1
|
Payne-Sturges D, De Saram S, Cory-Slechta DA. Cumulative Risk Evaluation of Phthalates Under TSCA. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6403-6414. [PMID: 37043345 DOI: 10.1021/acs.est.2c08364] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The U.S. Environmental Protection Agency (EPA) is currently conducting separate Toxic Substances Control Act (TSCA) risk evaluations for seven phthalates: dibutyl phthalate (DBP), butyl benzyl phthalate (BBP), di(2-ethylhexyl) phthalate (DEHP), diisobutyl phthalate (DIBP), dicyclohexyl phthalate (DCHP), di-isodecyl phthalate (DIDP), and diisononyl phthalate (DINP). Phthalates are highly abundant plastic additives used primarily to soften materials and make them flexible, and biomonitoring shows widespread human exposure to a mixture of phthalates. Evidence supports biological additivity of phthalate mixture exposures, including the enhancement of toxicity affecting common biological targets. Risk estimates based on individual phthalate exposure may not be protective of public health. Thus, a cumulative risk approach is warranted. While EPA initially did not signal that it would incorporate cumulative risk assessment (CRA) as part of its current risk evaluation for the seven phthalates, the agency recently announced that it is reconsidering if CRA for phthalates would be appropriate. Based on our review of existing chemical mixtures risk assessment guidance, current TSCA scoping documents for the seven phthalates, and pertinent peer-reviewed literature, we delineate a CRA approach that EPA can easily implement for phthalates. The strategy for using CRA to inform TSCA risk evaluation for existing chemicals is based upon integrative physiology and a common adverse health outcome algorithm for identifying and grouping relevant nonchemical and chemical stressors. We recommend adjustments for how hazard indices (HIs) or margins of exposure (MOEs) based on CRA are interpreted for determining "unreasonable risk" under TSCA.
Collapse
Affiliation(s)
- Devon Payne-Sturges
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, 255 Valley Drive, College Park, Maryland 20742, United States
| | - Sulakkhana De Saram
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, 255 Valley Drive, College Park, Maryland 20742, United States
| | - Deborah A Cory-Slechta
- University of Rochester School of Medicine, Box EHSC, Rochester, New York 14642, United States
| |
Collapse
|
2
|
Yoshida T, Mimura M, Sakon N. Exposure to organophosphorus compounds of Japanese children and the indoor air quality in their residences. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:158020. [PMID: 35973537 DOI: 10.1016/j.scitotenv.2022.158020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Several organophosphorus compounds such as organophosphate pesticides (OPPs) and trialkylphosphates (TAPs) are suspected to inhibit cholinesterase activities, to affect endocrine systems or to possibly be carcinogenic. To evaluate their adverse effects on health with chronic exposure in the general population, especially in children, we measured the household exposure to OPPs and TAPs by Japanese children via all exposure pathways and the contribution of indoor air quality. First-morning void urine was collected from subjects aged 6 to 15 years (n = 132), and airborne organophosphorus compounds were sampled in the subject's bedroom for 24 h. Airborne levels of nine OPPs and three TAPs and their urinary metabolites were determined. No significant correlations were detected for any compounds between their airborne concentrations and the urinary excretion amounts of their corresponding metabolites. The estimated daily intakes were as follows (median, μg/kg b.w./d): chlorpyrifos, 0.042; diazinon, 0.067; tri-n-butylphosphate, 0.094. The 95th percentiles of the intakes for fenthion, fenitrothion and the above three compounds did not exceed their reference limit values, although one subject had a daily intake of tri-n-butylphosphate that was about twice its reference limit value. The concentration levels of the urinary metabolite of tri-n-butylphosphate in our subjects tended to be higher than those for children in many other countries. The fractions of the amounts absorbed by inhalation to the amounts absorbed via all of the exposure pathways was only 2.3 % (median) for tri-n-butylphosphate. Inhalation did not seem to contribute very much as an absorption pathway of the organophosphorus compounds in these Japanese children while they were at home. The exposure amounts of OPPs were not suggested to be high enough to adversely affect the health of these children at present on the basis of their daily intakes compared to their reference limit values.
