseases. Front Genet 2022; 12:817974. [PMID: 35069707 PMCID: PMC8766413 DOI: 10.3389/fgene.2021.817974] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 12/06/2021] [Indexed: 12/12/2022] Open
Abstract
Nanoparticles (NPs) are differing in particle size, charge, shape, and compatibility of targeting ligands, which are linked to improved pharmacologic characteristics, targetability, and bioavailability. Researchers are now tasked with developing a solution for enhanced renal treatment that is free of side effects and delivers the medicine to the active spot. A growing number of nano-based medication delivery devices are being used to treat renal disorders. Kidney disease management and treatment are currently causing a substantial global burden. Renal problems are multistep processes involving the accumulation of a wide range of molecular and genetic alterations that have been related to a variety of kidney diseases. Renal filtration is a key channel for drug elimination in the kidney, as well as a burgeoning topic of nanomedicine. Although the use of nanotechnology in the treatment of renal illnesses is still in its early phases, it offers a lot of potentials. In this review, we summarized the properties of the kidney and characteristics of drug delivery systems, which affect a drug’s ability should focus on the kidney and highlight the possibilities, problems, and opportunities.
Collapse
Affiliation(s)
- J P Jose Merlin
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States
| | - Xiaogang Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
11
|
Zhang Y, Zhao Q, Chen B. Reduction and removal of Cr(VI) in water using biosynthesized palladium nanoparticles loaded Shewanella oneidensis MR-1. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 805:150336. [PMID: 34537699 DOI: 10.1016/j.scitotenv.2021.150336] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 06/13/2023]
Abstract
In materials science, "green" synthesis has gotten a lot of interest as a reliable, long-lasting, and ecofriendly way to make a variety of materials/nanomaterials, including metal/metal oxide nanomaterials. To accommodate various biological materials, green synthesis of metallic nanoparticles has been used (e.g., bacteria, fungi, algae, and plant extracts). In this work, Shewanella oneidensis MR-1 was used to biosynthesize palladium nanoparticles (bioPd) under aerobic conditions for the Cr(VI) bio-reduction. The size and distribution of bio-Pd are controlled by adjusting the ratio of microbial biomass and palladium precursors. The high cell: Pd ratio has the smallest average particle size of 6.33 ± 1.69 nm. And it has the lowest electrocatalytic potential (-0.132 V) for the oxidation of formic acid, which is 0.158 V lower than commercial Pd/C (5%). Our results revealed that the small size and uniformly distributed extracellular bio-Pd could achieve completely catalytic reduction of 200 mg/L Cr(VI) solution within 10 min, while the commercial Pd/C (5%) need at least 45 min. The bio-Pd materials maintain a high reduction during five cycles. Microorganisms play an important role in the whole process, which can fully disperse palladium nanoparticles, completely reduce Cr(VI), and effectively adsorb Cr(III). This work expands our understanding and provides a reference for the design and development of efficient and green bio-Pd catalysts for environmental pollution control under simple and mild conditions.
Collapse
Affiliation(s)
- Yunfei Zhang
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China.
| | - Qiang Zhao
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China.
| | - Baoliang Chen
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China.
| |
Collapse
|
12
|
Microbial-enabled green biosynthesis of nanomaterials: Current status and future prospects. Biotechnol Adv 2022; 55:107914. [DOI: 10.1016/j.biotechadv.2022.107914] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/08/2022] [Accepted: 01/17/2022] [Indexed: 02/07/2023]
|
13
|
Zou L, Zhu F, Long ZE, Huang Y. Bacterial extracellular electron transfer: a powerful route to the green biosynthesis of inorganic nanomaterials for multifunctional applications. J Nanobiotechnology 2021; 19:120. [PMID: 33906693 PMCID: PMC8077780 DOI: 10.1186/s12951-021-00868-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 04/20/2021] [Indexed: 02/08/2023] Open
Abstract
Synthesis of inorganic nanomaterials such as metal nanoparticles (MNPs) using various biological entities as smart nanofactories has emerged as one of the foremost scientific endeavors in recent years. The biosynthesis process is environmentally friendly, cost-effective and easy to be scaled up, and can also bring neat features to products such as high dispersity and biocompatibility. However, the biomanufacturing of inorganic nanomaterials is still at the trial-and-error stage due to the lack of understanding for underlying mechanism. Dissimilatory metal reduction bacteria, especially Shewanella and Geobacter species, possess peculiar extracellular electron transfer (EET) features, through which the bacteria can pump electrons out of their cells to drive extracellular reduction reactions, and have thus exhibited distinct advantages in controllable and tailorable fabrication of inorganic nanomaterials including MNPs and graphene. Our aim is to present a critical review of recent state-of-the-art advances in inorganic biosynthesis methodologies based on bacterial EET using Shewanella and Geobacter species as typical strains. We begin with a brief introduction about bacterial EET mechanism, followed by reviewing key examples from literatures that exemplify the powerful activities of EET-enabled biosynthesis routes towards the production of a series of inorganic nanomaterials and place a special emphasis on rationally tailoring the structures and properties of products through the fine control of EET pathways. The application prospects of biogenic nanomaterials are then highlighted in multiple fields of (bio-) energy conversion, remediation of organic pollutants and toxic metals, and biomedicine. A summary and outlook are given with discussion on challenges of bio-manufacturing with well-defined controllability. ![]()
Collapse
Affiliation(s)
- Long Zou
- Nanchang Key Laboratory of Microbial Resources Exploitation & Utilization From Poyang Lake Wetland, College of Life Sciences, Jiangxi Normal University, Nanchang, 330022, China
| | - Fei Zhu
- Nanchang Key Laboratory of Microbial Resources Exploitation & Utilization From Poyang Lake Wetland, College of Life Sciences, Jiangxi Normal University, Nanchang, 330022, China
| | - Zhong-Er Long
- Nanchang Key Laboratory of Microbial Resources Exploitation & Utilization From Poyang Lake Wetland, College of Life Sciences, Jiangxi Normal University, Nanchang, 330022, China
| | - Yunhong Huang
- Nanchang Key Laboratory of Microbial Resources Exploitation & Utilization From Poyang Lake Wetland, College of Life Sciences, Jiangxi Normal University, Nanchang, 330022, China.
