1
|
Mridha D, Gorain PC, Joardar M, Das A, Majumder S, De A, Chowdhury NR, Lama U, Pal R, Roychowdhury T. Rice grain arsenic and nutritional content during post harvesting to cooking: A review on arsenic bioavailability and bioaccessibility in humans. Food Res Int 2022; 154:111042. [DOI: 10.1016/j.foodres.2022.111042] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/20/2022] [Accepted: 02/16/2022] [Indexed: 12/28/2022]
|
2
|
Rodríguez PF, Martín-Aranda RM, López Colón JL, de Mendoza JH. Ammonium acetate as a novel buffer for highly selective robust urinary HPLC-ICP-MS arsenic speciation methodology. Talanta 2021; 221:121494. [PMID: 33076099 DOI: 10.1016/j.talanta.2020.121494] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 07/25/2020] [Accepted: 07/30/2020] [Indexed: 10/23/2022]
Abstract
Ammonium acetate is employed in order to develop a novel HPLC-ICP-MS arsenic speciation methodology applicable to six arsenic species, i.e, AC, AB, AsIII, AsV, DMA and MMA. The most predominant species in the toxicological field are covered in a 30-min chromatogram with reproducible and repeatability peak area ratio. Moreover, typical problems from traditional methods are sorted out by using a robust, high-selective and 75ArCl+ interference-free methodology. Chromatographic and detector optimization ensures low LOQs for each species with acceptable precision and accuracy values obtained using four urinary arsenic speciation PTS enabling to be useful for sub ng mL-1 arsenic exposure assessments.
Collapse
Affiliation(s)
- P F Rodríguez
- Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), Paseo Senda del Rey 9, 28040, Madrid, Spain; Departamento de Espectroscopía Atómica de Emisión, Instituto de Toxicología de La Defensa (ITOXDEF), Glorieta Del Ejército 1, 28047, Madrid, Spain.
| | - R M Martín-Aranda
- Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), Paseo Senda del Rey 9, 28040, Madrid, Spain
| | - J L López Colón
- Departamento de Espectroscopía Atómica de Emisión, Instituto de Toxicología de La Defensa (ITOXDEF), Glorieta Del Ejército 1, 28047, Madrid, Spain
| | - J H de Mendoza
- Departamento de Espectroscopía Atómica de Emisión, Instituto de Toxicología de La Defensa (ITOXDEF), Glorieta Del Ejército 1, 28047, Madrid, Spain
| |
Collapse
|
3
|
Mandal U, Singh P, Kundu AK, Chatterjee D, Nriagu J, Bhowmick S. Arsenic retention in cooked rice: Effects of rice type, cooking water, and indigenous cooking methods in West Bengal, India. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 648:720-727. [PMID: 30130735 DOI: 10.1016/j.scitotenv.2018.08.172] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 08/10/2018] [Accepted: 08/13/2018] [Indexed: 06/08/2023]
Abstract
This study evaluated the concentration of arsenic in paired raw and cooked rice prepared by individual households in arsenic-endemic rural area of West Bengal. The aim was to investigate how the cooking habits of rural villagers of West Bengal might influence the arsenic content of rice meals. It was found that the use of arsenic-rich groundwater for cooking could elevate the arsenic concentration in cooked rice (up to 129% above the raw sample), thereby enhancing the vulnerability of the rural population of West Bengal to arsenic exposure through rice consumption. The risk is heightened by the habit of drinking the stewed rice water (gruel) in the local communities. The cooking method employed, rice variety, background arsenic concentration in raw rice and cooking water arsenic concentration were found to be important predisposing factors that could affect the accumulation of arsenic in cooked form. The fundamental indigenous cooking practice followed by the villagers requires use of low-arsenic water for cooking as a necessary strategy to alleviate arsenic exposure in their staple food.
