1
|
Zienkiewicz-Machnik M, Luboradzki R, Mech-Piskorz J, Angulo G, Nogala W, Ratajczyk T, Aleshkevych P, Kubas A. Cationic-anionic complexes of Cu(II) and Co(II) with N-scorpionate ligand - structure, spectroscopy, and catecholase activity. Dalton Trans 2025; 54:5268-5285. [PMID: 40013617 DOI: 10.1039/d4dt03478c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
We report structural and physicochemical characterization supported by quantum chemical studies of two novel copper(II) [CuLCl]2[CuCl4] (1) and cobalt(II) [CoLCl][CoL'Cl3] (2) cationic-anionic complexes with N-scorpionate type ligand, N,N,N-tris(3,5-dimethylpyrazol-1-ylmethyl)amine (L), where L' is 1-methylamine-3,5-dimethylpyrazole. The obtained complexes are the first reported examples of cationic-anionic coordination compounds tested for catecholase activity. Interestingly, only copper complex (1) shows catalytic activity in the oxidation of 3,5-di-tert-butylcatechol (3,5-DTBC), which turned out to be solvent dependent. Here, experimental UV-vis spectroscopy of 1 shows that essential features of the solid-state spectrum are maintained in DMSO and MeOH solvents. In contrast, the build-up of a new feature around 465 nm for 1 in CH3CN was noted, along with negligible activity. According to quantum chemical calculations, this feature could be attributed to ligand-to-metal excitations within the [CuCl4]2- fragment disturbed by adjacent [CuLCl]+ species. The band shifts to lower energies compared to solid-state measurements as the two charged fragments get closer due to Coulomb interactions. In DMSO, the solvent molecule serves as an inert ligand in a [CuLCl]+ fragment and blocks the catalytic center, disturbing the formation of the [catalyst-substrate] complex and decreasing activity, while in MeOH, the solvent effectively stabilizes [CuCl4]2-via a H-bond network and the free coordination site is accessible, thus allowing a substrate molecule to bind. The critical advantage of the investigated complexes, in the context of their possible catalytic activity, was the fact that their usage would not introduce any unnecessary counterions.
Collapse
Affiliation(s)
| | - Roman Luboradzki
- Institute of Physical Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Justyna Mech-Piskorz
- Institute of Physical Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Gonzalo Angulo
- Institute of Physical Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Wojciech Nogala
- Institute of Physical Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Tomasz Ratajczyk
- Institute of Physical Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Pavlo Aleshkevych
- Institute of Physics Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland
| | - Adam Kubas
- Institute of Physical Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| |
Collapse
|
2
|
Durigon DC, Glitz VA, Pimenta BF, Guedes AMV, Silva JVO, Bella Cruz CC, Andrade LM, Pereira-Maia EC, Mikcha JMG, Bella Cruz A, Xavier FR, Terenzi HF, Poneti G, Ribeiro RR, Nordlander E, Caramori GF, Bortoluzzi AJ, Peralta RA. The influence of thioether-substituted ligands in dicopper(II) complexes: Enhancing oxidation and biological activities. J Inorg Biochem 2024; 256:112573. [PMID: 38678913 DOI: 10.1016/j.jinorgbio.2024.112573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/15/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
This paper describes the synthesis, structural analysis, as well as the magnetic and spectroscopic characterizations of three new dicopper(II) complexes with dinucleating phenol-based ligands containing different thioether donor substituents: aromatic (1), aliphatic (2) or thiophene (3). Temperature-dependent magnetometry reveals the presence of antiferromagnetic coupling for 1 and 3 (J = -2.27 cm-1 and -5.01 cm-1, respectively, H = -2JS1S2) and ferromagnetic coupling for 2 (J = 5.72 cm-1). Broken symmetry DFT calculations attribute this behavior to a major contribution from the dz2 orbitals for 1 and 3, and from the dx2-y2 orbitals for 2, along with the p orbitals of the oxygens. The bioinspired catalytic activities of these complexes related to catechol oxidase were studied using 3,5-di-tert-butylcatechol as substrate. The order of catalytic rates for the substrate oxidation follows the trend 1 > 2 > 3 with kcat of (90.79 ± 2.90) × 10-3 for 1, (64.21 ± 0.99) × 10-3 for 2 and (14.20 ± 0.32) × 10-3 s-1 for 3. The complexes also cleave DNA through an oxidative mechanism with minor-groove preference, as indicated by experimental and molecular docking assays. Antimicrobial potential of these highly active complexes has shown that 3 inhibits both Staphylococcus aureus bacterium and Epidermophyton floccosum fungus. Notably, the complexes were found to be nontoxic to normal cells but exhibited cytotoxicity against epidermoid carcinoma cells, surpassing the activity of the metallodrug cisplatin. This research shows the multifaceted properties of these complexes, making them promising candidates for various applications in catalysis, nucleic acids research, and antimicrobial activities.
Collapse
Affiliation(s)
- Daniele C Durigon
- Departamento de Química, Universidade Federal de Santa Catarina, UFSC, CEP 88040-900 Florianópolis, SC, Brazil
| | - Vinícius A Glitz
- Departamento de Química, Universidade Federal de Santa Catarina, UFSC, CEP 88040-900 Florianópolis, SC, Brazil
| | - Beatriz F Pimenta
- Laboratório de Biologia Molecular Estrutural, Departamento de Bioquímica, Universidade Federal de Santa Catarina, UFSC, CEP 88040-900 Florianópolis, SC, Brazil
| | - Anderson M V Guedes
- Departamento de Química, Universidade Federal do Rio de Janeiro, UFRJ, CEP 21941-901 Rio de Janeiro, RJ, Brazil
| | - João V O Silva
- Departamento de Análises Clínicas e Biomedicina, Universidade Estadual de Maringá, UEM, CEP 87020-900 Maringá, PR, Brazil
| | - Catarina C Bella Cruz
- Centro de Ensino em Ciências da Saúde, Universidade do Vale do Itajaí, Univali, CEP 88302-901 Itajaí, SC, Brazil
| | - Lídia M Andrade
- Departamento de Genética, Ecologia e Evolução and Departamento de Física, Universidade Federal de Minas Gerais, UFMG, CEP 31270-901 Belo Horizonte, MG, Brazil
| | - Elene C Pereira-Maia
- Departamento de Química, Universidade Federal de Minas Gerais, UFMG, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Jane M G Mikcha
- Departamento de Análises Clínicas e Biomedicina, Universidade Estadual de Maringá, UEM, CEP 87020-900 Maringá, PR, Brazil
| | - Alexandre Bella Cruz
- Centro de Ensino em Ciências da Saúde, Universidade do Vale do Itajaí, Univali, CEP 88302-901 Itajaí, SC, Brazil
| | - Fernando R Xavier
- Departamento de Química, Universidade do Estado de Santa Catarina, UDESC, CEP 89219-710 Joinville, SC, Brazil
| | - Hernán F Terenzi
- Laboratório de Biologia Molecular Estrutural, Departamento de Bioquímica, Universidade Federal de Santa Catarina, UFSC, CEP 88040-900 Florianópolis, SC, Brazil
| | - Giordano Poneti
- Departamento de Química, Universidade Federal do Rio de Janeiro, UFRJ, CEP 21941-901 Rio de Janeiro, RJ, Brazil; Dipartimento di Scienze Ecologiche e Biologiche, Università degli Studi della Tuscia, Largo dell'Università, 01100 Viterbo, Italy
| | - Ronny R Ribeiro
- Departamento de Química, Universidade Federal do Paraná, UFPR, CEP 81531-980 Curitiba, PR, Brazil
| | - Ebbe Nordlander
- Chemical Physics, Department of Chemistry, Lund University, Box 124, SE-221 00 Lund, Sweden
| | - Giovanni F Caramori
- Departamento de Química, Universidade Federal de Santa Catarina, UFSC, CEP 88040-900 Florianópolis, SC, Brazil
| | - Adailton J Bortoluzzi
- Departamento de Química, Universidade Federal de Santa Catarina, UFSC, CEP 88040-900 Florianópolis, SC, Brazil
| | - Rosely A Peralta
- Departamento de Química, Universidade Federal de Santa Catarina, UFSC, CEP 88040-900 Florianópolis, SC, Brazil.
| |
Collapse
|
3
|
Chowdhury M, Biswas N, Saha S, Zangrando E, Rizzoli C, Sepay N, Roy Choudhury C. Structural investigation, theoretical DFT, Hirshfeld surface analysis and catalytic behaviour towards 3,5-DTBC oxidation of two cobalt(ii) complexes with semicarbazone Schiff base ligands. TRANSIT METAL CHEM 2023. [DOI: 10.1007/s11243-023-00523-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
4
|
Pal K, Barman S, Bag J. Enzymatic Substrate Inhibition in Metal Free Catecholase Activity. Chem Biodivers 2023; 20:e202201166. [PMID: 36762430 DOI: 10.1002/cbdv.202201166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/09/2023] [Accepted: 02/09/2023] [Indexed: 02/11/2023]
Abstract
The catecholase activities were routinely modeled using transition metal complexes as catalyst and in some case basic pH were used as a reaction condition. In this article, the catalytic aerobic oxidation of proxy substrate 3,5-di-tert-butylcatechol (DTBC) in methanol using triethylamine/diethylamine as catalyst was demonstrated as a functional mimic of catecholase activity. The kinetic manifestation of DTBC oxidation was explained as enzymatic substrate inhibition pattern in Michaelis-Menten kinetic model. The mechanistic insight of the aerobic oxidation of DTBC was further validated using various spectroscopic techniques and DFT methods.
