1
|
Sun H, Yao J, Ma B, Knudsen TS, Yuan C. Siderite's green revolution: From tailings to an eco-friendly material for the green economy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169922. [PMID: 38199373 DOI: 10.1016/j.scitotenv.2024.169922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/19/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
Siderite, extensively mined as a natural iron mineral, is often discarded as tailings due to the low grade of the ore and due to the high cost of current sorting technologies. Yet, this mineral has demonstrated significant potential in several pivotal areas of the environmental remediation. Siderite not only possesses exceptional adsorption, catalytic, and microbial carrier capabilities but also offers an eco-friendly and cost-effective solution for the environmental pollution management. This article consolidates research advancements and achievements over the past few decades concerning siderite's role in pollution control, delving deeply into its various remediation pathways. Initially, the paper contrasts the performance differences between natural and synthetic siderite, followed by a comprehensive overview of siderite's adsorption mechanisms for various inorganic pollutants. Furthermore, this paper analyzes the unique physicochemical attributes of siderite as both, a reductant and the catalyst, with a special emphasis on its use in the preparation of SCR catalysts and in the catalytic advanced oxidation processes for organic pollutants' degradation. This paper also enumerates and discusses the myriad advantages of siderite as a microbial carrier, thereby enhancing our understanding of biogeochemical cycles and pollutant transformations. In essence, this review systematically elucidates the mechanisms and intrinsic physicochemical properties of siderite in pollution control, paving the way for novel strategies to augment siderite's environmental remediation performance.
Collapse
Affiliation(s)
- Haoxiang Sun
- School of Water Resources and Environment, Research Center of Environmental Sciences and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083 Beijing, China
| | - Jun Yao
- School of Water Resources and Environment, Research Center of Environmental Sciences and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083 Beijing, China.
| | - Bo Ma
- School of Water Resources and Environment, Research Center of Environmental Sciences and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083 Beijing, China
| | - Tatjana Solevic Knudsen
- Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11 000, Belgrade, Serbia
| | - Chenyi Yuan
- School of Water Resources and Environment, Research Center of Environmental Sciences and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083 Beijing, China
| |
Collapse
|
2
|
Kinetic and Mechanistic Study of Rhodamine B Degradation by H2O2 and Cu/Al2O3/g-C3N4 Composite. Catalysts 2020. [DOI: 10.3390/catal10030317] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The classic Fenton reaction, which is driven by iron species, has been widely explored for pollutant degradation, but is strictly limited to acidic conditions. In this work, a copper-based Fenton-like catalyst Cu/Al2O3/g-C3N4 was proposed that achieves high degradation efficiencies for Rhodamine B (Rh B) in a wide range of pH 4.9–11.0. The Cu/Al2O3 composite was first prepared via a hydrothermal method followed by a calcination process. The obtained Cu/Al2O3 composite was subsequently stabilized on graphitic carbon nitride (g-C3N4) by the formation of C−O−Cu bonds. The obtained composites were characterized through FT-IR, XRD, TEM, XPS, and N2 adsorption/desorption isotherms, and the immobilized Cu+ was proven to be active sites. The effects of Cu content, g-C3N4 content, H2O2 concentration, and pH on Rh B degradation were systematically investigated. The effect of the catalyst dose was confirmed with a specific reaction rate constant of (5.9 ± 0.07) × 10−9 m·s−1 and the activation energy was calculated to be 71.0 kJ/mol. In 100 min 96.4% of Rh B (initial concentration 20 mg/L, unadjusted pH (4.9)) was removed in the presence of 1 g/L of catalyst and 10 mM of H2O2 at 25 °C, with an observed reaction rate constant of 6.47 × 10−4 s−1. High degradation rates are achieved at neutral and alkaline conditions and a low copper leaching (0.55 mg/L) was observed even after four reaction cycles. Hydroxyl radical (HO·) was identified as the reactive oxygen species by using isopropanol as a radical scavenger and by ESR analysis. HPLC-MS revealed that the degradation of Rh B on Cu/Al2O3/CN composite involves N-de-ethylation, hydroxylation, de-carboxylation, chromophore cleavage, ring opening, and the mineralization process. Based on the results above, a tentative mechanism for the catalytic performance of the Cu/Al2O3/g-C3N4 composite was proposed. In summary, the characteristics of high degradation rate constants, low ion leaching, and the excellent applicability in neutral and alkaline conditions prove the Cu/Al2O3/g-C3N4 composite to be a superior Fenton-like catalyst compared to many conventional ones.
