1
|
Zhou Y, Liu Y, Wang T, Li H, He J, Xu A. Role of iron homeostasis in the mutagenicity of disinfection by-products in mammalian cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117122. [PMID: 39362182 DOI: 10.1016/j.ecoenv.2024.117122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/10/2024] [Accepted: 09/26/2024] [Indexed: 10/05/2024]
Abstract
Disinfection by-products (DBPs) generated from water treatment have serious adverse effects on human health and natural ecosystems. However, research on the mutagenicity of DBPs with different chemical structures is still limited. In the present study, we compared the mutagenicity of 8 typical DBPs in human-hamster hybrid (AL) cells and clarified the mechanisms involved. Our data displayed that the rank order for mutagenicity was as follows: iodoacetamide (IAcAm) > iodoacetonitrile (IAN) > iodoacetic acid (IAA) > bromoacetamide (BAcAm) ≈ bromoacetonitrile (BAN) > bromoacetic acid (BAA), which was confirmed by DNA double strand breaks and oxidative DNA damage. In contrast, bromoform (TBM) and iodoform (TIM) had minimal mutagenicity. The mutation spectrum analysis further revealed that IAN, IAcAm, and IAA could induce multilocus deletions in mammalian cells. Interestingly, nitrogenous DBPs (N-DBPs) and IAA were found to cause varying degrees of iron overload and lipid peroxidation, which was mediated by the activation of the Nrf2/HO-1 signaling pathway. Moreover, the presence of deferoxamine (DFO), an iron ion inhibitor, effectively reduced γ-H2AX and 8-OHdG induced by N-DBPs and IAA. These results indicated that the variations in genotoxicity among DBPs with different structures were associated with their ability to disrupt iron homeostasis. This study provided new insights into the mechanisms underlying the structure-dependent toxicity of DBPs and established a foundation for a more comprehensive understanding and intervention of the health risks associated with DBPs.
Collapse
Affiliation(s)
- Yemian Zhou
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS; High Magnetic Field Laboratory, Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, PR China; University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Yun Liu
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS; High Magnetic Field Laboratory, Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, PR China
| | - Tong Wang
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS; High Magnetic Field Laboratory, Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, PR China; University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Han Li
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS; High Magnetic Field Laboratory, Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, PR China; University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Jing He
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS; High Magnetic Field Laboratory, Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, PR China; Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, PR China
| | - An Xu
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS; High Magnetic Field Laboratory, Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, PR China; Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, PR China.
| |
Collapse
|
2
|
Ha M, Mou L, Qu J, Liu C. Impacts of iodoacetic acid on reproduction: current evidence, underlying mechanisms, and future research directions. Front Public Health 2024; 12:1434054. [PMID: 39421815 PMCID: PMC11484249 DOI: 10.3389/fpubh.2024.1434054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/25/2024] [Indexed: 10/19/2024] Open
Abstract
In light of the undeniable and alarming fact that human fertility is declining, the harmful factors affecting reproductive health are garnering more and more attention. Iodoacetic acid (IAA), an emerging unregulated drinking water disinfection byproduct, derives from chlorine disinfection and is frequently detected in the environment and biological samples. Humans are ubiquitously exposed to IAA daily mainly through drinking water, consuming food and beverages made from disinfected water, contacting swimming pools and bath water, etc. Mounting evidence has indicated that IAA could act as a reproductive toxicant and bring about multifarious adverse reproductive damage. For instance, it can interfere with gonadal development, weaken ovarian function, impair sperm motility, trigger DNA damage to germ cells, perturb steroidogenesis, etc. The underlying mechanisms predominantly include cytotoxic and genotoxic effects on germ cells, disturbance of the hypothalamic-pituitary-gonadal axis, oxidative stress, inhibition of steroidogenic proteins or enzymes, and dysbiosis of gut microbiota. Nevertheless, there are still some knowledge gaps and limitations in studying the potential impact of IAA on reproduction, which urgently need to be addressed in the future. We suppose that necessary population epidemiological studies, more sensitive detection methods for internal exposure, and mechanism-based in-depth exploration will contribute to a more comprehensive understanding of characteristics and biological effects of IAA, thus providing an important scientific basis for revising sanitary standards for drinking water quality.
Collapse
Affiliation(s)
- Mei Ha
- Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Li Mou
- NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing, China
| | - Jiayuan Qu
- NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing, China
| | - Changjiang Liu
- NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing, China
| |
Collapse
|
3
|
Gong X, He M, Hao Z, Zhao R, Liu J. Freeze-induced acceleration of iodide oxidation and consequent iodination of dissolved organic matter to form organoiodine compounds. J Environ Sci (China) 2024; 144:67-75. [PMID: 38802239 DOI: 10.1016/j.jes.2023.12.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/25/2023] [Accepted: 12/25/2023] [Indexed: 05/29/2024]
Abstract
Freeze-induced acceleration of I- oxidation and the consequent iodination of dissolved organic matter (DOM) contribute to the formation of organoiodine compounds (OICs) in cold regions. The formed OICs may be a potentially important source of risk and are very closely with the environment and human health. Herein, we investigated the acceleration effects of the freeze process on I- oxidation and the formation of OICs. In comparison to reactive iodine species (RIS) formed in aqueous solutions, I- oxidation and RIS formation were greatly enhanced in frozen solution and were affected by pH, and the content of I- and O2. Freeze-thaw process further promoted I- oxidation and the concentration of RIS reached 45.7 µmol/L after 6 freeze-thaw cycles. The consequent products of DOM iodination were greatly promoted in terms of both concentration and number. The total content of OICs ranged from 0.02 to 2.83 µmol/L under various conditions. About 183-1197 OICs were detected by Fourier transform ion cyclotron resonance mass spectrometry, and more than 96.2% contained one or two iodine atoms. Most OICs had aromatic structures and were formed via substitution and addition reactions. Our findings reveal an important formation pathway for OICs and shed light on the biogeochemical cycling of iodine in the natural aquatic environment.
Collapse
Affiliation(s)
- Xuexin Gong
- School of Resources and Environment, Yangtze University, Wuhan 430100, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Mei He
- School of Resources and Environment, Yangtze University, Wuhan 430100, China
| | - Zhineng Hao
- School of Resources and Environment, Yangtze University, Wuhan 430100, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Rusong Zhao
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Jinan 250014, China
| | - Jingfu Liu
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China.
| |
Collapse
|
4
|
Alexander MT, Woodruff P, Mistry JH, Buse HY, Muhlen C, Lytle DA, Pressman JG, Wahman DG. Evaluation of distribution system water quality during a free chlorine conversion. AWWA WATER SCIENCE 2024; 6:e1377. [PMID: 39296677 PMCID: PMC11406502 DOI: 10.1002/aws2.1377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/24/2024] [Indexed: 09/21/2024]
Abstract
Chloraminated drinking water systems commonly use free chlorine conversions (FCCs) to prevent or control nitrification, but unintended water quality changes may occur, including increased disinfection by-product and metal concentrations. This study evaluated water quality in a chloraminated drinking water system and residential locations before, during, and after their annual, planned FCC. Water quality alternated between relatively consistent and variable periods when switching disinfectants. During the FCC, regulated four trihalomethane and five haloacetic acid concentrations increased by four and seven times, respectively, and exceeded corresponding maximum contaminant levels. Implications of disinfection by-product sampling during an FCC were assessed, and an approach to account for increased FCC disinfection by-product concentrations was proposed. For metals, the FCC had minor impacts on distribution system concentrations and did not appear to impact residential concentrations. Overall, observed variable water quality appeared primarily associated with switching disinfectants and depended on distribution system hydraulics.
Collapse
Affiliation(s)
- Matthew T Alexander
- United States Environmental Protection Agency, Office of Ground Water and Drinking Water, Standards and Risk Management Division, Technical Support Branch, Cincinnati, Ohio, USA
| | - Peyton Woodruff
- Oak Ridge Institute of Science and Education, Oak Ridge, Tennessee, USA
| | - Jatin H Mistry
- United States Environmental Protection Agency, Region 6, Drinking Water Section, Dallas, Texas, USA
| | - Helen Y Buse
- United States Environmental Protection Agency, Office of Research and Development, Center for Environmental Solutions and Emergency Response, Cincinnati, Ohio, USA
| | - Christy Muhlen
- United States Environmental Protection Agency, Office of Research and Development, Center for Environmental Solutions and Emergency Response, Cincinnati, Ohio, USA
| | - Darren A Lytle
- United States Environmental Protection Agency, Office of Research and Development, Center for Environmental Solutions and Emergency Response, Cincinnati, Ohio, USA
| | - Jonathan G Pressman
- United States Environmental Protection Agency, Office of Research and Development, Center for Environmental Solutions and Emergency Response, Cincinnati, Ohio, USA
| | - David G Wahman
- United States Environmental Protection Agency, Office of Research and Development, Center for Environmental Solutions and Emergency Response, Cincinnati, Ohio, USA
| |
Collapse
|
5
|
Lau SS, Bokenkamp K, Tecza A, Wagner ED, Plewa MJ, Mitch WA. Mammalian Cell Genotoxicity of Potable Reuse and Conventional Drinking Waters. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:8654-8664. [PMID: 38709862 DOI: 10.1021/acs.est.4c01596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Potable reuse water is increasingly part of the water supply portfolio for municipalities facing water shortages, and toxicity assays can be useful for evaluating potable reuse water quality. We examined the Chinese hamster ovary cell acute direct genotoxicity of potable reuse waters contributed by disinfection byproducts (DBPs) and anthropogenic contaminants and used the local conventional drinking waters as benchmarks for evaluating potable reuse water quality. Our results showed that treatment trains based on reverse osmosis (RO) were more effective than RO-free treatment trains for reducing the genotoxicity of influent wastewaters. RO-treated reuse waters were less genotoxic than the local tap water derived from surface water, whereas reuse waters not treated by RO were similarly genotoxic as the local drinking waters when frequent replacement of granular activated carbon limited contaminant breakthrough. The genotoxicity contributed by nonvolatile, uncharacterized DBPs and anthropogenic contaminants accounted for ≥73% of the total genotoxicity. The (semi)volatile DBPs of current research interest contributed 2-27% toward the total genotoxicity, with unregulated DBPs being more important genotoxicity drivers than regulated DBPs. Our results underscore the need to look beyond known, (semi)volatile DBPs and the importance of determining whole water toxicity when assessing the quality of disinfected waters.