Collapse
Affiliation(s)
- Kuntal Pal
- Department of Chemistry, University of Calcutta, 92 A.P.C Road, Kolkata, 700009, India
| | - Souvik Barman
- Department of Chemistry, University of Calcutta, 92 A.P.C Road, Kolkata, 700009, India
| | - Jayanta Bag
- Department of Chemistry, University of Calcutta, 92 A.P.C Road, Kolkata, 700009, India
| |
Collapse
|
5
|
Pirro F, La Gatta S, Arrigoni F, Famulari A, Maglio O, Del Vecchio P, Chiesa M, De Gioia L, Bertini L, Chino M, Nastri F, Lombardi A. A De Novo-Designed Type 3 Copper Protein Tunes Catechol Substrate Recognition and Reactivity. Angew Chem Int Ed Engl 2023; 62:e202211552. [PMID: 36334012 DOI: 10.1002/anie.202211552] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Indexed: 11/07/2022]
Abstract
De novo metalloprotein design is a remarkable approach to shape protein scaffolds toward specific functions. Here, we report the design and characterization of Due Rame 1 (DR1), a de novo designed protein housing a di-copper site and mimicking the Type 3 (T3) copper-containing polyphenol oxidases (PPOs). To achieve this goal, we hierarchically designed the first and the second di-metal coordination spheres to engineer the di-copper site into a simple four-helix bundle scaffold. Spectroscopic, thermodynamic, and functional characterization revealed that DR1 recapitulates the T3 copper site, supporting different copper redox states, and being active in the O2 -dependent oxidation of catechols to o-quinones. Careful design of the residues lining the substrate access site endows DR1 with substrate recognition, as revealed by Hammet analysis and computational studies on substituted catechols. This study represents a premier example in the construction of a functional T3 copper site into a designed four-helix bundle protein.
Collapse
Affiliation(s)
- Fabio Pirro
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 80126, Naples, Italy
| | - Salvatore La Gatta
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 80126, Naples, Italy
| | - Federica Arrigoni
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Antonino Famulari
- Department of Chemistry, University of Torino, Via Giuria 9, 10125, Torino, Italy.,Department of Condensed Matter Physics, University of of Zaragoza, Calle Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Ornella Maglio
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 80126, Naples, Italy.,Institute of Biostructures and Bioimaging (IBB), National Research Council (CNR), Via Pietro Castellino 111, 80131, Napoli, Italy
| | - Pompea Del Vecchio
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 80126, Naples, Italy
| | - Mario Chiesa
- Department of Chemistry, University of Torino, Via Giuria 9, 10125, Torino, Italy
| | - Luca De Gioia
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Luca Bertini
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Marco Chino
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 80126, Naples, Italy
| | - Flavia Nastri
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 80126, Naples, Italy
| | - Angela Lombardi
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 80126, Naples, Italy
| |
Collapse
|
6
|
Ganguly S, Bhunia P, Mayans J, Ghosh A. Trinuclear heterometallic CuII–MII (M = Mn and Co) complexes of N,O donor ligands with o-nitro benzoate anion: structures, magnetic properties and catalytic oxidase activities. Inorganica Chim Acta 2023. [DOI: 10.1016/j.ica.2023.121404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
7
|
Keshavarzian E, Asadi Z, Poupon M, Dusek M, Rastegari B. A New Heterotrimetallic Sandwich‐like Cu
II
‐La
III
‐Cu
II
(3d‐4f‐3d) Cluster as a Model Anticancer Drug in Interaction with FS‐DNA & BSA and as a New Artificial Catalyst for Catecholase Activity. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Elahe Keshavarzian
- Department of Chemistry, School of Sciences Shiraz University Shiraz Iran
| | - Zahra Asadi
- Department of Chemistry, School of Sciences Shiraz University Shiraz Iran
| | | | | | - Banafsheh Rastegari
- Diagnostic laboratory sciences and technology research center, paramedical School Shiraz University of Medical Sciences Shiraz Iran
| |
Collapse
|
8
|
Mono- and binuclear copper(II) complexes with different structural motifs and geometries: Synthesis, spectral characterization, DFT calculations and superoxide dismutase enzymatic activity. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
Patel SK, Patel RN, Patel AK, Patel N, Choquesillo-Lazarte D. Copper hydrazone complexes with different nuclearties and geometries: Synthesis, characterization, single crystal structures, Hirshfeld analysis and superoxide dismutase mimetic activities. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
New copper(II) μ-Alkoxo-μ-carboxylato double-bridged complexes as models for the active site of catechol oxidase: Synthesis, spectral characterization and DFT calculations. Heliyon 2022; 8:e09373. [PMID: 35592663 PMCID: PMC9113650 DOI: 10.1016/j.heliyon.2022.e09373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/16/2021] [Accepted: 04/29/2022] [Indexed: 11/24/2022] Open
Abstract
A series of four copper(II) μ-Alkoxo-μ-carboxylato double bridged complexes, [{Cu2(L)}2][(μ–O2C–CO2] 1, [{Cu2(L)}2(μ–O2C–(CH2)CO2] 2, [{Cu2(L)}2(μ–O2C–CH2–CO2] 3 and [{Cu2(L)}2(μ–O2C–C6H4–CO2] 4 (H3L = 4-bromo-2-((E)-((3-(((E)-5-chloro-2-hydroxybenzylidene) amino)-2-hydroxypropyl) imino) methyl)-6-methoxyphenol and μ-dicarboxylate ions = oxalate, malonate, succinate and terephthalate) have been synthesized and characterized using several physicochemical techniques. The tridentate nature of H3L is interpreted from IR spectra. The Epr spectra of these complexes are characteristic of the quintet state (S = 2) in central features and the triplet state (S = 1) of these tetranuclear complexes. The electrochemical potential of these complexes was investigated using CV (cyclic voltammetry) and DPV (differential pulse voltammetry). All complexes showed quasi reversible reduction peaks in the cathodic region. To explore the stability of these complexes, quantum chemical parameters like electronegativity, ionization potential, electron affinity, global hardness and softness, and electrophilicity were estimated and discussed. The synthesized complexes have been designed as structural and functional models of the catechol oxidase enzymes to investigate the catecholase activity. Additionally, superoxide dismutase activity data of all complexes have also been evaluated and compared with known SOD mimics.
Collapse
|
11
|
Synthesis, Structure and Catechol Oxidase Activity of Mono Nuclear Cu(II) Complex with Phenol-Based Chelating Agent with N, N, O Donor Sites. CRYSTALS 2022. [DOI: 10.3390/cryst12040511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A square-planar Cu(II) complex [Cu(L)Cl], 1, with sterically constrained tridentate phenol-based ligand (HL= N,N,N′-trimethyl-N′-(2-hydroxy-3,5-di-tert-butylbenzyl)-ethylenediamine) with N, N, O donor sites has been synthesized. The complex is characterized by single crystal X-ray diffraction study as well as other spectroscopic techniques. The reported complex crystallizes in monoclinic space group C2/c with a = 30.248(6), b = 13.750(3) and c = 11.410(2) Å with β = 110.232(2)°. The Cu(II) ion adopts a square planar environment in this complex. Electrochemical study of the complex 1 gives quasi-reversible reductive response at E1/2 ≈ −0.5 V due to the reduction of the Cu(II) center along with a reversible oxidation peak at E1/2 ≈ 0.75 V. The oxidation peak arises due to the ligand-based oxidation of phenolate group to phenoxyl radical in the complex. The Cu(II) complex exhibits catechol oxidase activity in methanol as observed by the UV–vis spectroscopy of the aerial oxidation of 3,5-DTBC to 3,5-DTBQ and the reaction proceeds via the formation of ligand phenoxyl radical. The turnover number for complex 1 is 2560 h−1.
Collapse
|
12
|
Neves A, Tomkowicz Z, Couto RA, Bombazar CC, Amorim SM, Bortoluzzi AJ, Peralta RA. Trinuclear CuII complex containing a new pentadentate ligand: Structure, magnetism, physicochemical properties and catecholase activity. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
13
|
Collaboration between 3d-4f metal centers of heterodimetallic Ni(II)-Gd(III) complex in catecholase activity and interaction with FS-DNA & BSA. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115758] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
14
|
Salunke PS, Puranik AA, Kulkarni ND. Histamine derived dimer of µ-Chlorido-µ-Phenoxido Dicopper(II) complex as a Potential Enzyme Mimic with Catecholase activity. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115700] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
15
|
Ganguly S, Bhunia P, Mayans J, Ghosh A. Pentanuclear M II–Mn II (M = Ni and Cu) complexes of N 2O 2 donor ligands with a variation of carboxylate anions: syntheses, structures, magnetic properties and catecholase-like activities. NEW J CHEM 2022. [DOI: 10.1039/d2nj02215j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
One NiII2MnII3 and two CuII2MnII3 complexes have been synthesized using N2O2 donor ligands. The former complex exhibits spin crossover at 2 K temperature. All the complexes exhibit catecholase-like activities.