Collapse
|
3
|
Li J, Dou X, Qin H, Sun Y, Yin D, Guan X. Characterization methods of zerovalent iron for water treatment and remediation. WATER RESEARCH 2019; 148:70-85. [PMID: 30347277 DOI: 10.1016/j.watres.2018.10.025] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 10/09/2018] [Accepted: 10/09/2018] [Indexed: 06/08/2023]
Abstract
Appropriately selecting methods for characterizing the reaction system of zerovalent iron (ZVI) favors its application for water treatment and remediation. Hence, a survey of the available ZVI characterization techniques used in laboratory and field studies are presented in this review for clarifying the characteristic properties, (in-situ) corrosion processes, and corrosion products of ZVI system. The methods are generally classified into four broad categories: morphology characterization techniques, (sub-)surface and bulk analysis mainly via the spectral protocols, along with the (physio)electrochemical alternatives. Moreover, this paper provides a critical review on the scopes and applications of ZVI characterization methodologies from several perspectives including their suitable occasions, availability, (semi-)quantitative/qualitative evaluations, in/ex-situ reaction information, advantages, limitations and challenges, as well as economic and technical remarks. In particular, the characteristic spectroscopic peak locations of typical iron (oxyhydr)oxides are also systematically summarized. In view of the complexity and variety of ZVI system, this review further addresses that different characterization methods should be employed together for better assessing the performance and mechanisms of ZVI-involved systems and thereby facilitating the deployment of ZVI-based installations in real practice.
Collapse
Affiliation(s)
- Jinxiang Li
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China; International Joint Research Center for Sustainable Urban Water System, Tongji University, Shanghai, 200092, PR China
| | - Xiaomin Dou
- College of Environmental Science and Engineering, Beijing Key Laboratory for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, PR China
| | - Hejie Qin
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China; International Joint Research Center for Sustainable Urban Water System, Tongji University, Shanghai, 200092, PR China
| | - Yuankui Sun
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China; International Joint Research Center for Sustainable Urban Water System, Tongji University, Shanghai, 200092, PR China
| | - Daqiang Yin
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China; International Joint Research Center for Sustainable Urban Water System, Tongji University, Shanghai, 200092, PR China; Key Laboratory of Yangtze Water Environment of Ministry of the State Education, Tongji University, Shanghai, 200092, PR China
| | - Xiaohong Guan
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China; International Joint Research Center for Sustainable Urban Water System, Tongji University, Shanghai, 200092, PR China.
| |
Collapse
|
4
|
Sun Y, Li J, Huang T, Guan X. The influences of iron characteristics, operating conditions and solution chemistry on contaminants removal by zero-valent iron: A review. WATER RESEARCH 2016; 100:277-295. [PMID: 27206056 DOI: 10.1016/j.watres.2016.05.031] [Citation(s) in RCA: 241] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/30/2016] [Accepted: 05/09/2016] [Indexed: 06/05/2023]
Abstract
For successful application of a zero-valent iron (ZVI) system, of particular interest is the performance of ZVI under various conditions. The current review comprehensively summarizes the potential effects of the major influencing factors, such as iron intrinsic characteristics (e.g., surface area, iron impurities and oxide films), operating conditions (e.g., pH, dissolved oxygen, iron dosage, iron pretreatment, mixing conditions and temperature) and solution chemistry (e.g., anions, cations and natural organic matter) on the performance of ZVI reported in literature. It was demonstrated that all of the factors could exert significant effects on the ZVI performance toward contaminants removal, negatively or positively. Depending on the removal mechanisms of the respective contaminants and other environmental conditions, an individual variable may exhibit different effects. On the other hand, many of these influences have not been well understood or cannot be individually isolated in experimental or natural systems. Thus, more research is required in order to elucidate the exact roles and mechanisms of each factor in affecting the performance of ZVI. Furthermore, based on these understandings, future research may attempt to establish some feasible strategies to minimize the deteriorating effects and utilize the positive effects so as to improve the performance of ZVI.