Collapse
Affiliation(s)
- Stephanie S Lau
- Department of Civil and Environmental Engineering, Stanford University, 473 Via Ortega, Stanford, California 94305, United States
| | - Katherine Bokenkamp
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1101 West Peabody Dr., Urbana, Illinois 61801, United States
- Safe Global Water Institute, University of Illinois at Urbana-Champaign, 205 North Mathews Ave., Urbana, Illinois 61801, United States
| | - Aleksander Tecza
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1101 West Peabody Dr., Urbana, Illinois 61801, United States
- Safe Global Water Institute, University of Illinois at Urbana-Champaign, 205 North Mathews Ave., Urbana, Illinois 61801, United States
| | - Elizabeth D Wagner
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1101 West Peabody Dr., Urbana, Illinois 61801, United States
- Safe Global Water Institute, University of Illinois at Urbana-Champaign, 205 North Mathews Ave., Urbana, Illinois 61801, United States
| | - Michael J Plewa
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1101 West Peabody Dr., Urbana, Illinois 61801, United States
- Safe Global Water Institute, University of Illinois at Urbana-Champaign, 205 North Mathews Ave., Urbana, Illinois 61801, United States
| | - William A Mitch
- Department of Civil and Environmental Engineering, Stanford University, 473 Via Ortega, Stanford, California 94305, United States
| |
Collapse
|
6
|
Dong H, Cuthbertson AA, Plewa MJ, Weisbrod CR, McKenna AM, Richardson SD. Unravelling High-Molecular-Weight DBP Toxicity Drivers in Chlorinated and Chloraminated Drinking Water: Effect-Directed Analysis of Molecular Weight Fractions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:18788-18800. [PMID: 37418586 DOI: 10.1021/acs.est.3c00771] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
As disinfection byproducts (DBPs) are ubiquitous sources of chemical exposure in disinfected drinking water, identifying unknown DBPs, especially unknown drivers of toxicity, is one of the major challenges in the safe supply of drinking water. While >700 low-molecular-weight DBPs have been identified, the molecular composition of high-molecular-weight DBPs remains poorly understood. Moreover, due to the absence of chemical standards for most DBPs, it is difficult to assess toxicity contributions for new DBPs identified. Based on effect-directed analysis, this study combined predictive cytotoxicity and quantitative genotoxicity analyses and Fourier transform ion cyclotron resonance mass spectrometry (21 T FT-ICR-MS) identification to resolve molecular weight fractions that induce toxicity in chloraminated and chlorinated drinking waters, along with the molecular composition of these DBP drivers. Fractionation using ultrafiltration membranes allowed the investigation of <1 kD, 1-3 kD, 3-5 kD, and >5 kD molecular weight fractions. Thiol reactivity based predictive cytotoxicity and single-cell gel electrophoresis based genotoxicity assays revealed that the <1 kD fraction for both chloraminated and chlorinated waters exhibited the highest levels of predictive cytotoxicity and direct genotoxicity. The <1 kD target fraction was used for subsequent molecular composition identification. Ultrahigh-resolution MS identified singly charged species (as evidenced by the 1 Da spacing in 13C isotopologues), including 3599 chlorine-containing DBPs in the <1 kD fraction with the empirical formulas CHOCl, CHOCl2, and CHOCl3, with a relative abundance order of CHOCl > CHOCl2 ≫ CHOCl3. Interestingly, more high-molecular-weight CHOCl1-3 DBPs were identified in the chloraminated vs chlorinated waters. This may be due to slower reactions of NH2Cl. Most of the DBPs formed in chloraminated waters were composed of high-molecular-weight Cl-DBPs (up to 1 kD) rather than known low-molecular-weight DBPs. Moreover, with the increase of chlorine number in the high-molecular-weight DBPs detected, the O/C ratio exhibited an increasing trend, while the modified aromaticity index (AImod) showed an opposite trend. In drinking water treatment processes, the removal of natural organic matter fractions with high O/C ratio and high AImod value should be strengthened to minimize the formation of known and unknown DBPs.
Collapse
Affiliation(s)
- Huiyu Dong
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Beijing 100085, People's Republic of China
| | - Amy A Cuthbertson
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Michael J Plewa
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Chad R Weisbrod
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | - Amy M McKenna
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Susan D Richardson
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
7
|
Wang XS, Liu YL, Xue LX, Song H, Pan XR, Huang Z, Xu SY, Ma J, Wang L. Anthracite Releases Aromatic Carbons and Reacts with Chlorine to Form Disinfection Byproducts in Drinking Water Production. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:1103-1113. [PMID: 36574338 DOI: 10.1021/acs.est.2c05192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Anthracite is globally used as a filter material for water purification. Herein, it was found that up to 15 disinfection byproducts (DBPs) were formed in the chlorination of anthracite-filtered pure water, while the levels of DBPs were below the detection limit in the chlorination of zeolite-, quartz sand-, and porcelain sandstone-filtered pure water. In new-anthracite-filtered water, the levels of dissolved organic carbon (DOC), dissolved organic nitrogen (DON), and ammonia nitrogen (NH3-N) ranged from 266.3 to 305.4 μg/L, 37 to 61 μg/L, and 8.6 to 17.1 μg/L, respectively. In aged anthracite (collected from a filter at a DWTP after one year of operation) filtered water, the levels of the above substances ranged from 475.1 to 597.5 μg/L, 62.1 to 125.6 μg/L, and 14 to 28.9 μg/L, respectively. Anthracite would release dissolved substances into filtered water, and aged anthracite releases more substances than new anthracite. The released organics were partly (around 5%) composed by the μg/L level of toxic and carcinogenic aromatic carbons including pyridine, paraxylene, benzene, naphthalene, and phenanthrene, while over 95% of the released organics could not be identified. Organic carbon may be torn off from the carbon skeleton structure of anthracite due to hydrodynamic force in the water filtration process.
Collapse
Affiliation(s)
- Xian-Shi Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yu-Lei Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Li-Xu Xue
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Heng Song
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xiang-Rui Pan
- Qingdao Engineering Research Center for Rural Environment, College of Resource and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Zhe Huang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shu-Yue Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
- Qingdao Engineering Research Center for Rural Environment, College of Resource and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Lu Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
8
|
Bromoacetic acid impairs mouse oocyte in vitro maturation through affecting cytoskeleton architecture and epigenetic modification. Chem Biol Interact 2022; 368:110192. [PMID: 36174739 DOI: 10.1016/j.cbi.2022.110192] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/22/2022]
Abstract
As a major public health achievement, disinfection of drinking water significantly decreases outbreaks of waterborne disease, but produces drinking water disinfection by-products (DBPs) unfortunately. The haloacetic acids (HAAs) including bromoacetic acid (BAA), the second major class of DBPs, are considered as a global public health concern. BAA has been identified as cytotoxic, genotoxic, mutagenic, carcinogenic, and teratogenic in somatic cells. However, the toxic effects of BAA on oocyte maturation remain obscure. Herein, we documented that exposure to BAA compromised mouse oocyte maturation in vitro, causing blocked polar body extrusion (PBE). Meiotic progression analysis demonstrated that exposure to BAA induced the activated spindle assembly checkpoint (SAC) mediated metaphase I (MI) arrest in oocytes. Further study revealed that exposure to BAA resulted in the hyperacetylation of α-tubulin, disrupting spindle assembly and chromosome alignment, which is responsible for the activation of SAC. Besides, the organization of actin, the other major component of cytoskeleton in oocytes, was disturbed after BAA exposure. In addition, exposure to BAA altered the status of histone H3 methylation and 5 mC, indicative of the damaged epigenetic modifications. Moreover, we found that exposure to BAA induced DNA damage in a dose-dependent manner in oocytes. Collectively, our study evidenced that exposure to BAA intervened mouse oocyte maturation via disrupting cytoskeletal dynamics, damaging epigenetic modifications and inducing accumulation of DNA damage.
Collapse
|
9
|
He H, Xu H, Li L, Yang X, Fu Q, Yang X, Zhang W, Wang D. Molecular transformation of dissolved organic matter and the formation of disinfection byproducts in full-scale surface water treatment processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156547. [PMID: 35688238 DOI: 10.1016/j.scitotenv.2022.156547] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/26/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
Dissolved organic matters (DOM) have important effects on the performance of surface water treatment processes and may convert into disinfection by-products (DBPs) during disinfection. In this work, the transformation of DOM and the chlorinated DBPs (Cl-DBPs) formation in two different full-scale surface water treatment processes (process 1: prechlorination-coagulation-precipitation-filtration; process 2: coagulation-precipitation-post-disinfection-filtration) were comparatively investigated at molecular scale. The results showed that coagulation preferentially removed unsaturated (H/C < 1.0 and DBE > 17) and oxidized (O/C > 0.5) compounds containing more carboxyl groups. Therefore, prechlorination produced more Cl-DBPs with H/C < 1.0 and O/C > 0.5 than post-disinfection. However, the algal in the influent produced many reduced molecules (O/C < 0.5) without prechlorination, and these compounds were more reactive with disinfectants. Sand filtration was ineffective in DOM removal, while microorganisms in the filter produced high molecular weight (MW) substances that were involved in the Cl-DBPs formation, causing the generation of higher MW Cl-DBPs under post-disinfection. Furthermore, the CHO molecules with high O atom number and the CHON molecules containing one N atom were the main Cl-DBPs precursors in both surface water treatment processes. In consideration of the putative Cl-DBPs precursors and their reaction pathways, the precursors with higher unsaturation degree and aromaticity were prone to produce Cl-DBPs through addition reactions, while that with higher saturation degree tended to form Cl-DBPs through substitution reactions. These findings are useful to optimize the treatment processes to ensure the safety of water quality.
Collapse
Affiliation(s)
- Hang He
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, Wuhan 430074, Hubei, China
| | - Hui Xu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Yangtze River Delta Branch, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Yiwu 322000, Zhejiang, China
| | - Lanfeng Li
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, Wuhan 430074, Hubei, China
| | - Xiaofang Yang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Yangtze River Delta Branch, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Yiwu 322000, Zhejiang, China
| | - Qinglong Fu
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, Wuhan 430074, Hubei, China
| | - Xiaoyin Yang
- Yangtze River Delta Branch, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Yiwu 322000, Zhejiang, China
| | - Weijun Zhang
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, Wuhan 430074, Hubei, China.
| | - Dongsheng Wang
- Yangtze River Delta Branch, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Yiwu 322000, Zhejiang, China; Department of Environmental Engineering, Zhejiang university, Hangzhou 310058, Zhejiang, China
| |
Collapse
|
10
|
Richardson SD. A catalyst for integrating analytical biology, analytical chemistry, and engineering to improve drinking water safety: The groundbreaking work of Dr. Michael Plewa. J Environ Sci (China) 2022; 117:6-9. [PMID: 35725090 DOI: 10.1016/j.jes.2022.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Affiliation(s)
- Susan D Richardson
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA.
| |
Collapse
|
11
|
Health Effect of N-Nitroso Diethylamine in Treated Water on Gut Microbiota Using a Simulated Human Intestinal Microbiota System. Processes (Basel) 2022. [DOI: 10.3390/pr10030438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Chlorination disinfection byproducts (CDBPs) can exert adverse human health effects. Many toxicology-based studies confirmed the health hazards of CDBPs, but little research has been done on gut microbiome. We explored the effect of CDBPs on intestinal microbiota in the Simulator of the Human Intestinal Microbial Ecosystem (SHIME). The results showed that CDBPs slightly inhibited the production of short-chain fatty acids, and the abundance of Actinobacteria decreased in the transverse colon and descending colon. The abundance of Proteobacteria increased in the ascending colon and descending colon, while it decreased in the transverse colon. The abundance of Firmicutes decreased in both the ascending colon and descending colon. In particular, the abundance of Lachnospiraceae members, Bilophila, Oscillospira, Parabacteroides, Desulfovibrio, and Roseburia increased in the ascending colon, while the abundance of Sutterella, Bacteroides, Escherichia, Phascolarctobacterium, Clostridium, Citrobacter, and Klebsiella increased in the descending colon. The Shannon index differed significantly in both the ascending colon and descending colon before and after exposure. Overall, we demonstrate the feasibility of applying the SHIME model to studying the effects of intestinal toxicity on health of chlorinated by-products. The findings of this study improve our understanding of the health impact of CDBPs on the intestinal microbiota and better control of CDBPs in treated water is recommended.