Collapse
Affiliation(s)
- Sayantan Ganguly
- Department of Chemistry, University College of Science, University of Calcutta, 92, A. P. C. Road, Kolkata 700 009, India
- Department of Chemistry, Taki Government College, Taki, Hasnabad, West Bengal 743429, India
| | - Pradip Bhunia
- Department of Chemistry, University College of Science, University of Calcutta, 92, A. P. C. Road, Kolkata 700 009, India
| | - Júlia Mayans
- Departament de Química Inorgànica i Orgànica and Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona (UB), Martí iFranqués 1-11, Barcelona 08028, Spain
| | - Ashutosh Ghosh
- Department of Chemistry, University College of Science, University of Calcutta, 92, A. P. C. Road, Kolkata 700 009, India
- Rani Rashmoni Green University, Tarakeswar, Hooghly 712410, West Bengal, India
| |
Collapse
|
16
|
Coordination of reduced Schiff base anion to Pd(II): Synthesis, characterization, DFT calculation and catecholase activity. J INDIAN CHEM SOC 2021. [DOI: 10.1016/j.jics.2021.100186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Kumar B, Das T, Das S, Maniukiewicz W, Nesterov DS, Kirillov AM, Das S. Coupling 6-chloro-3-methyluracil with copper: structural features, theoretical analysis, and biofunctional properties. Dalton Trans 2021; 50:13533-13542. [PMID: 34505590 DOI: 10.1039/d1dt02018h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As nucleobases in RNA and DNA, uracil and 5-methyluracil represent a recognized class of bioactive molecules and versatile ligands for coordination compounds with various biofunctional properties. In this study, 6-chloro-3-methyluracil (Hcmu) was used as an unexplored building block for the self-assembly generation of a new bioactive copper(II) complex, [Cu(cmu)2(H2O)2]·4H2O (1). This compound was isolated as a stable crystalline solid and fully characterized in solution and solid state by a variety of spectroscopic methods (UV-vis, EPR, fluorescence spectroscopy), cyclic voltammetry, X-ray diffraction, and DFT calculations. The structural, topological, H-bonding, and Hirshfeld surface features of 1 were also analyzed in detail. The compound 1 shows a distorted octahedral {CuN2O4} coordination environment with two trans cmu- ligands adopting a bidentate N,O-coordination mode. The monocopper(II) molecular units participate in strong H-bonding interactions with water molecules of crystallization, leading to structural 0D → 3D extension into a 3D H-bonded network with a tfz-d topology. Molecular docking and ADME analysis as well as antibacterial and antioxidant activity studies were performed to assess the bioactivity of 1. In particular, this compound exhibits a prominent antibacterial effect against Gram negative (E. coli, P. aeruginosa) and positive (S. aureus, B. cereus) bacteria. The obtained copper(II) complex also represents the first structurally characterized coordination compound derived from 6-chloro-3-methyluracil, thus introducing this bioactive building block into a family of uracil metal complexes with notable biofunctional properties.
Collapse
Affiliation(s)
- Brajesh Kumar
- Department of Chemistry, National Institute of Technology Patna, Ashok Rajpath, Patna 800005, India.
| | - Tushar Das
- Department of Chemistry, National Institute of Technology Patna, Ashok Rajpath, Patna 800005, India.
| | - Subhadeep Das
- Department of Life Science and Biotechnology, Jadavpur University, 188 Raja S.C. Mallick Rd, Kolkata 700032, India
| | - Waldemar Maniukiewicz
- Institute of General and Ecological Chemistry, Lodz University of Technology, Żeromskiego 116, Łódź, Poland
| | - Dmytro S Nesterov
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal.
| | - Alexander M Kirillov
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal. .,Research Institute of Chemistry, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya st., Moscow, 117198, Russian Federation
| | - Subrata Das
- Department of Chemistry, National Institute of Technology Patna, Ashok Rajpath, Patna 800005, India.
| |
Collapse
|
18
|
Thio Y, Vittal JJ. Catecholase-like activity in 2D MOFs: Oxidation of 3,5-DTBC by two Cu(II) 2D MOFs of reduced Schiff base ligands. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Sarkar S, Kim M, Lee H. Catecholase Activities of Copper(
II
) Complexes With
N
4
Ligands. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Shuranjan Sarkar
- Department of Chemistry and Green‐Nano Research Center Kyungpook National University Daegu 41566 Republic of Korea
- Chemistry Division Bangladesh Jute Research Institute Dhaka 1207 Bangladesh
| | - Minyoung Kim
- Department of Chemistry and Green‐Nano Research Center Kyungpook National University Daegu 41566 Republic of Korea
| | - Hong‐In Lee
- Department of Chemistry and Green‐Nano Research Center Kyungpook National University Daegu 41566 Republic of Korea
| |
Collapse
|
20
|
Mukherjee D, Nag P, Shteinman AA, Vennapusa SR, Mandal U, Mitra M. Catechol oxidation promoted by bridging phenoxo moieties in a bis(μ-phenoxo)-bridged dicopper(ii) complex. RSC Adv 2021; 11:22951-22959. [PMID: 35480461 PMCID: PMC9034335 DOI: 10.1039/d1ra02787e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 06/16/2021] [Indexed: 11/21/2022] Open
Abstract
A dinuclear copper(ii) complex [Cu2(papy)2(CH3OH)2] has been synthesized by reaction of one equiv. of Cu(OAc)2·2H2O with one equiv. of the tetradentate tripodal ligand H2papy [N-(2-hydroxybenzyl)-N-(2-picolyl)glycine] and has been characterized by various spectroscopic techniques and its solid state structure has been confirmed by X-ray crystal structure analysis. The single-crystal structure of the complex reveals that the two copper centers are hexa-coordinated and bridged by two O-atoms of the phenoxo moieties. The variable temperature magnetic susceptibility measurement of the complex reveals weak ferromagnetic interactions among the Cu(ii) ions with a J value of 1.1 cm−1. The catecholase activity of the complex has been investigated spectrophotometrically using 3,5-di-tert-butyl catechol as a model substrate in methanol solvent under aerobic conditions. The Michaelis–Menten kinetic treatment has been applied using different excess substrate concentrations. The parameters obtained from the catecholase activity by the complex are KM 2.97 × 10−4 M, Vmax 2 × 10−4 M s−1, and kcat 7.2 × 103 h−1. A reaction mechanism has been proposed based on experimental findings and theoretical calculations. The catechol substrate binds to dicopper(ii) centers and subsequently two electrons are transferred to the metal centers from the substrate. The bridging phenoxo moieties participate as a Brønsted base by accepting protons from catechol during the catalytic cycle and thereby facilitating the catechol oxidation process. A bis(μ-phenoxo)-bridged dicopper(ii) complex capable of oxidizing catechol with the highest efficiency amongst any bis(μ-phenoxo)-bridged dicopper(ii) complexes is reported.![]()
Collapse
Affiliation(s)
- Debojyoti Mukherjee
- Department of Chemistry, University of Burdwan Golapbug Campus, Purba Bardhaman-713104 India
| | - Probal Nag
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM) Maruthamala P. O., Vithura Thiruvananthapuram-695551 Kerala India
| | - Albert A Shteinman
- Institute of Problems of Chemical Physics 142432 Chernogolovka, Moscow district Russian Federation
| | - Sivaranjana Reddy Vennapusa
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM) Maruthamala P. O., Vithura Thiruvananthapuram-695551 Kerala India
| | - Ujjwal Mandal
- Department of Chemistry, University of Burdwan Golapbug Campus, Purba Bardhaman-713104 India
| | - Mainak Mitra
- Department of Chemistry, Burdwan Raj College Aftab Avenue, Purba Bardhaman-713104 India
| |
Collapse
|
21
|
Balakrishnan N, Haribabu J, Dhanabalan AK, Swaminathan S, Sun S, Dibwe DF, Bhuvanesh N, Awale S, Karvembu R. Thiosemicarbazone(s)-anchored water soluble mono- and bimetallic Cu(ii) complexes: enzyme-like activities, biomolecular interactions, anticancer property and real-time live cytotoxicity. Dalton Trans 2021; 49:9411-9424. [PMID: 32589180 DOI: 10.1039/d0dt01309a] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The reactions of CuCl2·2H2O with chromone thiosemicarbazone ligands containing a -H or -CH3 substituent on terminal N yielded monometallic Cu(ii) complexes [Cu(HL1)Cl2] (1) and [Cu(HL2)Cl2] (2), whereas bimetallic Cu(ii) complexes [Cu(μ-Cl)(HL3)]2Cl2 (3), [Cu(μ-Cl)(HL4)]2Cl2 (4) and [Cu(μ-Cl)(L5)]2 (5) were obtained when a -C2H5, -C6H11 or -C6H5 substituent was present, respectively, in the ligands. The complexes were characterized using elemental analyses, UV-Vis, FT-IR, EPR, mass and TGA studies. The structures of neutral monometallic and dicationic bimetallic complexes were confirmed by single crystal X-ray diffraction, and they exhibited a distorted square pyramidal geometry around Cu(ii) ions. The catecholase-mimicking activity of complexes 1-5 was examined spectrophotometrically, and the results revealed that all the complexes except 5 had the ability to oxidize 3,5-di-tert-butylcatechol (3,5-DTBC) to 3,5-di-tert-butylquinone (3,5-DTBQ) under aerobic conditions with moderate turnover numbers. In order to find the possible complex-substrate intermediates, a mass spectrometry study was carried out for complexes 1-4 in the presence of 3,5-DTBC. The phosphatase-like activity of 1-5 was also investigated using 4-nitrophenylphosphate (4-NPP) as a model substrate. All the complexes exhibited excellent phosphatase activity in DMF-H2O medium. The complexes displayed significant biomolecular interactions and antioxidant potential. Complex 3 showed good interaction with apoptotic CASP3 protein, VEGFR2 and PIM-1 kinase receptors as revealed by a molecular docking study. Complexes (3-5) exhibited promising cytotoxicity against HeLa-cervical cancer cells with IC50 values of 2.24 (3), 2.25 (4) and 3.77 (5) μM, respectively, and showed a two-fold higher activity than cisplatin. The active complex 3 showed complete inhibition of colony formation at 10 μM concentration. In addition, the acridine orange (AO)/ethidium bromide (EB) staining and real-time live cell imaging results confirmed that complex 3 induced cell death in HeLa cells.
