1
|
Galbán-Malagón C, Gómez-Aburto VA, Hirmas-Olivares A, Luarte T, Berrojalbiz N, Dachs J. Dichlorodiphenyltrichloroethane (DDT) and Dichlorodiphenyldichloroethylene (DDE) levels in air and surface sea waters along the Antarctic Peninsula. MARINE POLLUTION BULLETIN 2023; 197:115699. [PMID: 37924734 DOI: 10.1016/j.marpolbul.2023.115699] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/25/2023] [Accepted: 10/19/2023] [Indexed: 11/06/2023]
Abstract
Persistent organic pollutants (POPs) are widespread worldwide, even reaching polar regions. Among POPs, dichlorodiphenyltrichloroethane (DDT) and their metabolites have been reported scarcely in the Antarctic environment. Here we report the levels of p,p'-DDT, o,p'-DDT, p,p'-DDE, and o,p'-DDE in air and water samples collected during austral summer 2009. The levels found ranged from 0.25 to 4.26 pg m-3 in the atmospheric samples while in the water samples ranged from 0.07 to 0.25 pg L-1. These concentrations were within the range of the reported concentrations in the last 20 years in Antarctica. However, the source ratio showed that most of p,p'-DDT comes from fresh applications and Dicofol formulations. The back-trajectories estimated for the air masses revealed that most of the p,p'-DDT came from the continental Antarctic peninsula and surrounding waters. The diffusive exchange direction showed that Antarctic surface waters are the final sink of the studied compounds during the survey period.
Collapse
Affiliation(s)
- Cristóbal Galbán-Malagón
- GEMA Center for Genomics, Ecology & Environment, Universidad Mayor, Camino La Pirámide 5750, Huechuraba, Santiago, Chile; Anillo en Ciencia y Tecnología Antártica POLARIX, Chile; Institute for Environment, Florida International University, Miami, FL, USA.
| | | | - Andrea Hirmas-Olivares
- GEMA Center for Genomics, Ecology & Environment, Universidad Mayor, Camino La Pirámide 5750, Huechuraba, Santiago, Chile
| | - Thais Luarte
- GEMA Center for Genomics, Ecology & Environment, Universidad Mayor, Camino La Pirámide 5750, Huechuraba, Santiago, Chile; PhD Program in Conservation Medicine, Universidad Andrés Bello, Santiago, Chile
| | - Naiara Berrojalbiz
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain
| | - Jordi Dachs
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain
| |
Collapse
|
2
|
Xu Y, Wang Y, Yang C, Zhao S, Zhang H. The soil-air exchange of OCPs and PCBs in the Tibetan Plateau: Emphasis on episodic transport of unintentionally produced PCBs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162453. [PMID: 36842574 DOI: 10.1016/j.scitotenv.2023.162453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/20/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) in paired ambient and surface air fugacity samples were measured in the Tibetan Plateau (TP) from 2019 to 2022. The air concentrations of previously intentionally produced chemicals like dichlorodiphenyltrichloroethane (DDT) and hexachlorocyclohexane (HCH) declined. Their soil-air exchange direction ranged from equilibrium to volatilization, suggesting that the TP is acting as a secondary source of most OCPs and PCBs with the pollution alleviation. However, considerably high atmospheric levels of PCB-11, an indicator of unintentionally produced PCBs (UP-PCBs), were recorded in the southern TP. Strong episodic long-range atmospheric transport (LRAT) and deposition of PCB-11 events took place mostly in summer. Those events associated with winds from potential sources and less rainfall interception along the air mass transport routes accounted for a significant fraction of overall atmospheric deposition in the TP. Meanwhile, cryoturbation and plowing are suspected to be important factors contributing to the reemission of PCB-11 from surface soil. The high abundance of PCB-11 and strong deposition/evaporation events highlights potential environmental and health risks of UP-POPs in the TP.
Collapse
Affiliation(s)
- Yue Xu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| | - Yan Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Chenmeng Yang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Shizhen Zhao
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Haiyan Zhang
- The Johns Hopkins University-Nanjing University Center for Chinese and American Studies, Nanjing University, Nanjing 210093, China
| |
Collapse
|
3
|
Hung H, Halsall C, Ball H, Bidleman T, Dachs J, De Silva A, Hermanson M, Kallenborn R, Muir D, Sühring R, Wang X, Wilson S. Climate change influence on the levels and trends of persistent organic pollutants (POPs) and chemicals of emerging Arctic concern (CEACs) in the Arctic physical environment - a review. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:1577-1615. [PMID: 35244108 DOI: 10.1039/d1em00485a] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Climate change brings about significant changes in the physical environment in the Arctic. Increasing temperatures, sea ice retreat, slumping permafrost, changing sea ice regimes, glacial loss and changes in precipitation patterns can all affect how contaminants distribute within the Arctic environment and subsequently impact the Arctic ecosystems. In this review, we summarized observed evidence of the influence of climate change on contaminant circulation and transport among various Arctic environment media, including air, ice, snow, permafrost, fresh water and the marine environment. We have also drawn on parallel examples observed in Antarctica and the Tibetan Plateau, to broaden the discussion on how climate change may influence contaminant fate in similar cold-climate ecosystems. Significant knowledge gaps on indirect effects of climate change on contaminants in the Arctic environment, including those of extreme weather events, increase in forests fires, and enhanced human activities leading to new local contaminant emissions, have been identified. Enhanced mobilization of contaminants to marine and freshwater ecosystems has been observed as a result of climate change, but better linkages need to be made between these observed effects with subsequent exposure and accumulation of contaminants in biota. Emerging issues include those of Arctic contamination by microplastics and higher molecular weight halogenated natural products (hHNPs) and the implications of such contamination in a changing Arctic environment is explored.