| |
Collapse
|
14
|
Zhou L, Yang J, Ma F, Pi S, Tang A, Li A. Recycling of Pd(0) catalysts by magnetic nanocomposites-microbial extracellular polymeric substances@Fe 3O 4. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 280:111834. [PMID: 33348228 DOI: 10.1016/j.jenvman.2020.111834] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/30/2020] [Accepted: 12/09/2020] [Indexed: 06/12/2023]
Abstract
Palladium (Pd) is extremely expensive due to its scarcity and excellent catalytic performance. Thus, the recovery of Pd has become increasingly important. Herein, microbial extracellular polymeric substances (EPS) and magnetic nanocomposite EPS@Fe3O4 were applied to recover Pd catalysts from Pd(II) wastewater. Results indicated that Pd(II) was reduced to Pd (0), which was then adsorbed by EPS (101.21 mg/g) and EPS@Fe3O4 (126.30 mg/(g EPS)). After adsorbing Pd, EPS@Fe3O4 could be collected by magnetic separation. The recovered Pd showed excellent catalytic activity in the reduction of methylene blue (MB). The pseudo-second-order kinetic model and Redlich-Peterson model best fit the adsorption results. According to spectral analysis, Pd(II) was reduced to Pd (0) by chemical groups in EPS and EPS@Fe3O4, and the hydroxyl had a chelating effect on adsorbed Pd. Therefore, EPS@Fe3O4 is an efficient adsorbent for recovering Pd from Pd(II) wastewater.
Collapse
Affiliation(s)
- Lu Zhou
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, People's Republic of China
| | - Jixian Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, People's Republic of China
| | - Fang Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, People's Republic of China
| | - Shanshan Pi
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, People's Republic of China
| | - Aiqi Tang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, People's Republic of China
| | - Ang Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, People's Republic of China.
| |
Collapse
|
15
|
Zhou Y, Gao Y, Jiang J, Shen YM, Pang SY, Song Y, Guo Q. A comparison study of levofloxacin degradation by peroxymonosulfate and permanganate: Kinetics, products and effect of quinone group. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123834. [PMID: 33264920 DOI: 10.1016/j.jhazmat.2020.123834] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/10/2020] [Accepted: 08/27/2020] [Indexed: 06/12/2023]
Abstract
Permanganate (Mn(VII)) as a selective oxidant has been widely used in water treatment process. Recently, peroxymonosulfate (PMS) was recognized as an emerging selective oxidant, which showed appreciable reactivity toward organic compounds containing electron-rich functional groups. In this study, the oxidation of a model fluoroquinolone antibiotic levofloxacin (LEV) by Mn(VII) and PMS was comparatively investigated. Degradation of LEV by PMS followed second-order kinetics and showed strong pH dependency with apparent second-order rate constants (kapp) of 0.15-26.52 M-1 s-1 at pH 5.0-10.0. Oxidation of LEV by Mn(VII) showed autocatalysis at pH 5.0-7.0, while no autocatalysis was observed at pH 8.0-10.0 (kapp = 2.23-4.16 M-1 s-1). Such unusual oxidation kinetics was attributed to the in-situ formed MnO2 from Mn(VII) consumption. The performance of PMS and Mn(VII) for the degradation of LEV was also examined in real waters. PMS primarily react with the aliphatic N4 amine on the piperazine ring of LEV, and Mn(VII) reacted with both the aliphatic N4 amine and aromatic N1 amine. Both PMS and Mn(VII) could efficiently eliminate the antibiotic activity of LEV. Benzoquinone showed activating effect on both PMS and Mn(VII) oxidation, but their activation mechanisms were totally different.
Collapse
Affiliation(s)
- Yang Zhou
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Yuan Gao
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Jin Jiang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China.
| | - Yong-Ming Shen
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116023, China
| | - Su-Yan Pang
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, School of Municipal and Environmental Engineering, Jilin Jianzhu University, Changchun 130118, China
| | - Yang Song
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
| | - Qin Guo
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| |
Collapse
|
16
|
Hou YN, Ma JF, Yang ZN, Sun SY, Wang AJ, Cheng HY. Insight into the electrocatalytic performance of in-situ fabricated electroactive biofilm-Pd: The role of biofilm thickness, initial Pd(II) concentration and the exposure time to Pd precursor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 742:140536. [PMID: 32622167 DOI: 10.1016/j.scitotenv.2020.140536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/24/2020] [Accepted: 06/24/2020] [Indexed: 06/11/2023]
Abstract
Biogenic palladium (bio-Pd) nanoparticles have been considered as promising biocatalyst for energy generation and contaminants remediation in water and sediment. Recently, an electroactive biofilm-Pd (EAB-Pd) network, which can be used directly as electrocatalyst and show enhanced electrocatalytic performance, has exhibited tremendous application potential. However, the information regarding to the controllable biosynthetic process and corresponding catalytic properties is scarce. This study demonstrated that the catalytic performance of EAB-Pd could be influenced by Pd loading on bacteria cells (Pd/cells), which was crucial to determine the final distribution characteristic of Pd nanocrystal on EAB skeleton. For instance, the high Pd/cells (over 0.18 pg cell-1) exhibited almost 6-fold and 1.5-fold enhancement over EAB-Pds with Pd/cells below 0.03 in catalytic current toward hydrogen evolution reaction and nitrobenzene reduction, respectively. In addition, the Pd/cells was found to be affected by the synthesis factors, such as the ratio of biomass to initial Pd(II) concentration (cells/PdII) and the exposure time of EAB to Pd(II) precursor solution. The Pd/cells increased significantly as the cell/PdII ratio decreased from ~5.5 × 107 to ~1.3 × 107 cells L mg-1 or the prolongation of exposure time from 3 h to 24 h. The findings developed in this work extensively expand our knowledge for the in-situ designing biogenic electrocatalyst and provide important information for the development of its catalytic property.