Collapse
Affiliation(s)
- Nithya Balakrishnan
- Department of Chemistry, National Institute of Technology, Tiruchirappalli 620015, India.
| | - Jebiti Haribabu
- Department of Chemistry, National Institute of Technology, Tiruchirappalli 620015, India. and Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Japan
| | - Ananda Krishnan Dhanabalan
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600025, India
| | - Srividya Swaminathan
- Department of Chemistry, National Institute of Technology, Tiruchirappalli 620015, India.
| | - Sijia Sun
- Division of Natural Drug Discovery, Department of Translational Research, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Dya Fita Dibwe
- Division of Natural Drug Discovery, Department of Translational Research, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Nattamai Bhuvanesh
- Department of Chemistry, Texas A & M University, College Station, TX 77842, USA
| | - Suresh Awale
- Division of Natural Drug Discovery, Department of Translational Research, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Ramasamy Karvembu
- Department of Chemistry, National Institute of Technology, Tiruchirappalli 620015, India.
| |
Collapse
|
22
|
Ibrahim MM, Fathy AM, Al‐Harbi SA, Ramadan AEM. Triazole based copper(
II
) complexes: Synthesis, spectroscopic characterization, Density Function Theory study, and biomimicking of copper containing oxidase proteins. J CHIN CHEM SOC-TAIP 2021. [DOI: 10.1002/jccs.202100048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mohamed M. Ibrahim
- Chemistry Department, College of Science Taif University Taif Saudi Arabia
| | - Ahmad M. Fathy
- Chemistry Department, Faculty of Science Zagazig University Zagazig Egypt
| | - Sami A. Al‐Harbi
- Chemistry Department, University College in Al‐Jamoum Umm Al‐Qura University Makkah Saudi Arabia
| | | |
Collapse
|
23
|
Homrich AM, Farias G, Amorim SM, Xavier FR, Gariani RA, Neves A, Terenzi H, Peralta RA. Effect of Chelate Ring Size of Binuclear Copper(II) Complexes on Catecholase Activity and DNA Cleavage. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202001170] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Alana M. Homrich
- Federal University of Santa Catarina 88040900 Florianópolis SC Brazil
| | - Giliandro Farias
- Federal University of Santa Catarina 88040900 Florianópolis SC Brazil
| | - Suélen M. Amorim
- Federal University of Santa Catarina 88040900 Florianópolis SC Brazil
| | - Fernando R. Xavier
- Department of Chemistry State University of Santa Catarina 89219-710 Joinville SC Brazil
| | - Rogério A. Gariani
- Department of Chemistry State University of Santa Catarina 89219-710 Joinville SC Brazil
| | - Ademir Neves
- Federal University of Santa Catarina 88040900 Florianópolis SC Brazil
| | - Hernán Terenzi
- Department of Biochemistry Federal University of Santa Catarina 88040900 Florianópolis SC Brazil
| | - Rosely A. Peralta
- Federal University of Santa Catarina 88040900 Florianópolis SC Brazil
| |
Collapse
|
24
|
Cu(II) coordination polymer bearing diazenyl-benzoic ligand: Synthesis, physico-chemical and XRD/HSA-interactions. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129604] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
25
|
Murali M, Sathya V, Selvakumaran B. Fate of model complexes with monocopper center towards the functional properties of type 2 and type 3 copper oxidases. J Biol Inorg Chem 2021; 26:67-79. [PMID: 33409586 DOI: 10.1007/s00775-020-01837-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 11/22/2020] [Indexed: 12/27/2022]
Abstract
Green colored mononuclear copper(II) complexes viz. [Cu(L)(bpy)](ClO4) (1) or [Cu(L)(phen)](ClO4) (2) (where H(L) is 2-((2-dimethylamino)ethyliminomethyl)naphthol) show distorted square pyramidal (4 + 1) geometry with CuN4O chromophore. The existence of self-assembled molecular associations indicates the formation of the dimer. Dimeric nature in solution is retained due to the binding of the substrate, encourages steric match between substrate and Cu(II) active site, which favors electron transfer. Interestingly, both the complexes exhibit high-positive redox potential. Therefore, the presence of self-assembled molecular association along with the positive redox potential enhances the catalytic oxidation of ascorbic acid to dehydroascorbic acid or benzylamine to benaldehyde or catechol to o-quinone thereby model the functional properties of type 2 and type 3 copper oxidases. Notably, catalytic activity is effective when compared with other reported mononuclear copper(II) complexes and even superior to many binuclear copper(II) complexes. Existence of self-assembled molecular association in solution along with high-positive redox potential favors electron transfer process in mononuclear copper(II) complexes and models the functional properties of type 2 and type 3 copper oxidases.
Collapse
Affiliation(s)
- Mariappan Murali
- Coordination and Bioinorganic Chemistry Research Laboratory, Department of Chemistry, National College (Autonomous), Tiruchirappalli, Tamil Nadu, 620 001, India.
| | - Velusamy Sathya
- Coordination and Bioinorganic Chemistry Research Laboratory, Department of Chemistry, National College (Autonomous), Tiruchirappalli, Tamil Nadu, 620 001, India
| | - Balasubramaniam Selvakumaran
- Coordination and Bioinorganic Chemistry Research Laboratory, Department of Chemistry, National College (Autonomous), Tiruchirappalli, Tamil Nadu, 620 001, India
| |
Collapse
|
26
|
Shit M, Maity S, Bera S, Mudi PK, Biswas B, Weyhermüller T, Ghosh P. Nickel( ii) di-aqua complex containing a water cluster: synthesis, X-ray structure and catecholase activity. NEW J CHEM 2021. [DOI: 10.1039/d0nj05238h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A trans-diaquanickel(ii) complex with a tetradentate aryloxyacetic acid ligand that forms a six membered water cluster in crystals and exhibits catecholase activity with a good turnover number is reported.
