1
|
Stuart J, Smith KF, Miller M, Pearman JK, Robinson N, Rhodes L, Thompson L, Challenger S, Parnell N, Ryan KG. Light-dependent variations in fatty acid profiles and gene expression in Antarctic microalgal cultures. PLoS One 2025; 20:e0317044. [PMID: 39820819 PMCID: PMC11737666 DOI: 10.1371/journal.pone.0317044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 12/19/2024] [Indexed: 01/19/2025] Open
Abstract
Photosynthetic eukaryotic microalgae are key primary producers in the Antarctic sea ice environment. Anticipated changes in sea ice thickness and snow load due to climate change may cause substantial shifts in available light to these ice-associated organisms. This study used a laboratory-based experiment to investigate how light levels, simulating different sea ice and snow thicknesses, affect fatty acid (FA) composition in two ice associated microalgae species, the pennate diatom Nitzschia cf. biundulata and the dinoflagellate Polarella glacialis. FA profiling and transcriptomic analyses were used to compare the impact of three light levels: High (baseline culturing conditions 90 ± 1 μmol photons m-2 s-1), mid (10 ± 1 μmol photons m-2 s-1); and low (1.5 ± 1 μmol photons m-2 s-1) on each isolate. Both microalgal isolates had altered growth rates and shifts in FA composition under different light conditions. Nitzschia cf. biundulata exhibited significant changes in specific saturated and monounsaturated FAs, with a notable increase in energy storage-related FAs under conditions emulating thinner ice or reduced snow cover. Polarella glacialis significantly increased production of polyunsaturated FAs (PUFAs) in mid light conditions, particularly octadecapentaenoic acid (C18:5N-3), indicating enhanced membrane fluidity and synthesis of longer-chain PUFAs. Notably, C18:5N-3 has been identified as an ichthyotoxic molecule, with fish mortalities associated with other high producing marine taxa. High light levels caused down regulation of photosynthetic genes in N. cf. biundulata isolates and up-regulation in P. glacialis isolates. This and the FA composition changes show the variability of acclimation strategies for different taxonomic groups, providing insights into the responses of microalgae to light stress. This variability could impact polar food webs under climate change, particularly through changes in macronutrient availability to higher trophic levels due to species specific acclimation responses. Further research on the broader microalgal community is needed to clarify the extent of these effects.
Collapse
Affiliation(s)
- Jacqui Stuart
- Victoria University of Wellington, Wellington, New Zealand
- Cawthron Institute, Nelson, New Zealand
| | | | | | | | - Natalie Robinson
- National Institute of Water and Atmospheric Research (NIWA), Wellington, New Zealand
| | | | | | | | | | - Ken G. Ryan
- Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
2
|
Biomolecular Composition of Sea Ice Microalgae and Its Influence on Marine Biogeochemical Cycling and Carbon Transfer through Polar Marine Food Webs. GEOSCIENCES 2022. [DOI: 10.3390/geosciences12010038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Microalgae growing on the underside of sea ice are key primary producers in polar marine environments. Their nutritional status, determined by their macromolecular composition, contributes to the region’s biochemistry and the unique temporal and spatial characteristics of their growth makes them essential for sustaining polar marine food webs. Here, we review the plasticity and taxonomic diversity of sea ice microalgae macromolecular composition, with a focus on how different environmental conditions influence macromolecular production and partitioning within cells and communities. The advantages and disadvantages of methodologies for assessing macromolecular composition are presented, including techniques that provide high throughput, whole macromolecular profile and/or species-specific resolution, which are particularly recommended for future studies. The directions of environmentally driven macromolecular changes are discussed, alongside anticipated consequences on nutrients supplied to the polar marine ecosystem. Given that polar regions are facing accelerated rates of environmental change, it is argued that a climate change signature will become evident in the biochemical composition of sea ice microalgal communities, highlighting the need for further research to understand the synergistic effects of multiple environmental stressors. The importance of sea ice microalgae as primary producers in polar marine ecosystems means that ongoing research into climate-change driven macromolecular phenotyping is critical to understanding the implications for the regions biochemical cycling and carbon transfer.
Collapse
|
3
|
Tan YH, Lim PE, Beardall J, Poong SW, Phang SM. A metabolomic approach to investigate effects of ocean acidification on a polar microalga Chlorella sp. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 217:105349. [PMID: 31734626 DOI: 10.1016/j.aquatox.2019.105349] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/18/2019] [Accepted: 10/27/2019] [Indexed: 06/10/2023]
Abstract
Ocean acidification, due to increased levels of anthropogenic carbon dioxide, is known to affect the physiology and growth of marine phytoplankton, especially in polar regions. However, the effect of acidification or carbonation on cellular metabolism in polar marine phytoplankton still remains an open question. There is some evidence that small chlorophytes may benefit more than other taxa of phytoplankton. To understand further how green polar picoplankton could acclimate to high oceanic CO2, studies were conducted on an Antarctic Chlorella sp. Chlorella sp. maintained its growth rate (∼0.180 d-1), photosynthetic quantum yield (Fv/Fm = ∼0.69) and chlorophyll a (0.145 fg cell-1) and carotenoid (0.06 fg cell-1) contents under high CO2, while maximum rates of electron transport decreased and non-photochemical quenching increased under elevated CO2. GCMS-based metabolomic analysis reveal that this polar Chlorella strain modulated the levels of metabolites associated with energy, amino acid, fatty acid and carbohydrate production, which could favour its survival in an increasingly acidified ocean.