Collapse
Affiliation(s)
- Toshiaki Yoshida
- Osaka Institute of Public Health, 1-3-69, Nakamichi, Higashinari-ku, Osaka 537-0025, Japan.
| | - Mayumi Mimura
- Osaka Institute of Public Health, 1-3-69, Nakamichi, Higashinari-ku, Osaka 537-0025, Japan
| | - Naomi Sakon
- Osaka Institute of Public Health, 1-3-69, Nakamichi, Higashinari-ku, Osaka 537-0025, Japan
| |
Collapse
|
3
|
Filippi I, Bravo N, Grimalt JO, Butinof M, Lerda D, Fernández RA, Muñoz SE, Amé MV. Pilot study of exposure of the male population to organophosphate and pyrethroid pesticides in a region of high agricultural activity (Córdoba, Argentina). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:53908-53916. [PMID: 34037936 DOI: 10.1007/s11356-021-14397-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/10/2021] [Indexed: 06/12/2023]
Abstract
Urinary metabolites of organophosphate (OP) and pyrethroid (PYR) pesticides and biomarkers of effects were studied in a population (n=40) residing in an important agricultural area of the province of Córdoba (Argentina). Detection frequencies (DF) higher than 85% were observed for the metabolites of pirimiphos (2-diethylamino-6-methylpyrimidin-4-ol -DEAMPY-, median 7.5 μg/g creatinine, DF: 100%), parathion (p-nitrophenol, 0.99 μg/g creatinine, 100%), and chlorpyrifos (3,5,6-trichloro-2-pyridinol, 0.25 μg/g creatinine, 85%). The DEAMPY concentrations doubled the levels found in other studies and were negatively associated with Er-AChE activity, suggesting the appearance of health effects already in environmental exposure levels below established acceptable daily intakes (ADIs). 3-Phenoxybenzoic acid, the metabolite of several PYR pesticides, was also found in all samples. This metabolite was also significantly negatively correlated with Er-AChE, indicating effects of pyrethroid pesticides on the acetylcholine system even at concentrations below the ADI.
Collapse
Affiliation(s)
- Iohanna Filippi
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, CONICET, Universidad Nacional de Córdoba, 5000, Córdoba, Argentina
| | - Natalia Bravo
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDÆA-CSIC), 08034, Barcelona, Catalonia, Spain
| | - Joan O Grimalt
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDÆA-CSIC), 08034, Barcelona, Catalonia, Spain.
| | - Mariana Butinof
- Escuela de Nutrición, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, 5000, Córdoba, Argentina
| | - Daniel Lerda
- Facultad de Ciencias de la Salud, Universidad Católica de Córdoba, 5000, Córdoba, Argentina
| | - Ricardo A Fernández
- Facultad de Ciencias de la Salud, Universidad Católica de Córdoba, 5000, Córdoba, Argentina
| | - Sonia E Muñoz
- Instituto de Investigaciones en Ciencias de la Salud (INICSA), Facultad de Ciencias Médicas, CONICET, Universidad Nacional de Córdoba, 5000, Córdoba, Argentina
| | - María V Amé
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, CONICET, Universidad Nacional de Córdoba, 5000, Córdoba, Argentina
| |
Collapse
|
4
|
Xie J, Li L, Khan IM, Wang Z, Ma X. Flexible paper-based SERS substrate strategy for rapid detection of methyl parathion on the surface of fruit. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 231:118104. [PMID: 32006913 DOI: 10.1016/j.saa.2020.118104] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/15/2020] [Accepted: 01/22/2020] [Indexed: 06/10/2023]
Abstract
Herein, we reported a simple, flexible and sensitive surface-enhanced Raman scattering (SERS) substrate to detect methyl parathion residues in real life. The substrate was fabricated by filter paper and gold nanoparticles (Au NPs) with excellent reproducibility and stability. First, Au NPs were synthesized by the seed mediated growth method and assembled to the filter paper through immersion. The Raman probe molecule 4-MBA was used to evaluate performance of the substrate for an optimized signal using a portable Raman spectrometer coupled with 785 nm laser. Then, the paper-based substrate was applied to detect methyl parathion standard solution whose detection limit was down to 0.011 μg/cm2, and the linear range was between 0.018 μg/cm2 and 0.354 μg/cm2. Afterwards, actual sample (apple) spiked with methyl parathion was taken to verify the practicality of the substrate by a simple way of "press-peel off". The recovery rate was ranged from 94.09% to 98.72%, indicating that this method is reliable in actual sample detection without complicated pretreatment steps. This work demonstrates that the flexible paper-based substrate combined with portable Raman instruments can be potentially applied to on-site detection of hazardous substances in the field of food safety.