Collapse
Affiliation(s)
- Ujjal Mandal
- Department of Chemistry, University of Kalyani, Kalyani, Nadia, West Bengal 741235, India
| | - Payel Singh
- Department of Chemistry, University of Kalyani, Kalyani, Nadia, West Bengal 741235, India; Kolkata Zonal Center, CSIR-National Environmental Engineering Research Institute (NEERI), Kolkata, West Bengal 700107, India
| | - Amit Kumar Kundu
- Department of Chemistry, University of Kalyani, Kalyani, Nadia, West Bengal 741235, India
| | - Debashis Chatterjee
- Department of Chemistry, University of Kalyani, Kalyani, Nadia, West Bengal 741235, India.
| | - Jerome Nriagu
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, 109 Observatory Street, Ann Arbor, MI 48109-2029, USA
| | - Subhamoy Bhowmick
- Kolkata Zonal Center, CSIR-National Environmental Engineering Research Institute (NEERI), Kolkata, West Bengal 700107, India.
| |
Collapse
|
4
|
Beck R, Bommarito P, Douillet C, Kanke M, Del Razo LM, García-Vargas G, Fry RC, Sethupathy P, Stýblo M. Circulating miRNAs Associated with Arsenic Exposure. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:14487-14495. [PMID: 30457847 PMCID: PMC7036137 DOI: 10.1021/acs.est.8b06457] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Arsenic (As) is a toxic metalloid. Inorganic arsenic (iAs) is a form of As commonly found in drinking water and in some foods. Overwhelming evidence suggests that people chronically exposed to iAs are at risk of developing cancer or cardiovascular, neurological, and metabolic diseases. Although the mechanisms underlying iAs-associated illness remain poorly characterized, a growing body of literature raises the possibility that microRNAs (miRNAs), post-transcriptional gene suppressors, may serve as mediators and/or early indicators of the pathologies associated with iAs exposure. To characterize the circulating miRNA profiles of individuals chronically exposed to iAs, samples of plasma were collected from 109 healthy residents of the city of Zimapán and the Lagunera area in Mexico, the regions with historically high exposures to iAs in drinking water. These plasma samples were analyzed for small RNAs using high-throughput sequencing and for iAs and its methylated metabolites. Associations between plasma levels of arsenic species and miRNAs were evaluated. Six circulating miRNAs (miRs-423-5p, -142-5p -2, -423-5p +1, -320c-1, -320c-2, and -454-5p), two of which have been previously linked to cardiovascular disease and diabetes (miRs-423-5p, -454-5p), were found to be significantly correlated with plasma MAs. No miRNAs were associated with plasma iAs or DMAs after correction for multiple testing. These miRNAs may represent mechanistic links between iAs exposure and disease or serve as markers of disease risks associated with this exposure.
Collapse
Affiliation(s)
- Rowan Beck
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Paige Bommarito
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Christelle Douillet
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Matt Kanke
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - Luz M Del Razo
- Department of Toxicology, Center of Investigation and of Advanced Studies of the National Polytechnic Institute (Cinvestav-IPN), México City, Mexico
| | | | - Rebecca C. Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Praveen Sethupathy
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York
- Corresponding Authors: Praveen Sethupathy, ; Miroslav Styblo,
| | - Miroslav Stýblo
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Corresponding Authors: Praveen Sethupathy, ; Miroslav Styblo,
| |
Collapse
|
5
|
Ye L, Qiu S, Li X, Jiang Y, Jing C. Antimony exposure and speciation in human biomarkers near an active mining area in Hunan, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 640-641:1-8. [PMID: 29852442 DOI: 10.1016/j.scitotenv.2018.05.267] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/22/2018] [Accepted: 05/22/2018] [Indexed: 06/08/2023]
Abstract
Antimony (Sb) exposure threatens human health. To identify human biomarkers for Sb exposure, we analyzed 480 environmental samples from an active Sb mining area in Hunan, China. Elevated Sb concentrations exceeding the reference level were detected in drinking water (70% of n = 83 total samples), foods (80%, n = 188), urine (95%, n = 63), saliva (44%, n = 48), hair (80%, n = 51) and nails (83%, n = 47). Drinking water contributed 85%-100% of the average daily dose (ADD) of Sb, and the total ADD (11.7 μg/kg bodyweight/day) was up to thirty times higher than the oral reference dose (0.4 μg/kg bodyweight/day) as recommended by USEPA. A positive correlation was found between ADD and Sb content in hair (p = 0.02), but not in urine (p = 0.051), saliva (p = 0.52) or nails (p = 0.85), suggesting that hair is the best non-invasive biomarker. Micro X-ray fluorescence analysis indicated that Sb is distributed in discrete spots in hair and nails, and Sb distribution is correlated with other metals. Methylated Sb species were predominant in urine (46%-100%) and saliva (74%-100%) in collected samples, implying that the human metabolic system adopts methylation as an effective pathway to detoxify and excrete Sb.