Collapse
Affiliation(s)
- Ya-Nan Hou
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Science, Tianjin 300308, China
| | - Jin-Feng Ma
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Zhen-Ni Yang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Su-Yun Sun
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Ai-Jie Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hao-Yi Cheng
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| |
Collapse
|
17
|
Global transcriptional analysis of Geobacter sulfurreducens under palladium reducing conditions reveals new key cytochromes involved. Appl Microbiol Biotechnol 2020; 104:4059-4069. [DOI: 10.1007/s00253-020-10502-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 02/19/2020] [Accepted: 02/26/2020] [Indexed: 01/15/2023]
|
18
|
He Y, Gong Y, Su Y, Zhang Y, Zhou X. Bioremediation of Cr (VI) contaminated groundwater by Geobacter sulfurreducens: Environmental factors and electron transfer flow studies. CHEMOSPHERE 2019; 221:793-801. [PMID: 30684777 DOI: 10.1016/j.chemosphere.2019.01.039] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 12/14/2018] [Accepted: 01/06/2019] [Indexed: 05/17/2023]
Abstract
In this study, the removal of Cr (VI) was examined in the presence of bio-produced Fe (II) from hematite, sulfate and dissolved organic matter by Geobacter sulfurreducens. The adaptation results of G. sulfurreducens showed that cells growth was stimulated up to 576 μM of Cr (VI) concentration. The first-order rate and electron transfer rate in each step during Cr (VI) reduction by G. sulfurreducens in the presence of hematite was clearly modeled and calculated. For Cr (VI) reduction rate, both separately dissolved and adsorbed bio-produced Fe (II) were faster than G. sulfurreducens although bio-produced Fe (II) contributed only 20% to total Cr (VI) removal in a combined system containing Cr (VI), hematite and G. sulfurreducens. The electron transfer rate from G. sulfurreducens to hematite (R2) to produce Fe (II) was a limited step and electron transfer rate from acetate to Cr (VI) (1.8 μeq L-1 h-1) by G. sulfurreducens was much higher than that to hematite (0.272 μeq L-1 h-1, producing Fe (II)). Cr (VI) reduction was enhanced in the presence of SO42- due to sulfate boost cells growth. AQDS enhanced Cr (VI) reduction by serving as an electron shuttle thus accelerating the electron transfer rate.
Collapse
Affiliation(s)
- Yaxue He
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China
| | - Yufeng Gong
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China
| | - Yiming Su
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA 90095, USA
| | - Yalei Zhang
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China
| | - Xuefei Zhou
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China.
| |
Collapse
|
19
|
Gautam PK, Singh A, Misra K, Sahoo AK, Samanta SK. Synthesis and applications of biogenic nanomaterials in drinking and wastewater treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 231:734-748. [PMID: 30408767 DOI: 10.1016/j.jenvman.2018.10.104] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 10/02/2018] [Accepted: 10/28/2018] [Indexed: 05/02/2023]
Abstract
The continuous increase in water pollution by various organic & inorganic contaminants has become a major issue of concern worldwide. Furthermore, the anthropogenic activities for the manufacturing of various products have boosted this problem manifold. To overcome this serious issue, nanotechnology has initiated to explore various proficient strategies to treat waste water in a more precise and accurate way with the support of various nanomaterials. In recent times, nanosized materials have proved their applicability to provide clean and affordable water treatment technologies. The exclusive features such as high surface area and mechanical properties, greater chemical reactivity, lower cost and energy, efficient regeneration for reuse allow the nanomaterials perfect for water remediation. But the conventional routes of synthesis of nanomaterials encompass the involvement of hazardous and volatile chemicals; therefore the use of nanomaterials further creates the secondary pollution. This issue has intrigued the scientists to develop biogenic pathways and procedures which are environmentally safer and inexpensive. It has led to the new trends that involve developing bio-inspired nano-scale adsorbents and catalysts for the removal and degradation of a wide range of water pollutants. Carbohydrates, proteins, polymers, flavonoids, alkaloids and several antioxidants obtained from plants, bacteria, fungi, and algae have proven their effectiveness as capping and stabilizing agents during manufacture of nanomaterials. Application of biogenic nanomaterials for waste water treatment is relatively newer but rapidly escalating area of research. In the present review, promises and challenges for the synthesis of various biogenic nanomaterials and their potential applications in waste water treatment and/or water purification have been discussed.
Collapse
Affiliation(s)
- Pavan Kumar Gautam
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Allahabad 211012, India
| | - Anirudh Singh
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Allahabad 211012, India
| | - Krishna Misra
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Allahabad 211012, India
| | - Amaresh Kumar Sahoo
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Allahabad 211012, India
| | - Sintu Kumar Samanta
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Allahabad 211012, India.
| |
Collapse
|
20
|
You LX, Pan DM, Chen NJ, Lin WF, Chen QS, Rensing C, Zhou SG. Extracellular electron transfer of Enterobacter cloacae SgZ-5T via bi-mediators for the biorecovery of palladium as nanorods. ENVIRONMENT INTERNATIONAL 2019; 123:1-9. [PMID: 30481672 DOI: 10.1016/j.envint.2018.11.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/05/2018] [Accepted: 11/09/2018] [Indexed: 06/09/2023]
Abstract
In nature, microbes use extracellular electron transfer (EET) to recover noble metals. Most attention has been paid to the biorecovery process occurring intracellularly and on the cell surface. In this work, we report that Pd nanorods could be biosynthesized by Enterobacter cloacae SgZ-5T in the extracellular space. This bacterium possesses both a direct EET pathway through membrane redox systems and an indirect EET pathway via the self-secreted electron carrier hydroquinone (HQ). When exposed to Pd(II), the bacteria adjusted their metabolic pathway and membrane-bound proteins to secrete riboflavin (RF). However, no HQ was detected in the supernatant in presence of Pd(II). No significant change was observed through metabolomic analysis regarding the abundance of HQ in presence of Pd(II) compared to Pd(II)-free supernatant. Similar results were also obtained through transcriptomic analysis of YqjG gene encoding glutathionyl-HQ reductase synthase. X-ray photoelectron spectroscopic evidence indicated that HQ may adsorb to the surface of Pd nanorods. Moreover, the gene encoding RF synthase (ribE) was up-regulated in the present of Pd(II), suggesting that this bioreduction process induced RF synthase, which had been shown in previous results. The UV-vis spectroscopy data demonstrated that the Pd(II) reduction rate was enhanced by 5%, 5.5% and 30% by the addition of 3.33 μM HQ, 3.33 μM RF and the both, respectively. All these results revealed that the bi-mediators secreted by bacteria were beneficial for biorecovery of Pd. This work is of significance for understanding metal biorecovery processes and natural biogeochemical processes.
