1
|
Abdulaal WH, Alhakamy NA, Asseri AH, Radwan MF, Ibrahim TS, Okbazghi SZ, Abbas HA, Mansour B, Shoun AA, Hegazy WAH, Abdel-Halim MS. Redirecting pantoprazole as a metallo-beta-lactamase inhibitor in carbapenem-resistant Klebsiella pneumoniae. Front Pharmacol 2024; 15:1366459. [PMID: 38533260 PMCID: PMC10963397 DOI: 10.3389/fphar.2024.1366459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 02/27/2024] [Indexed: 03/28/2024] Open
Abstract
The development of resistance to carbapenems in Klebsiella pneumoniae due to the production of metallo-β-lactamases (MBLs) is a critical public health problem because carbapenems are the last-resort drugs used for treating severe infections of extended-spectrum β-lactamases (ESBLs) producing K. pneumoniae. Restoring the activity of carbapenems by the inhibition of metallo-β-lactamases is a valuable approach to combat carbapenem resistance. In this study, two well-characterized clinical multidrug and carbapenem-resistant K. pneumoniae isolates were used. The sub-inhibitory concentrations of pantoprazole and the well-reported metallo-β-lactamase inhibitor captopril inhibited the hydrolytic activities of metallo-β-lactamases, with pantoprazole having more inhibiting activities. Both drugs, when used in combination with meropenem, exhibited synergistic activities. Pantoprazole could also downregulate the expression of the metallo-β-lactamase genes bla NDM and bla VIM. A docking study revealed that pantoprazole could bind to and chelate zinc ions of New Delhi and Verona integron-encoded MBL (VIM) enzymes with higher affinity than the control drug captopril and with comparable affinity to the natural ligand meropenem, indicating the significant inhibitory activity of pantoprazole against metallo-β-lactamases. In conclusion, pantoprazole can be used in combination with meropenem as a new strategy for treating serious infections caused by metallo-β-lactamases producing K. pneumoniae.
Collapse
Affiliation(s)
- Wesam H. Abdulaal
- Department of Biochemistry, Faculty of Science, Cancer and Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
- Mohamed Saeed Tamer Chair for Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Amer H. Asseri
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Centre for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohamed F. Radwan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Tarek S. Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Solomon Z. Okbazghi
- Global Analytical and Pharmaceutical Development, Alexion Pharmaceuticals, New Haven, CT, United States
| | - Hisham A. Abbas
- Microbiology and Immunology Department, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Basem Mansour
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Aly A. Shoun
- Microbiology and Immunology Department, Faculty of Pharmacy, El Salehey El Gadida University, Sharkiya, Egypt
| | - Wael A. H. Hegazy
- Microbiology and Immunology Department, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
- Pharmacy Program, Department of Pharmaceutical Sciences, Oman College of Health Sciences, Muscat, Oman
| | | |
Collapse
|
2
|
Synthesis, spectroscopic (13C/1H-NMR, FT-IR) investigations, quantum chemical modelling (FMO, MEP, NBO analysis), and antioxidant activity of the bis-benzimidazole molecule. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
3
|
Light Stability, Pro-Apoptotic and Genotoxic Properties of Silver (I) Complexes of Metronidazole and 4-Hydroxymethylpyridine against Pancreatic Cancer Cells In Vitro. Cancers (Basel) 2020; 12:cancers12123848. [PMID: 33419296 PMCID: PMC7767315 DOI: 10.3390/cancers12123848] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/12/2020] [Accepted: 12/18/2020] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Antimicrobial properties of silver (I) ion and its complexes with metronidazole and 4-hydroxymethylpyridine are well recognized. However, little is known about its anticancer activity toward human pancreatic cancer cells. Our in vitro study revealed that silver (I) ion and its complexes with metronidazole and 4-hydroxymethylpyridine induced pancreatic cancer cells death associated with genotoxic and proapoptotic properties. In turn, the stability of active substances is of crucial importance because it determines the efficacy and applicability in clinical