Collapse
Affiliation(s)
- Hayley Hung
- Air Quality Processes Research Section, Environment and Climate Change Canada, 4905 Dufferin Street, Toronto, Ontario M5P 1W4, Canada.
| | - Crispin Halsall
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Hollie Ball
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Terry Bidleman
- Department of Chemistry, Umeå University, Umeå, SE-901 87, Sweden
| | - Jordi Dachs
- Institute of Environmental Assessment and Water Research, Spanish National Research Council (IDAEA-CSIC), Barcelona, Catalonia 08034, Spain
| | - Amila De Silva
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlington, Ontario L7S 1A1, Canada
| | - Mark Hermanson
- Hermanson & Associates LLC, 2000 W 53rd Street, Minneapolis, Minnesota 55419, USA
| | - Roland Kallenborn
- Department of Arctic Technology, University Centre in Svalbard (UNIS), Longyearbyen, 9171, Norway
- Faculty of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life Sciences (NMBU), Ås, 1432, Norway
| | - Derek Muir
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlington, Ontario L7S 1A1, Canada
| | - Roxana Sühring
- Department for Environmental Science, Stockholm University, 114 19 Stockholm, Sweden
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario M5B 2K3, Canada
| | - Xiaoping Wang
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Simon Wilson
- Arctic Monitoring and Assessment Programme Secretariat, The Fram Centre, 9296 Tromsø, Norway
| |
Collapse
|
4
|
Wu M, Luo J, Huang T, Lian L, Chen T, Song S, Wang Z, Ma S, Xie C, Zhao Y, Mao X, Gao H, Ma J. Effects of African BaP emission from wildfire biomass burning on regional and global environment and human health. ENVIRONMENT INTERNATIONAL 2022; 162:107162. [PMID: 35247686 DOI: 10.1016/j.envint.2022.107162] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
The vegetation burning caused by wildfires can release significant quantities of aerosols and toxic chemicals into the atmosphere and result in health risk. Among these emitted pollutants, Benzo(a)pyrene (BaP), the most toxic congener of 16 parent PAHs (polycyclic aromatic hydrocarbons), has received widespread concerns because of its carcinogenicity to human health. Efforts have been made to investigate the environmental and health consequences of wildfire-induced BaP emissions in Africa. Still, uncertainties remain due to knowledge and data gaps in wildfire incidences and biomass burning emissions. Based on a newly-developed BaP emission inventory, the present study assesses quantitatively the BaP environment cycling in Africa and its effects on other continents from 2001 to 2014. The new inventory reveals the increasing contribution of BaP emission from African wildfires to the global total primarily from anthropogenic sources, accounting for 48% since the 2000 s. We identify significantly higher BaP emissions and concentrations across sub-Saharan Africa, where the annual averaged BaP concentrations were as high as 5-8 ng/m3. The modeled BaP concentrations were implemented to estimate the lifetime cancer risk (LCR) from the inhalation exposure to BaP concentrations. The results reveal that the LCR values in many African countries exceeded the acceptable risk level at 1 × 10-6, some of which suffer from very high exposure risk with the LCR>1 × 10-4. We show that the African BaP emission from wildfires contributed, to some extent, BaP contamination to Europe as well as other regions, depending on source proximity and atmospheric pathways under favorable atmospheric circulation patterns.
Collapse
Affiliation(s)
- Min Wu
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jinmu Luo
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Tao Huang
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Lulu Lian
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Tianlei Chen
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Shijie Song
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Zhanxiang Wang
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Shuxin Ma
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Chaoran Xie
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yuan Zhao
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xiaoxuan Mao
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Hong Gao
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jianmin Ma
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China; Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
5
|
Couvidat F, Bedos C, Gagnaire N, Carra M, Ruelle B, Martin P, Poméon T, Alletto L, Armengaud A, Quivet E. Simulating the impact of volatilization on atmospheric concentrations of pesticides with the 3D chemistry-transport model CHIMERE: Method development and application to S-metolachlor and folpet. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127497. [PMID: 34673398 DOI: 10.1016/j.jhazmat.2021.127497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/08/2021] [Accepted: 10/10/2021] [Indexed: 06/13/2023]
Abstract
A module to simulate the volatilization of pesticides from soils and plants was implemented in the air quality model CHIMERE in order to simulate spatiotemporal distribution of pesticide atmospheric concentrations. Pesticide applications are spatially distributed according to the quantities of pesticides sold per municipality in France (recorded in the French BNVD-S database) and are temporally distributed according to the application periods determined with enquiries. The model was applied to S-metolachlor and folpet. In the first stage of the study, pesticide emissions simulated by the CHIMERE and Volt'Air models are compared. In the second stage, measured concentrations of S-metolachlor and folpet from mid-April to the end of June are compared to the simulation results at the French and PACA (Southeastern region of France) scales. The model can reproduce the spatial distribution of S-metolachlor concentrations (spatial correlation over France of 0.79) with a bias ranging from -50 to 50% for most stations during the application period. The simulation of folpet concentrations remains challenging with a lack of correlation between model results and measurements, that could possibly be due to a lack of precision in the temporalization of applications.