Collapse
Affiliation(s)
- Le-Xing You
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Dan-Mei Pan
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, PR China
| | - Nian-Jia Chen
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Wei-Fen Lin
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Qing-Song Chen
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, PR China
| | - Christoper Rensing
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Shun-Gui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.
| |
Collapse
|
21
|
Refojo PN, Sena FV, Calisto F, Sousa FM, Pereira MM. The plethora of membrane respiratory chains in the phyla of life. Adv Microb Physiol 2019; 74:331-414. [PMID: 31126533 DOI: 10.1016/bs.ampbs.2019.03.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The diversity of microbial cells is reflected in differences in cell size and shape, motility, mechanisms of cell division, pathogenicity or adaptation to different environmental niches. All these variations are achieved by the distinct metabolic strategies adopted by the organisms. The respiratory chains are integral parts of those strategies especially because they perform the most or, at least, most efficient energy conservation in the cell. Respiratory chains are composed of several membrane proteins, which perform a stepwise oxidation of metabolites toward the reduction of terminal electron acceptors. Many of these membrane proteins use the energy released from the oxidoreduction reaction they catalyze to translocate charges across the membrane and thus contribute to the establishment of the membrane potential, i.e. they conserve energy. In this work we illustrate and discuss the composition of the respiratory chains of different taxonomic clades, based on bioinformatic analyses and on biochemical data available in the literature. We explore the diversity of the respiratory chains of Animals, Plants, Fungi and Protists kingdoms as well as of Prokaryotes, including Bacteria and Archaea. The prokaryotic phyla studied in this work are Gammaproteobacteria, Betaproteobacteria, Epsilonproteobacteria, Deltaproteobacteria, Alphaproteobacteria, Firmicutes, Actinobacteria, Chlamydiae, Verrucomicrobia, Acidobacteria, Planctomycetes, Cyanobacteria, Bacteroidetes, Chloroflexi, Deinococcus-Thermus, Aquificae, Thermotogae, Deferribacteres, Nitrospirae, Euryarchaeota, Crenarchaeota and Thaumarchaeota.
Collapse
Affiliation(s)
- Patrícia N Refojo
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal
| | - Filipa V Sena
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal
| | - Filipa Calisto
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal
| | - Filipe M Sousa
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal
| | - Manuela M Pereira
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal; University of Lisboa, Faculty of Sciences, BIOISI- Biosystems & Integrative Sciences Institute, Lisboa, Portugal
| |
Collapse
|
22
|
Wang PT, Song YH, Fan HC, Yu L. Bioreduction of azo dyes was enhanced by in-situ biogenic palladium nanoparticles. BIORESOURCE TECHNOLOGY 2018; 266:176-180. [PMID: 29966927 DOI: 10.1016/j.biortech.2018.06.079] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/20/2018] [Accepted: 06/23/2018] [Indexed: 05/24/2023]
Abstract
Biogenic nanoparticles are promising materials for their green synthesis method and good performance in stimulation on reduction of environmental contaminants. In this study, Pd(0) nanoparticles (bio-Pd) were generated by Klebsiella oxytoca GS-4-08 in fermentative condition and in-situ improved the azo dye reduction. The bio-Pd was mainly located on cell membrane with a size range of 5-20 nm by TEM and XRD data analyses. Anthraquinone-2-disulfonate (AQS) greatly increased the reduction rate of Pd(II) with a reduction efficiency as high as 96.54 ± 0.23% in 24 h. The quinone respiration theory, glucose metabolism and the biohydrogen pathway were used to explain the enhancement mechanism of the in-situ generated bio-Pd on azo dye reduction. These results indicate that the in-situ generated bio-Pd by K. oxytoca strain is efficient for azo dye reduction without complex preparation processes, which is of great significance for the removal and subsequent safe disposal of hazardous environmental compounds.
Collapse
Affiliation(s)
- Peng-Tao Wang
- Department of Environmental Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yu-Hang Song
- Department of Environmental Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Hong-Cheng Fan
- Department of Environmental Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Lei Yu
- Department of Environmental Engineering, Nanjing Forestry University, Nanjing 210037, China; Department of Microbiology, University of Massachusetts Amherst, Amherst, MA 01003, USA.
| |
Collapse
|
23
|
Martinez CM, Alvarez LH. Application of redox mediators in bioelectrochemical systems. Biotechnol Adv 2018; 36:1412-1423. [DOI: 10.1016/j.biotechadv.2018.05.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/15/2018] [Accepted: 05/26/2018] [Indexed: 12/12/2022]
|
24
|
Cheng HY, Hou YN, Zhang X, Yang ZN, Xu T, Wang AJ. Activating electrochemical catalytic activity of bio-palladium by hybridizing with carbon nanotube as "e - Bridge". Sci Rep 2017; 7:16588. [PMID: 29185498 PMCID: PMC5707347 DOI: 10.1038/s41598-017-16880-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 11/17/2017] [Indexed: 11/09/2022] Open
Abstract
Nano metal catalysts produced by bacteria has received increasing attention owing to its environmental friendly synthesis route. However, the formed metal nanoparticles are associated with poorly conductive cells and challenged to be electrochemically applied. In this study, Palladium (Pd) nanoparticles were synthesized by Shewanella oneidensis MR-1. We demonstrated the limitation of palladized cells (Pd-cells) serving as electro-catalysts can be relieved by hybridizing with the conductive carbon nanotubes (Pd-cells-CNTs hybrid). Compared to the Pd-cells, the electrochemical active surface area of Pd in Pd-cells-CNTs10 (the ratio of Pd/CNTs is 1/10 w/w) were dramatically increased by 68 times to 20.44 m2·g-1. A considerable enhancement of electrocatalytic activity was further confirmed for Pd-cells-CNTs10 as indicated by a 5-fold increase of steady state current density for nitrobenzene reduction at -0.55 V vs Ag/AgCl. These results indicate that the biogenetic palladium could has been an efficient electro-catalyst but just limited due to lacking an electron transport path (e - Bridge). This finding may also be helpful to guide the way to electrochemically use other biogenetic metal nano-materials.