Collapse
Affiliation(s)
- Yong-Hao Tan
- Institute of Advanced Studies, University of Malaya, 50603 Kuala Lumpur, Malaysia; Institute of Ocean & Earth Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Phaik-Eem Lim
- Institute of Ocean & Earth Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - John Beardall
- School of Biological Sciences, Monash University, Clayton, Australia
| | - Sze-Wan Poong
- Institute of Ocean & Earth Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Siew-Moi Phang
- Institute of Ocean & Earth Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
4
|
Xu D, Schaum CE, Lin F, Sun K, Munroe JR, Zhang XW, Fan X, Teng LH, Wang YT, Zhuang ZM, Ye N. Acclimation of bloom-forming and perennial seaweeds to elevated pCO 2 conserved across levels of environmental complexity. GLOBAL CHANGE BIOLOGY 2017; 23:4828-4839. [PMID: 28346724 DOI: 10.1111/gcb.13701] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 03/16/2017] [Accepted: 03/17/2017] [Indexed: 05/23/2023]
Abstract
Macroalgae contribute approximately 15% of the primary productivity in coastal marine ecosystems, fix up to 27.4 Tg of carbon per year, and provide important structural components for life in coastal waters. Despite this ecological and commercial importance, direct measurements and comparisons of the short-term responses to elevated pCO2 in seaweeds with different life-history strategies are scarce. Here, we cultured several seaweed species (bloom forming/nonbloom forming/perennial/annual) in the laboratory, in tanks in an indoor mesocosm facility, and in coastal mesocosms under pCO2 levels ranging from 400 to 2,000 μatm. We find that, across all scales of the experimental setup, ephemeral species of the genus Ulva increase their photosynthesis and growth rates in response to elevated pCO2 the most, whereas longer-lived perennial species show a smaller increase or a decrease. These differences in short-term growth and photosynthesis rates are likely to give bloom-forming green seaweeds a competitive advantage in mixed communities, and our results thus suggest that coastal seaweed assemblages in eutrophic waters may undergo an initial shift toward communities dominated by bloom-forming, short-lived seaweeds.
Collapse
Affiliation(s)
- Dong Xu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | | | - Fan Lin
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Ke Sun
- First Institute of Oceanography, State Oceanic Administration, Qingdao, China
- Laboratory for Regional Oceanography and Numerical Modeling, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - James R Munroe
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Xiao W Zhang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Xiao Fan
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Lin H Teng
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Yi T Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Zhi M Zhuang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Naihao Ye
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
5
|
Li S, Huang J, Liu C, Liu Y, Zheng G, Xie L, Zhang R. Interactive Effects of Seawater Acidification and Elevated Temperature on the Transcriptome and Biomineralization in the Pearl Oyster Pinctada fucata. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:1157-1165. [PMID: 26727167 DOI: 10.1021/acs.est.5b05107] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Interactive effects of ocean acidification and ocean warming on marine calcifiers vary among species, but little is known about the underlying mechanisms. The present study investigated the combined effects of seawater acidification and elevated temperature (ambient condition: pH 8.1 × 23 °C, stress conditions: pH 7.8 × 23 °C, pH 8.1 × 28 °C, and pH 7.8 × 28 °C, exposure time: two months) on the transcriptome and biomineralization of the pearl oyster Pinctada fucata, which is an important marine calcifier. Transcriptome analyses indicated that P. fucata implemented a compensatory acid-base mechanism, metabolic depression and positive physiological responses to mitigate the effects of seawater acidification alone. These responses were energy-expensive processes, leading to decreases in the net calcification rate, shell surface calcium and carbon content, and changes in the shell ultrastructure. Elevated temperature (28 °C) within the thermal window of P. fucata did not induce significant enrichment of the sequenced genes and conversely facilitated calcification, which was detected to alleviate the negative effects of seawater acidification on biomineralization and the shell ultrastructure. Overall, this study will help elucidate the mechanisms by which pearl oysters respond to changing seawater conditions and predict the effects of global climate change on pearl aquaculture.
Collapse
Affiliation(s)
- Shiguo Li
- Institute of Marine Biotechnology, Collaborative Innovation Center of Deep Sea Biology, School of Life Sciences, Tsinghua University , Beijing 100084, China
| | - Jingliang Huang
- Institute of Marine Biotechnology, Collaborative Innovation Center of Deep Sea Biology, School of Life Sciences, Tsinghua University , Beijing 100084, China
| | - Chuang Liu
- Institute of Marine Biotechnology, Collaborative Innovation Center of Deep Sea Biology, School of Life Sciences, Tsinghua University , Beijing 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University , Beijing 100084, China
| | - Yangjia Liu
- Institute of Marine Biotechnology, Collaborative Innovation Center of Deep Sea Biology, School of Life Sciences, Tsinghua University , Beijing 100084, China
| | - Guilan Zheng
- Institute of Marine Biotechnology, Collaborative Innovation Center of Deep Sea Biology, School of Life Sciences, Tsinghua University , Beijing 100084, China
| | - Liping Xie
- Institute of Marine Biotechnology, Collaborative Innovation Center of Deep Sea Biology, School of Life Sciences, Tsinghua University , Beijing 100084, China
| | - Rongqing Zhang
- Institute of Marine Biotechnology, Collaborative Innovation Center of Deep Sea Biology, School of Life Sciences, Tsinghua University , Beijing 100084, China
| |
Collapse
|