Collapse
Affiliation(s)
- Jie Xie
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, PR China
| | - Liangyu Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, PR China
| | - Imran Mahmood Khan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, PR China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, PR China
| | - Xiaoyuan Ma
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
5
|
Bravo N, Grimalt JO, Mazej D, Tratnik JS, Sarigiannis DA, Horvat M. Mother/child organophosphate and pyrethroid distributions. ENVIRONMENT INTERNATIONAL 2020; 134:105264. [PMID: 31706197 DOI: 10.1016/j.envint.2019.105264] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 10/10/2019] [Accepted: 10/10/2019] [Indexed: 05/27/2023]
Abstract
The present study reports one of the few cases in which organophosphate (OP) and pyrethroid (PYR) pesticide human exposure is evaluated in family contexts by the analysis of mother/child pair samples. Urinary concentrations of 6 organic metabolites of organophosphates and 2 pyrethroids were measured in mothers and their 7-to 8-year-old children (n = 168) in a general population from the central area of Slovenia. The results were adjusted for specific gravity and creatinine. The most abundant OP metabolite in children was 4-nitrophenol (PNP) (median 0.7 ng/ml) and in mothers (0.45 ng/ml), representing parathion exposure. 3-Phenoxibenzoic acid (3-PBA) (0.26 ng/ml), the general metabolite of pyrethroids, and 3,5,6-trichloro-2-pyridinol (TCPY) (0.16 ng/ml; chlorpyriphos) were the second most abundant compounds in children and mothers, respectively. The geometric mean specific gravity adjusted concentrations of OPs and PYRs were statistically significantly higher in children than in their mothers (between 3% and 24% higher), with the exception of TCPY (26% lower). All OP and PYR metabolites found in higher concentration in children showed significant positive correlations with the metabolite concentrations found in the mothers (p < 0.05 and 0.01), involving the fact that higher maternal concentrations were associated with higher children levels. These differential mother-children distributions and significant correlations were observed for the 2 types of pesticides studied, OPs and PYRs, which have different chemical properties. This agreement is consistent with the incorporation of the pesticides because of the general activities developed in the family context, instead of pesticide-dependent specific inputs. Comparison of the estimated daily intakes with the acceptable daily intakes of all detected metabolites revealed no significant risk of adverse health effects from exposure to these pesticides.
Collapse
Affiliation(s)
- Natalia Bravo
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Department of Environmental Chemistry, Jordi Girona, 18, 08034 Barcelona, Catalonia, Spain
| | - Joan O Grimalt
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Department of Environmental Chemistry, Jordi Girona, 18, 08034 Barcelona, Catalonia, Spain.