Collapse
Affiliation(s)
- Hao-Yi Cheng
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Ya-Nan Hou
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin, 150090, China
| | - Xu Zhang
- Center for Microbial Ecology and Technology, Ghent University, Coupure Links 653, Ghent, B-9000, Belgium
| | - Zhen-Ni Yang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Tiefu Xu
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.,School of Civil Engineering, Heilongjiang University, Harbin, 150080, China
| | - Ai-Jie Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China. .,State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin, 150090, China.
| |
Collapse
|
25
|
Hou YN, Zhang B, Yun H, Yang ZN, Han JL, Zhou J, Wang AJ, Cheng HY. Palladized cells as suspension catalyst and electrochemical catalyst for reductively degrading aromatics contaminants: Roles of Pd size and distribution. WATER RESEARCH 2017; 125:288-297. [PMID: 28866444 DOI: 10.1016/j.watres.2017.08.055] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 08/11/2017] [Accepted: 08/23/2017] [Indexed: 06/07/2023]
Abstract
The palladized cell (Pd-cell) could be used as an efficient catalyst in catalyzing the degradations of a wide variety of environmental contaminants. Nevertheless, when the Pd NPs associate with the bacteria, the catalytic activity likely significantly affected by the biomass. Quantitative indicators that characterize of Pd-cell are necessary and little attention has been paid to investigate how the catalytic efficiency of Pd-cell is affected by the size and distribution of Pd NPs. To fill this gap, we explored the roles of the above-mentioned key factors on the performance of Pd-cell in catalyzing the degradations of two aromatic contaminants (nitrobenzene and p-chlorophenol) in two commonly used scenarios: (1) using Pd-cell as suspended catalyst in solution and (2) using Pd-cell as electrocatalyst directly coated on electrode. In scenario (1), the relationship of exposing area to Pd particle size and distribution factors was established. Based on theoretical estimation and catalytic performance analysis, the results indicated that adjusting the exposing area to a large value (9.3 ± 0.1 × 105 nm2 mg-1 Pd) was extremely effective for improving the catalytic activity of Pd-cell used as a suspension catalyst. In scenario (2), our results showed that the best electrocatalytic performances were achieved on the electrode decorated with Pd-cells with the largest NP size (54.3 ± 16.4 nm), which exerted maximum electrochemical active surface area (10.6 m2 g-1) as well as favorable conductivity. The coverage of deposited Pd NPs (>95%) on the cell surface played a crucial role in boosting the conductivity of biocatalyst, thus determining the possibility of Pd-cell as an efficient electrocatalyst. The findings of this study provide a guidance for the synthesis and application of Pd-cell, which enables the design of Pd-cell to be suitable for different catalysis systems with high catalytic performance.
Collapse
Affiliation(s)
- Ya-Nan Hou
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, PR China
| | - Bo Zhang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Hui Yun
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Zhen-Ni Yang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Jing-Long Han
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Jizhong Zhou
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, PR China; Institute for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, USA
| | - Ai-Jie Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, PR China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China.
| | - Hao-Yi Cheng
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China.
| |
Collapse
|
26
|
Tanzil AH, Sultana ST, Saunders SR, Shi L, Marsili E, Beyenal H. Biological synthesis of nanoparticles in biofilms. Enzyme Microb Technol 2016; 95:4-12. [DOI: 10.1016/j.enzmictec.2016.07.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 07/27/2016] [Accepted: 07/28/2016] [Indexed: 12/12/2022]
|
27
|
Maes S, Claus M, Verbeken K, Wallaert E, De Smet R, Vanhaecke F, Boon N, Hennebel T. Platinum recovery from industrial process streams by halophilic bacteria: Influence of salt species and platinum speciation. WATER RESEARCH 2016; 105:436-443. [PMID: 27665431 DOI: 10.1016/j.watres.2016.09.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/14/2016] [Accepted: 09/15/2016] [Indexed: 06/06/2023]
Abstract
The increased use and criticality of platinum asks for the development of effective low-cost strategies for metal recovery from process and waste streams. Although biotechnological processes can be applied for the valorization of diluted aqueous industrial streams, investigations considering real stream conditions (e.g., high salt levels, acidic pH, metal speciation) are lacking. This study investigated the recovery of platinum by a halophilic microbial community in the presence of increased salt concentrations (10-80 g L-1), different salt matrices (phosphate salts, sea salts and NH4Cl) and a refinery process stream. The halophiles were able to recover 79-99% of the Pt at 10-80 g L-1 salts and at pH 2.3. Transmission electron microscopy suggested a positive correlation between intracellular Pt cluster size and elevated salt concentrations. Furthermore, the halophiles recovered 46-95% of the Pt-amine complex Pt[NH3]42+ from a process stream after the addition of an alternative Pt source (K2PtCl4, 0.1-1.0 g L-1 Pt). Repeated Pt-tetraamine recovery (from an industrial process stream) was obtained after concomitant addition of fresh biomass and harvesting of Pt saturated biomass. This study demonstrates how aqueous Pt streams can be transformed into Pt rich biomass, which would be an interesting feed of a precious metals refinery.
Collapse
Affiliation(s)
- Synthia Maes
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Mathias Claus
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Kim Verbeken
- Department of Materials Science and Engineering, Ghent University, Technologiepark Zwijnaarde 903, B-9052, Zwijnaarde, Belgium
| | - Elien Wallaert
- Department of Materials Science and Engineering, Ghent University, Technologiepark Zwijnaarde 903, B-9052, Zwijnaarde, Belgium
| | - Rebecca De Smet
- Department of Medical and Forensic Pathology, Ghent University, De Pintelaan 185, B-9000, Ghent, Belgium
| | - Frank Vanhaecke
- Department of Analytical Chemistry, Ghent University, Krijgslaan 281 S12, B-9000, Ghent, Belgium
| | - Nico Boon
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Tom Hennebel
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, B-9000, Ghent, Belgium.