Collapse
Affiliation(s)
- Florian Couvidat
- INERIS, Institut National de l'Environnement Industriel et des Risques, Parc Technologique ALATA, Verneuil-en-Halatte 60550, France.
| | - Carole Bedos
- Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, 78850 Thiverval-Grignon, France
| | - Nathalie Gagnaire
- Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, 78850 Thiverval-Grignon, France
| | - Mathilde Carra
- ITAP, Univ Montpellier, INRAE, Institut Agro, Montpellier, France
| | | | - Philippe Martin
- UMR SADAPT, AgroParisTech, INRAE, Université Paris-Saclay, 78850 Thiverval-Grignon, France
| | | | - Lionel Alletto
- Université de Toulouse, INRAE, UMR AGIR, F-31326 Castanet-Tolosan, France
| | | | | |
Collapse
|
6
|
Wang ZX, Lian LL, Li JX, He J, Ma HB, Chen LL, Mao XX, Gao H, Ma JM, Huang T. The atmospheric lead emission, deposition, and environmental inequality driven by interprovincial trade in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 797:149113. [PMID: 34303976 DOI: 10.1016/j.scitotenv.2021.149113] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/20/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
Lead (Pb) as a hazardous air pollutant has raised widespread concerns due to its adverse and toxic effects on the ecological environment and human health. Here we integrated the multi-regional input-output (MRIO) model and an atmospheric transport model to examine regional environmental inequality (REI) index induced by Pb emission transfers, and to evaluate the impacts of interprovincial trade on regional atmospheric Pb concentrations and dry deposition fluxes in China in 2012. In 2012, approximately 57.4% ~ 72.6% of Pb emissions in well-developed eastern regions (Beijing-Tianjin, Yangtze River Delta (YRD)) and the southern seaboard of China were embodied in other regions in China subject to the demands from these well-developed regions to industrial products and services. Our results, based on the net virtual flows of Pb emission and value-added, indicate that most provinces in the eastern seaboard of China outsource Pb emission and benefit from the interprovincial trade by reducing their Pb emissions. REI indexes show that the well-developed Guangdong province outsources its Pb emission but has low economic gains. Many less-developed provinces in central China enhance virtual Pb emission inflow but have high economic gains. Whereas, inland provinces in western China not only experience Pb emission increase, but also suffer from indirect economic loss due to trade with well-developed provinces to meet their increasing demands to Pb emission abundant industrial products from these provinces in eastern China which are mostly provided by less-developed but energy and mineral product abundant provinces in western China. For example, the province pair with highest REI index was Jiangsu-Inner Mongolia (REI = 2.47), which revealed that Jiangsu was the largest beneficiary which exported 37.2 t of net Pb emission and gained value-added of 521.4 billion RMB through trade with Inner Mongolia which suffered from both virtual Pb inflow and economic loss in 2012. As a result of interprovincial trade, Pb dry deposition in central and eastern China was decreased but increased in western China. Overall, interprovincial trade reduced 17.6% of atmospheric Pb dry deposition in China.
Collapse
Affiliation(s)
- Zhan-Xiang Wang
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Lu-Lu Lian
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Ji-Xiang Li
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jian He
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Hai-Bo Ma
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Lu-Lu Chen
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xiao-Xuan Mao
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Hong Gao
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Jian-Min Ma
- College of Urban and Environmental Science, Peking University, Beijing 100871, China
| | - Tao Huang
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
7
|
Chen K, Huang T, Zhang X, Liu X, Huang Y, Wang L, Zhao Y, Gao H, Tao S, Liu J, Jian X, Gusev A, Ma J. The footprint of dioxins in globally traded pork meat. iScience 2021; 24:103255. [PMID: 34755094 PMCID: PMC8564055 DOI: 10.1016/j.isci.2021.103255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/30/2021] [Accepted: 10/08/2021] [Indexed: 11/29/2022] Open
Abstract
The bioaccumulation of polychlorinated dibenzo-p-dioxins/furans (PCDD/Fs), known as dioxins, in fatty meat is one of primary pathways of entry into the human body, but levels of human exposure to dioxins in fatty meat subject to global trade are unknown. We show high dioxin estimated dietary intake (EDI) via pork consumption in Europe, the United States, and China, owing to stronger dioxin environmental contamination and high pork consumption in these countries. The dioxin risk transfer embodied in pork trade is mostly significant in high-latitude countries and regions of Canada, Russia, and Greenland because these regions with low dioxin environmental levels import large amounts of pork meat from more severely dioxin-contaminated Europe and the United States. We demonstrate that global pig feed trading decreases the exposure of pork consumers to dioxins via the import of feed from countries with low dioxin environmental contamination by pig breeding countries.