Collapse
Affiliation(s)
- Yuankui Sun
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Jinxiang Li
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Tinglin Huang
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China.
| | - Xiaohong Guan
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China.
| |
Collapse
|
5
|
Xie W, Yuan S, Mao X, Hu W, Liao P, Tong M, Alshawabkeh AN. Electrocatalytic activity of Pd-loaded Ti/TiO2 nanotubes cathode for TCE reduction in groundwater. WATER RESEARCH 2013; 47:3573-82. [PMID: 23726693 PMCID: PMC6321742 DOI: 10.1016/j.watres.2013.04.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 03/29/2013] [Accepted: 04/01/2013] [Indexed: 05/11/2023]
Abstract
A novel cathode, Pd loaded Ti/TiO2 nanotubes (Pd-Ti/TiO2NTs), is synthesized for the electrocatalytic reduction of trichloroethylene (TCE) in groundwater. Pd nanoparticles are successfully loaded on TiO2 nanotubes which grow on Ti plate via anodization. Using Pd-Ti/TiO2NTs as the cathode in an undivided electrolytic cell, TCE is efficiently and quantitatively transformed to ethane. Under conditions of 100 mA and pH 7, the removal efficiency of TCE (21 mg/L) is up to 91% within 120 min, following pseudo-first-order kinetics with the rate constant of 0.019 min(-1). Reduction rates increase from 0.007 to 0.019 min(-1) with increasing the current from 20 to 100 mA, slightly decrease in the presence of 10 mM chloride or bicarbonate, and decline with increasing the concentrations of sulfite or sulfide. O2 generated at the anode slightly influences TCE reduction. At low currents, TCE is mainly reduced by direct electron transfer on the Pd-Ti/TiO2NT cathode. However, the contribution of Pd-catalytic hydrodechlorination, an indirect reduction mechanism, becomes significant with increasing the current. Compared with other common cathodes, i.e., Ti-based mixed metal oxides, graphite and Pd/Ti, Pd-Ti/TiO2NTs cathode shows superior performance for TCE reduction.
Collapse
Affiliation(s)
- Wenjing Xie
- State Key Lab of Biogeology and Environmental Geology, China University of Geosciences, 388 Lumo Road, Wuhan 430074, PR China
| | - Songhu Yuan
- State Key Lab of Biogeology and Environmental Geology, China University of Geosciences, 388 Lumo Road, Wuhan 430074, PR China
- Corresponding author. Tel.: +86 18971623175., , (S. Yuan)
| | - Xuhui Mao
- School of resource and Environmental Science, Wuhan University, 129 Luoyu Road, Wuhan 430079, PR China
| | - Wei Hu
- State Key Lab of Biogeology and Environmental Geology, China University of Geosciences, 388 Lumo Road, Wuhan 430074, PR China
| | - Peng Liao
- State Key Lab of Biogeology and Environmental Geology, China University of Geosciences, 388 Lumo Road, Wuhan 430074, PR China
| | - Man Tong
- State Key Lab of Biogeology and Environmental Geology, China University of Geosciences, 388 Lumo Road, Wuhan 430074, PR China
| | - Akram N. Alshawabkeh
- Department of Civil and Environmental Engineering, Northeastern University, 400 Snell Engineering, 360 Huntington Avenue, Boston, MA 02115, United States
| |
Collapse
|
6
|
Jung B, Shin JW, Ghorpade PA, Park JY. Dechlorination of liquid wastes containing chlorinated hydrocarbons by a binder mixture of cement and slag with Fe(II). THE SCIENCE OF THE TOTAL ENVIRONMENT 2013; 449:443-450. [PMID: 23454706 DOI: 10.1016/j.scitotenv.2013.01.085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 01/22/2013] [Accepted: 01/27/2013] [Indexed: 06/01/2023]