| | - Darja Mazej
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia
| | - Janja Snoj Tratnik
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia; International Postgraduate School Jožef Stefan, Jamova cesta 39, 1000 Ljubljana, Slovenia
| | - Dimosthenis Andreas Sarigiannis
- Environmental Engineering Laboratory, Department of Chemical Engineering and HERACLES Research Centre on the Exposome and Health, Centre for Interdisciplinary Research and Innovation, Aristotle University of Thessaloniki University Campus, Bldg. D, Rm 201, 54124 Thessaloniki, Greece
| | - Milena Horvat
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia; International Postgraduate School Jožef Stefan, Jamova cesta 39, 1000 Ljubljana, Slovenia
| |
Collapse
|
6
|
Bravo N, Grimalt JO, Bocca B, Pino A, Bin M, Brumatti LV, Rosolen V, Barbone F, Ronfani L, Alimonti A, Calamandrei G. Urinary metabolites of organophosphate and pyrethroid pesticides in children from an Italian cohort (PHIME, Trieste). ENVIRONMENTAL RESEARCH 2019; 176:108508. [PMID: 31200128 DOI: 10.1016/j.envres.2019.05.039] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 05/13/2019] [Accepted: 05/23/2019] [Indexed: 06/09/2023]
Abstract
Urinary metabolites of organophosphate (OP) and pyrethroid (PYR) pesticides from seven years old children of a birth cohort study (n=199; PHIME cohort of Trieste, Italy) have been measured. Six OP and two PYR metabolites have been investigated, 2-diethylamino-6-methylpyrimidin-4-ol (DEAMPY, pirimiphos metabolite) was the one found at higher concentrations, median 3.4 ng/mL specific gravity adjusted (SG adjusted), followed by 4-nitrophenol (PNP, median 1.4 ng/mL SG adjusted) and 3,5,6-trichloro-2-pyridinol (TCPY, median 0.36 ng/mL SG adjusted), parathion and chlorpyriphos metabolites, respectively. TCPY concentrations were low in comparison to other distributions of OP metabolites in children from other studies. Accordingly, the PHIME cohort showed a distinct OP metabolite distribution with high concentrations of pirimiphos and parathion. Another specific characteristic of this cohort was the high concentration of 3-phenoxybenzoic acid (3-BPA, median 0.36 ng/mL SG adjusted), a general metabolite of PYR pesticides. Evaluation of anthropometric and socio-demographic characteristics of children and families only showed a positive association between family educational level and urinary concentrations of DEAMPY metabolite (p<0.05), which could reflect distinct dietary habits depending on the educational level. Estimated daily intakes were evaluated, all studied metabolites were found within safe levels.
Collapse
Affiliation(s)
- Natalia Bravo
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Department of Environmental Chemistry, Jordi Girona, 18, 08034, Barcelona, Catalonia, Spain
| | - Joan O Grimalt
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Department of Environmental Chemistry, Jordi Girona, 18, 08034, Barcelona, Catalonia, Spain.
| | - Beatrice Bocca
- Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Roma, Italy
| | - Anna Pino
- Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Roma, Italy
| | - Maura Bin
- Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", Trieste, Italy
| | | | | | - Fabio Barbone
- Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", Trieste, Italy
| | - Luca Ronfani
- Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", Trieste, Italy
| | | | - Gemma Calamandrei
- Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Roma, Italy.
| |
Collapse
|
7
|
Zou R, Chang Y, Zhang T, Si F, Liu Y, Zhao Y, Liu Y, Zhang M, Yu X, Qiao X, Zhu G, Guo Y. Up-Converting Nanoparticle-Based Immunochromatographic Strip for Multi-Residue Detection of Three Organophosphorus Pesticides in Food. Front Chem 2019; 7:18. [PMID: 30792975 PMCID: PMC6374334 DOI: 10.3389/fchem.2019.00018] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 01/08/2019] [Indexed: 12/12/2022] Open
Abstract
Organophosphorus (OP) pesticides are widely used to control pests because of their high activity. This study described a rapid and sensitive lateral flow immunochromatographic (LFIC) assay based on up-converting nanoparticles (UCNPs) for multi-residue detection of three OP pesticides. The developed assay integrated novel fluorescent material UCNPs labeled with a broad-specific monoclonal antibody. Based on the competitive platform by immobilized antigen in the test zone, the optimized UCNPs-LFIC assay enabled sensitive detection for parathion, parathion-methyl, and fenitrothion with IC50 of 3.44, 3.98, and 12.49 ng/mL (R 2 ≥ 0.9776) within 40 min. The detectable ability ranged from 0.98 to 250 ng/mL. There was no cross-reactivity with fenthion, phoxim, isocarbophos, chlorpyrifos, or triazophos, even at a high concentration of 500 ng/mL. Matrix interference from various agricultural products was also studied in food sample detection. In the spiked test, recoveries of the three OP pesticides ranged from 67 to 120% and relative standard deviations were below 19.54%. These results indicated that the proposed strip assay can be an alternative screening tool for rapid detection of the three OP pesticides in food samples.