Collapse
|
12
|
Komaki Y, Ibuki Y. Inhibition of nucleotide excision repair and damage response signaling by dibromoacetonitrile: A novel genotoxicity mechanism of a water disinfection byproduct. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127194. [PMID: 34844342 DOI: 10.1016/j.jhazmat.2021.127194] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/04/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
Dibromoacetonitrile (DBAN) is a carcinogenic disinfection byproduct (DBP) but how it precipitates cancer is unknown. Nucleotide excision repair (NER) is a versatile repair mechanism for removing bulky DNA lesions to maintain genome stability, and impairment of this process is associated with cancer development. In this study, we found that DBAN inhibited NER and investigated its mechanism with other DNA damage responses. Human keratinocytes HaCaT were treated with DBAN followed by ultraviolet (UV) as a model inducer of DNA damage, pyrimidine dimers, which require NER for the removal. DBAN pretreatment exacerbated UV-cytotoxicity, and inhibited the repair of pyrimidine dimers. DBAN treatment delayed the recruitment of NER proteins, transcription factor IIH (TFIIH) and xeroderma pigmentosum complementation group G (XPG), to DNA damaged sites, and subsequent gap filling process. Moreover, DBAN suppressed the UV-induced double strand breaks (DSBs) formation, as well as phosphorylated histone H2AX (γ-H2AX), a widely used DNA damage marker. Altogether, DBAN could negatively impact the NER process and phosphorylation pathway responding to DNA damage. This study was the first to identify the inhibition of NER and damage response signaling as a genotoxicity mechanism of a class of DBPs and it may serve as a foundation for DBP carcinogenesis.
Collapse
Affiliation(s)
- Yukako Komaki
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| | - Yuko Ibuki
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| |
Collapse
|
13
|
Wu Z, Tang Y, Li W, Qiang Z, Dong H. Formation control of bromate and trihalomethanes during ozonation of bromide-containing water with chemical addition: Hydrogen peroxide or ammonia? J Environ Sci (China) 2021; 110:111-118. [PMID: 34593181 DOI: 10.1016/j.jes.2021.03.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 03/10/2021] [Indexed: 06/13/2023]
Abstract
To ensure the safety of drinking water, ozone (O3) has been extensively applied in drinking water treatment plants to further remove natural organic matter (NOM). However, the surface water and groundwater near the coastal areas often contain high concentrations of bromide ion (Br-). Considering the risk of bromate (BrO3-) formation in ozonation of the sand-filtered water, the inhibitory efficiencies of hydrogen peroxide (H2O2) and ammonia (NH3) on BrO3- formation during ozonation process were compared. The addition of H2O2 effectively inhibited BrO3- formation at an initial Br- concentration amended to 350 µg/L. The inhibition efficiencies reached 59.6 and 100% when the mass ratio of H2O2/O3 was 0.25 and > 0.5, respectively. The UV254 and total organic carbon (TOC) also decreased after adding H2O2, while the formation potential of trihalomethanes (THMsFP) increased especially in subsequent chlorination process at a low dose of H2O2. To control the formation of both BrO3- and THMs, a relatively large dose of O3 and a high ratio of H2O2/O3were generally needed. NH3 addition inhibited BrO3- formation when the background ammonia nitrogen (NH3N) concentration was low. There was no significant correlation between BrO3- inhibition efficiency and NH3 dose, and a small amount of NH3N (0.2 mg/L) could obviously inhibit BrO3- formation. The oxidation of NOM seemed unaffected by NH3 addition, and the structure of NOM reflected by synchronous fluorescence (SF) scanning remained almost unchanged before and after adding NH3. Considering the formation of BrO3- and THMs, the optimal dose of NH3 was suggested to be 0.5 mg/L.
Collapse
Affiliation(s)
- Zhengdi Wu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Yubin Tang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China.
| | - Weiwei Li
- Engineering Design Institute, The Sixth Engineering Bure Crec, Beijing 100036, China
| | - Zhimin Qiang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huiyu Dong
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
14
|
Wu H, Long K, Sha Y, Lu D, Xia Y, Mo Y, Yang Q, Zheng W, Yang M, Wei X. Occurrence and toxicity of halobenzoquinones as drinking water disinfection byproducts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 770:145277. [PMID: 33515874 DOI: 10.1016/j.scitotenv.2021.145277] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/15/2021] [Accepted: 01/15/2021] [Indexed: 06/12/2023]
Abstract
Halobenzoquinones (HBQs) are emerging unregulated drinking water disinfection byproducts (DBPs) that are more toxic than regulated DBPs. This study aimed to determine the distribution and formation of HBQs in drinking water from water treatment plants in China, compare their chronic cytotoxicity and their induction of chromosomal damage in Chinese hamster ovary cells, and analyze the correlation of HBQ toxicity with their physicochemical parameters. Two HBQs, 2,6-dichloro-1,4-benzoquinone (2,6-DCBQ) and 2,6-dibromo-1,4-benzoquinone (2,6-DBBQ), were detected in finished water and tap water in China. The concentrations were in the ranges of <2.6-19.70 ng/L for 2,6-DCBQ and <0.38-1.8 ng/L for 2,6-DBBQ. Chemical oxygen demand and residual chlorine were positively correlated with HBQ formation. The HBQ concentration was lower in a drinking water treatment plant using chlorine dioxide. High Ca2+ in tap water decreased the HBQ level. The rank order of HBQ by cytotoxicity was 2-chloro-1,4-benzoquinone > 2,3-diiodo-1,4-benzoquinone > 2,6-diiodo-1,4-benzoquinone > 2,6-dibromo-1,4-benzoquinone > 2,5-dibromo-1,4-benzoquinone > 2,5-dichloro-1,4-benzoquinone > 2,6-dichloro-1,4-benzoquinone > tetrachloro-1,4-benzoquinone > 2,3,6-trichloro-1,4-benzoquinone, and for their genotoxicity, 2,5-dichloro-1,4-benzoquinone > 2,6-dichloro-1,4-benzoquinone > 2,3-diiodo-1,4-benzoquinone > 2,6-diiodo-1,4-benzoquinone > tetrachloro-1,4-benzoquinone > 2,5-dibromo-1,4-benzoquinone > 2,6-dibromo-1,4-benzoquinone > 2,3,6-trichloro-1,4-benzoquinone. The cytotoxicity of six dihalo-HBQs was negatively correlated with the octanol-water partition coefficient (r = -0.971, P < 0.05), molar refractivity (r = -0.956, P < 0.05), energy of the highest occupied molecular orbital (EHOMO) (r = -0.943, P < 0.05), and polar surface area (r = -0.829, P < 0.05). The genotoxicity of these three pairs of dihalo-HBQ isomers followed the same order as their EHOMO values. This study reveals the occurrence and formation of HBQs in drinking water in China and systematically evaluates the chromosomal damage caused by nine HBQs in mammalian cells.
Collapse
Affiliation(s)
- Huan Wu
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, PR China
| | - Kunling Long
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, PR China
| | - Yujie Sha
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, PR China
| | - Du Lu
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, PR China
| | - Ying Xia
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, PR China
| | - Yan Mo
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, PR China
| | - Qiyuan Yang
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, PR China
| | - Weiwei Zheng
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, PR China
| | - Mengting Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518000, PR China
| | - Xiao Wei
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, PR China.
| |
Collapse
|
15
|
Wu Z, Tang Y, Yuan X, Qiang Z. Reduction of bromate by zero valent iron (ZVI) enhances formation of brominated disinfection by-products during chlorination. CHEMOSPHERE 2021; 268:129340. [PMID: 33360939 DOI: 10.1016/j.chemosphere.2020.129340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/10/2020] [Accepted: 12/13/2020] [Indexed: 06/12/2023]
Abstract
Bromate (BrO3-) is a predominant undesired toxic disinfection by-product (DBP) during ozonation of bromide-containing waters. The reduction of BrO3- by zero valent iron (ZVI) and its effect on formation of organic halogenated DBPs during chlorination were investigated in this study. The presence of ZVI could reduce BrO3- to bromide (Br-), and Br- formed could be transformed to free bromine (HOBr/OBr-) during chlorination, further leading to organic brominated (Br-) DBPs formation. Formation of DBPs during chlorination, including trihalomethanes (THMs) and haloacetonitriles (HANs) was detected under different conditions. The results showed that when ZVI dosage increased from 0 to 1 g L-1, the formation of Br-DBPs (e.g., TBM and DBCM) was significantly improved, while the formation of Cl-DBPs (e.g., TCM, TCAN and DCAN) reduced. Higher ZVI dosage exhibited inhibitory effect on Br-DBPs formation due to the competition between ZVI and free chlorine (HOCl/OCl-). The bromine substitution factor (BSF) of THMs significantly decreased from 0.61 ± 0.06 to 0.22 ± 0.02, as the pH was raised from 5.0 to 9.0. Besides, the increase of initial BrO3- concentration significantly improved the formation of Br-DBPs and decreased the formation of Cl-DBPs, leading to an obvious rise on the BSF of THMs. As the initial concentration of HOCl increased, all THMs and HANs gradually increased. Moreover, the analysis based on the cytotoxicity index (CTI) of the determined DBPs showed that reduction of BrO3- by ZVI during chlorination had certain risks in real water sources, which should be paid attention to in the application.
Collapse
Affiliation(s)
- Zhengdi Wu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yubin Tang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China.
| | - Xiangjuan Yuan
- School of Environmental Engineering, Wuhan Textile University, Wuhan, 430200, China
| | - Zhimin Qiang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
16
|
Liu H, Pu Y, Qiu X, Li Z, Sun B, Zhu X, Liu K. Humic Acid Extracts Leading to the Photochemical Bromination of Phenol in Aqueous Bromide Solutions: Influences of Aromatic Components, Polarity and Photochemical Activity. Molecules 2021; 26:molecules26030608. [PMID: 33503850 PMCID: PMC7926322 DOI: 10.3390/molecules26030608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/14/2021] [Accepted: 01/19/2021] [Indexed: 11/18/2022] Open
Abstract
Dissolved organic matter (DOM) is considered to play an important role in the abiotic transformation of organobromine compounds in marine environment, for it produces reactive intermediates photochemically and is recognized as a significant source of reactive halogen species in seawater. However, due to the complex composition of DOM, the relationship between the natural properties of DOM and its ability to produce organobromine compounds is less understood. Here, humic acid (HA) was extracted and fractionated based on the polarity and hydrophobicity using silica gel, and the influences of different fractions (FA, FB and FC) on the photochemical bromination of phenol was investigated. The structural properties of HA fractions were characterized by UV-vis absorption, Fourier transform infrared spectroscopy and fluorescence spectroscopy, and the photochemical reactivity of HA fractions was assessed by probing triplet dissolved organic matter (3DOM*), singlet oxygen (1O2) and hydroxyl radical (•OH). The influences of HA fractions on the photo-bromination of phenol were investigated in aqueous bromide solutions under simulated solar light irradiation. FA and FB with more aromatic and polar contents enhanced the photo-bromination of phenol more than the weaker polar and aromatic FC. This could be attributed to the different composition and chemical properties of the three HAs’ fractions and their production ability of •OH and 3DOM*. Separating and investigating the components with different chemical properties in DOM is of great significance for the assessment of their environmental impacts on the geochemical cycle of organic halogen.