| |
Collapse
|
28
|
Zhu N, Cao Y, Shi C, Wu P, Ma H. Biorecovery of gold as nanoparticles and its catalytic activities for p-nitrophenol degradation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:7627-7638. [PMID: 26739993 DOI: 10.1007/s11356-015-6033-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 12/28/2015] [Indexed: 06/05/2023]
Abstract
Recovery of gold from aqueous solution using simple and economical methodologies is highly desirable. In this work, recovery of gold as gold nanoparticles (AuNPs) by Shewanella haliotis with sodium lactate as electron donor was explored. The results showed that the process was affected by the concentration of biomass, sodium lactate, and initial gold ions as well as pH value. Specifically, the presence of sodium lactate determines the formation of nanoparticles, biomass, and AuCl4 (-) concentration mainly affected the size and dispersity of the products, reaction pH greatly affected the recovery efficiency, and morphology of the products in the recovery process. Under appropriate conditions (5.25 g/L biomass, 40 mM sodium lactate, 0.5 mM AuCl4 (-), and pH of 5), the recovery efficiency was almost 99 %, and the recovered AuNPs were mainly spherical with size range of 10-30 nm (~85 %). Meanwhile, Fourier transforms infrared spectroscopy and X-ray photoelectron spectroscopy demonstrated that carboxyl and amine groups might play an important role in the process. In addition, the catalytic activity of the AuNPs recovered under various conditions was testified by analyzing the reduction rate of p-nitrophenol by borohydride. The biorecovered AuNPs exhibited interesting size and shape-dependent catalytic activity, of which the spherical particle with smaller size showed the highest catalytic reduction activity with rate constant of 0.665 min(-1).
Collapse
Affiliation(s)
- Nengwu Zhu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China.
- The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters of Ministry of Education, Guangzhou, 510006, People's Republic of China.
- Guangdong Environmental Protection Key Laboratory of Solid Waste Treatment and Recycling, Guangzhou, 510006, People's Republic of China.
| | - Yanlan Cao
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | - Chaohong Shi
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | - Pingxiao Wu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China
- The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters of Ministry of Education, Guangzhou, 510006, People's Republic of China
- Guangdong Environmental Protection Key Laboratory of Solid Waste Treatment and Recycling, Guangzhou, 510006, People's Republic of China
| | - Haiqin Ma
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China
| |
Collapse
|
29
|
Zhou C, Ontiveros-Valencia A, Wang Z, Maldonado J, Zhao HP, Krajmalnik-Brown R, Rittmann BE. Palladium Recovery in a H2-Based Membrane Biofilm Reactor: Formation of Pd(0) Nanoparticles through Enzymatic and Autocatalytic Reductions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:2546-2555. [PMID: 26883809 DOI: 10.1021/acs.est.5b05318] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Recovering palladium (Pd) from waste streams opens up the possibility of augmenting the supply of this important catalyst. We evaluated Pd reduction and recovery as a novel application of a H2-based membrane biofilm reactor (MBfR). At steady states, over 99% of the input soluble Pd(II) was reduced through concomitant enzymatic and autocatalytic processes at acidic or near neutral pHs. Nanoparticulate Pd(0), at an average crystallite size of 10 nm, was recovered with minimal leaching and heterogeneously associated with microbial cells and extracellular polymeric substances in the biofilm. The dominant phylotypes potentially responsible for Pd(II) reduction at circumneutral pH were denitrifying β-proteobacteria mainly consisting of the family Rhodocyclaceae. Though greatly shifted by acidic pH, the biofilm microbial community largely bounced back when the pH was returned to 7 within 2 weeks. These discoveries infer that the biofilm was capable of rapid adaptive evolution to stressed environmental change, and facilitated Pd recovery in versatile ways. This study demonstrates the promise of effective microbially driven Pd recovery in a single MBfR system that could be applied for the treatment of the waste streams, and it documents the role of biofilms in this reduction and recovery process.
Collapse
Affiliation(s)
- Chen Zhou
- Swette Center for Environmental Biotechnology, Biodesign Institute, Arizona State University , Tempe, Arizona 85287, United States
| | - Aura Ontiveros-Valencia
- Swette Center for Environmental Biotechnology, Biodesign Institute, Arizona State University , Tempe, Arizona 85287, United States
| | - Zhaocheng Wang
- Swette Center for Environmental Biotechnology, Biodesign Institute, Arizona State University , Tempe, Arizona 85287, United States
- Department of Water Engineering and Science, College of Civil Engineering, Hunan University , Changsha, China
| | - Juan Maldonado
- Swette Center for Environmental Biotechnology, Biodesign Institute, Arizona State University , Tempe, Arizona 85287, United States
| | - He-Ping Zhao
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University , Hangzhou, China
| | - Rosa Krajmalnik-Brown
- Swette Center for Environmental Biotechnology, Biodesign Institute, Arizona State University , Tempe, Arizona 85287, United States
| | - Bruce E Rittmann
- Swette Center for Environmental Biotechnology, Biodesign Institute, Arizona State University , Tempe, Arizona 85287, United States
| |
Collapse
|
30
|
Maes S, Props R, Fitts JP, Smet RD, Vilchez-Vargas R, Vital M, Pieper DH, Vanhaecke F, Boon N, Hennebel T. Platinum Recovery from Synthetic Extreme Environments by Halophilic Bacteria. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:2619-2626. [PMID: 26854514 DOI: 10.1021/acs.est.5b05355] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Metal recycling based on urban mining needs to be established to tackle the increasing supply risk of critical metals such as platinum. Presently, efficient strategies are missing for the recovery of platinum from diluted industrial process streams, often characterized by extremely low pHs and high salt concentrations. In this research, halophilic mixed cultures were employed for the biological recovery of platinum (Pt). Halophilic bacteria were enriched from Artemia cysts, living in salt lakes, in different salt matrices (sea salt mixture and NH4Cl; 20-210 g L(-1) salts) and at low to neutral pH (pH 3-7). The main taxonomic families present in the halophilic cultures were Halomonadaceae, Bacillaceae, and Idiomarinaceae. The halophilic cultures were able to recover >98% Pt(II) and >97% Pt(IV) at pH 2 within 3-21 h (4-453 mg Ptrecovered h(-1) g(-1) biomass). X-ray absorption spectroscopy confirmed the reduction to Pt(0) and transmission electron microscopy revealed both intra- and extracellular Pt precipitates, with median diameters of 9-30 nm and 11-13 nm, for Pt(II) and Pt(IV), respectively. Flow cytometric membrane integrity staining demonstrated the preservation of cell viability during platinum recovery. This study demonstrates the Pt recovery potential of halophilic mixed cultures in acidic saline conditions.