Collapse
Affiliation(s)
- Madhusudan Shit
- Department of Chemistry
- R. K. Mission Residential College
- Kolkata 700103
- India
- Department of Chemistry
| | - Suvendu Maity
- Department of Chemistry
- R. K. Mission Residential College
- Kolkata 700103
- India
| | - Sachinath Bera
- Department of Chemistry
- R. K. Mission Residential College
- Kolkata 700103
- India
| | | | - Bhaskar Biswas
- Department of Chemistry
- University of North Bengal
- Darjeeling
- India
| | - Thomas Weyhermüller
- Max-Planck-Institut für Chemische Energiekonversion
- D-45470 Mülheim an der Ruhr
- Germany
| | - Prasanta Ghosh
- Department of Chemistry
- R. K. Mission Residential College
- Kolkata 700103
- India
| |
Collapse
|
27
|
pH dependent catecholase activity of Fe(II) complexes of type [Fe(L)]X2 [L = N-(phenyl-pyridin-2-yl-methylene)-ethane-1,2-diamine; X = ClO4− (1), PF6− (2)]: Role of counter anion on turnover number. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119933] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
28
|
Ganguly S, Mayans J, Ghosh A. Modulation of Nuclearity in Cu II -Mn II Complexes of a N 2 O 2 Donor Ligand Depending upon Carboxylate Anions: Structures, Magnetic Properties and Catalytic Oxidase Activities. Chem Asian J 2020; 15:4055-4069. [PMID: 32722886 DOI: 10.1002/asia.202000706] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/24/2020] [Indexed: 12/12/2022]
Abstract
Three new hetero-metallic copper(II)-manganese(II) complexes, [(CuL)2 Mn3 (C6 H5 CO2 )6 ] (1), [(CuL)2 Mn(CH3 CO2 )2 ] (2), and {[(CuL)2 Mn(C6 H5 CH2 CO2 )2 ] ⋅ 2CH3 CN} (3), have been synthesized using [CuL] as ''metalloligand'' (where H2 L=N,N'-bis(2-hydroxynaphthyl-methylidene)-1,3-propanediamine). Single-crystal structural analyses show an almost linear penta-nuclear structure for complex 1 where a square planar [CuL] unit is connected to each of the two terminal MnII ions of a linear, centrosymmetric [Mn3 (benzoate)6 ] unit through the double phenoxido bridges. Both complexes 2 and 3 possess a linear tri-nuclear structure where two terminal square-pyramidal [CuL] units are bonded to the central MnII ion through double phenoxido oxygen atoms along with a syn-syn bridging acetate (for 2)/phenyl acetate (for 3). All three complexes exhibit catecholase, and phenoxazinone synthase-like activities under aerial conditions. For catecholase like activity, the turnover numbers (kcat ) are 595, 40, and 205 h-1 whereas, for phenoxazinone synthase like activity, the turnover numbers are 25, 4, and 11 h-1 for complexes 1-3, respectively. The mechanism of both catalytic oxidase activities is proposed on the basis of mass spectral evidences. Variable-temperature (2-300 K) dc molar magnetic susceptibility measurements of 1 reveal antiferromagnetic interactions between the Cu-Mn centres (J1 =-29.3 cm-1 ), and also between the Mn-Mn centres of the [Mn3 (benzoate)6 ] unit (J2 =-0.68 cm-1 ). On increasing the magnetic field at 2 K, its ground spin state changes from S=3/2 to S=5/2 at 4 T, attributable to the low value of J2 which makes the excited spin states close in energy with the ground spin state. Complexes 2 and 3 show antiferromagnetic coupling interactions between the Cu-Mn pairs with J values of -9.51, and -5.32 cm-1 , respectively.
Collapse
Affiliation(s)
- Sayantan Ganguly
- Department of Chemistry, University College of Science, University of Calcutta, 92, A. P. C. Road, Kolkata, 700 009, India.,Department of Chemistry, Taki Government College, Taki, Hasnabad, West Bengal, 743429, India
| | - Júlia Mayans
- Instituto de Ciencia Molecular (ICMol), Universitat de València, c/ Catedrático José Beltrán 2, 46980 Paterna, València, Spain
| | - Ashutosh Ghosh
- Department of Chemistry, University College of Science, University of Calcutta, 92, A. P. C. Road, Kolkata, 700 009, India.,Rani Rashmoni Green University, Tarakeswar, Hooghly, 712419, West Bengal, India
| |
Collapse
|
29
|
Dutta S, Ghosh TK, Mahapatra P, Ghosh A. Joining of Trinuclear Heterometallic Cu II2-M II (M = Mn, Cd) Nodes by Nicotinate to Form 1D Chains: Magnetic Properties and Catalytic Activities. Inorg Chem 2020; 59:14989-15003. [PMID: 33001631 DOI: 10.1021/acs.inorgchem.0c01733] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In the present work, four new heterometallic coordination complexes, {[(CuL)2Mn(nic)(H2O)2](ClO4)(0.5H2O)}n (1), {[(CuL)2Cd(nic)(H2O)2](ClO4)(H2O)}n (2), [(CuL)2Mn(nic)2]·2CH3OH (3), and [(CuL)2Cd(nic)2]·2CH3OH (4) (where H2L = N,N'-bis(α-methylsalicylidene)-1,3-propanediamine and nic = nicotinate ion), have been synthesized and characterized by single-crystal X-ray crystallography. In complexes 1 and 2, the nicotinate ion acts as a bifunctional linker (N,O donor) and joins the linear trinuclear nodes to form 1D polymeric chains. However, in complexes 3 and 4, the nicotinate ion uses only the oxygen atoms of the carboxylic acid (O donor) to bind to the metal centers, forming discrete linear trinuclear units, while the pyridyl nitrogen (N donor atom) remains free. The dc magnetic susceptibility measurements show that the CuII and MnII ions are antiferromagnetically coupled in both 1 and 3, with exchange coupling constants (JMn-Cu) of -20.57 ± 0.08 and -9.38 ± 0.08 cm-1, respectively. Among the four complexes, 1 and 3 show catechol oxidase and phenoxazinone synthase like catalytic activities. The turnover numbers (kcat) of complexes 1 and 3 for catecholase activity are 1121 and 720 h-1, respectively, at an optimum pH of 8.0 and for phenoxazinone synthase activity are 429 and 398 h-1, respectively, at an optimum pH of 9.7. The higher kcat values of 1 for both reactions are attributable to a water molecule coordinated to the central MnII atom that facilitates the substrate-catalyst binding. An ESI-mass spectral analysis indicates that trinuclear heterometallic species, e.g., [(CuL)2Mn(nic)(H2O)]+ for 1 and [(CuL)2Mn(nic)]+ for 3, are the active species that bind to the substrate, and on that basis, probable mechanisms through the formation of radical intermediates have been proposed.
Collapse
Affiliation(s)
- Sabarni Dutta
- Department of Chemistry, University College of Science, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, India
| | - Tanmoy Kumar Ghosh
- Department of Chemistry, University College of Science, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, India
| | - Prithwish Mahapatra
- Department of Chemistry, University College of Science, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, India
| | - Ashutosh Ghosh
- Department of Chemistry, University College of Science, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, India.,Rani Rashmoni Green University, Tarakeswar, Hooghly 712410, West Bengal, India
| |
Collapse
|
30
|
Sagar S, Parween A, Mandal TK, Lewis W, Naskar S. Mn(IV), Co(II) and Ni(II) complexes of the Schiff bases of 2-hydroxy-naphthaldehyde with amino alcohols: synthesis, characterization and electrochemical study; DFT study and Catecholase activity of Mn(IV) complex. J COORD CHEM 2020. [DOI: 10.1080/00958972.2020.1832657] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Shipra Sagar
- Department of Chemistry, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Arfa Parween
- Department of Chemistry, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Tarun K. Mandal
- Faculty Councils for PG studies, Vidyasagar University, Medinipur, West Bengal, India
| | - William Lewis
- School of Chemistry, University of Nottingham, Nottingham, UK
| | - Subhendu Naskar
- Department of Chemistry, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| |
Collapse
|
31
|
Silva MP, Saibert C, Bortolotto T, Bortoluzzi AJ, Schenk G, Peralta RA, Terenzi H, Neves A. Dinuclear copper(II) complexes with derivative triazine ligands as biomimetic models for catechol oxidases and nucleases. J Inorg Biochem 2020; 213:111249. [PMID: 33011624 DOI: 10.1016/j.jinorgbio.2020.111249] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/25/2020] [Accepted: 08/30/2020] [Indexed: 11/28/2022]
Abstract
The research reported herein focuses on the synthesis of two new Cu(II) complexes {[Cu2(2-X-4,6-bis(di-2-picolylamino)-1,3,5-triazine], with X = butane-1,4-diamine (2) or N-methylpyrenylbutane-1,4-diamine (3)}, the latter with a pyrene group as a possible DNA intercalating agent. The structure of complex (3) was determined by X-ray crystallography and shows the dinuclear {CuII(μ-OCH3)2CuII} unit in which the CuII···CuII distance of 3.040 Å is similar to that of 2.97 Å previously found for 1, which contains a {CuII(μ-OH)2CuII} structural unit. Complexes (2) and (3) were also characterized in spectroscopic and electrochemical studies, and catecholase-like activity were performed for both complexes. The kinetic parameters obtained for the oxidation of the model substrate 3,5-di-tert-butylcatechol revealed that the insertion of the spacer butane-1,4-diamine and the pyrene group strongly contributes to increasing the catalytic efficiency of these systems. In fact, Kass becomes significantly higher, indicating that these groups influence the interaction between the complex and the substrate. These complexes also show DNA cleavage under mild conditions with moderate reaction times. The rate of cleavage (kcat) indicated that the presence of butane-1,4-diamine and pyrene increased the activity of both complexes. The reaction mechanism seems to have oxidative and hydrolytic features and the effect of DNA groove binding compounds and circular dichroism indicate that all complexes interact with plasmid DNA through the minor groove. High-resolution DNA cleavage assays provide information on the interaction mechanism and for complex (2) a specificity for the unpaired hairpin region containing thymine bases was observed, in contrast to (3).