Collapse
Affiliation(s)
- Hui Liu
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China; (Y.P.); (X.Q.); (Z.L.); (B.S.); (X.Z.)
- Correspondence: ; Tel.: +86-411-8472-3303
| | - Yingying Pu
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China; (Y.P.); (X.Q.); (Z.L.); (B.S.); (X.Z.)
| | - Xiaojun Qiu
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China; (Y.P.); (X.Q.); (Z.L.); (B.S.); (X.Z.)
| | - Zhi Li
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China; (Y.P.); (X.Q.); (Z.L.); (B.S.); (X.Z.)
| | - Bing Sun
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China; (Y.P.); (X.Q.); (Z.L.); (B.S.); (X.Z.)
| | - Xiaomei Zhu
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China; (Y.P.); (X.Q.); (Z.L.); (B.S.); (X.Z.)
| | - Kaiying Liu
- School of Science, Dalian Maritime University, Dalian 116026, China;
| |
Collapse
|
17
|
Hao Z, Shi F, Cao D, Liu J, Jiang G. Freezing-Induced Bromate Reduction by Dissolved Organic Matter and the Formation of Organobromine Compounds. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:1668-1676. [PMID: 31935071 DOI: 10.1021/acs.est.9b07902] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The freezing-induced acceleration of bromate reduction by humic substances (HS) contributes to HS bromination and the formation of organobromine compounds (OBCs). Herein, we report the enhanced reduction of bromate by dissolved organic matter and the formation of large amounts of OBCs in freezing solutions. After 48 h of freezing process, 78.1-100% of bromate was reduced by DOM at different initial concentrations of bromate and DOM in acidic solutions (pH 3 and 4). Bromide was one of the main reduction products, and it accounted for 30.9-47.8% of the total bromine content. Except for bromide, a large amount of OBCs formed by brominating DOM with reactive bromine species, like hypobromite, were detected. The conversion of bromate to OBCs, calculated as the total organobromine content to the initial bromate content, ranged from 28.2 to 52.5% and was mainly dependent on the bromate/DOM content. About 110-603 species of OBCs were detected by Fourier transform ion cyclotron resonance mass spectrometry, and they were primarily highly unsaturated and phenolic compounds. By analyzing the spectral variation before and after the freezing process, we found the disappearance of 900 compounds containing only C, H, and O with a low carbon oxidation state that was regarded as the main reductant of bromate. Our findings call for further investigation of the processes and the effects of bromate formation in aqueous environments.
Collapse
Affiliation(s)
- Zhineng Hao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , P.O. Box 2871, Beijing 100085 , China
| | - Fengqiong Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , P.O. Box 2871, Beijing 100085 , China
| | - Dong Cao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , P.O. Box 2871, Beijing 100085 , China
| | - Jingfu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , P.O. Box 2871, Beijing 100085 , China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , P.O. Box 2871, Beijing 100085 , China
| |
Collapse
|
18
|
Wang J, Zhang H, Zheng X, Liu R, Zong W. In vitro toxicity and molecular interacting mechanisms of chloroacetic acid to catalase. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 189:109981. [PMID: 31812021 DOI: 10.1016/j.ecoenv.2019.109981] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 06/10/2023]
Abstract
Chloroacetic acid (CAA), one of typical disinfection by-products (DBPs), has attracted considerable concerns for its biological safety. Antioxidant enzyme catalase (CAT) plays a crucial part in the regulation of redox state balance. Herein, CAA was used to test its adverse effects on CAT and explore the underlying mechanism. The cell viability of mouse primary hepatocytes decreased under CAA exposure. A bell-shaped response to CAA exposure was observed in intracellular CAT activity, whose change was partly influenced by molecular CAT activity. CAA binds to CAT mainly via van der Waals forces and hydrogen bonds with a stoichiometry of 9.2. The binding caused structural changes in CAT with the unfolding of polypeptide chains and the decrease of α-helical content. CAA interacts with the amino acid residues surrounding the active sites and substrate channel of CAT. These interactions result in the decrease of molecular CAT activity, which could be restored by high ionic strength. This study has provided a combined molecular and cellular tactics for studying the adverse effects of DBPs on biomarkers and the underlying mechanisms.
Collapse
Affiliation(s)
- Jing Wang
- School of Environmental and Material Engineering, Yantai University, 30# Qingquan Road, Yantai, 264005, PR China.
| | - Hongfa Zhang
- School of Environmental and Material Engineering, Yantai University, 30# Qingquan Road, Yantai, 264005, PR China
| | - Xiaolin Zheng
- School of Environmental and Material Engineering, Yantai University, 30# Qingquan Road, Yantai, 264005, PR China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China -America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Wansong Zong
- College of Population, Resources and Environment, Shandong Normal University, 88# East Wenhua Road, Jinan, 250014, PR China
| |
Collapse
|
19
|
Procházka E, Melvin SD, Escher BI, Plewa MJ, Leusch FD. Global Transcriptional Analysis of Nontransformed Human Intestinal Epithelial Cells (FHs 74 Int) after Exposure to Selected Drinking Water Disinfection By-Products. ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:117006. [PMID: 31755747 PMCID: PMC6927499 DOI: 10.1289/ehp4945] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
BACKGROUND Drinking water disinfection inadvertently leads to the formation of numerous disinfection by-products (DBPs), some of which are cytotoxic, mutagenic, genotoxic, teratogenic, and potential carcinogens both in vitro and in vivo. OBJECTIVES We investigated alterations to global gene expression (GE) in nontransformed human small intestine epithelial cells (FHs 74 Int) after exposure to six brominated and two chlorinated DBPs: bromoacetic acid (BAA), bromoacetonitrile (BAN), 2,6-dibromo-p-benzoquinone (DBBQ), bromoacetamide (BAM), tribromoacetaldehyde (TBAL), bromate (BrO3-), trichloroacetic acid (TCAA), and trichloroacetaldehyde (TCAL). METHODS Using whole-genome cDNA microarray technology (Illumina), we examined GE in nontransformed human cells after 4h exposure to DBPs at predetermined equipotent concentrations, identified significant changes in gene expression (p≤0.01), and investigated the relevance of these genes to specific toxicity pathways via gene and pathway enrichment analysis. RESULTS Genes related to activation of oxidative stress-responsive pathways exhibited fewer alterations than expected based on prior work, whereas all DBPs induced notable effects on transcription of genes related to immunity and inflammation. DISCUSSION Our results suggest that alterations to genes associated with immune and inflammatory pathways play an important role in the potential adverse health effects of exposure to DBPs. The interrelationship between these pathways and the production of reactive oxygen species (ROS) may explain the common occurrence of oxidative stress in other studies exploring DBP toxicity. Finally, transcriptional changes and shared induction of toxicity pathways observed for all DBPs caution of additive effects of mixtures and suggest further assessment of adverse health effects of mixtures is warranted. https://doi.org/10.1289/EHP4945.
Collapse
Affiliation(s)
- Erik Procházka
- Australian Rivers Institute, School of Environment and Science, Griffith University, Gold Coast, Queensland, Australia
| | - Steven D. Melvin
- Australian Rivers Institute, School of Environment and Science, Griffith University, Gold Coast, Queensland, Australia
| | - Beate I. Escher
- Australian Rivers Institute, School of Environment and Science, Griffith University, Gold Coast, Queensland, Australia
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
- Environmental Toxicology, Centre for Applied Geoscience, Eberhard Karls University, Tübingen, Germany
| | - Michael J. Plewa
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Safe Global Water Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Frederic D.L. Leusch
- Australian Rivers Institute, School of Environment and Science, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
20
|
Bhuvaneshwari M, Eltzov E, Veltman B, Shapiro O, Sadhasivam G, Borisover M. Toxicity of chlorinated and ozonated wastewater effluents probed by genetically modified bioluminescent bacteria and cyanobacteria Spirulina sp. WATER RESEARCH 2019; 164:114910. [PMID: 31382150 DOI: 10.1016/j.watres.2019.114910] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/18/2019] [Accepted: 07/22/2019] [Indexed: 06/10/2023]
Abstract
Chlorination and ozonation of various waters may be associated with the formation of toxic disinfection byproducts (DBPs) and cause health risks to humans. Monitoring the toxicity of chlorinated and ozonated water and identification of different toxicity mechanisms are therefore required. This study is one of its kind to examine the toxic effects of chlorinated and ozonated wastewater effluents on three genetically modified bioluminescent bacteria, in comparison to the naturally isolated cyanobacteria, Spirulina strains as test systems. Three different secondary wastewater effluents were collected from treatment plants, chlorinated using sodium hypochlorite (at 1 and 10 mg L-1 of chlorine) or treated using 3-4 mg L-1 of ozone at different contact times. As compared to cyanobacterial Spirulina sp., the genetically modified bacteria enhancing bioluminescence at the presence of stress agents demonstrated greater sensitivity to the toxicity induction and have also provided mechanism-specific responses associated with genotoxicity, cytotoxicity and reactive oxygen species (ROS) generation in wastewater effluents. Effects of effluent chlorination time and chlorine concentration revealed by means of bioluminescent bacteria suggest the formation of genotoxic and cytotoxic DBPs followed with their possible disappearance at longer times. Ozonation could degrade genotoxic compounds in some effluents, but the cytotoxic potential of wastewater effluents may certainly increase with ozonation time. No induction of ROS-related toxicity was detected in either chlorinated or ozonated wastewater effluents. UV absorbance- and fluorescence emission-based spectroscopic characteristics may be variously correlated with changes in genotoxicity in ozonated effluents, however, no associations were obtained in chlorinated wastewater effluents. The bacterial response to the developed mechanism-specific toxicity differs among wastewater effluents, reflecting variability in effluent compositions.
Collapse
Affiliation(s)
- M Bhuvaneshwari
- Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization, The Volcani Center, Israel.
| | - Evgeni Eltzov
- Institute of Postharvest and Food Science, Department of Postharvest Science, Agricultural Research Organization, The Volcani Center, Israel.
| | - Boris Veltman
- Institute of Postharvest and Food Science, Department of Postharvest Science, Agricultural Research Organization, The Volcani Center, Israel.
| | - Orr Shapiro
- Institute of Postharvest and Food Science, Department of Food Quality and Safety, Agricultural Research Organization, The Volcani Center, Israel.
| | - Giji Sadhasivam
- Institute of Postharvest and Food Science, Department of Food Quality and Safety, Agricultural Research Organization, The Volcani Center, Israel.
| | - Mikhail Borisover
- Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization, The Volcani Center, Israel.
| |
Collapse
|
21
|
Sbai SE, Farida B. Study of Iodine Oxide Particles at the Air/Sea Interface in the Presence of Surfactants and Humic Acid. CHEMISTRY & CHEMICAL TECHNOLOGY 2019. [DOI: 10.23939/chcht13.03.341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
22
|
Lu G, Qin D, Wang Y, Liu J, Chen W. Single and combined effects of selected haloacetonitriles in a human-derived hepatoma line. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 163:417-426. [PMID: 30071462 DOI: 10.1016/j.ecoenv.2018.07.104] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/02/2018] [Accepted: 07/25/2018] [Indexed: 05/23/2023]
Abstract
Haloacetonitriles (HANs) are nitrogenous disinfection byproducts (N-DBPs) detected in drinking water that have high toxicity and are a high risk to human health. The cytotoxicity and genotoxicity as well as the oxidative stress of five HANs, namely chloroacetonitrile (CAN), dichloroacetonitrile (DCAN), trichloroacetonitrile (TCAN), bromoacetonitrile (BAN), and dibromoacetonitrile (DBAN) on a hepatoma cell line (HepG2) were determined by single, binary or ternary exposure. The median effective concentrations, based on cell viability, ranged from 0.8360 mg/L for BAN to 256.9 mg/L for DCAN, with a cytotoxicity order of BAN > DBAN > CAN > TCAN > DCAN. The lowest observed effective concentrations regarding DNA damage were 0.01 mg/L for CAN and DCAN, 0.1 mg/L for DBAN and TCAN, and 1 mg/L for BAN. The DNA damage induced by CAN, DCAN and TCAN was repaired to about 80% in 30 min, and when induced by BAN and DBAN, it was repaired completely in 60 min. The intracellular reactive oxygen species (ROS) levels were significantly increased by the five HANs, and bromo-acetonitrile produced a stronger oxidative stress than chloro-acetonitrile. Co-exposure of DCAN, TCAN and DBAN significantly inhibited cell viability, induced DNA damage and facilitated ROS generation in HepG2 cells. However, the interactive effects were inconsistent for the different endpoints, which seemed to be antagonism for cell viability but synergy for ROS generation.