Collapse
Affiliation(s)
- Kaijie Chen
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Tao Huang
- Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xiaodong Zhang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Xinrui Liu
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yufei Huang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Linfei Wang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yuan Zhao
- Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Hong Gao
- Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Shu Tao
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Junfeng Liu
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Xiaohu Jian
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Alexey Gusev
- Meteorological Synthesizing Centre-East, Convention on Long-Range Transboundary Air Pollution, Moscow, Russia
| | - Jianmin Ma
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.,Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
8
|
|
9
|
Zhao Y, Wang L, Luo J, Huang T, Tao S, Liu J, Yu Y, Huang Y, Liu X, Ma J. Deep Learning Prediction of Polycyclic Aromatic Hydrocarbons in the High Arctic. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:13238-13245. [PMID: 31633339 DOI: 10.1021/acs.est.9b05000] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Given the lack of understanding of the complex physiochemical and environmental processes of persistent organic pollutants (POPs) in the Arctic and around the globe, atmospheric models often yield large errors in the predicted atmospheric concentrations of POPs. Here, we developed a recurrent neural network (RNN) method based on nonparametric deep learning algorithms. The RNN model was implemented to predict monthly air concentrations of polycyclic aromatic hydrocarbons (PAHs) at the high Arctic monitoring station Alert. To train the RNN system, we used MODIS satellite remotely sensed forest fire data, air emissions, meteorological data, sea ice cover area, and sampled PAH concentration data from 1996 to 2012. The system was applied to forecast monthly PAH concentrations from 2012 to 2014 at the Alert station. The results were compared with monitored PAHs and an atmospheric transport model (CanMETOP) for POPs. We show that the RNN significantly improved PHE and BaP predictions from 2012 to 2014 by 62.5 and 91.1%, respectively, compared to CanMETOP predictions. The sensitivity analysis using the Shapley value reveals that air emissions determined the magnitude of PAH levels in the high Arctic, whereas forest fires played a significant role in the changes in PAH concentrations in the high Arctic, followed by air temperature and meridional wind fields.
Collapse
Affiliation(s)
- Yuan Zhao
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences , Peking University , Beijing 100871 , China
| | - Li Wang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province , Lanzhou Institute of Chemical Physics , Chinese Academy of Sciences , Lanzhou 730000 , China
| | - Jinmu Luo
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences , Peking University , Beijing 100871 , China
| | - Tao Huang
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences , Lanzhou University , Lanzhou 730000 , China
| | - Shu Tao
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences , Peking University , Beijing 100871 , China
| | - Junfeng Liu
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences , Peking University , Beijing 100871 , China
| | - Yong Yu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology , Chinese Academy of Sciences , Changchun 130102 , China
| | - Yufei Huang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences , Peking University , Beijing 100871 , China
| | - Xinrui Liu
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences , Peking University , Beijing 100871 , China
| | - Jianmin Ma
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences , Peking University , Beijing 100871 , China
| |
Collapse
|
10
|
Cui S, Fu Q, Tian C, Zhang Z, Hough R, Shen Z, Ma J, An L, Li YF. Modeling primary and secondary fractionation effects and atmospheric transport of polychlorinated biphenyls through single-source emissions. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2019; 41:1939-1951. [PMID: 30739235 DOI: 10.1007/s10653-019-00252-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 01/27/2019] [Indexed: 06/09/2023]
Abstract
The Chinese Gridded Industrial Pollutants Emission and Residue Model (ChnGIPERM) was used to investigate potential fractionation effects and atmospheric transport of polychlorinated biphenyls (PCBs) derived from single-source emissions in China. Modeling the indicative PCBs (CB28, CB101, CB153, and CB180) revealed spatiotemporal trends in atmospheric transport, gas/particle partitioning, and primary and secondary fractionation effects. These included the inference that the Westerlies and East Asian monsoons affect atmospheric transport patterns of PCBs by influencing the atmospheric transport time (ATT). In this study, dispersion pathways with long ATTs in winter tended to have short ones in summer and vice versa. The modeled partitioning of PCB congeners between gas and particles was mainly controlled by temperature, which can further influence the ATT. The potential for primary and secondary fractionation was explored by means of numerical simulations with single-source emissions. Within ChnGIPERM, these phenomena were mainly controlled by the temperature and soil organic carbon content. The secondary fractionation of PCBs is a slow process, with model results suggesting a timescale of several decades.