Collapse
Affiliation(s)
- Synthia Maes
- Laboratory of Microbial Ecology and Technology (LabMET), Ghent University , Coupure Links 653, B-9000 Gent, Belgium
| | - Ruben Props
- Laboratory of Microbial Ecology and Technology (LabMET), Ghent University , Coupure Links 653, B-9000 Gent, Belgium
| | - Jeffrey P Fitts
- Department of Civil and Environmental Engineering, Princeton University , Princeton, New York 08544, United States
| | - Rebecca De Smet
- Department of Medical and Forensic Pathology, Ghent University , De Pintelaan 185, B-9000 Gent, Belgium
| | - Ramiro Vilchez-Vargas
- Laboratory of Microbial Ecology and Technology (LabMET), Ghent University , Coupure Links 653, B-9000 Gent, Belgium
| | - Marius Vital
- Microbial Interactions and Processes Research Group, Department of Medical Microbiology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Dietmar H Pieper
- Microbial Interactions and Processes Research Group, Department of Medical Microbiology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Frank Vanhaecke
- Department of Analytical Chemistry, Ghent University , Krijgslaan 281 (S12), B-9000 Gent, Belgium
| | - Nico Boon
- Laboratory of Microbial Ecology and Technology (LabMET), Ghent University , Coupure Links 653, B-9000 Gent, Belgium
| | - Tom Hennebel
- Laboratory of Microbial Ecology and Technology (LabMET), Ghent University , Coupure Links 653, B-9000 Gent, Belgium
| |
Collapse
|
31
|
Ramos-Ruiz A, Field JA, Wilkening JV, Sierra-Alvarez R. Recovery of Elemental Tellurium Nanoparticles by the Reduction of Tellurium Oxyanions in a Methanogenic Microbial Consortium. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:1492-500. [PMID: 26735010 PMCID: PMC4738100 DOI: 10.1021/acs.est.5b04074] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
This research focuses on the microbial recovery of elemental tellurium (Te(0)) from aqueous streams containing soluble tellurium oxyanions, tellurate (Te(VI)), and tellurite (Te(IV)). An anaerobic mixed microbial culture occurring in methanogenic granular sludge was able to biocatalyze the reduction of both Te oxyanions to produce Te(0) nanoparticles (NPs) in sulfur-free medium. Te(IV) reduction was seven times faster than that of Te(VI), such that Te(IV) did not accumulate to a great extent during Te(VI) reduction. Endogenous substrates in the granular sludge provided the electron equivalents required to reduce Te oxyanions; however, the reduction rates were modestly increased with an exogenous electron donor such as H2. The effect of four redox mediators (anthraquinone-2,6-disulfonate, hydroxocobalamin, riboflavin, and lawsone) was also tested. Riboflavin increased the rate of Te(IV) reduction eleven-fold and also enhanced the fraction Te recovered as extracellular Te(0) NPs from 21% to 64%. Lawsone increased the rate of Te(VI) reduction five-fold, and the fraction of Te recovered as extracellular material increased from 49% to 83%. The redox mediators and electron donors also impacted the morphologies and localization of Te(0) NPs, suggesting that NP production can be tailored for a particular application.
Collapse
|
32
|
Pat-Espadas AM, Field JA, Otero-Gonzalez L, Razo-Flores E, Cervantes FJ, Sierra-Alvarez R. Recovery of palladium(II) by methanogenic granular sludge. CHEMOSPHERE 2016; 144:745-753. [PMID: 26408982 DOI: 10.1016/j.chemosphere.2015.09.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 08/25/2015] [Accepted: 09/08/2015] [Indexed: 06/05/2023]
Abstract
This is the first report that demonstrates the ability of anaerobic methanogenic granular sludge to reduce Pd(II) to Pd(0). Different electron donors were evaluated for their effectiveness in promoting Pd reduction. Formate and H2 fostered both chemically and biologically mediated Pd reduction. Ethanol only promoted the reduction of Pd(II) under biotic conditions and the reduction was likely mediated by H2 released from ethanol fermentation. No reduction was observed in biotic or abiotic assays with all other substrates tested (acetate, lactate and pyruvate) although a large fraction of the total Pd was removed from the liquid medium likely due to biosorption. Pd(II) displayed severe inhibition towards acetoclastic and hydrogenotrophic methanogens, as indicated by 50% inhibiting concentrations as low as 0.96 and 2.7 mg/L, respectively. The results obtained indicate the potential of utilizing anaerobic granular sludge bioreactor technology as a practical and promising option for Pd(II) reduction and recovery offering advantages over pure cultures.
Collapse
Affiliation(s)
- Aurora M Pat-Espadas
- Department of Chemical and Environmental Engineering, University of Arizona, P.O. Box 210011, Tucson, AZ, 85721, USA; División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José 2055, Col. Lomas 4ª. Sección, C. P. 78216, San Luis Potosí, SLP, Mexico.
| | - James A Field
- Department of Chemical and Environmental Engineering, University of Arizona, P.O. Box 210011, Tucson, AZ, 85721, USA
| | - Lila Otero-Gonzalez
- Department of Chemical and Environmental Engineering, University of Arizona, P.O. Box 210011, Tucson, AZ, 85721, USA
| | - Elías Razo-Flores
- División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José 2055, Col. Lomas 4ª. Sección, C. P. 78216, San Luis Potosí, SLP, Mexico
| | - Francisco J Cervantes
- División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José 2055, Col. Lomas 4ª. Sección, C. P. 78216, San Luis Potosí, SLP, Mexico
| | - Reyes Sierra-Alvarez
- Department of Chemical and Environmental Engineering, University of Arizona, P.O. Box 210011, Tucson, AZ, 85721, USA
| |
Collapse
|
33
|
Yu L, Yuan Y, Tang J, Wang Y, Zhou S. Biochar as an electron shuttle for reductive dechlorination of pentachlorophenol by Geobacter sulfurreducens. Sci Rep 2015; 5:16221. [PMID: 26592958 PMCID: PMC4655402 DOI: 10.1038/srep16221] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 10/08/2015] [Indexed: 02/08/2023] Open
Abstract
The reductive dechlorination of pentachlorophenol (PCP) by Geobacter sulfurreducens in the presence of different biochars was investigated to understand how biochars affect the bioreduction of environmental contaminants. The results indicated that biochars significantly accelerate electron transfer from cells to PCP, thus enhancing reductive dechlorination. The promotion effects of biochar (as high as 24-fold) in this process depend on its electron exchange capacity (EEC) and electrical conductivity (EC). A kinetic model revealed that the surface redox-active moieties (RAMs) and EC of biochar (900 °C) contributed to 56% and 41% of the biodegradation rate, respectively. This work demonstrates that biochars are efficient electron mediators for the dechlorination of PCP and that both the EC and RAMs of biochars play important roles in the electron transfer process.