Collapse
Affiliation(s)
- Rubing Zou
- Institute of Pesticide and Environmental Toxicology, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
| | - Yunyun Chang
- Institute of Pesticide and Environmental Toxicology, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
| | - Tianyi Zhang
- Institute of Pesticide and Environmental Toxicology, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
| | - Fangfang Si
- Institute of Pesticide and Environmental Toxicology, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
| | - Ying Liu
- Institute of Pesticide and Environmental Toxicology, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
| | - Ying Zhao
- Institute of Pesticide and Environmental Toxicology, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
| | - Yihua Liu
- Institute of Pesticide and Environmental Toxicology, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Mingzhou Zhang
- College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Xiaoping Yu
- College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Xusheng Qiao
- Department of Materials Science and Engineering, Zhejiang University, Hangzhou, China
| | - Guonian Zhu
- Institute of Pesticide and Environmental Toxicology, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
| | - Yirong Guo
- Institute of Pesticide and Environmental Toxicology, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
| |
Collapse
|
8
|
Katsikantami I, Colosio C, Alegakis A, Tzatzarakis MN, Vakonaki E, Rizos AK, Sarigiannis DA, Tsatsakis AM. Estimation of daily intake and risk assessment of organophosphorus pesticides based on biomonitoring data - The internal exposure approach. Food Chem Toxicol 2018; 123:57-71. [PMID: 30352298 DOI: 10.1016/j.fct.2018.10.047] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 10/17/2018] [Accepted: 10/19/2018] [Indexed: 12/13/2022]
Abstract
Human exposure to pesticides can be estimated through different approaches. The approach adopted in this study is based on internal dose measures. Studies published during 2001 and 2017 were collected from PubMed and Scopus databases, filtered and organized. The intake of parent compounds is estimated based on the urinary excretion of different OP metabolites applying a mathematical model previously used for similar purposes. Once defined an Estimated Daily Intake (EDI), risk assessment is performed through comparison with specific guideline values and hazard index (HI) is calculated to assess cumulative health risk. The EDI was expressed as malathion, diazinon, parathion, phorate and dimethoate equivalents. Differences in exposure between pregnant women, general population, children and farmers are highlighted and exposures are presented by country and sampling year. Higher exposure to OPs was calculated for farmers, followed by children whereas pregnant women were less exposed. Median HQ values for children ranged between 0.016 and 0.618, for pregnant women 0.005-0.151, for general population 0.008-0.206 and for farmers 0.009-0.979. Combined exposure to dimethoate and phorate was the worst-case scenario. The annual distribution of the urinary DAPs showed that exposure to OPs since 1998 tends to be stable for both children and adults.
Collapse
Affiliation(s)
- Ioanna Katsikantami
- Department of Chemistry, University of Crete, Foundation for Research and Technology-Hellas, FORTH-IESL, GR-71003, Heraklion, Crete, Greece; Laboratory of Toxicology, Medical School, University of Crete, GR-71003, Heraklion, Crete, Greece
| | - Claudio Colosio
- Department of Occupational and Environmental Health of the University of Milan, International Centre for Rural Health of the University Hospital San Paolo, S. Paolo Hospital Unit, Via San Vigilio 43, 20142 Milan, Italy
| | - Athanasios Alegakis
- Laboratory of Toxicology, Medical School, University of Crete, GR-71003, Heraklion, Crete, Greece
| | - Manolis N Tzatzarakis
- Laboratory of Toxicology, Medical School, University of Crete, GR-71003, Heraklion, Crete, Greece
| | - Elena Vakonaki
- Laboratory of Toxicology, Medical School, University of Crete, GR-71003, Heraklion, Crete, Greece
| | - Apostolos K Rizos
- Department of Chemistry, University of Crete, Foundation for Research and Technology-Hellas, FORTH-IESL, GR-71003, Heraklion, Crete, Greece
| | - Dimosthenis A Sarigiannis
- Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, Greece; HERACLES Research Centre on the Exposome and Health, Centre for Interdisciplinary Research and Innovation (KEDEK), Aristotle University of Thessaloniki, Greece; Environmental Health Engineering, Institute for Advanced Study IUSS, Pavia, Italy
| | - Aristides M Tsatsakis
- Laboratory of Toxicology, Medical School, University of Crete, GR-71003, Heraklion, Crete, Greece.