Collapse
Affiliation(s)
- Song Cui
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
- IJRC-PTS, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, Heilongjiang, China
| | - Qiang Fu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Chongguo Tian
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, Shandong, China
| | - Zulin Zhang
- The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK
| | - Rupert Hough
- The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK
| | - Zhenxing Shen
- Department of Environmental Sciences and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jianmin Ma
- College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Lihui An
- State Environmental Protection Key Laboratory of Estuarine and Coastal Research, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yi-Fan Li
- IJRC-PTS, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, Heilongjiang, China.
| |
Collapse
|
11
|
Yu Y, Katsoyiannis A, Bohlin-Nizzetto P, Brorström-Lundén E, Ma J, Zhao Y, Wu Z, Tych W, Mindham D, Sverko E, Barresi E, Dryfhout-Clark H, Fellin P, Hung H. Polycyclic Aromatic Hydrocarbons Not Declining in Arctic Air Despite Global Emission Reduction. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:2375-2382. [PMID: 30746937 DOI: 10.1021/acs.est.8b05353] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Two decades of atmospheric measurements of polycyclic aromatic hydrocarbons (PAHs) were conducted at three Arctic sites, i.e., Alert, Canada; Zeppelin, Svalbard; and Pallas, Finland. PAH concentrations decrease with increasing latitude in the order of Pallas > Zeppelin > Alert. Forest fire was identified as an important contributing source. Three representative PAHs, phenanthrene (PHE), pyrene (PYR), and benzo[ a]pyrene (BaP) were selected for the assessment of their long-term trends. Significant decline of these PAHs was not observed contradicting the expected decline due to PAH emission reductions. A global 3-D transport model was employed to simulate the concentrations of these three PAHs at the three sites. The model predicted that warming in the Arctic would cause the air concentrations of PHE and PYR to increase in the Arctic atmosphere, while that of BaP, which tends to be particle-bound, is less affected by temperature. The expected decline due to the reduction of global PAH emissions is offset by the increment of volatilization caused by warming. This work shows that this phenomenon may affect the environmental occurrence of other anthropogenic substances, such as more volatile flame retardants and pesticides.
Collapse
Affiliation(s)
- Yong Yu
- Air Quality Processes Research Section , Environment and Climate Change Canada , Toronto , M3H 5T4 , Canada
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology , Chinese Academy of Sciences , Changchun 130102 , China
| | | | | | | | - Jianmin Ma
- College of Urban and Environmental Sciences , Peking University , Beijing 100871 , China
| | - Yuan Zhao
- College of Urban and Environmental Sciences , Peking University , Beijing 100871 , China
| | - Zhiyong Wu
- Air Quality Processes Research Section , Environment and Climate Change Canada , Toronto , M3H 5T4 , Canada
| | - Wlodzimierz Tych
- Lancaster Environment Centre , Lancaster University , Lancaster , LA1 4YQ , United Kingdom
| | - David Mindham
- Lancaster Environment Centre , Lancaster University , Lancaster , LA1 4YQ , United Kingdom
| | - Ed Sverko
- State Key Laboratory of Urban Water Resource and Environment , Harbin Institute of Technology , Harbin 150090 , China
| | - Enzo Barresi
- National Laboratory for Environmental Testing (NLET), Canada Centre for Inland Waters , Environment and Climate Change Canada , Burlington , L7R 4A6 , Canada
| | - Helena Dryfhout-Clark
- Air Quality Processes Research Section , Environment and Climate Change Canada , Toronto , M3H 5T4 , Canada
| | - Phil Fellin
- AirZone One Ltd. , Mississauga , L4Z 1X1 , Canada
| | - Hayley Hung
- Air Quality Processes Research Section , Environment and Climate Change Canada , Toronto , M3H 5T4 , Canada
| |
Collapse
|
12
|
Wen J, Yu B, Huang T, Mack J, Wildervanck M, Nyokong T, Li M, Zhu W, Liang X. Enantioselective electrochemical carbon-chloride bond cleavage of hexachlorocyclohexanes (HCHs) catalyzed by Mn(III)Cl-phthalocyanine. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.09.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Zhu W, Huang T, Li M, Zheng L, Bao S, Kobayashi N, Liang X. A New Strategy towards Efficient and Recyclable Carbon-Chloride Bond Cleavage of Environmentally Harmful Organochlorides through Electrochemical Catalysis in Non-aqueous Media. ChemistrySelect 2017. [DOI: 10.1002/slct.201601603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Weihua Zhu
- School of Chemistry and Chemical Engineering; Jiangsu University; Zhenjiang 212013 P. R. China
| | - Tingting Huang
- School of Chemistry and Chemical Engineering; Jiangsu University; Zhenjiang 212013 P. R. China
| | - Minzhi Li
- School of Chemistry and Chemical Engineering; Jiangsu University; Zhenjiang 212013 P. R. China
| | - Limin Zheng
- School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210093 P. R. China
| | - Songsong Bao
- School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210093 P. R. China
| | - Nagao Kobayashi
- Faculty of Textile Science and Technology; Shinshu University; Ueda 386-8567 Japan
| | - Xu Liang
- School of Chemistry and Chemical Engineering; Jiangsu University; Zhenjiang 212013 P. R. China
| |
Collapse
|
14
|
Jiang W, Huang T, Mao X, Wang L, Zhao Y, Jia C, Wang Y, Gao H, Ma J. Gridded emission inventory of short-chain chlorinated paraffins and its validation in China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 220:132-141. [PMID: 27639614 DOI: 10.1016/j.envpol.2016.09.031] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 09/05/2016] [Accepted: 09/11/2016] [Indexed: 06/06/2023]
Abstract
China produces approximately 20%-30% of the total global chlorinated paraffins (CPs). The establishment of a short-chain CP (SCCP) emission inventory is a significant step toward risk assessment and regulation of SCCPs in China and throughout the globe. This study developed a gridded SCCPs emission inventory with a 1/4° longitude by 1/4° latitude resolution from 2008 to 2012 for China, which was based on the total annual CPs emissions for the nation. The total national SCCPs emission during this 5-year period was 5651.5 tons. An additive in metal cutting fluids was a major emission source in China, contributing 2680.2 tons to the total atmospheric emissions of SCCPs from 2008 to 2012, followed by the production of CPs (2281.8 tons), plasticizers (514.3 tons), flame retardants (108.6 tons), and net import (66.6 tons). Most of these emission sources are located along the eastern seaboard of China and southern China. A coupled atmospheric transport model was employed to simulate environmental contamination by SCCPs using the gridded emission inventory of SCCPs from 2008 to 2012 as the model initial conditions. Simulated atmospheric and soil concentrations were compared with field monitoring data to validate the emission inventory. The results showed good consistency between modeled and field sampling data, supporting the reliability and credibility of the gridded SCCPs emission inventory that was developed in the present study.