Collapse
Affiliation(s)
- Li Ye
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shixin Qiu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinhai Li
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuxuan Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chuanyong Jing
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
6
|
Bhowmick S, Pramanik S, Singh P, Mondal P, Chatterjee D, Nriagu J. Arsenic in groundwater of West Bengal, India: A review of human health risks and assessment of possible intervention options. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 612:148-169. [PMID: 28850835 DOI: 10.1016/j.scitotenv.2017.08.216] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 08/15/2017] [Accepted: 08/20/2017] [Indexed: 05/03/2023]
Abstract
This paper reviews how active research in West Bengal has unmasked the endemic arsenism that has detrimental effects on the health of millions of people and their offspring. It documents how the pathways of exposure to this toxin/poison have been greatly expanded through intensive application of groundwater in agriculture in the region within the Green Revolution framework. A goal of this paper is to compare and contrast the similarities and differences in arsenic occurrence in West Bengal with those of other parts of the world and assess the unique socio-cultural factors that determine the risks of exposure to arsenic in local groundwater. Successful intervention options are also critically reviewed with emphasis on integrative strategies that ensure safe water to the population, proper nutrition, and effective ways to reduce the transfer of arsenic from soil to crops. While no universal model may be suited for the vast areas of the world affected with by natural contamination of groundwater with arsenic, we have emphasized community-specific sustainable options that can be adapted. Disseminating scientifically correct information among the population coupled with increased community level participation and education are recognized as necessary adjuncts for an engineering intervention to be successful and sustainable.
Collapse
Affiliation(s)
- Subhamoy Bhowmick
- Kolkata Zonal Center, CSIR-National Environmental Engineering Research Institute (NEERI), Kolkata, West Bengal 700107, India.
| | - Sreemanta Pramanik
- Kolkata Zonal Center, CSIR-National Environmental Engineering Research Institute (NEERI), Kolkata, West Bengal 700107, India
| | - Payel Singh
- Kolkata Zonal Center, CSIR-National Environmental Engineering Research Institute (NEERI), Kolkata, West Bengal 700107, India
| | - Priyanka Mondal
- Ceramic Membrane Division, CSIR-Central Glass and Ceramic Research Institute (CGCRI), Raja S.C. Mullick Road, Kolkata 700032, India
| | - Debashis Chatterjee
- Department of Chemistry, University of Kalyani, Kalyani, Nadia, West Bengal 741235, India
| | - Jerome Nriagu
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, 109 Observatory Street, Ann Arbor, MI 48109-2029, USA
| |
Collapse
|
7
|
Liu T, Guo H, Xiu W, Wei C, Li X, Di Z, Song W. Biomarkers of arsenic exposure in arsenic-affected areas of the Hetao Basin, Inner Mongolia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 609:524-534. [PMID: 28763649 DOI: 10.1016/j.scitotenv.2017.07.120] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 07/07/2017] [Accepted: 07/13/2017] [Indexed: 05/12/2023]
Abstract
Seventy saliva samples, seventy urine samples, seventy nail samples, seventy hair samples, eight drinking water samples and ninety-three crop samples were collected from four villages of the Hetao Basin in Inner Mongolia to determine arsenic (As) exposure biomarkers and evaluate relationship between As uptake and human health risk. Trivalent As (As(III)), pentavalent As (As(V)), dimethylarsinic acid (DMA), arsenobetaine (AsB) and monomethylarsonic acid (MMA) were found in all urine samples. Only As(III) and As(V) were detected in saliva samples. In nail and hair samples, DMA, MMA, As(III) and As(V) were observed. Based on total As contents in crops and drinking water, the local residents' daily intake of total arsenic (TDIAs), the hazard quotient (HQ), and the cancer risk (R) were assessed. Male, older and cases of skin lesion participants generally had higher As contents in saliva, urine, nail and hair samples in relative to others. Salivary, urinary, nail and hair As were not significantly affected by body mass index (BMI) and smoking. Good correlations were observed between TDIAs and salivary, urinary, nail and hair As, showing that saliva, urine, nail and hair samples can be used as biomarkers of As exposure. Individually, levels of arsenicosis were positively correlated with TDIAs. The relationship between TDIAs and prevalence of arsenicosis concluded that, although As levels in crops and drinking water did not exceed national standards, they still pose a potential threat to human health. It was suggested that the maximum permissible levels of crop As and drinking water As should be re-evaluated for protecting human health.