Abstract
Iron-based degradative solidification/stabilization (DS/S-Fe(II)) is a modification of conventional solidification/stabilization (S/S) that incorporates degradative processes for organic contaminant destruction with immobilization. This study investigated the effectiveness of a binder mixture of Portland cement and slag in a DS/S-Fe(II) system to treat trichloroethylene (TCE), 1,1-dichloroethylene (1,1-DCE), vinyl chloride (VC), trichloromethane (CF), and dichloromethane (MC), which are major chlorinated hydrocarbons contained in waste oils and waste organic solvents. For TCE, 1,1-DCE, and VC, degradation experiments were conducted using three different binder combinations with Fe(II) (cement/Fe(II), slag/Fe(II), and cement/slag/Fe(II)). When cement and slag were mixed at a 1:1 ratio (% wt), the TCE and 1,1-DCE dechlorination rate was enhanced compared to that when cement or slag was used alone with Fe(II). Also, batch experiments were conducted in the solid phase consisting of cement, slag, sand, and Fe(II) to treat liquid wastes that contain chlorinated compounds at high concentrations. TCE was completely removed after 5 days in the cement/slag/sand/Fe(II) system, in which the initial TCE concentration was 11.8mM, with Fe(II) concentration of 565 mM. While the CF concentration was decreased by 95% after 5 days when the initial CF and Fe(II) concentration was 0.25 mM and 200 mM, respectively. However, MC was not degraded with the cement/slag/Fe(II) system.
Collapse
Affiliation(s)
- Bahngmi Jung
- Department of Chemical Engineering, Texas A&M University at Qatar, Doha, Qatar
| | | | | | | |
Collapse
|
7
|
Oliveira PEF, Oliveira LD, Ardisson JD, Lago RM. Potential of modified iron-rich foundry waste for environmental applications: Fenton reaction and Cr(VI) reduction. JOURNAL OF HAZARDOUS MATERIALS 2011; 194:393-398. [PMID: 21890267 DOI: 10.1016/j.jhazmat.2011.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 07/22/2011] [Accepted: 08/02/2011] [Indexed: 05/31/2023]
Abstract
A magnetic fraction (15%) from a waste of foundry sand (WFS), composed of sand, carbon, bentonite clay and iron (10%) was modified by thermal treatment at 400, 600 and 800°C under inert atmosphere. Mössbauer analyses showed that the thermal treatment increased the amount of Fe(3)O(4) from 25 to 55% by reduction of Fe(2)O(3) and highly dispersed Fe(3+) by the carbon present in the waste. The Fe(3)O(4) caused a significant increase on the activity of two important reactions with application in environmental remediation: the Fenton oxidation of indigo carmine dye with H(2)O(2) and the reduction of Cr(VI) to Cr(III). The magnetic fraction of WFS was also mixed with hematite (Fe(2)O(3)) and thermally treated at 400, 600 and 800°C. This treatment produced large amounts of surface Fe(3)O(4) and increased substantially the rate of Fenton reaction as well as Cr(VI) reduction. This reactivity combined with the presence of carbon (an adsorbent for organic contaminants), bentonite clay (an adsorbent for metallic contaminants) and the granulometry/packing/hydrodynamic features make WFS a promising material for use in reactive permeable barriers.
Collapse
Affiliation(s)
- Patrícia E F Oliveira
- Departamento de Química, ICEx, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | | | | | | |
Collapse
|