Collapse
Affiliation(s)
- Marcos P Silva
- Laboratório de Bioinorgânica e Cristalografia - LABINC, Departamento de Química, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, Santa Catarina, Brazil
| | - Cristine Saibert
- Centro de Biologia Molecular Estrutural - CEBIME, Departamento de Bioquímica, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, Santa Catarina, Brazil
| | - Tiago Bortolotto
- Centro de Biologia Molecular Estrutural - CEBIME, Departamento de Bioquímica, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, Santa Catarina, Brazil
| | - Adailton J Bortoluzzi
- Laboratório de Bioinorgânica e Cristalografia - LABINC, Departamento de Química, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, Santa Catarina, Brazil
| | - Gerhard Schenk
- School of Molecular and Microbial Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Rosely A Peralta
- Laboratório de Bioinorgânica e Cristalografia - LABINC, Departamento de Química, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, Santa Catarina, Brazil.
| | - Hernán Terenzi
- Centro de Biologia Molecular Estrutural - CEBIME, Departamento de Bioquímica, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, Santa Catarina, Brazil.
| | - Ademir Neves
- Laboratório de Bioinorgânica e Cristalografia - LABINC, Departamento de Química, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, Santa Catarina, Brazil.
| |
Collapse
|
32
|
Biswas BK, Saha S, Biswas N, Chowdhury M, Frontera A, Rizzoli C, Roy Choudhury R, Roy Choudhury C. Two copper (II) complexes derived from anthranilic acid and 4-iodo-anthranilic acid Schiff bases: Structural elucidation, halogen bonding interactions and catalytic study using 3,5-DTBC. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128398] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
33
|
Dolai M, Saha U. A simple Cu(II) complex of phenolic oxime: synthesis, crystal structure, supramolecular interactions, DFT calculation and catecholase activity study. Heliyon 2020; 6:e04942. [PMID: 33043159 PMCID: PMC7536372 DOI: 10.1016/j.heliyon.2020.e04942] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/02/2020] [Accepted: 09/11/2020] [Indexed: 11/28/2022] Open
Abstract
A copper (II) complex [Cu(4-MeO-salox)2](1) based on saloxime ligand was synthesized and characterized using single crystal X-ray diffraction studies. The geometry was further emphasized by DFT optimization. The complex was found to be pseudo-macrocyclic mononuclear having square planer geometry. The complex 1 shows two types of supramolecular hydrogen bonding interactions and forms the multi-dimensional framework with the help of CH∙∙∙O, OH∙∙∙O and π∙∙∙π(chelate) interactions. The complex 1 performs as efficient catalyst in catecholase activiy having good turnover number (TON), kcat = 22.97 h−1 where TON is the number of catechol molecules converted into quinone by catalyst molecule i.e 1 in a unit time.
Collapse
|
34
|
Majumder A, Dutta N, Haldar S, Das A, Carrella L, Bera M. Aromatic dicarboxylate incorporated new di- and tetranuclear cobalt(II) complexes: Synthetic and structural aspects, and evaluation of properties and catalytic activity. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119752] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
35
|
Hens A. A combined experimental and theoretical study to explore the catecholase-like activity of a hepta coordinated dinuclear Zn(II) complex. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.108144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
Dutta S, Bhunia P, Mayans J, Drew MGB, Ghosh A. Roles of basicity and steric crowding of anionic coligands in catechol oxidase-like activity of Cu(ii)-Mn(ii) complexes. Dalton Trans 2020; 49:11268-11281. [PMID: 32760992 DOI: 10.1039/d0dt00952k] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Five new heterometallic Cu(ii)-Mn(ii) discrete trinuclear complexes, [(CuL)2Mn(CH3COO)2] (1), [(CuL)2Mn(NO3)2] (2), [(CuL)2Mn(C6H5COO)(H2O)]Cl (3), [(CuL)2Mn((p-OH)C6H5COO)(H2O)]ClO4 (4) and [(CuL)2Mn(HCOO)(H2O)]ClO4 (5), have been synthesized using a metalloligand, CuL derived from an N2O2 donor Schiff base, H2L (N,N'-bis(α-methylsalicylidene)-1,3-propanediamine). Single-crystal structural analyses reveal that all five complexes have a common [(CuL)2Mn] core, where two terminal metalloligands, CuL, are connected to the central metal ion, Mn(ii), via double phenoxido bridges. Among the complexes, 1 and 2 possess linear structures where the terminal Cu(ii) atoms are bridged to the central Mn(ii) atoms by acetate and nitrate ions, respectively along with the double phenoxido bridges, whereas 3, 4 and 5 have bent structures in which the respective anionic coligands, benzoate, p-hydroxybenzoate and formate ions are coordinated only to central Mn(ii) in monodentate fashion along with a water molecule that completes its hexa-coordinated geometry. Among the complexes, 1, 3, 4 and 5 show quite high bio-mimicking catecholase-like activity for the aerial oxidation of 3,5-di-tert-butylcatechol with turnover numbers (Kcat) of 139 h-1, 439 h-1, 348 h-1 and 730 h-1, respectively, whereas complex 2 is practically inactive towards this reaction. The presence of the coordinated water molecule to Mn(ii) in the bent complexes, 3-5, appears to be responsible for their high catalytic activity and the difference in their activity may be attributed to steric crowding due to the anionic coligand, whereas the inactivity of 2 seems to be associated with the low basicity of the nitrate ion. The temperature-dependent dc molar magnetic susceptibility measurements reveal that complexes 1-5 are antiferromagnetically coupled with the exchange coupling constants (J) = -8.54 cm-1, -11.50 cm-1, -19.83 cm-1, -10.65 cm-1 and -10.27 cm-1 for 1, 2, 3, 4 and 5 respectively as is expected from the Cu-O-Mn bridging angles.
Collapse
Affiliation(s)
- Sabarni Dutta
- Department of Chemistry, University College of Science, University of Calcutta, 92, A.P.C. Road, Kolkata 700 009, India.
| | - Pradip Bhunia
- Department of Chemistry, University College of Science, University of Calcutta, 92, A.P.C. Road, Kolkata 700 009, India.
| | - Júlia Mayans
- Departament de Química Inorgànica I Orgànica, Secció Inorgànica and Institut de Nanosciència I Nanotecnologia (IN2UB), Martíi Franqués 1-11, 08028, Barcelona, Spain
| | - Michael G B Drew
- School of Chemistry, The University of Reading, P.O. Box 224, Whiteknights, Reading RG6 6AD, UK
| | - Ashutosh Ghosh
- Department of Chemistry, University College of Science, University of Calcutta, 92, A.P.C. Road, Kolkata 700 009, India.
| |
Collapse
|
37
|
Taniya S, Khanra S, Ta S, Chatterjee S, Salam N, Das D. Exploring a new dinuclear Fe(iii) complex for the fixation of atmospheric CO 2 and optical recognition of nano-molar levels of Zn 2+ ions. RSC Adv 2020; 10:22284-22290. [PMID: 35516642 PMCID: PMC9054533 DOI: 10.1039/d0ra01698e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/26/2020] [Indexed: 12/16/2022] Open
Abstract
A dinuclear Fe(iii) complex (F1) of an imine derivative (L1) derived from 3-ethoxy-2-hydroxy-benzaldehyde and hydrazine, structurally characterised via single crystal X-ray studies, is employed for the catalytic conversion of epoxides to cyclic carbonates utilizing carbon dioxide. In addition, F1 is employed for the selective optical recognition of nano-molar levels of Zn2+ (42.23 nM) via a metal displacement approach. The Job plot reveals interactions between F1 and Zn2+ at a 1 : 3 molar ratio with an association constant of 7.71 × 104 M−1. Studies on the catecholase-like activity of F1 reveal a kcat value of 4.42 × 103 h−1. A new Fe(iii) complex (F1), structurally characterised using single crystal X-ray studies, was explored for CO2 fixation, Zn2+ recognition and catecholase activity.![]()
Collapse
Affiliation(s)
- Seikh Taniya
- Department of Chemistry, The University of Burdwan Burdwan 713104 W.B. India +91-342-2530452 +91-342-2533913 ext. 424
| | - Somnath Khanra
- Department of Chemistry, The University of Burdwan Burdwan 713104 W.B. India +91-342-2530452 +91-342-2533913 ext. 424
| | - Sabyasachi Ta
- Department of Chemistry, The University of Burdwan Burdwan 713104 W.B. India +91-342-2530452 +91-342-2533913 ext. 424
| | - Sudeshna Chatterjee
- Department of Chemistry, The University of Burdwan Burdwan 713104 W.B. India +91-342-2530452 +91-342-2533913 ext. 424
| | - Noor Salam
- Department of Chemistry, The University of Burdwan Burdwan 713104 W.B. India +91-342-2530452 +91-342-2533913 ext. 424
| | - Debasis Das
- Department of Chemistry, The University of Burdwan Burdwan 713104 W.B. India +91-342-2530452 +91-342-2533913 ext. 424
| |
Collapse
|
38
|
Tuning the catecholase activity of bis(pyrazolyl)methane-based copper(II) complexes by substitutions of the ligand core: unraveling a dual O2/H2O2 oxidation mechanism. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119507] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
39
|
Rada JP, Forté J, Gontard G, Corcé V, Salmain M, Rey NA. Isoxazole-Derived Aroylhydrazones and Their Dinuclear Copper(II) Complexes Show Antiproliferative Activity on Breast Cancer Cells with a Potentially Alternative Mechanism Of Action. Chembiochem 2020; 21:2474-2486. [PMID: 32282111 DOI: 10.1002/cbic.202000122] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/10/2020] [Indexed: 12/15/2022]
Abstract
This paper reports the design, synthesis and cytotoxicity studies of two new isoxazole-derived aroylhydrazone ligands and their dinuclear copper(II) complexes. Compounds were fully characterized by various spectroscopic and analytical techniques. The molecular structures of four derivatives were confirmed by X-ray crystallography. The stability of the ligands and the complexes in aqueous medium was monitored spectroscopically. Both the ligands and the complexes were shown to interact with calf thymus DNA (ct-DNA). Additionally, structures containing a phenol pendant arm were significantly more cytotoxic than those carrying a pendant pyridine substituent, reaching sub-micromolar IC50 values on the triple-negative human breast cancer cell line MDA-MB-231. The metal chelation and transchelation ability of the compounds towards FeII , FeIII and ZnII ions was explored as a possible mechanism of action of these compounds.