Collapse
Affiliation(s)
- Ting Liu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Huaming Guo
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Beijing), Beijing 100083, PR China; School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China.
| | - Wei Xiu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Chao Wei
- The National Institute of Metrology, Beijing 100013, PR China
| | - Xiaomeng Li
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Zhen Di
- Hangjinhouqi Center of Diseases Prevention and Control, Shanba 015400, PR China
| | - Wei Song
- Hangjinhouqi Center of Diseases Prevention and Control, Shanba 015400, PR China
| |
Collapse
|
8
|
Wang D, Shimoda Y, Wang S, Wang Z, Liu J, Liu X, Jin H, Gao F, Tong J, Yamanaka K, Zhang J, An Y. Total arsenic and speciation analysis of saliva and urine samples from individuals living in a chronic arsenicosis area in China. Environ Health Prev Med 2017; 22:45. [PMID: 29165156 PMCID: PMC5664814 DOI: 10.1186/s12199-017-0652-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 04/20/2017] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND It is generally acknowledged that the determination of harmful chemical compounds excreted into saliva is useful for assessing their exposure levels. The aim of the present study was to compare the total arsenic and its species in saliva and urine samples collected from the people residing in an arsenic-contaminated area of China and to further verify the feasibility of using salivary arsenic as a new biomarker of arsenic exposure. METHODS Total arsenic and speciation analyses in urine and saliva samples among 70 residents exposed to arsenic from drinking water in Shanxi, China were carried out by high-performance liquid chromatography-inductively coupled plasma-mass spectrometry (HPLC-ICP/MS). RESULTS The result showed that, total arsenic concentration in saliva was relatively lower than in urine samples, but it existed a strong positive correlation with total urinary arsenic, drinking water arsenic and different skin lesions. For arsenic metabolism analyses, AsIII, AsV, MMA, and DMA were detected in all of the urine samples with the dominating species of DMA (73.2%). Different with urinary arsenic species, most arsenic species in saliva were not methylated. The major species in saliva was iAs (AsIII + AsV, 76.18%), followed by DMA (13.08%) and MMA (9.13%). And the primary methylation index (PMI), second methylation index (SMI) and proportion of the four different species (AsIII, AsV, MMA, and DMA) in saliva showed no significant positive relationship with that of in urine. CONCLUSIONS These findings indicated saliva may be used as a useful tool for biological monitoring of total arsenic exposure in the crowd rather than an efficient tool for assessing arsenic metabolism in human body after exposed to arsenic.
Collapse
Affiliation(s)
- Dapeng Wang
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, Jiangsu, 215123, People's Republic of China
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yasuyo Shimoda
- Laboratory of Environmental Toxicology and Carcinogenesis, School of Pharmacy, Nihon University, Chiba, Japan
| | - Sanxiang Wang
- Shanxi Institute for Prevention and Treatment of Endemic Disease, Linfen, Shanxi, People's Republic of China
| | - Zhenghui Wang
- Shanxi Institute for Prevention and Treatment of Endemic Disease, Linfen, Shanxi, People's Republic of China
| | - Jian Liu
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, Jiangsu, 215123, People's Republic of China
| | - Xing Liu
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, Jiangsu, 215123, People's Republic of China
| | - Huanyu Jin
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, Jiangsu, 215123, People's Republic of China
| | - Fenfang Gao
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, Jiangsu, 215123, People's Republic of China
| | - Jian Tong
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, Jiangsu, 215123, People's Republic of China
| | - Kenzo Yamanaka
- Laboratory of Environmental Toxicology and Carcinogenesis, School of Pharmacy, Nihon University, Chiba, Japan
| | - Jie Zhang
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, Jiangsu, 215123, People's Republic of China.
| | - Yan An
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, Jiangsu, 215123, People's Republic of China.