Collapse
Affiliation(s)
- Guanghua Lu
- Water Conservancy Project & Civil Engineering College, Tibet Agriculture & Animal Husbandry University, Linzhi 860000, China; Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| | - Donghong Qin
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Yonghua Wang
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Jianchao Liu
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Wei Chen
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
23
|
Wang J, Jia R, Zheng X, Sun Z, Liu R, Zong W. Drinking water disinfection byproduct iodoacetic acid interacts with catalase and induces cytotoxicity in mouse primary hepatocytes. CHEMOSPHERE 2018; 210:824-830. [PMID: 30048934 DOI: 10.1016/j.chemosphere.2018.07.061] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 07/11/2018] [Accepted: 07/12/2018] [Indexed: 06/08/2023]
Abstract
Disinfection byproducts (DBPs) are produced during the disinfection of drinking water and pose a hazard to human health. As a typical type of DBPs, iodoacetic acid (IAA) exhibits prominent cytotoxicity in mammalian cell systems which links with oxidative stress. However, little is known about the relationship of catalase (CAT) with the cytotoxicity of IAA and the adverse effects of IAA to CAT. This study investigated the effects of IAA on the cell viability and CAT activity in the mouse primary hepatocytes. It was shown that IAA exposure induced the loss of cell viability and the increase of intracellular CAT activity. Intracellular CAT activity significantly increased due to the stimulation of CAT production under IAA exposure. The molecular CAT activity was inhibited due to the direct interaction of IAA with HIS 74 and TYR 357 around the active sites of CAT. IAA binds to CAT with (4.05 ± 1.98) sites via van der Waals and hydrogen bonding interactions, resulting in the loosening of protein skeletons and the change of protein size.
Collapse
Affiliation(s)
- Jing Wang
- School of Environmental and Material Engineering, Yantai University, 30# Qingquan Road, Yantai 264005, PR China.
| | - Rui Jia
- School of Environmental and Material Engineering, Yantai University, 30# Qingquan Road, Yantai 264005, PR China
| | - Xiaolin Zheng
- School of Environmental and Material Engineering, Yantai University, 30# Qingquan Road, Yantai 264005, PR China
| | - Zhiqiang Sun
- School of Environmental Science and Engineering, Shandong University, China -America CRC for Environment & Health, Shandong Province, 27# Shanda South Road, Jinan, 250100, PR China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China -America CRC for Environment & Health, Shandong Province, 27# Shanda South Road, Jinan, 250100, PR China
| | - Wansong Zong
- College of Population, Resources and Environment, Shandong Normal University, 88# East Wenhua Road, Jinan, 250014, PR China
| |
Collapse
|
24
|
Cortés C, Marcos R. Genotoxicity of disinfection byproducts and disinfected waters: A review of recent literature. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 831:1-12. [DOI: 10.1016/j.mrgentox.2018.04.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 04/22/2018] [Accepted: 04/23/2018] [Indexed: 10/17/2022]
|
25
|
Hao Z, Yin Y, Cao D, Liu J. Probing and Comparing the Photobromination and Photoiodination of Dissolved Organic Matter by Using Ultra-High-Resolution Mass Spectrometry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:5464-5472. [PMID: 28440636 DOI: 10.1021/acs.est.6b03887] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Photochemical halogenation of dissolved organic matter (DOM) may represent an important abiotic process for the formation of natural organobromine compounds (OBCs) and natural organoiodine compounds (OICs) within surface waters. Here we report the enhanced formation of OBCs and OICs by photohalogenating DOM in freshwater and seawater, as well as the noticeable difference in the distribution and composition pattern of newly formed OBCs and OICs. By using negative ion electrospray ionization coupled with Fourier transform ion cyclotron resonance mass spectrometry, various OBCs and OICs were identified during the photohalogenation processes in sunlit waters. The respective number of OBCs and OICs formed in artificial seawater (ASW) under light radiation was higher than that in artificial freshwater (AFW), suggesting a possible role of the mixed reactive halogen species. OBCs were formed mainly via substitution reactions and addition reactions accompanied by other reactions and distributed into three classes: unsaturated hydrocarbons with relatively low oxygen content, unsaturated aliphatic compounds, and saturated fatty acids and carbohydrates with relatively high hydrogen content. Unlike the OBCs, OICs were located primarily in the region of carboxylic-rich alicyclic molecules composed of esterified phenolic, carboxylated, and fused alicyclic structures and were generated mainly through electrophilic substitution of the aromatic proton. Our findings call for further investigation on the exact structure and toxicity of the OBCs and OICs generated in the natural environment.
Collapse
Affiliation(s)
- Zhineng Hao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , P.O. Box 2871, Beijing 100085, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Yongguang Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , P.O. Box 2871, Beijing 100085, China
| | - Dong Cao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , P.O. Box 2871, Beijing 100085, China
| | - Jingfu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , P.O. Box 2871, Beijing 100085, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| |
Collapse
|
26
|
Stalter D, O'Malley E, von Gunten U, Escher BI. Fingerprinting the reactive toxicity pathways of 50 drinking water disinfection by-products. WATER RESEARCH 2016; 91:19-30. [PMID: 26773486 DOI: 10.1016/j.watres.2015.12.047] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 12/02/2015] [Accepted: 12/28/2015] [Indexed: 05/08/2023]
Abstract
A set of nine in vitro cellular bioassays indicative of different stages of the cellular toxicity pathway was applied to 50 disinfection by-products (DBPs) to obtain a better understanding of the commonalities and differences in the molecular mechanisms of reactive toxicity of DBPs. An Eschericia coli test battery revealed reactivity towards proteins/peptides for 64% of the compounds. 98% activated the NRf2-mediated oxidative stress response and 68% induced an adaptive stress response to genotoxic effects as indicated by the activation of the tumor suppressor protein p53. All DBPs reactive towards DNA in the E. coli assay and activating p53 also induced oxidative stress, confirming earlier studies that the latter could trigger DBP's carcinogenicity. The energy of the lowest unoccupied molecular orbital ELUMO as reactivity descriptor was linearly correlated with oxidative stress induction for trihalomethanes (r(2)=0.98) and haloacetamides (r(2)=0.58), indicating that potency of these DBPs is connected to electrophilicity. However, the descriptive power was poor for haloacetic acids (HAAs) and haloacetonitriles (r(2) (<) 0.06). For HAAs, we additionally accounted for speciation by including the acidity constant with ELUMO in a two-parameter multiple linear regression model. This increased r(2) to >0.80, indicating that HAAs' potency is connected to both, electrophilicity and speciation. Based on the activation of oxidative stress response and the soft electrophilic character of most tested DBPs we hypothesize that indirect genotoxicity-e.g., through oxidative stress induction and/or enzyme inhibition-is more plausible than direct DNA damage for most investigated DBPs. The results provide not only a mechanistic understanding of the cellular effects of DBPs but the effect concentrations may also serve to evaluate mixture effects of DBPs in water samples.
Collapse
Affiliation(s)
- Daniel Stalter
- National Research Centre for Environmental Toxicology, Entox, The University of Queensland, Brisbane, Australia; Eawag, Swiss Federal Institute of Aquatic Science and Technology, Duebendorf, Switzerland.
| | - Elissa O'Malley
- National Research Centre for Environmental Toxicology, Entox, The University of Queensland, Brisbane, Australia
| | - Urs von Gunten
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Duebendorf, Switzerland; School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Beate I Escher
- National Research Centre for Environmental Toxicology, Entox, The University of Queensland, Brisbane, Australia; Department of Cell Toxicology, UFZ - Helmholtz Centre for Environmental Research, Leipzig, Germany; Department of Environmental Toxicology, Center for Applied Geosciences, Eberhard Karls University, Tübingen, Germany
| |
Collapse
|
27
|
Gonsior M, Mitchelmore C, Heyes A, Harir M, Richardson SD, Petty WT, Wright DA, Schmitt-Kopplin P. Bromination of Marine Dissolved Organic Matter following Full Scale Electrochemical Ballast Water Disinfection. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:9048-9055. [PMID: 26168359 DOI: 10.1021/acs.est.5b01474] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
An extensively diverse array of brominated disinfection byproducts (DBPs) were generated following electrochemical disinfection of natural coastal/estuarine water, which is one of the main treatment methods currently under consideration for ballast water treatment. Ultra-high-resolution mass spectrometry revealed 462 distinct brominated DBPs at a relative abundance in the mass spectra of more than 1%. A brominated DBP with a relative abundance of almost 22% was identified as 2,2,4-tribromo-5-hydroxy-4-cyclopentene-1,3-dione, which is an analogue to several previously described 2,2,4-trihalo-5-hydroxy-4-cyclopentene-1,3-diones in drinking water. Several other brominated molecular formulas matched those of other known brominated DBPs, such as dibromomethane, which could be generated by decarboxylation of dibromoacetic acid during ionization, dibromophenol, dibromopropanoic acid, dibromobutanoic acid, bromohydroxybenzoic acid, bromophenylacetic acid, bromooxopentenoic acid, and dibromopentenedioic acid. Via comparison to previously described chlorine-containing analogues, bromophenylacetic acid, dibromooxopentenoic acid, and dibromopentenedioic acid were also identified. A novel compound at a 4% relative abundance was identified as tribromoethenesulfonate. This compound has not been previously described as a DBP, and its core structure of tribromoethene has been demonstrated to show toxicological implications. Here we show that electrochemical disinfection, suggested as a candidate for successful ballast water treatment, caused considerable production of some previously characterized DBPs in addition to novel brominated DBPs, although several hundred compounds remain structurally uncharacterized. Our results clearly demonstrate that electrochemical and potentially direct chlorination of ballast water in estuarine and marine systems should be approached with caution and the concentrations, fate, and toxicity of DBP need to be further characterized.