Collapse
Affiliation(s)
- Jesica Paola Rada
- LABSO-Bio Laboratory, Department of Chemistry, Pontifical Catholic University of Rio de Janeiro, 225 Rua Marquês de, São Vicente, Brazil
| | - Jéremy Forté
- Institut Parisien de Chimie Moléculaire (IPCM), Sorbonne Université, CNRS, 4 place Jussieu, 75005, Paris, France
| | - Geoffrey Gontard
- Institut Parisien de Chimie Moléculaire (IPCM), Sorbonne Université, CNRS, 4 place Jussieu, 75005, Paris, France
| | - Vincent Corcé
- Institut Parisien de Chimie Moléculaire (IPCM), Sorbonne Université, CNRS, 4 place Jussieu, 75005, Paris, France
| | - Michèle Salmain
- Institut Parisien de Chimie Moléculaire (IPCM), Sorbonne Université, CNRS, 4 place Jussieu, 75005, Paris, France
| | - Nicolás A Rey
- LABSO-Bio Laboratory, Department of Chemistry, Pontifical Catholic University of Rio de Janeiro, 225 Rua Marquês de, São Vicente, Brazil
| |
Collapse
|
40
|
Terán A, Jaafar A, Sánchez-Peláez AE, Torralba MC, Gutiérrez Á. Design and catalytic studies of structural and functional models of the catechol oxidase enzyme. J Biol Inorg Chem 2020; 25:671-683. [PMID: 32367388 DOI: 10.1007/s00775-020-01791-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/24/2020] [Indexed: 12/18/2022]
Abstract
The catechol oxidase activity of three copper/bicompartmental salen derivatives has been studied. One mononuclear, [CuL] (1), one homometallic, [Cu2L(NO3)2] (2), and one heterometallic, [CuMnL(NO3)2] (3) complexes were obtained using the ligand H2L = N,N'-bis(3-methoxysalicylidene)-1,3-propanediamine through different synthetic methods (electrochemical, chemical and solid state reaction). The structural data indicate that the metal ion disposition models the active site of type-3 copper enzymes, such as catechol oxidase. In this way, their ability to act as functional models of the enzyme has been spectrophotometrically determined by monitorization of the oxidation of 3,5-di-tert-butylcatechol (3,5-DTBC) to 3,5-di-tert-butyl-o-benzoquinone (3,5-DTBQ). All the complexes show significant catalytic activity with ratio constants (kobs) lying in the range (223-294) × 10-4 min-1. A thorough kinetic study was carried out for complexes 2 and 3, since they show structural similarities with the catechol oxidase enzyme. The greatest catalytic activity was found for the homonuclear dicopper compound (2) with a turnover value (kcat) of (3.89 ± 0.05) × 106 h-1, which it is the higher reported to date, comparable to the enzyme itself (8.25 × 106 h-1).
Collapse
Affiliation(s)
- Aarón Terán
- Departamento de Química Inorgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040, Madrid, Spain.
| | - Aida Jaafar
- Departamento de Química Inorgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Ana E Sánchez-Peláez
- Departamento de Química Inorgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - M Carmen Torralba
- Departamento de Química Inorgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Ángel Gutiérrez
- Departamento de Química Inorgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040, Madrid, Spain
| |
Collapse
|
41
|
Sarkar S, Lee HI. Synthesis, structure, magnetic properties, and catecholase-like activity of a phenoxo bridged dinuclear cobalt(II) complex. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
42
|
Sengupta S, Khan S, Chattopadhyay SK, Banerjee I, Panda TK, Naskar S. Trinuclear copper and mononuclear nickel complexes of oxime containing Schiff bases: Single crystal X-ray structure, catecholase and phenoxazinone synthase activity, catalytic study for the homocoupling of benzyl amines. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
43
|
Chhabra V, Kumar Kundu B, Ranjan R, Pragti, Mobin SM, Mukhopadhyay S. Coligand driven efficiency of catecholase activity and proteins binding study of redox active copper complexes. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2019.119389] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
44
|
Asadi Z, Zarei L, Golchin M, Skorepova E, Eigner V, Amirghofran Z. A novel Cu(II) distorted cubane complex containing Cu 4O 4 core as the first tetranuclear catalyst for temperature dependent oxidation of 3,5-di-tert-butyl catechol and in interaction with DNA & protein (BSA). SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 227:117593. [PMID: 31654847 DOI: 10.1016/j.saa.2019.117593] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/01/2019] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
The tri-dentate Schiff base ligand 3-(2-hydroxyethylimino)-1-phenylbut-1-en-1-ol (L) produced the tetra-nuclear Cu(II) distorted cubane complex which contain Cu4O4 core, upon reaction with Cu(II)acetate.H2O. The complex was structurally characterized by X-ray crystallography and found that, in this tetrameric and tetra-nuclear distorted cubane structure, each two-fold deprotonated Schiff base ligand coordinated to a Cu(II) center with their alcoholic oxygens and imine nitrogens and formed six and five-membered chelate rings. At the same time, each ligand bridged to a neighboring Cu(II) atom by its alcoholic oxygen, thus the metal centers became penta-coordinated. The copper(II) complex with μ-ɳ2-hydroxo bridges and Cu….Cu distance about 3 Å was structurally similar to the active site of natural catechol oxidase enzyme and exhibited excellent catecholase activity in aerobic oxidation of 3,5-di-tert-butyl catechol to its o-quinone. The kinetics and mechanism of the oxidation of 3, 5-DTBCH2 catalyzed by [CuL]4 complex, were studied at four different temperatures from 283 to 313K by UV-Vis spectroscopy. Interaction of [CuL]4 complex with FS-DNA was investigated by UV-Vis and fluorescence spectroscopy, viscosity measurements, cyclic voltammetry (CV), circular dichroism (CD) and agarose gel electrophoresis. The main mode of binding of the complexes with DNA was intercalation. The interaction between [CuL]4 complex and bovine serum albumin (BSA) was studied by UV-Vis, fluorescence and synchronous fluorescence spectroscopic techniques. The results indicated a high binding affinity of the complex to BSA. In vitro anticancer activity of the complex was evaluated against A549, Jurkat and Ragi cell lines by MTT assay. The complex was remarkably active against the cell lines and can be a good candidate for an anticancer drug. Theoretical docking studies were performed to further investigate the DNA and BSA binding interactions.
Collapse
Affiliation(s)
- Zahra Asadi
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, 71454, Iran.
| | - Leila Zarei
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, 71454, Iran
| | - Maryam Golchin
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, 71454, Iran
| | - Eliska Skorepova
- Institute of Physics ASCR, v.v.i, Na Slovance 2, 182 21, Prague, Czech Republic
| | - Vaclav Eigner
- Institute of Physics ASCR, v.v.i, Na Slovance 2, 182 21, Prague, Czech Republic
| | - Zahra Amirghofran
- Department of Immunology and Autoimmune Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, 71454, Iran
| |
Collapse
|
45
|
Dutta S, Mayans J, Ghosh A. Facile synthesis of a new Cu(ii) complex with an unsymmetrical ligand and its use as an O 3 donor metalloligand in the synthesis of Cu(ii)-Mn(ii) complexes: structures, magnetic properties, and catalytic oxidase activities. Dalton Trans 2020; 49:1276-1291. [PMID: 31909778 DOI: 10.1039/c9dt04315b] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new, facile Cu(ii) template method has been employed for the unsymmetrical dicondensation of 1,2-ethylenediamine with salicylaldehyde and o-vanillin. The mononuclear complex, [CuL] (1), thus obtained, has been used as an O3 donor metalloligand for the synthesis of four new Cu(ii)-Mn(ii) complexes, [(CuL)MnCl2] (2), [(CuL)Mn(NO3)2(CH3OH)]n (3), {[(CuL)Mn(benz)(H2O)]2·(CuL)2(ClO4)2} (4) and [(CuL)Mn(benz)Cl]2 (5) (where benz = benzoate). Single-crystal structural analyses reveal that 2 is a dinuclear complex while complex 3 is polymeric with a repeating dinuclear [(CuL)Mn(NO3)2(CH3OH)] unit, linked via the nitrate ion. Both 4 and 5 are discrete tetranuclear complexes, where the dinuclear units [(CuL)Mn(benz)(H2O)] and [(CuL)Mn(benz)Cl] are connected by double benzoate and double chloride bridges, respectively. In complex 4, two monomeric [CuL] units are cocrystallized with the tetranuclear complex. An important difference in the structure of 4 from the other three complexes is that one solvent water molecule is coordinated to each Mn(ii) ion, which makes complex 4 catalytically very active towards mimicking catecholase and phenoxazinone synthase-like oxidation reactions. The turnover numbers (kcat) for the aerial oxidation of 3,5-di-tert-butylcatechol and o-aminophenol are 399 h-1 and 230 h-1, respectively. The evidence of the intermediate species in the mass spectra indicates possible heterometallic cooperation where the Mn(ii) center helps in substrate binding and Cu(ii) participates in the oxidation reactions with molecular oxygen. Cyclic voltammetry measurements suggest the reduction of Cu(ii) to Cu(i) during the catalytic process. Temperature-dependent dc molar magnetic susceptibility measurements reveal that complexes 2-5 are antiferromagnetically coupled with the exchange coupling constants (J) of J = -13.5 cm-1 and J = -13.5 cm-1 for 2 and 3, respectively, J1 = -12.6 cm-1 and J2 = -1.20 cm-1 for complex 4 and J1 = -13.24 cm-1 and J2 = 0.36 cm-1 for complex 5 as is expected from the Cu-O-Mn bridging angles.