use. Therefore, we also evaluated photostability of silver (I) nitrate and its complexes with metronidazole and 4- hydroxymethylpyridine. Our results showed that studied complexes are more photochemically stable than silver salts, which makes them better candidates for clinical therapy. Abstract Antimicrobial properties of silver (I) ion and its complexes are well recognized. However, recent studies suggest that both silver (I) ion and its complexes possess anticancer activity associated with oxidative stress-induced apoptosis of various cancer cells. In this study, we aimed to investigate whether silver nitrate and its complexes with metronidazole and 4-hydroxymethylpyridine exert anticancer action against human pancreatic cancer cell lines (PANC-1 and 1.2B4). In the study, we compared decomposition speed for silver complexes under the influence of daylight and UV-A (ultraviolet-A) rays. We employed the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazonium bromide) assay to evaluate the cytotoxicity and the alkaline comet assay to determine genotoxicity of silver nitrate and its complexes. Flow cytometry and the Annexin V-FITC/PI apoptosis detection kit were used to detect the apoptosis of human pancreatic cancer cells. We found a dose dependent decrease of both pancreatic cancer cell line viability after exposure to silver nitrate and its complexes. The flow cytometry analysis confirmed that cell death occurred mainly via apoptosis. We also documented that the studied compounds induced DNA damage. Metronidazole and 4-hydroxymethylpyridine alone did not significantly affect viability and level of DNA damage of pancreatic cancer cell lines. Complex compounds showed better stability than AgNO3, which decomposed slower than when exposed to light. UV-A significantly influences the speed of silver salt decomposition reaction. To conclude, obtained data demonstrated that silver nitrate and its complexes exerted anticancer action against human pancreatic cancer cells.
Collapse
|
4
|
Pariente Cohen N, Lo Presti E, Dell'Acqua S, Jantz T, Shimon LJW, Levy N, Nassir M, Elbaz L, Casella L, Fischer B. Aminomethylene-Phosphonate Analogue as a Cu(II) Chelator: Characterization and Application as an Inhibitor of Oxidation Induced by the Cu(II)-Prion Peptide Complex. Inorg Chem 2019; 58:8995-9003. [PMID: 31247811 DOI: 10.1021/acs.inorgchem.9b00287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recently, we reported on a series of aminomethylene-phosphonate (AMP) analogues, bearing one or two heterocyclic groups on the aminomethylene moiety, as promising Zn(II) chelators. Given the strong Zn(II) binding properties of these compounds, they may find useful applications in metal chelation therapy. With a goal of inhibiting the devastating oxidative damage caused by prion protein in prion diseases, we explored the most promising ligand, {bis[(1H-imidazol-4-yl)methyl]amino}methylphosphonic acid, AMP-(Im)2, 4, as an inhibitor of the oxidative reactivity associated with the Cu(II) complex of prion peptide fragment 84-114. Specifically, we first characterized the Cu(II) complex with AMP-(Im)2 by ultraviolet-visible spectroscopy and electrochemical measurements that indicated the high chemical and electrochemical stability of the complex. Potentiometric pH titration provided evidence of the formation of a stable 1:1 [Cu(II)-AMP-(Im)2]+ complex (ML), with successive binding of a second AMP-(Im)2 molecule yielding ML2 complex [Cu(II)-(AMP-(Im)2)2]+ (log K' = 15.55), and log β' = 19.84 for ML2 complex. The CuN3O1 ML complex was demonstrated by X-ray crystallography, indicating the thermodynamically stable square pyramidal complex. Chelation of Cu(II) by 4 significantly reduced the oxidation potential of the former. CuCl2 and the 1:2 Cu:AMP-(Im)2 complex showed one-electron redox of Cu(II)/Cu(I) at 0.13 and -0.35 V, respectively. Indeed, 4 was found to be a potent antioxidant that at a 1:1:1 AMP-(Im)2:Cu(II)-PrP84-114 molar ratio almost totally inhibited the oxidation reaction of 4-methylcatechol. Circular dichroism data suggest that this antioxidant activity is due to formation of a ternary, redox inactive Cu(II)-Prp84-114-[AMP-(Im)2] complex. Future studies in prion disease animal models are warranted to assess the potential of 4 to inhibit the devastating oxidative damage caused by PrP.