Collapse
Affiliation(s)
- Michael Gonsior
- †Chesapeake Biological Laboratory, University of Maryland Center for Environmental Science, Solomons, Maryland 20688, United States
| | - Carys Mitchelmore
- †Chesapeake Biological Laboratory, University of Maryland Center for Environmental Science, Solomons, Maryland 20688, United States
| | - Andrew Heyes
- †Chesapeake Biological Laboratory, University of Maryland Center for Environmental Science, Solomons, Maryland 20688, United States
| | - Mourad Harir
- ‡Helmholtz Zentrum München, Analytical BioGeoChemistry, D-85764 Neuherberg, Germany
| | - Susan D Richardson
- §Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - William Tyler Petty
- §Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - David A Wright
- †Chesapeake Biological Laboratory, University of Maryland Center for Environmental Science, Solomons, Maryland 20688, United States
- ⊥Environmental Research Services, Baltimore, Maryland 21231, United States
| | - Philippe Schmitt-Kopplin
- ‡Helmholtz Zentrum München, Analytical BioGeoChemistry, D-85764 Neuherberg, Germany
- ∥Technische Universität München, Analytical Food Chemistry, D-85354 Freising-Weihenstephan, Germany
| |
Collapse
|
28
|
Ali A, Kurzawa-Zegota M, Najafzadeh M, Gopalan RC, Plewa MJ, Anderson D. Effect of drinking water disinfection by-products in human peripheral blood lymphocytes and sperm. Mutat Res 2014; 770:136-43. [PMID: 25771880 DOI: 10.1016/j.mrfmmm.2014.08.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 07/30/2014] [Accepted: 08/20/2014] [Indexed: 05/15/2023]
Abstract
BACKGROUND Drinking water disinfection by-products (DBPs) are generated by the chemical disinfection of water and may pose hazards to public health. Two major classes of DBPs are found in finished drinking water: haloacetic acids (HAAs) and trihalomethanes (THMs). HAAs are formed following disinfection with chlorine, which reacts with iodide and bromide in the water. Previously the HAAs were shown to be cytotoxic, genotoxic, mutagenic, teratogenic and carcinogenic. OBJECTIVES To determine the effect of HAAs in human somatic and germ cells and whether oxidative stress is involved in genotoxic action. In the present study both somatic and germ cells have been examined as peripheral blood lymphocytes and sperm. METHODS The effects of three HAA compounds: iodoacetic acid (IAA), bromoacetic acid (BAA) and chloroacetic acid (CAA) were investigated. After determining appropriate concentration responses, oxygen radical involvement with the antioxidants, butylated hydroxanisole (BHA) and the enzyme catalase, were investigated in the single cell gel electrophoresis (Comet) assay under alkaline conditions, >pH 13 and the micronucleus assay. RESULTS In the Comet assay, BHA and catalase were able to reduce DNA damage in each cell type compared to HAA alone. In the micronucleus assay, micronuclei (MNi) were found in peripheral lymphocytes exposed to all three HAAs and catalase and BHA were in general, able to reduce MNi induction, suggesting oxygen radicals play a role in both assays. CONCLUSION These observations are of concern to public health since both human somatic and germ cells show similar genotoxic responses.
Collapse
Affiliation(s)
- Aftab Ali
- Genetic & Reproductive Toxicology Group, Medical Sciences Division, School of Life Sciences, University of Bradford, Bradford BD7 1DP, UK
| | - Malgorzata Kurzawa-Zegota
- Genetic & Reproductive Toxicology Group, Medical Sciences Division, School of Life Sciences, University of Bradford, Bradford BD7 1DP, UK
| | - Mojgan Najafzadeh
- Genetic & Reproductive Toxicology Group, Medical Sciences Division, School of Life Sciences, University of Bradford, Bradford BD7 1DP, UK
| | - Rajendran C Gopalan
- Genetic & Reproductive Toxicology Group, Medical Sciences Division, School of Life Sciences, University of Bradford, Bradford BD7 1DP, UK
| | - Michael J Plewa
- Department of Crop Sciences and NSF Science and Technology Center of Advanced Materials for the Purification of Water with Systems, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Diana Anderson
- Genetic & Reproductive Toxicology Group, Medical Sciences Division, School of Life Sciences, University of Bradford, Bradford BD7 1DP, UK.
| |
Collapse
|
29
|
Lu TH, Su CC, Tang FC, Chen CH, Yen CC, Fang KM, Lee KI, Hung DZ, Chen YW. Chloroacetic acid triggers apoptosis in neuronal cells via a reactive oxygen species-induced endoplasmic reticulum stress signaling pathway. Chem Biol Interact 2014; 225:1-12. [PMID: 25451595 DOI: 10.1016/j.cbi.2014.10.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 10/07/2014] [Accepted: 10/17/2014] [Indexed: 11/18/2022]
Abstract
Chloroacetic acid (CA), a chlorinated analog of acetic acid and an environmental toxin that is more toxic than acetic, dichloroacetic, or trichloroacetic acids, is widely used in chemical industries. Furthermore, CA has been found to be the major disinfection by-products (DBPs) of drinking water. CA has been reported to be highly corrosive and to induce severe tissue injuries (including nervous system) that lead to death in mammals. However, the effects and underlying mechanisms of CA-induced neurotoxicity remain unknown. In the present study, we found that CA (0.5-2.0 mM) significantly increased LDH release, decreased the number of viable cells (cytotoxicity) and induced apoptotic events (including: increases in the numbers of apoptotic cells, the membrane externalization of phosphatidylserine (PS), and caspase-3/-7 activity) in Neuro-2a cells. CA (1.5 mM; the approximate to LD50) also triggered ER stress, which was identified by monitoring several key molecules that are involved in the unfolded protein responses (including the increase in the expressions of p-PERK, p-IRE-1, p-eIF2α, ATF-4, ATF-6, CHOP, XBP-1, GRP 78, GRP 94, and caspase-12) and calpain activity. Transfection of GRP 78- and GRP 94-specific si-RNA effectively abrogated CA-induced cytotoxicity, caspase-3/-7 and caspase-12 activity, and GRP 78 and GRP 94 expression in Neuro-2a cells. Additionally, pretreatment with 2.5 mM N-acetylcysteine (NAC; a glutathione (GSH) precursor) dramatically suppressed the increase in lipid peroxidation, cytotoxicity, apoptotic events, calpain and caspase-12 activity, and ER stress-related molecules in CA-exposed cells. Taken together, these results suggest that the higher concentration of CA exerts its cytotoxic effects in neuronal cells by triggering apoptosis via a ROS-induced ER stress signaling pathway.
Collapse
Affiliation(s)
- Tien-Hui Lu
- Department of Physiology and Graduate Institute of Basic Medical Science, School of Medicine, College of Medicine, China Medical University, No. 91 Hsueh-Shih Rd., 404 Taichung, Taiwan.
| | - Chin-Chuan Su
- Department of Otorhinolaryngology, Head and Neck Surgery, Changhua Christian Hospital, No. 135 Nanxiao St., Changhua City, 500 Changhua County, Taiwan.
| | - Feng-Cheng Tang
- Department of Occupational Medicine, Changhua Christian Hospital, No. 135 Nanxiao St., Changhua City, 500 Changhua County, Taiwan.
| | - Chun-Hung Chen
- Department of Emergency, China Medical University Hospital, No. 2 Yuh-Der Rd., 404 Taichung, Taiwan.
| | - Cheng-Chieh Yen
- Department of Occupational Safety and Health, College of Health Care and Management, Chung Shan Medical University, No. 110 Section 1, Jian-Guo N. Rd., 402 Taichung, Taiwan; Department of Occupational Medicine, Chung Shan Medical University Hospital, No. 110 Section 1, Jian-Guo N. Rd., 402 Taichung, Taiwan.
| | - Kai-Min Fang
- Department of Physiology and Graduate Institute of Basic Medical Science, School of Medicine, College of Medicine, China Medical University, No. 91 Hsueh-Shih Rd., 404 Taichung, Taiwan; Department of Otolaryngology, Far Eastern Memorial Hospital, No. 21, Sec. 2, Nanya S. Rd., Banciao Dist., New Taipei City 220, Taiwan.
| | - kuan-I Lee
- Department of Emergency, Taichung Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation, No. 66 Section 1, Fongsing Rd., Tanzih Township, Taichung 427, Taiwan.
| | - Dong-Zong Hung
- Division of Toxicology, Trauma & Emergency Center, China Medical University Hospital, No. 2 Yuh-Der Rd., 404 Taichung, Taiwan.
| | - Ya-Wen Chen
- Department of Physiology and Graduate Institute of Basic Medical Science, School of Medicine, College of Medicine, China Medical University, No. 91 Hsueh-Shih Rd., 404 Taichung, Taiwan.
| |
Collapse
|
30
|
Zhang H, Zhang Y, Shi Q, Zheng H, Yang M. Characterization of unknown brominated disinfection byproducts during chlorination using ultrahigh resolution mass spectrometry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:3112-3119. [PMID: 24568637 DOI: 10.1021/es4057399] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Brominated disinfection byproducts (Br-DBPs), formed from the reaction of disinfectant(s) with natural organic matter in the presence of bromide in raw water, are generally more cytotoxic and genotoxic than their chlorinated analogues. To date, only a few Br-DBPs in drinking water have been identified, while a significant portion of Br-DBPs in drinking water is still unknown. In this study, negative ion electrospray ionization ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS) was used to characterize unknown Br-DBPs in artificial drinking water. In total, 441 formulas for one-bromine-containing products and 37 formulas for two-bromine-containing products, most of which had not been previously reported, were detected in the chlorinated sample. Most Br-DBPs have corresponding chlorine-containing analogues with identical CHO composition. In addition, on-resonance collision-induced dissociation (CID) of single ultrahigh resolved bromine containing mass peaks was performed in the ICR cell to isolate single bromine-containing components in a very complex natural organic matter spectrum and provide structure information. Relatively abundant neutral loss of CO2 was observed in MS-MS spectra, indicating that the unknown Br-DBPs are rich in carboxyl groups. The results demonstrate that the ESI FT-ICR MS method could provide valuable molecular composition and structure information on unknown Br-DBPs.
Collapse
Affiliation(s)
- Haifeng Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
| | | | | | | | | |
Collapse
|
31
|
Zhai H, Zhang X, Zhu X, Liu J, Ji M. Formation of brominated disinfection byproducts during Chloramination of drinking water: new polar species and overall kinetics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:2579-2588. [PMID: 24512354 DOI: 10.1021/es4034765] [Citation(s) in RCA: 183] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The formation of brominated disinfection byproducts (Br-DBPs), which are generally significantly more cytotoxic and genotoxic than their chlorinated analogues, in chloramination has not been fully examined. In this work, the formation of new polar Br-DBPs in simulated drinking waters was examined using state-of-the-art ultraperformance liquid chromatography/electrospray ionization-triple quadrupole mass spectrometry. As many as 29 aliphatic, aromatic, or nitrogenous polar Br-DBPs were detected in chloramination, and five of them (including 2,4,6-tribromoresorcinol, 2,6-dibromo-4-nitrophenol, 2,2,4-tribromo-5-hydroxy-4-cyclopentene-1,3-dione, 2,2,4-dibromochloro-5-hydroxy-4-cyclopentene-1,3-dione, and 2,2,4-bromodichloro-5-hydroxy-4-cyclopentene-1,3-dione) were tentatively identified. Unlike chlorination, chloramination favored the formation of aromatic and nitrogenous polar Br-DBPs and was mild enough to allow polar intermediate Br-DBPs to accumulate. To further explore the formation mechanism of Br-DBPs in chloramination, a quantitative empirical model involving 33 major reactions was developed to describe the overall kinetics. According to the modeling results, bromochloramine and monobromamine were the major species responsible for 54.2-58.1% and 41.7-45.7%, respectively, of the formed Br-DBPs, while hypobromous acid accounted for only 0.2% of the formed Br-DBPs; direct reactions between monochloramine and natural organic matter accounted for the majority of the formed chlorinated DBPs (93.7-95.1%); hypochlorous acid and hypobromous acid in the chloramination were at ng/L or subng/L levels, which were not enough to cause polar intermediate Br-DBPs to decompose.