| |
Collapse
|
9
|
Cequier E, Sakhi AK, Haug LS, Thomsen C. Exposure to organophosphorus pesticides in Norwegian mothers and their children: Diurnal variability in concentrations of their biomarkers and associations with food consumption. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 590-591:655-662. [PMID: 28284640 DOI: 10.1016/j.scitotenv.2017.03.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 03/01/2017] [Accepted: 03/02/2017] [Indexed: 06/06/2023]
Abstract
Several studies have suggested that exposure to organophosphorus (OP) pesticides is detrimental for health, and in particular for children where moderate doses may have a negative impact on the neurodevelopment. This study surveys levels of the 6 non-specific urinary metabolites (dialkyl phosphates (DAPs)) of OP pesticides in Norwegian mothers (n=48) and their children (n=54), and examines the diurnal variation in concentrations as well as associations with consumption of specific food products. The highest median concentration measured in urine was found for dimethyl thiophosphate (5.3 and 5.5ng/mLSG; specific gravity corrected) for both children and mothers, respectively, followed by diethyl phosphate (3.8 and 5.3ng/mLSG, respectively). The intra-class correlation coefficients of DAPs among mothers were moderate (0.49-0.68), and consumption of fruit explained between 8% and 55% of the variations in the mothers' and their children's urinary DAP concentrations.
Collapse
Affiliation(s)
- Enrique Cequier
- Department of Environmental Exposure and Epidemiology, Norwegian Institute of Public Health, P.O. Box 4404, Nydalen, 0403 Oslo, Norway.
| | - Amrit Kaur Sakhi
- Department of Environmental Exposure and Epidemiology, Norwegian Institute of Public Health, P.O. Box 4404, Nydalen, 0403 Oslo, Norway
| | - Line Småstuen Haug
- Department of Environmental Exposure and Epidemiology, Norwegian Institute of Public Health, P.O. Box 4404, Nydalen, 0403 Oslo, Norway
| | - Cathrine Thomsen
- Department of Environmental Exposure and Epidemiology, Norwegian Institute of Public Health, P.O. Box 4404, Nydalen, 0403 Oslo, Norway
| |
Collapse
|
10
|
Schenk G, Mateen I, Ng TK, Pedroso MM, Mitić N, Jafelicci M, Marques RF, Gahan LR, Ollis DL. Organophosphate-degrading metallohydrolases: Structure and function of potent catalysts for applications in bioremediation. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.03.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
11
|
Brown K, Phillips M, Grulke C, Yoon M, Young B, McDougall R, Leonard J, Lu J, Lefew W, Tan YM. Reconstructing exposures from biomarkers using exposure-pharmacokinetic modeling – A case study with carbaryl. Regul Toxicol Pharmacol 2015; 73:689-98. [DOI: 10.1016/j.yrtph.2015.10.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 10/29/2015] [Accepted: 10/29/2015] [Indexed: 12/14/2022]
|
12
|
Arylesterase phenotype-specific positive association between arylesterase activity and cholinesterase specific activity in human serum. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2014; 11:1422-43. [PMID: 24473115 PMCID: PMC3945546 DOI: 10.3390/ijerph110201422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 12/27/2013] [Accepted: 01/15/2014] [Indexed: 11/17/2022]
Abstract
Context: Cholinesterase (ChE) specific activity is the ratio of ChE activity to ChE mass and, as a biomarker of exposure to cholinesterase inhibitors, has a potential advantage over simple ChE activity. Objective: To examine the association of several potential correlates (serum arylesterase/paraoxonase activity, serum albumin, sex, age, month of blood collection, and smoking) with plasma ChE specific activity. Methods: We analyzed data from 195 cancer-free controls from a nested case-control study, accounting for potential confounding. Results: Arylesterase activity had an independent, statistically significant positive association with ChE specific activity, and its magnitude was the greatest for the arylesterase phenotype corresponding to the QQ PON1192 genotype followed by phenotypes corresponding to QR and RR genotypes. Serum albumin was positively associated with ChE specific activity. Conclusions: Plasma arylesterase activity was positively associated with plasma ChE specific activity. This observation is consistent with protection conferred by a metabolic phenotype resulting in reduced internal dose.