Collapse
Affiliation(s)
- Wanyanhan Jiang
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Tao Huang
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Xiaoxuan Mao
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Li Wang
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yuan Zhao
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Chenhui Jia
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yanan Wang
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Hong Gao
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jianmin Ma
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China; CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
15
|
Zhu W, Huang T, Qin M, Li M, Mack J, Liang X. Tuning the synthetic cobalt(III)corroles electroreductive catalyzed lindane dehalogenation reactivity through meso-substituents. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.05.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Huang T, Jiang W, Ling Z, Zhao Y, Gao H, Ma J. Trend of cancer risk of Chinese inhabitants to dioxins due to changes in dietary patterns: 1980-2009. Sci Rep 2016; 6:21997. [PMID: 26912346 PMCID: PMC4766489 DOI: 10.1038/srep21997] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 02/03/2016] [Indexed: 11/12/2022] Open
Abstract
Food ingestion is a major route for human exposure and body burden to dioxins. We estimated the potential influence of changes in dietary patterns in Chinese population on human health risk to 2,3,7,8-TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin) over the last three decades. We performed multiple modeling scenario investigations to discriminate the contribution of 2,3,7,8-TCDD emissions and changes in dietary patterns to the cancer risks (CR) to dioxins. Results showed that changes in dietary patterns, featured by decreasing consumption of total grain (including all unprocessed grains) and vegetables and increasing intake of animal-derived foodstuffs, caused increasing CR from 7.3 × 10(-8) in 1980 to 1.1 × 10(-7) in 2009. Varying dietary patterns contributed 17% to the CR of Chinese population in 2009 under the fixed emission in 1980. The CR to 2,3,7,8-TCDD in urban and eastern China residents was higher considerably than those who lived in rural area and western China, attributable to higher emissions, household income, and greater intake of animal-derived foodstuffs in urban and eastern China inhabitants. On the other hand, more rapid increasing trend of the CR was found in rural residents due to their more rapid increase in the consumption of fat-dominated foods as compared with urban residents.
Collapse
Affiliation(s)
- Tao Huang
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province; College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Wanyanhan Jiang
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province; College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Zaili Ling
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province; College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yuan Zhao
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province; College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Hong Gao
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province; College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jianmin Ma
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province; College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
- CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
17
|
Garrison VH, Majewski MS, Foreman WT, Genualdi SA, Mohammed A, Massey Simonich SL. Persistent organic contaminants in Saharan dust air masses in West Africa, Cape Verde and the eastern Caribbean. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 468-469:530-43. [PMID: 24055669 DOI: 10.1016/j.scitotenv.2013.08.076] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 08/23/2013] [Accepted: 08/23/2013] [Indexed: 05/14/2023]
Abstract
Anthropogenic semivolatile organic compounds (SOCs) that persist in the environment, bioaccumulate, are toxic at low concentrations, and undergo long-range atmospheric transport (LRT) were identified and quantified in the atmosphere of a Saharan dust source region (Mali) and during Saharan dust incursions at downwind sites in the eastern Caribbean (U.S. Virgin Islands, Trinidad and Tobago) and Cape Verde. More organochlorine and organophosphate pesticides (OCPPs), polycyclic aromatic hydrocarbons (PAHs), and polychlorinated biphenyl (PCB) congeners were detected in the Saharan dust region than at downwind sites. Seven of the 13 OCPPs detected occurred at all sites: chlordanes, chlorpyrifos, dacthal, dieldrin, endosulfans, hexachlorobenzene (HCB), and trifluralin. Total SOCs ranged from 1.9-126 ng/m(3) (mean = 25 ± 34) at source and 0.05-0.71 ng/m(3) (mean = 0.24 ± 0.18) at downwind sites during dust conditions. Most SOC concentrations were 1-3 orders of magnitude higher in source than downwind sites. A Saharan source was confirmed for sampled air masses at downwind sites based on dust particle elemental composition and rare earth ratios, atmospheric back trajectory models, and field observations. SOC concentrations were considerably below existing occupational and/or regulatory limits; however, few regulatory limits exist for these persistent organic compounds. Long-term effects of chronic exposure to low concentrations of SOCs are unknown, as are possible additive or synergistic effects of mixtures of SOCs, biologically active trace metals, and mineral dust particles transported together in Saharan dust air masses.