Collapse
Affiliation(s)
- Hongyan Zhai
- School of Environmental Science and Engineering, Tianjin University , No. 92 Weijin Road, Nankai District, Tianjin, China
| | | | | | | | | |
Collapse
|
32
|
Pan Y, Zhang X, Wagner ED, Osiol J, Plewa MJ. Boiling of simulated tap water: effect on polar brominated disinfection byproducts, halogen speciation, and cytotoxicity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 48:149-156. [PMID: 24308807 DOI: 10.1021/es403775v] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Tap water typically contains numerous halogenated disinfection byproducts (DBPs) as a result of disinfection, especially of chlorination. Among halogenated DBPs, brominated ones are generally significantly more toxic than their chlorinated analogues. In this study, with the aid of ultra performance liquid chromatography/electrospray ionization-triple quadrupole mass spectrometry by setting precursor ion scans of m/z 79/81, whole spectra of polar brominated DBPs in simulated tap water samples without and with boiling were revealed. Most polar brominated DBPs were thermally unstable and their levels were substantially reduced after boiling via decarboxylation or hydrolysis; the levels of a few aromatic brominated DBPs increased after boiling through decarboxylation of their precursors. A novel adsorption unit for volatile total organic halogen was designed, which enabled the evaluation of halogen speciation and mass balances in the simulated tap water samples during boiling. After boiling for 5 min, the overall level of brominated DBPs was reduced by 62.8%, of which 39.8% was volatilized and 23.0% was converted to bromide; the overall level of chlorinated DBPs was reduced by 61.1%, of which 44.4% was volatilized and 16.7% was converted to chloride; the overall level of halogenated DBPs was reduced by 62.3%. The simulated tap water sample without boiling was cytotoxic in a chronic (72 h) exposure to mammalian cells; this cytotoxicity was reduced by 76.9% after boiling for 5 min. The reduction in cytotoxicity corresponded with the reduction in overall halogenated DBPs. Thus, boiling of tap water can be regarded as a "detoxification" process and may reduce human exposure to halogenated DBPs through tap water ingestion.
Collapse
Affiliation(s)
- Yang Pan
- Environmental Engineering Program, Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology , Hong Kong SAR, China
| | | | | | | | | |
Collapse
|
33
|
Londoño-Velasco E, Hidalgo-Cerón V, Escobar-Hoyos LF, Hoyos-Giraldo LS. Assessment of genomic damage and repair on human lymphocytes by paint thinnerin vitro. Toxicol Mech Methods 2013; 24:243-9. [DOI: 10.3109/15376516.2013.862893] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Elizabeth Londoño-Velasco
- Department of Biology, Research Group Genetic Toxicology and Cytogenetics, Faculty of Natural Sciences and Education, Universidad del Cauca, Popayán , Cauca , Colombia and
| | | | | | | |
Collapse
|
34
|
Escobar-Hoyos LF, Hoyos-Giraldo LS, Londoño-Velasco E, Reyes-Carvajal I, Saavedra-Trujillo D, Carvajal-Varona S, Sánchez-Gómez A, Wagner ED, Plewa MJ. Genotoxic and clastogenic effects of monohaloacetic acid drinking water disinfection by-products in primary human lymphocytes. WATER RESEARCH 2013; 47:3282-90. [PMID: 23602619 DOI: 10.1016/j.watres.2013.02.052] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 01/15/2013] [Accepted: 02/26/2013] [Indexed: 05/08/2023]
Abstract
The haloacetic acids (HAAs) are the second-most prevalent class of drinking water disinfection by-products formed by chemical disinfectants. Previous studies have determined DNA damage and repair of HAA-induced lesions in mammalian and human cell lines; however, little is known of the genomic DNA and chromosome damage induced by these compounds in primary human cells. The aim of this study was to evaluate the genotoxic and clastogenic effects of the monoHAA disinfection by-products in primary human lymphocytes. All monoHAAs were genotoxic in primary human lymphocytes, the rank order of genotoxicity and cytotoxicity was IAA > BAA >> CAA. After 6 h of repair time, only 50% of the DNA damage (maximum decrease in DNA damage) was repaired compared to the control. This demonstrates that primary human lymphocytes are less efficient in repairing the induced damage by monoHAAs than previous studies with mammalian cell lines. In addition, the monoHAAs induced an increase in the chromosome aberration frequency as a measurement of the clastogenic effect of these compounds. These results coupled with genomic technologies in primary human cells and other mammalian non-cancerous cell lines may lead to the identification of biomarkers that may be employed in feedback loops to aid water chemists and engineers in the overall goal of producing safer drinking water.
Collapse
Affiliation(s)
- Luisa F Escobar-Hoyos
- Department of Biology, Research Group Genetic Toxicology and Cytogenetics, Faculty of Natural Sciences and Education, Vicerrectoría de Investigaciones, Universidad del Cauca, Carrera 2da N° 1 A-25 Barrio Caldas, Popayán, Cauca, Colombia.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Wei X, Wang S, Zheng W, Wang X, Liu X, Jiang S, Pi J, Zheng Y, He G, Qu W. Drinking water disinfection byproduct iodoacetic acid induces tumorigenic transformation of NIH3T3 cells. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:5913-20. [PMID: 23641915 DOI: 10.1021/es304786b] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Iodoacetic acid (IAA) and iodoform (IF) are unregulated iodinated disinfection byproducts (DBPs) found in drinking water. Their presence in the drinking water of China has not been documented. Recently, the carcinogenic potential of IAA and IF has been a concern because of their mutagenicity in bacteria and genotoxicity in mammalian cells. Therefore, we measured their concentrations in Shanghai drinking water and assessed their cytotoxicity, genotoxicity, and ability to transform NIH3T3 cells to tumorigenic lines. The concentrations of IAA and IF in Shanghai drinking water varied between summer and winter with maximum winter levels of 2.18 μg/L IAA and 0.86 μg/L IF. IAA with a lethal concentration 50 (LC50) of 2.77 μM exhibited more potent cytotoxicity in NIH3T3 cells than IF (LC50 = 83.37 μM). IAA, but not IF, induced a concentration-dependent DNA damage measured by γ-H2AX staining and increased tail moment in single-cell gel electrophoresis. Neither IAA nor IF increased micronucleus frequency. Prolonged exposure of NIH3T3 cells to IAA increased the frequencies of transformed cells with anchorage-independent growth and agglutination with concanavalin A. IAA-transformed cells formed aggressive fibrosarcomas after inoculation into Balb/c nude mice. This study demonstrated that IAA has a biological activity that is consistent with a carcinogen and human exposure should be of concern.
Collapse
Affiliation(s)
- Xiao Wei
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai, 200032, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Ding G, Zhang X, Yang M, Pan Y. Formation of new brominated disinfection byproducts during chlorination of saline sewage effluents. WATER RESEARCH 2013; 47:2710-8. [PMID: 23510691 DOI: 10.1016/j.watres.2013.02.036] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Revised: 02/07/2013] [Accepted: 02/10/2013] [Indexed: 05/04/2023]
Abstract
Chlorination could be the most cost-effective method for disinfecting saline sewage effluents resulting from toilet flushing with seawater. Upon chlorination, the high levels of bromide ions in saline sewage effluents (up to 32 mg/L) can be oxidized to hypobromous acid/hypobromite, which could then react with organic matter in the sewage effluents to form brominated disinfection byproducts (Br-DBPs). In this study, primary and secondary saline sewage effluents were collected and chlorinated at different chlorine doses, and a powerful precursor ion scan method using ultra performance liquid chromatography/electrospray ionization-triple quadrupole mass spectrometry was adopted for detection and identification of polar Br-DBPs in these samples. With the new method, 54 major polar Br-DBPs were detected in the chlorinated saline effluents and six of them were newly identified as wastewater DBPs, including bromomaleic acid, 5-bromosalicylic acid, 3,5-dibromo-4-hydroxybenzaldehyde, 3,5-dibromo-4-hydroxybenzoic acid, 2,6-dibromo-4-nitrophenol, and 2,4,6-tribromophenol. The formation of polar Br-DBPs, especially those newly detected ones, during chlorination of the saline effluents was studied. For the secondary saline effluent, various polar Br-DBPs formed and reached their maximum levels at different chlorine doses, whereas for the primary saline effluent, the formation of polar Br-DBPs basically kept increasing with increasing chlorine dose. Compared with the secondary saline effluent, the primary saline effluent generated fewer and less Br-DBPs and rarely generated nitrogenous Br-DBPs.
Collapse
Affiliation(s)
- Guoyu Ding
- Environmental Engineering Program, Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong
| | | | | | | |
Collapse
|
37
|
Pan Y, Zhang X. Four groups of new aromatic halogenated disinfection byproducts: effect of bromide concentration on their formation and speciation in chlorinated drinking water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:1265-1273. [PMID: 23298294 DOI: 10.1021/es303729n] [Citation(s) in RCA: 252] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Bromide is naturally present in source waters worldwide. Chlorination of drinking water can generate a variety of chlorinated and brominated disinfection byproducts (DBPs). Although substantial efforts have been made to examine the effect of bromide concentration on the formation and speciation of halogenated DBPs, almost all previous studies have focused on trihalomethanes and haloacetic acids. Given that about 50% of total organic halogen formed in chlorination remains unknown, it is still unclear how bromide concentration affects the formation and speciation of the new/unknown halogenated DBPs. In this study, chlorinated drinking water samples with different bromide concentrations were prepared, and a novel approach-precursor ion scan using ultra performance liquid chromatography/electrospray ionization-triple quadrupole mass spectrometry-was adopted for the detection and identification of polar halogenated DBPs in these water samples. With this approach, 11 new putative aromatic halogenated DBPs were identified, and they were classified into four groups: dihalo-4-hydroxybenzaldehydes, dihalo-4-hydroxybenzoic acids, dihalo-salicylic acids, and trihalo-phenols. A mechanism for the formation of the four groups of new aromatic halogenated DBPs was proposed. It was found that increasing the bromide concentration shifted the entire polar halogenated DBPs as well as the four groups of new DBPs from being less brominated to being more brominated; these new aromatic halogenated DBPs might be important intermediate DBPs formed in drinking water chlorination. Moreover, the speciation of the four groups of new DBPs was modeled: the speciation patterns of the four groups of new DBPs well matched those determined from the model equations, and the reactivity differences between HOBr and HOCl in reactions forming the four groups of new DBPs were larger than those in reactions forming trihalomethanes and haloacetic acids.