| |
Collapse
|
9
|
Oliveira A, Gonzalez MH, Queiroz HM, Cadore S. Fractionation of inorganic arsenic by adjusting hydrogen ion concentration. Food Chem 2016; 213:76-82. [DOI: 10.1016/j.foodchem.2016.06.055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 06/14/2016] [Accepted: 06/17/2016] [Indexed: 01/21/2023]
|
10
|
Bhowmick S, Kundu AK, Adhikari J, Chatterjee D, Iglesias M, Nriagu J, Guha Mazumder DN, Shomar B, Chatterjee D. Assessment of toxic metals in groundwater and saliva in an arsenic affected area of West Bengal, India: A pilot scale study. ENVIRONMENTAL RESEARCH 2015; 142:328-36. [PMID: 26188634 DOI: 10.1016/j.envres.2015.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 07/06/2015] [Accepted: 07/07/2015] [Indexed: 05/13/2023]
Abstract
Communities in many parts of the world are unintentionally exposed to arsenic (As) and other toxic metals through ingestion of local drinking water and foods. The concentrations of individual toxic metals often exceed their guidelines in drinking water but the health risks associated with such multiple-metal exposures have yet to receive much attention. This study examines the co-occurrence of toxic metals in groundwater samples collected from As-rich areas of Nadia district, West Bengal, India. Arsenic in groundwater (range: 12-1064 µg L(-1); mean ± S.D: 329±294 µg L(-1)) was the most important contaminant with concentrations well above the WHO guideline of 10 µg L(-1). Another important toxic metal in the study area was manganese (Mn) with average concentration of 202±153 µg L(-1), range of 18-604 µg L(-1). The average concentrations (µg L(-1)) of other elements in groundwater were: Cr (5.6±5.9), Mo (3.5±2.1), Ni (8.3±8.7), Pb (2.9±1.3), Ba (119±43), Zn (56±40), Se (0.60±0.33), U (0.50±0.74). Saliva collected from the male participants of the area had mean concentrations of 6.3±7.0 µg As L(-1) (0.70-29 µg L(-1)), 5.4±5.5 µg Mn L(-1) (0.69-22 µg L(-1)), 2.6±3.1 µg Ni L(-1) (0.15-13 µg L(-1)), 0.78±1.0µg Cr L(-1) (<DL-5.9 µg L(-1)), 0.94±0.90 µg Pb L(-1) (<DL-4.2 µg L(-1)), 0.56±0.37 µg Se L(-1) (0.11-1.5 µg L(-1)) and 194±54 µg Zn L(-1) (112-369 µg L(-1)). The high concentrations of salivary As and Mn are believed to be indicative of intake from the groundwater. The clustering of salivary As and Mn in principal component analysis further indicated influence of the common exposure source. Zinc and selenium comprised a separate component presumably reflecting the local deficiencies in intakes of these essential elements from drinking water and foodstuff. Thus the study reveals that the concentration of other metals beside As must be monitored in drinking water before implementation of any policies to provide safe water to the affected communities.
Collapse
Affiliation(s)
- Subhamoy Bhowmick
- Department of Chemistry, University of Kalyani, Nadia 741235, West Bengal, India; Qatar Environment and Energy Research Institute (QEERI), Qatar Foundation, P.O. Box 5825, Doha, Qatar.
| | - Amit Kumar Kundu
- Department of Chemistry, University of Kalyani, Nadia 741235, West Bengal, India
| | - Jishnu Adhikari
- Department of Microbiology, Vijaygarh Jyotish Ray College, 8/2 Bejoygarh, Jadavpur, Kolkata 700032, India
| | - Debankur Chatterjee
- JB Enviro Consultants PVT. LTD., "Utsab"10/B, Lake East 5th Road, Ground Floor, Santoshpur, Jadavpur, Kolkata 700075, India
| | - Monica Iglesias
- Department of Chemistry, University of Girona, Campus Montilivi, 17071 Girona, Spain
| | - Jerome Nriagu
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, 109 Observatory Street, Ann Arbor, MI 48109-2029, USA
| | | | - Basem Shomar
- Qatar Environment and Energy Research Institute (QEERI), Qatar Foundation, P.O. Box 5825, Doha, Qatar
| | - Debashis Chatterjee
- Department of Chemistry, University of Kalyani, Nadia 741235, West Bengal, India.
| |
Collapse
|