Collapse
Affiliation(s)
- V H Garrison
- U.S. Geological Survey, Southeast Ecological Science Center, St. Petersburg, FL 33701, USA.
| | | | | | | | | | | |
Collapse
|
18
|
Ma J, Sverko E, Su Y, Zhang J, Gao H. Uptake and mobilization of organic chemicals with clouds: evidence from a hail sample. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:9715-9721. [PMID: 23924323 DOI: 10.1021/es401401u] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) were measured in hail samples collected during a storm that occurred on a spring morning in Toronto, Canada. The presence of these organic chemicals in hail suggests that clouds likely provide an atmospheric transport pathway for these substances in the free atmosphere. Results reported here may carry significant implications for atmospheric transport, mass balance, tropospheric cold trapping, and environmental fate of organic chemicals. Backward trajectories along with measured and modeled cloud cover show that clouds causing the hail event were formed and advected from the midwestern and southeastern United States. After being emitted to the atmosphere, the organic chemicals were likely lifted by atmospheric ascending motions to a higher atmospheric elevation and partitioned onto clouds. These clouds then carry the organic chemicals to a downwind location where they are deposited to the ground surface via precipitation. We found that the organic chemicals with high solubility and vapor pressure tend to partition into clouds through sorption to cloudwater droplets and ice particles. It was found that approximately 7-30% of pyrene could be sorbed into cloudwater droplets and ice particles in this hail event at the expense of reduced gas-phase concentrations.
Collapse
Affiliation(s)
- Jianmin Ma
- Key Laboratory of Western China's Environmental System, Ministry of Education, College of Earth and Environment Sciences, Lanzhou University, Lanzhou, China.
| | | | | | | | | |
Collapse
|
19
|
Xu Y, Tian C, Ma J, Wang X, Li J, Tang J, Chen Y, Qin W, Zhang G. Assessing cancer risk in China from γ-hexachlorocyclohexane emitted from Chinese and Indian sources. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:7242-7249. [PMID: 23710890 DOI: 10.1021/es400141e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Three models, including an atmospheric transport model, a multimedia exposure model, and a risk assessment model, were used to assess cancer risk in China caused by γ-HCH (gamma-hexachlorocyclohexane) emitted from Chinese and Indian sources. Extensive model investigations revealed the contribution of different sources to the cancer risk in China. Cancer risk in Eastern China was primarily attributable to γ-HCH contamination from Chinese sources, whereas cancer risk in Western China was caused mostly by Indian emissions. The contribution of fresh use of lindane in India to the cancer risk in China was almost 1 order of magnitude higher than that of the reemission of γ-HCH from Indian soils. Of total population, 58% (about 0.79 billion) residents in China were found to live in the environment with high levels of cancer risk exceeding the acceptable cancer risk of 10(-6), recommended by the United States Environmental Protection Agency (U.S. EPA). The cancer risk in China was mostly induced by the local contamination of γ-HCH emitted from Chinese sources, whereas fresh use of lindane in India will become a significant source of the cancer risk in China if Indian emissions maintain their current levels.
Collapse
Affiliation(s)
- Yue Xu
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Yantai Shandong 264003, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Stemmler I, Lammel G. Long-term trends of continental-scale PCB patterns studied using a global atmosphere-ocean general circulation model. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2012; 19:1971-1980. [PMID: 22767294 DOI: 10.1007/s11356-012-0943-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 04/06/2012] [Indexed: 06/01/2023]
Abstract
Continental-scale distribution and inter-continental transport of four polychlorinated biphenyl (PCB) congeners (28, 101, 153, 180) from 1950 to 2010 were studied using the global multicompartment chemistry transport model MPI-MCTM. Following identical primary emissions for all PCB congeners into air, most of the burden is stored in terrestrial (soil and vegetation) compartments. Thereby, PCB-28, PCB-101 and PCB-153 show a shift of the soil burden maxima from source to remote regions. This shift is downwind with regard to the westerlies for Eurasia and upwind for North America and more prominent for the lighter PCBs than for PCB-153 or PCB-180. In meridional direction, all congeners' distributions underwent a northward migration in Eurasia and North America since the 1950s. Inter-continental transport from Eurasian sources accounts largely for contamination of Alaska and British Columbia and determines the migration of the PCB distribution in soil in North America. Trans-Pacific transport occurs mainly in the gas phase in boreal winter (December-January-February) at 3-4 km altitude and is on a multi-year time scale strongly linked to the atmospheric pressure systems over the Pacific. Inter-continental transport of the lighter, more volatile PCBs is more efficient than for the heavier PCBs.