Collapse
Affiliation(s)
- Yang Pan
- Environmental Engineering Program, Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | | |
Collapse
|
38
|
Radjenović J, Farré MJ, Mu Y, Gernjak W, Keller J. Reductive electrochemical remediation of emerging and regulated disinfection byproducts. WATER RESEARCH 2012; 46:1705-1714. [PMID: 22265615 DOI: 10.1016/j.watres.2011.12.042] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 12/14/2011] [Accepted: 12/18/2011] [Indexed: 05/31/2023]
Abstract
Long-term exposure to low concentrations of disinfection byproducts (DBPs) in drinking water has been associated with increased human-health risks of bladder cancer and adverse reproductive outcomes. In this study, we investigated electrochemical reduction utilizing a resin-impregnated graphite cathode for the degradation of 17 DBPs (i.e. halomethanes, haloacetonitriles, halopropanones, chloral hydrate and trichloronitromethane) at low μg L(-1) concentration levels. The reduction experiments were potentiostatically controlled at cathode potentials -700, -800 and -900 mV vs Standard Hydrogen Electrode (SHE) during 24 h. At the lowest potential applied (i.e. -900 mV vs SHE), the disappearance of DBPs from the solution after 24 h of reduction was >70%, except for chloroform (32%), 1,1-dichloropropanone (48%), and chloral hydrate (31%). Due to the participation of several removal mechanisms (e.g. electrochemical reduction, adsorption, volatilization and/or hydrolysis) it was not possible to distinguish the removal efficiencies of electrochemical reduction of individual compounds. Adsorption of the more hydrophilic DBPs (i.e. haloacetonitriles, chloral hydrate, and 1,1-dichloropropanone) onto the electrode seems to be affected by the cathode polarization, as the removals observed in the open circuit experiments were significantly higher than the ones obtained in electrochemical reduction under the same conditions. The overall efficiency of reduction was estimated based on the analyses of the released Cl(-), Br(-) and I(-) ions. Nearly complete C-I bond cleavage was achieved at all three potentials applied, and from the theoretically predicted release of I(-) ions, calculated based on the removed DBPs, 86 ± 9 to 92 ± 1% was measured in the catholyte solution at -700 to -900 mV vs SHE. Debromination efficiencies obtained were 74 ± 3, 79 ± 6 and 68 ± 4% at -700, -800 and -900 mV vs SHE, while for C-Cl bond cleavage the obtained values were 69 ± 1, 72 ± 1 and 76 ± 4%, respectively. Nevertheless, dechlorination efficiencies are to be considered as approximate, since an increase in Cl(-) concentration was observed in the open circuit experiments due to the hydrolysis of some of the chlorine-containing DBPs. Although the Coulombic efficiencies for DPBs dehalogenation were only 1.9 ± 0.3 (-900 mV vs SHE) -4.1 ± 0.2% (-700 mV vs SHE), relatively low energy consumption of the process was observed, estimated at 72 ± 2 Wh m(-3) at -900 mV vs SHE for the concentration range of DBPs in this study (i.e. 65.3-129.7 μg L(-1)). The study demonstrated that reductive electrochemical treatment has the potential to be a modern remediation technology for the removal of low concentrations of halogenated DBPs in water.
Collapse
Affiliation(s)
- Jelena Radjenović
- The University of Queensland, QLD Advanced Water Management Centre, Brisbane, Queensland 4072, Australia.
| | | | | | | | | |
Collapse
|
39
|
Zhai H, Zhang X. Formation and decomposition of new and unknown polar brominated disinfection byproducts during chlorination. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:2194-2201. [PMID: 21323365 DOI: 10.1021/es1034427] [Citation(s) in RCA: 213] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Brominated disinfection byproducts (Br-DBPs) are generally more cytotoxic and genotoxic than their chlorinated analogues. A great portion of total organic bromine in chlorinated drinking water is still unknown and may be ascribed to polar Br-DBPs. In this work, a novel approach, precursor ion scan using ultra-performance liquid chromatography/electrospray ionization-triple quadrupole mass spectrometry, was adopted and further developed for selective detection and identification of polar Br-DBPs, which made it possible to reveal the whole picture of the formation and decomposition of polar Br-DBPs during chlorination. Simulated drinking water samples with chlorine contact times from 1 min to 7 d were analyzed. Many new polar aromatic and unsaturated aliphatic Br-DBPs were detected and tentatively proposed with chemical structures, of which 2,4,6-tribromophenol, 3,5-dibromo-4-hydroxybenzoic acid, 2,6-dibromo-1,4-hydroquinone, and 3,3-dibromopropenoic acid were confirmed or identified with authentic standards. It was found that various polar Br-DBPs formed and reached the maximum levels at different chlorine contact times; high molecular weight Br-DBPs might undergo decomposition to relatively low molecular weight Br-DBPs or even finally to haloacetic acids and trihalomethanes. The decomposition of newly detected intermediate Br-DBPs (including molecular ion cluster m/z 345/347/349/351, 2,4,6-tribromophenol, and 3,5-dibromo-4-hydroxybenzoic acid) during chlorination was investigated in detail. The "black box" from the input of "humic substances + bromide + chlorine" through the output of "haloacetic acids + trihalomethanes" was opened to a significant extent.
Collapse
Affiliation(s)
- Hongyan Zhai
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | | |
Collapse
|
40
|
Kogevinas M, Villanueva CM, Font-Ribera L, Liviac D, Bustamante M, Espinoza F, Nieuwenhuijsen MJ, Espinosa A, Fernandez P, DeMarini DM, Grimalt JO, Grummt T, Marcos R. Genotoxic effects in swimmers exposed to disinfection by-products in indoor swimming pools. ENVIRONMENTAL HEALTH PERSPECTIVES 2010; 118:1531-7. [PMID: 20833606 PMCID: PMC2974689 DOI: 10.1289/ehp.1001959] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Revised: 06/21/2010] [Accepted: 08/03/2010] [Indexed: 05/03/2023]
Abstract
BACKGROUND Exposure to disinfection by-products (DBPs) in drinking water has been associated with cancer risk. A recent study (Villanueva et al. 2007; Am J Epidemiol 165:148-156) found an increased bladder cancer risk among subjects attending swimming pools relative to those not attending. OBJECTIVES We evaluated adults who swam in chlorinated pools to determine whether exposure to DBPs in pool water is associated with biomarkers of genotoxicity. METHODS We collected blood, urine, and exhaled air samples from 49 nonsmoking adult volunteers before and after they swam for 40 min in an indoor chlorinated pool. We estimated associations between the concentrations of four trihalomethanes (THMs) in exhaled breath and changes in micronuclei (MN) and DNA damage (comet assay) in peripheral blood lymphocytes before and 1 hr after swimming; urine mutagenicity (Ames assay) before and 2 hr after swimming; and MN in exfoliated urothelial cells before and 2 weeks after swimming. We also estimated associations and interactions with polymorphisms in genes related to DNA repair or to DBP metabolism. RESULTS After swimming, the total concentration of the four THMs in exhaled breath was seven times higher than before swimming. The change in the frequency of micronucleated lymphocytes after swimming increased in association with higher exhaled concentrations of the brominated THMs (p = 0.03 for bromodichloromethane, p = 0.05 for chlorodibromomethane, p = 0.01 for bromoform) but not chloroform. Swimming was not associated with DNA damage detectable by the comet assay. Urine mutagenicity increased significantly after swimming, in association with the higher concentration of exhaled bromoform (p = 0.004). We found no significant associations with changes in micronucleated urothelial cells. CONCLUSIONS Our findings support potential genotoxic effects of exposure to DBPs from swimming pools. The positive health effects gained by swimming could be increased by reducing the potential health risks of pool water.
Collapse
Affiliation(s)
- Manolis Kogevinas
- Centre for Research in Environmental Epidemiology, Barcelona, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Attene-Ramos MS, Wagner ED, Plewa MJ. Comparative human cell toxicogenomic analysis of monohaloacetic acid drinking water disinfection byproducts. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2010; 44:7206-12. [PMID: 20540539 DOI: 10.1021/es1000193] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The monohaloacetic acids (monoHAAs), iodoacetic, bromoacetic and chloroacetic acids are toxic disinfection byproducts. In vitro toxicological end points were integrated with DNA damage and repair pathway-focused toxicogenomic analyses to evaluate monoHAA-induced alterations of gene expression in normal nontransformed human cells. When compared to concurrent control transcriptome profiles, metabolic pathways involved in the cellular responses to toxic agents were identified and provided insight into the biological mechanisms of toxicity. Using the Database for Annotation, Visualization and Integrated Discovery to analyze the gene array data, the majority of the altered transcriptome profiles were associated with genes responding to DNA damage or those regulating cell cycle or apoptosis. The major pathways involved with altered gene expression were ATM, MAPK, p53, BRCA1, BRCA2, and ATR. These latter pathways highlight the involvement of DNA repair, especially the repair of double strand DNA breaks. All of the resolved pathways are involved in human cell stress response to DNA damage and regulate different stages in cell cycle progression or apoptosis.
Collapse
Affiliation(s)
- Matias S Attene-Ramos
- Department of Crop Sciences, College of Agricultural, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | |
Collapse
|
42
|
Plewa MJ, Simmons JE, Richardson SD, Wagner ED. Mammalian cell cytotoxicity and genotoxicity of the haloacetic acids, a major class of drinking water disinfection by-products. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2010; 51:871-8. [PMID: 20839218 DOI: 10.1002/em.20585] [Citation(s) in RCA: 224] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The haloacetic acids (HAAs) are disinfection by-products (DBPs) that are formed during the disinfection of drinking water, wastewaters and recreational pool waters. Currently, five HAAs [bromoacetic acid (BAA), dibromoacetic acid (DBAA), chloroacetic acid (CAA), dichloroacetic acid (DCAA), and trichloroacetic acid (TCAA); designated as HAA5] are regulated by the U.S. EPA, at a maximum contaminant level of 60 μg/L for the sum of BAA, DBAA, CAA, DCAA, and TCAA. We present a comparative systematic analysis of chronic cytotoxicity and acute genomic DNA damaging capacity of 12 individual HAAs in mammalian cells. In addition to the HAA5, we analyzed iodoacetic acid (IAA), diiodoacetic acid (DiAA), bromoiodoacetic acid (BIAA), tribromoacetic acid (TBAA), chlorodibromoacetic acid (CDBAA), bromodichloroacetic acid (BDCAA), and bromochloroacetic acid (BCAA). Their rank order of chronic cytotoxicity in Chinese hamster ovary cells was IAA > BAA > TBAA > CDBAA > DIAA > DBAA > BDCAA > BCAA > CAA > BIAA > TCAA > DCAA. The rank order for genotoxicity was IAA > BAA > CAA > DBAA > DIAA > TBAA > BCAA > BIAA > CDBAA. DCAA, TCAA, and BDCAA were not genotoxic. The trend for both cytotoxicity and genotoxicity is iodinated HAAs > brominated HAAs > chlorinated HAAs. The use of alternative disinfectants other than chlorine generates new DBPs and alters their distribution. Systematic, comparative, in vitro toxicological data provides the water supply community with information to consider when employing alternatives to chlorine disinfection. In addition, these data aid in prioritizing DBPs and their related compounds for future in vivo toxicological studies and risk assessment.
Collapse
Affiliation(s)
- Michael J Plewa
- Department of Crop Sciences, College of Agricultural, Consumer and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| | | | | | | |
Collapse
|
43
|
Liviac D, Creus A, Marcos R. Genotoxicity testing of three monohaloacetic acids in TK6 cells using the cytokinesis-block micronucleus assay. Mutagenesis 2010; 25:505-9. [DOI: 10.1093/mutage/geq034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|