Collapse
|
13
|
Cumulative risk assessment toolbox: methods and approaches for the practitioner. J Toxicol 2013; 2013:310904. [PMID: 23762048 PMCID: PMC3665252 DOI: 10.1155/2013/310904] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 11/13/2012] [Indexed: 01/28/2023] Open
Abstract
The historical approach to assessing health risks of environmental chemicals has been to evaluate them one at a time. In fact, we are exposed every day to a wide variety of chemicals and are increasingly aware of potential health implications. Although considerable progress has been made in the science underlying risk assessments for real-world exposures, implementation has lagged because many practitioners are unaware of methods and tools available to support these analyses. To address this issue, the US Environmental Protection Agency developed a toolbox of cumulative risk resources for contaminated sites, as part of a resource document that was published in 2007. This paper highlights information for nearly 80 resources from the toolbox and provides selected updates, with practical notes for cumulative risk applications. Resources are organized according to the main elements of the assessment process: (1) planning, scoping, and problem formulation; (2) environmental fate and transport; (3) exposure analysis extending to human factors; (4) toxicity analysis; and (5) risk and uncertainty characterization, including presentation of results. In addition to providing online access, plans for the toolbox include addressing nonchemical stressors and applications beyond contaminated sites and further strengthening resource accessibility to support evolving analyses for cumulative risk and sustainable communities.
Collapse
|
14
|
Krieger R, Chen L, Ginevan M, Watkins D, Cochran R, Driver J, Ross J. Implications of estimates of residential organophosphate exposure from dialkylphosphates (DAPs) and their relevance to risk. Regul Toxicol Pharmacol 2012; 64:263-6. [DOI: 10.1016/j.yrtph.2012.08.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 07/21/2012] [Accepted: 08/16/2012] [Indexed: 10/28/2022]
|
15
|
Sexton K, Ryan AD. Using exposure biomarkers in children to compare between-child and within-child variance and calculate correlations among siblings for multiple environmental chemicals. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2012; 22:16-23. [PMID: 22008795 DOI: 10.1038/jes.2011.30] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 06/16/2011] [Indexed: 05/19/2023]
Abstract
Longitudinal measurements of biomarkers for metals, phthalates, environmental tobacco smoke, organochlorine and organophosphate pesticides, polychlorinated biphenyls, and volatile organic compounds were made in blood and/or urine from a stratified, random sample of more than 100 elementary school-aged children living in an inner-city section of Minneapolis. Repeated measures of 31 exposure biomarkers indicate that between-child variance (B-CV) was greater than within-child variance (W-CV) for 8 compounds, B-CV was a significant proportion of total variance for 9 compounds, and variances were homogeneous for 14 compounds. Among siblings living in the same household, positive correlations were observed for biomarker concentrations of polychlorinated biphenyls, organochlorine pesticides, metals, and volatile organic chemicals in blood, and total cotinine in urine. Biologic markers confirm that children from a low-income, ethnically diverse neighborhood experienced concurrent exposure to a variety of hazardous environmental chemicals during their everyday activities. Future monitoring studies should examine the nature and magnitude of children's cumulative exposure to both chemical and non-chemical stressors, especially in disadvantaged populations.
Collapse
Affiliation(s)
- Ken Sexton
- University of Texas School of Public Health, Brownsville, Texas 78520, USA.
| | | |
Collapse
|
16
|
Mnif W, Hassine AIH, Bouaziz A, Bartegi A, Thomas O, Roig B. Effect of endocrine disruptor pesticides: a review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2011; 8:2265-303. [PMID: 21776230 PMCID: PMC3138025 DOI: 10.3390/ijerph8062265] [Citation(s) in RCA: 511] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 06/08/2011] [Accepted: 06/09/2011] [Indexed: 12/15/2022]
Abstract
Endocrine disrupting chemicals (EDC) are compounds that alter the normal functioning of the endocrine system of both wildlife and humans. A huge number of chemicals have been identified as endocrine disruptors, among them several pesticides. Pesticides are used to kill unwanted organisms in crops, public areas, homes and gardens, and parasites in medicine. Human are exposed to pesticides due to their occupations or through dietary and environmental exposure (water, soil, air). For several years, there have been enquiries about the impact of environmental factors on the occurrence of human pathologies. This paper reviews the current knowledge of the potential impacts of endocrine disruptor pesticides on human health.