Collapse
Affiliation(s)
| | - Eliana Lo Presti
- Department of Chemistry , University of Pavia , Via Taramelli 12 , 27100 Pavia , Italy
| | - Simone Dell'Acqua
- Department of Chemistry , University of Pavia , Via Taramelli 12 , 27100 Pavia , Italy
| | - Thomas Jantz
- Department of Chemistry , Bar-Ilan University , Ramat Gan 5290002 , Israel
| | - Linda J W Shimon
- Faculty of Chemistry, Crystallography Unit , Weizmann Institute , Rehovot 76100 , Israel
| | - Naomi Levy
- Department of Chemistry , Bar-Ilan University , Ramat Gan 5290002 , Israel
| | - Molhm Nassir
- Department of Chemistry , Bar-Ilan University , Ramat Gan 5290002 , Israel
| | - Lior Elbaz
- Department of Chemistry , Bar-Ilan University , Ramat Gan 5290002 , Israel
| | - Luigi Casella
- Department of Chemistry , University of Pavia , Via Taramelli 12 , 27100 Pavia , Italy
| | - Bilha Fischer
- Department of Chemistry , Bar-Ilan University , Ramat Gan 5290002 , Israel
| |
Collapse
|
5
|
Mahmood K, Akhter Z, Asghar MA, Mirza B, Ismail H, Liaqat F, Kalsoom S, Ashraf AR, Shabbir M, Qayyum MA, McKee V. Synthesis, characterization and biological evaluation of novel benzimidazole derivatives. J Biomol Struct Dyn 2019; 38:1670-1682. [PMID: 31074356 DOI: 10.1080/07391102.2019.1617783] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
In search of achieving less toxic and more potent chemotherapeutics, three novel heterocyclic benzimidazole derivatives: 2-(1H-benzo[d]imidazol-2-yl)-4-chlorophenol (BM1), 4-chloro-2-(6-methyl-1H-benzo[d]imidazol-2-yl)phenol (BM2) and 4-chloro-2-(6-nitro-1H-benzo[d]imidazol-2-yl)phenol (BM3) with DNA-targeting properties, were synthesized and fully characterized by important physicochemical techniques. The DNA binding properties of the compounds were investigated by UV-Visible absorption titrations and thermal denaturation experiments. These molecules exhibited a good binding propensity to fish sperm DNA (FS-DNA), as evident from the high binding constants (Kb) values: 1.9 × 105, 1.39 × 105 and 1.8 × 104 M‒1 for BM1, BM2 and BM3, respectively. Thermal melting studies of DNA further validated the absorption titration results and best interaction was manifested by BM1 with ΔTm = 4.96 °C. The experimental DNA binding results were further validated theoretically by molecular docking study. It was confirmed that the molecules (BM1-BM3) bind to DNA via an intercalative and groove binding mode. The investigations showed a correlation between binding constants and energies obtained experimentally and through molecular docking, indicating a binding preference of benzimidazole derivatives with the minor groove of DNA. BM1 was the preferential candidate for DNA binding because of its flat structure, π-π interactions and less steric hindrance. To complement the DNA interaction, antimicrobial assays (antibacterial & antifungal) were performed. It was observed that compound BM2 showed promising activity against all bacterial strains (Micrococcus luteus, Staphylococcus aureus, Enterobacter aerogenes and Escherichia coli) and fungi (Aspergillus flavus, Aspergillus fumigatus and Fusarium solani), while rest of the compounds were active against selective strains. The MIC values of BM2 were found to be in the range of 12.5 ± 2.2-25 ± 1.5 µg/mL. Thus, the compound BM2 was found to be the effective DNA binding antimicrobial agent. Furthermore, the preliminary cytotoxic properties of synthesized compounds were evaluated by brine shrimps lethality assay to check their nontoxic nature towards healthy normal cells.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Khalid Mahmood
- Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Zareen Akhter
- Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | | | - Bushra Mirza
- Department of Biochemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Hammad Ismail
- Department of Biochemistry, University of Gujrat, Gujrat, Pakistan
| | - Faroha Liaqat
- Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Saima Kalsoom
- Center for Interdisciplinary Research in Basic Sciences (CIRBS), International Islamic University, Islamabad, Pakistan
| | - Ahmad Raza Ashraf
- Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Shabbir
- Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | | | - Vickie McKee
- School of Chemical Sciences, Dublin City University, Glasnevin, Ireland
| |
Collapse
|
6
|
Hevroni BL, Jantz T, Gottlieb HE, Fischer B. (Aminomethylene)phosphonate Analogues as Zn
II
Chelators: Synthesis and Characterization. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201700210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Thomas Jantz
- Department of Chemistry Bar‐Ilan University 5290002 Ramat Gan Israel
| | - Hugo E. Gottlieb
- Department of Chemistry Bar‐Ilan University 5290002 Ramat Gan Israel
| | - Bilha Fischer
- Department of Chemistry Bar‐Ilan University 5290002 Ramat Gan Israel
| |
Collapse
|
7
|
Yarkandi NH, El-Ghamry HA, Gaber M. Synthesis, spectroscopic and DNA binding ability of Co II , Ni II , Cu II and Zn II complexes of Schiff base ligand (E)-1-(((1H-benzo[d]imidazol-2-yl)methylimino)methyl)naphthalen-2-ol. X-ray crystal structure determination of cobalt (II) complex. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 75:1059-1067. [DOI: 10.1016/j.msec.2017.02.171] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 02/05/2017] [Accepted: 02/28/2017] [Indexed: 12/24/2022]
|
8
|
Sigel A, Operschall BP, Matera-Witkiewicz A, Świątek-Kozłowska J, Sigel H. Acid–base and metal ion-binding properties of thiopyrimidine derivatives. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
9
|
Yılmaz Ü, Küçükbay H. Synthesis and characterization of novel phosphoramidates containing benzimidazole moiety. PHOSPHORUS SULFUR 2016. [DOI: 10.1080/10426507.2015.1067209] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ülkü Yılmaz
- Battalgazi Vocational School, İnönü University, Battalgazi, Malatya 44210, Turkey
- Department of Chemistry, Faculty of Arts and Science, İnönü University, Malatya 44280, Turkey
| | - Hasan Küçükbay
- Department of Chemistry, Faculty of Arts and Science, İnönü University, Malatya 44280, Turkey
| |
Collapse
|
10
|
Abdelkarim AT, Al-Shomrani MM, Rayan AM, El-Sherif AA. Mixed Ligand Complex Formation of Cetirizine Drug with Bivalent Transition Metal(II) Ions in the Presence of 2-Aminomethylbenzimidazole: Synthesis, Structural, Biological, pH-Metric and Thermodynamic Studies. J SOLUTION CHEM 2015. [DOI: 10.1007/s10953-015-0362-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Kufelnicki A, Woźniczka M, Kalinowska-Lis U, Jezierska J, Ochocki J. Synthesis, acid–base and complexing properties with Cu(II), Co(II) and Zn(II) in aqueous solution of a novel 1H-benzimidazol-2-ylmethyl diethyl phosphate ligand: Comparison with other 2-substituted benzimidazole ligands. Polyhedron 2013. [DOI: 10.1016/j.poly.2013.01.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
12
|
Tabassum S, Amir S, Arjmand F, Pettinari C, Marchetti F, Masciocchi N, Lupidi G, Pettinari R. Mixed-ligand Cu(II)-vanillin Schiff base complexes; effect of coligands on their DNA binding, DNA cleavage, SOD mimetic and anticancer activity. Eur J Med Chem 2013; 60:216-232. [PMID: 23291123 DOI: 10.1016/j.ejmech.2012.08.019] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2011] [Revised: 07/26/2012] [Accepted: 08/13/2012] [Indexed: 10/28/2022]
Abstract
SOD mimics with varying coligand are momentous in developing potential chemotherapeutic drugs. Cu(II) based SOD mimics 1-4 [CuLH(OAc)(H(2)O)Y)] (LH = 2-((E)-(1,3-dihydroxy-2-methylpropan-2-ylimino)methyl)-6-methoxyphenol, OAc = CH(3)COO, 1: Y = H(2)O; 2: Y = phen (1,10-phenanthroline), 3: Y = tpimH (2,4,5-triphenylimidazole); 4: Y = tfbimH (2-(trifluoromethyl)benzimidazole) were synthesized and thoroughly characterized. Their interaction with CT-DNA showed different non-covalent binding behaviour. SOD activity of 2 was highest among 1-4 which was further validated by gel electrophoresis. The pBR322 plasmid strand break offered by 2 + O₂·⁻ system reveals oxidative cleavage mechanism. In vitro antimicrobial activity of 1-4 was shown by percent inhibition data while in vitro anticancer activity of 1-4 was screened using 16 human carcinoma cell lines of different histological origin. Complex 2 showed higher efficacy towards 14 cell lines.