Collapse
Affiliation(s)
- Linpeng Yu
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.,Graduate University of Chinese Academy of Sciences, Beijing 100039, China.,Guangdong Institute of Eco-environmental and Soil Sciences, Guangzhou, 510640, China
| | - Yong Yuan
- Guangdong Institute of Eco-environmental and Soil Sciences, Guangzhou, 510640, China.,Guangdong Key Laboratory of Agricultural Environment Management, Guangzhou, 510640, China
| | - Jia Tang
- Guangdong Institute of Eco-environmental and Soil Sciences, Guangzhou, 510640, China.,Guangdong Key Laboratory of Agricultural Environment Management, Guangzhou, 510640, China
| | - Yueqiang Wang
- Guangdong Institute of Eco-environmental and Soil Sciences, Guangzhou, 510640, China.,Guangdong Key Laboratory of Agricultural Environment Management, Guangzhou, 510640, China
| | - Shungui Zhou
- Guangdong Institute of Eco-environmental and Soil Sciences, Guangzhou, 510640, China.,Guangdong Key Laboratory of Agricultural Environment Management, Guangzhou, 510640, China
| |
Collapse
|
34
|
Immobilization of biogenic Pd(0) in anaerobic granular sludge for the biotransformation of recalcitrant halogenated pollutants in UASB reactors. Appl Microbiol Biotechnol 2015; 100:1427-1436. [PMID: 26481621 DOI: 10.1007/s00253-015-7055-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 09/23/2015] [Accepted: 09/29/2015] [Indexed: 12/14/2022]
Abstract
The capacity of anaerobic granular sludge to reduce Pd(II), using ethanol as electron donor, in an upflow anaerobic sludge blanket (UASB) reactor was demonstrated. Results confirmed complete reduction of Pd(II) and immobilization as Pd(0) in the granular sludge. The Pd-enriched sludge was further evaluated regarding biotransformation of two recalcitrant halogenated pollutants: 3-chloro-nitrobenzene (3-CNB) and iopromide (IOP) in batch and continuous operation in UASB reactors. The superior removal capacity of the Pd-enriched biomass when compared with the control (not exposed to Pd) was demonstrated in both cases. Results revealed 80 % of IOP removal efficiency after 100 h of incubation in batch experiments performed with Pd-enriched biomass whereas only 28 % of removal efficiency was achieved in incubations with biomass lacking Pd. The UASB reactor operated with the Pd-enriched biomass achieved 81 ± 9.5 % removal efficiency of IOP and only 61 ± 8.3 % occurred in the control reactor lacking Pd. Regarding 3-CNB, it was demonstrated that biogenic Pd(0) promoted both nitro-reduction and dehalogenation resulting in the complete conversion of 3-CNB to aniline while in the control experiment only nitro-reduction was documented. The complete biotransformation pathway of both contaminants was proposed by high-performance liquid chromatography-mass spectrometry (HPLC-MS) analysis evidencing a higher degree of nitro-reduction and dehalogenation of both contaminants in the experiments with Pd-enriched anaerobic sludge as compared with the control. A biotechnological process is proposed to recover Pd(II) from industrial streams and to immobilize it in anaerobic granular sludge. The Pd-enriched biomass is also proposed as a biocatalyst to achieve the biotransformation of recalcitrant compounds in UASB reactors.
Collapse
|
35
|
Cervantes FJ, Gómez R, Alvarez LH, Martinez CM, Hernandez-Montoya V. Efficient anaerobic treatment of synthetic textile wastewater in a UASB reactor with granular sludge enriched with humic acids supported on alumina nanoparticles. Biodegradation 2015; 26:289-98. [DOI: 10.1007/s10532-015-9734-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 05/19/2015] [Indexed: 10/23/2022]
|
36
|
Zhuang WQ, Fitts JP, Ajo-Franklin CM, Maes S, Alvarez-Cohen L, Hennebel T. Recovery of critical metals using biometallurgy. Curr Opin Biotechnol 2015; 33:327-35. [PMID: 25912797 DOI: 10.1016/j.copbio.2015.03.019] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 03/26/2015] [Accepted: 03/27/2015] [Indexed: 10/23/2022]
Abstract
The increased development of green low-carbon energy technologies that require platinum group metals (PGMs) and rare earth elements (REEs), together with the geopolitical challenges to sourcing these metals, has spawned major governmental and industrial efforts to rectify current supply insecurities. As a result of the increasing critical importance of PGMs and REEs, environmentally sustainable approaches to recover these metals from primary ores and secondary streams are needed. In this review, we define the sources and waste streams from which PGMs and REEs can potentially be sustainably recovered using microorganisms, and discuss the metal-microbe interactions most likely to form the basis of different environmentally friendly recovery processes. Finally, we highlight the research needed to address challenges to applying the necessary microbiology for metal recovery given the physical and chemical complexities of specific streams.
Collapse
Affiliation(s)
- Wei-Qin Zhuang
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA 94720-1710, United States; Department of Civil and Environmental Engineering, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Jeffrey P Fitts
- Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ 08544, United States
| | - Caroline M Ajo-Franklin
- Material Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States; Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Synthia Maes
- Laboratory for Microbial Ecology and Technology (LabMET), Ghent University, Gent, Belgium
| | - Lisa Alvarez-Cohen
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA 94720-1710, United States
| | - Tom Hennebel
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA 94720-1710, United States.
| |
Collapse
|