Collapse
Affiliation(s)
- Sabarni Dutta
- Department of Chemistry, University College of Science, University of Calcutta, 92, A.P.C. Road, Kolkata 700 009, India.
| | - Júlia Mayans
- Departament de Química Inorgànica I Orgànica, Secció Inorgànica and Institut de Nanosciència I Nanotecnologia (IN2UB), Martíi Franqués 1-11, 08028, Barcelona, Spain
| | - Ashutosh Ghosh
- Department of Chemistry, University College of Science, University of Calcutta, 92, A.P.C. Road, Kolkata 700 009, India.
| |
Collapse
|
46
|
Bhunia A, Bertolasi V, Manna SC. Tridentate Schiff base and 4,4′‐bipyridine coordinated di/polynuclear Cu (II) complexes: Synthesis, crystal structure, DNA/protein binding and catecholase activity. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5424] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Apurba Bhunia
- Department of ChemistryVidyasagar University Midnapore West Bengal 721102 India
| | - Valerio Bertolasi
- Dipartimento di Scienze Chimiche e Farmaceutiche, Centro di Strutturistica DiffrattometricaUniversità di Ferrara Ferrara Italy
| | - Subal Chandra Manna
- Department of ChemistryVidyasagar University Midnapore West Bengal 721102 India
| |
Collapse
|
47
|
Mawai K, Nathani S, Tuglak Khan FS, Verma P, Kumari S, Roy P, Singh UP, Ghosh K. Dinuclear μ‐Phenoxo and μ‐Hydroxo Bridged Copper Complexes Exhibiting Oxidation of Phenols and Isoelectronic Compounds: Cytotoxicity and Evidences for Cellular Apoptosis. ChemistrySelect 2020. [DOI: 10.1002/slct.201903923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kiran Mawai
- Department of chemistry Indian Institute of Technology Roorkee Roorkee, Uttarakhand 247667 India
| | - Sandip Nathani
- Department of Biotechnology Indian Institute of Technology Roorkee Roorkee, Uttarakhand 247667 India
| | - Firoz Shah Tuglak Khan
- Department of chemistry Indian Institute of Technology Kanpur Kanpur, Uttar Pradesh 208016 India
| | - Pankaj Verma
- Department of chemistry Indian Institute of Technology Roorkee Roorkee, Uttarakhand 247667 India
| | - Sheela Kumari
- Department of chemistry Indian Institute of Technology Roorkee Roorkee, Uttarakhand 247667 India
| | - Partha Roy
- Department of Biotechnology Indian Institute of Technology Roorkee Roorkee, Uttarakhand 247667 India
| | - U. P. Singh
- Department of chemistry Indian Institute of Technology Roorkee Roorkee, Uttarakhand 247667 India
| | - Kaushik Ghosh
- Department of chemistry Indian Institute of Technology Roorkee Roorkee, Uttarakhand 247667 India
| |
Collapse
|
48
|
Mondal M, Ghosh S, Maity S, Giri S, Ghosh A. In situ transformation of a tridentate to a tetradentate unsymmetric Schiff base ligand via deaminative coupling in Ni(ii) complexes: crystal structures, magnetic properties and catecholase activity study. Inorg Chem Front 2020. [DOI: 10.1039/c9qi00975b] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
An N2O donor reduced Schiff base in presence of Ni(ClO4)2·6H2O and SCN− transforms into N2O2 donor ligand via deaminative coupling. Metal complexes 1 and 3 exhibit catecholase like activity and antiferromagnetic coupling between the Ni(ii) ions.
Collapse
Affiliation(s)
- Monotosh Mondal
- Department of Chemistry
- University College of Science
- University of Calcutta
- Kolkata-700 009
- India
| | - Soumavo Ghosh
- Department of Chemistry
- University College of Science
- University of Calcutta
- Kolkata-700 009
- India
| | - Souvik Maity
- Department of Chemistry
- University College of Science
- University of Calcutta
- Kolkata-700 009
- India
| | - Sanjib Giri
- Department of Chemistry
- Sri Ramkrishna Sarada Vidya Mahapitha
- Kamarpukur
- India
| | - Ashutosh Ghosh
- Department of Chemistry
- University College of Science
- University of Calcutta
- Kolkata-700 009
- India
| |
Collapse
|
49
|
Adak P, Mondal A, Chattopadhyay SK. Manganese(ii) complex of an oxygen–nitrogen donor Schiff base ligand showing efficient catechol oxidase activity: synthesis, spectroscopic and kinetic study. NEW J CHEM 2020. [DOI: 10.1039/c9nj04591k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Mn(ii) complex containing two tridentate O,N,O-donor semicarbazone ligands shows very high catalytic activity for the aerial oxidation of 3,5DTBCH2 with kcat = 3.10 × 106 h−1, and kcat/KM = 3.25 × 108 h−1 M−1.
Collapse
Affiliation(s)
- Piyali Adak
- Department of Chemistry
- Indian Institute of Engineering Science and Technology, Shibpur
- Howrah-711103
- India
| | - Antu Mondal
- Department of Chemistry
- Indian Institute of Engineering Science and Technology, Shibpur
- Howrah-711103
- India
| | | |
Collapse
|
50
|
Das M, Basak D, Trávníček Z, Vančo J, Ray D. Entrapment of a Pseudo-Tetrahedral Co II Center by Thioether Sulfur Bound {Co 2 (μ-L)} Fragments: Synthesis, Field-Induced Single-Ion Magnetism and Catechol Oxidase Mimicking Activity. Chem Asian J 2019; 14:3898-3914. [PMID: 31545553 DOI: 10.1002/asia.201901109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/22/2019] [Indexed: 11/06/2022]
Abstract
Simultaneous incorporation of both CoII and CoIII ions within a new thioether S-bearing phenol-based ligand system, H3 L (2,6-bis-[{2-(2-hydroxyethylthio)ethylimino}methyl]-4-methylphenol) formed [Co5 ] aggregates [CoII CoIII 4 L2 (μ-OH)2 (μ1,3 -O2 CCH3 )2 ](ClO4 )4 ⋅H2 O (1) and [CoII CoIII 4 L2 (μ-OH)2 (μ1,3 -O2 CC2 H5 )2 ](ClO4 )4 ⋅H2 O (2). The magnetic studies revealed axial zero-field splitting (ZFS) parameter, D/hc=-23.6 and -24.3 cm-1 , and E/D=0.03 and 0.00, respectively for 1 and 2. Dynamic magnetic data confirmed the complexes as SIMs with Ueff /kB =30 K (1) and 33 K (2), and τ0 =9.1×10-8 s (1), and 4.3×10-8 s (2). The larger atomic radius of S compared to N gave rise to less variation in the distortion of tetrahedral geometry around central CoII centers, thus affecting the D and Ueff /kB values. Theoretical studies also support the experimental findings and reveal the origin of the anisotropy parameters. In solutions, both 1 and 2 which produce {CoIII 2 (μ-L)} units, display solvent-dependent catechol oxidation behavior toward 3,5-di-tert-butylcatechol in air. The presence of an adjacent CoIII ion tends to assist the electron transfer from the substrate to the metal ion center, enhancing the catalytic oxidation rate.
Collapse
Affiliation(s)
- Manisha Das
- Department of Chemistry, Indian Institute of Technology, Kharagpur, 721 302, India
| | - Dipmalya Basak
- Department of Chemistry, Indian Institute of Technology, Kharagpur, 721 302, India
| | - Zdeněk Trávníček
- Division of Biologically Active Complexes and Molecular Magnets, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Ján Vančo
- Division of Biologically Active Complexes and Molecular Magnets, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Debashis Ray
- Department of Chemistry, Indian Institute of Technology, Kharagpur, 721 302, India
| |
Collapse
|