Collapse
Affiliation(s)
- Wissem Mnif
- Laboratoire de Biochimie, Unité de Recherche 02/UR/09-01, Institut Supérieur de Biotechnologie, de Monastir, BP 74, 5019 Monastir, Tunisia; E-Mails: (W.M.); (A.I.H.H); (A.B.)
- Institut Supérieur de Biotechnologie de Sidi Thabet, Pole Technologie Sidi Thabet, 2020 Ariana, Tunisia
| | - Aziza Ibn Hadj Hassine
- Laboratoire de Biochimie, Unité de Recherche 02/UR/09-01, Institut Supérieur de Biotechnologie, de Monastir, BP 74, 5019 Monastir, Tunisia; E-Mails: (W.M.); (A.I.H.H); (A.B.)
| | - Aicha Bouaziz
- Laboratoire de Biochimie, Unité de Recherche 02/UR/09-01, Institut Supérieur de Biotechnologie, de Monastir, BP 74, 5019 Monastir, Tunisia; E-Mails: (W.M.); (A.I.H.H); (A.B.)
| | - Aghleb Bartegi
- Department of Biology, Faculty of Sciences, King Faisal University, P.O. Box 1759, 31982, Al Hassa, Saudi Arabia; E-Mail:
| | - Olivier Thomas
- Environment and Health Research laboratory (LERES), Advanced School of Public Health (EHESP), Avenue du Professeur Léon Bernard - CS 74312, 35043 Rennes Cedex, France; E-Mail: (O.T.)
| | - Benoit Roig
- Environment and Health Research laboratory (LERES), Advanced School of Public Health (EHESP), Avenue du Professeur Léon Bernard - CS 74312, 35043 Rennes Cedex, France; E-Mail: (O.T.)
| |
Collapse
|
17
|
Sutton P, Wallinga D, Perron J, Gottlieb M, Sayre L, Woodruff T. Reproductive health and the industrialized food system: a point of intervention for health policy. Health Aff (Millwood) 2011; 30:888-97. [PMID: 21555472 PMCID: PMC6693635 DOI: 10.1377/hlthaff.2010.1255] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
What food is produced, and how, can have a critical impact on human nutrition and the environment, which in turn are key drivers of healthy human reproduction and development. The US food production system yields a large volume of food that is relatively low in cost for consumers but is often high in calories and low in nutritional value. In this article we examine the evidence that intensive use of pesticides, chemical fertilizers, hormones, antibiotics, and fossil fuel in food production, as well as chemicals in food packaging, are potentially harmful to human reproductive and developmental health. We conclude that policies to advance a healthy food system are necessary to prevent adverse reproductive health effects and avoid associated health costs among current and future generations. These policies include changes to the Farm Bill and the Toxic Substances Control Act, and greater involvement by the health care sector in supporting and sourcing food from urban agriculture programs, farmers' markets, and local food outlets, as well as increasing understanding by clinicians of the links between reproductive health and industrialized food production.
Collapse
|
18
|
Li X, Wang H, Sun W, Ding L. Desorption Corona Beam Ionization Coupled with a Poly(dimethylsiloxane) Substrate: Broadening the Application of Ambient Ionization for Water Samples. Anal Chem 2010; 82:9188-93. [DOI: 10.1021/ac102356r] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiang Li
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China and Shimadzu Research Laboratory (Shanghai) Company, Ltd., Shanghai 201201, China
| | - Hua Wang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China and Shimadzu Research Laboratory (Shanghai) Company, Ltd., Shanghai 201201, China
| | - Wenjian Sun
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China and Shimadzu Research Laboratory (Shanghai) Company, Ltd., Shanghai 201201, China
| | - Li Ding
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China and Shimadzu Research Laboratory (Shanghai) Company, Ltd., Shanghai 201201, China
| |
Collapse
|