Collapse
|
21
|
The oceanic biological pump modulates the atmospheric transport of persistent organic pollutants to the Arctic. Nat Commun 2012; 3:862. [DOI: 10.1038/ncomms1858] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 04/23/2012] [Indexed: 11/08/2022] Open
|
22
|
Wang R, Tao S, Wang B, Yang Y, Lang C, Zhang Y, Hu J, Ma J, Hung H. Sources and pathways of polycyclic aromatic hydrocarbons transported to Alert, the Canadian High Arctic. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2010; 44:1017-1022. [PMID: 20039713 DOI: 10.1021/es902203w] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A probabilistic function (integrated source contribution function, ISCF) based on backward air mass trajectory calculation was developed to track sources and atmospheric pathways of polycyclic aromatic hydrocarbons (PAHs) to the Canadian High Arctic station of Alert. In addition to the movement of air masses, the emission intensities at the sources and the major processes of partition, indirect photolysis, and deposition occurring on the way to the Arctic were incorporated into the ISCF. The predicted temporal trend of PAHs at Alert was validated by measured PAH concentrations throughout 2004. The PAH levels in the summer are orders of magnitude lower than those in the winter and spring when long-range atmospheric transport events occur more frequently. PAHs observed at Alert are mostly from East Asia (including Russia Far East), North Europe (including European Russia), and North America. These sources account for 25, 45, and 27% of PAHs atmospheric level at Alert, respectively. Source regions and transport pathways contributing to the PAHs contamination in the Canadian High Arctic vary seasonally. In the winter, Russia and Europe are the major sources. PAHs from these sources travel eastward and turn to the north at approximately 120 degrees E before reaching Alert, in conjunction with the well-known Arctic haze events. In the spring, PAHs from Russia and Europe first migrate to the west and then turn to the north at 60 degrees W toward Alert. The majority of PAHs in the summer are from northern Canada where they are carried to Alert via low-level transport pathways. In the fall, 70% of PAHs arriving at Alert are delivered from North American sources.
Collapse
Affiliation(s)
- Rong Wang
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Jia H, Sun Y, Li YF, Tian C, Wang D, Yang M, Ding Y, Ma J. Endosulfan in China 2-emissions and residues. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2009; 16:302-311. [PMID: 19308475 DOI: 10.1007/s11356-009-0125-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2008] [Accepted: 03/05/2009] [Indexed: 05/27/2023]
Abstract
BACKGROUND, AIM, AND SCOPE Endosulfan is one of the organochlorine pesticides (OCPs) and also a candidate to be included in a group of new persistent organic pollutants (UNEP 2007). The first national endosulfan usage inventories in China with 1/4 degrees longitude by 1/6 degrees latitude resolution has been reported in an accompanying paper. In the second part of the paper, we compiled the gridded historical emissions and soil residues of endosulfan in China from the usage inventories. Based on the residue/emission data, gridded concentrations of endosulfan in Chinese soil and air have been calculated. These inventories will provide valuable data for the further study of endosulfan. METHODS Emission and residue of endosulfan were calculated from endosulfan usage by using a simplified gridded pesticide emission and residue model-SGPERM, which is an integrated modeling system combining mathematical model, database management system, and geographic information system. By using the emission and residue inventories, annual air and soil concentrations of endosulfan in each cell were determined. RESULTS AND DISCUSSION Historical gridded emission and residue inventories of alpha- and beta-endosulfan in agricultural soil in China with 1/4 degrees longitude by 1/6 degrees latitude resolution have been created. Total emissions were around 10,800 t, with alpha-endosulfan at 7,400 t and beta-endosulfan at 3,400 t from 1994 to 2004. The highest residues were 140 t for alpha-endosulfan and 390 t for beta-endosulfan, and the lowest residues were 0.7 t for alpha-endosulfan and 170 t for beta-endosulfan in 2004 in Chinese agricultural soil where endosulfan was applied. Based on the emission and residue inventories, concentrations of alpha- and beta-endosulfan in Chinese air and agricultural surface soil were also calculated for each grid cell. We have estimated annual averaged air concentrations and the annual minimum and maximum soil concentrations across China. The real concentrations will be different from season to season. Although our model does not consider the transport of the insecticide in the atmosphere, which could be very important in some areas during some special time, the estimated concentrations of endosulfan in Chinese air and soil derived from the endosulfan emission and residue inventories are in general consistent with the published monitoring data. CONCLUSIONS To our knowledge, this work is the first inventory of this kind for endosulfan published on a national scale. Concentrations of the chemical in Chinese air and agricultural surface soil were calculated for each grid cell. Results show that the estimated concentrations of endosulfan in Chinese air and soil agree reasonably well with the monitoring data in general. RECOMMENDATIONS AND PERSPECTIVES The gridded endosulfan emission/residue inventories and also the air and soil concentration inventories created in this study will be updated upon availability of new information, including usage and monitoring data. The establishment of these inventories for the OCP is important for both scientific communities and policy makers.
Collapse
Affiliation(s)
- Hongliang Jia
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), Dalian Maritime University, 1 Linghai Road, Dalian, 116026, China
| | | | | | | | | | | | | | | |
Collapse
|