Collapse
Affiliation(s)
- Sartaj Tabassum
- Department of Chemistry, Aligarh Muslim University, UP 202002, India.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Complex formation of cadmium with sugar residues, nucleobases, phosphates, nucleotides, and nucleic acids. Met Ions Life Sci 2013; 11:191-274. [PMID: 23430775 DOI: 10.1007/978-94-007-5179-8_8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cadmium(II), commonly classified as a relatively soft metal ion, prefers indeed aromatic-nitrogen sites (e.g., N7 of purines) over oxygen sites (like sugar-hydroxyl groups). However, matters are not that simple, though it is true that the affinity of Cd(2+) towards ribose-hydroxyl groups is very small; yet, a correct orientation brought about by a suitable primary binding site and a reduced solvent polarity, as it is expected to occur in a folded nucleic acid, may facilitate metal ion-hydroxyl group binding very effectively. Cd(2+) prefers the guanine(N7) over the adenine(N7), mainly because of the steric hindrance of the (C6)NH(2) group in the adenine residue. This Cd(2+)-(N7) interaction in a guanine moiety leads to a significant acidification of the (N1)H meaning that the deprotonation reaction occurs now in the physiological pH range. N3 of the cytosine residue, together with the neighboring (C2)O, is also a remarkable Cd(2+) binding site, though replacement of (C2)O by (C2)S enhances the affinity towards Cd(2+) dramatically, giving in addition rise to the deprotonation of the (C4)NH(2) group. The phosphodiester bridge is only a weak binding site but the affinity increases further from the mono- to the di- and the triphosphate. The same also holds for the corresponding nucleotides. Complex stability of the pyrimidine-nucleotides is solely determined by the coordination tendency of the phosphate group(s), whereas in the case of purine-nucleotides macrochelate formation takes place by the interaction of the phosphate-coordinated Cd(2+) with N7. The extents of the formation degrees of these chelates are summarized and the effect of a non-bridging sulfur atom in a thiophosphate group (versus a normal phosphate group) is considered. Mixed ligand complexes containing a nucleotide and a further mono- or bidentate ligand are covered and it is concluded that in these species N7 is released from the coordination sphere of Cd(2+). In the case that the other ligand contains an aromatic residue (e.g., 2,2'-bipyridine or the indole ring of tryptophanate) intramolecular stack formation takes place. With buffers like Tris or Bistris mixed ligand complexes are formed. Cd(2+) coordination to dinucleotides and to dinucleoside monophosphates provides some insights regarding the interaction between Cd(2+) and nucleic acids. Cd(2+) binding to oligonucleotides follows the principles of coordination to its units. The available crystal studies reveal that N7 of purines is the prominent binding site followed by phosphate oxygens and other heteroatoms in nucleic acids. Due to its high thiophilicity, Cd(2+) is regularly used in so-called thiorescue experiments, which lead to the identification of a direct involvement of divalent metal ions in ribozyme catalysis.
Collapse
|
14
|
Aljahdali M, El-Sherif AA. Equilibrium Studies of Binary and Mixed-Ligand Complexes of Zinc(II) Involving 2-(Aminomethyl)-Benzimidazole and Some Bio-Relevant Ligands. J SOLUTION CHEM 2012. [DOI: 10.1007/s10953-012-9908-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
15
|
Synthesis, characterization, biological studies (DNA binding, cleavage, antibacterial and topoisomerase I) and molecular docking of copper(II) benzimidazole complexes. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2012; 114:15-26. [DOI: 10.1016/j.jphotobiol.2012.05.003] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 04/24/2012] [Accepted: 05/03/2012] [Indexed: 11/19/2022]
|
16
|
Chandrasekhar V, Dey A, Senapati T, Sañudo EC. Distorted cubic tetranuclear vanadium(iv) phosphonate cages: double-four-ring (D4R) containing transition metal ion phosphonate cages. Dalton Trans 2012; 41:799-803. [DOI: 10.1039/c1dt11347j] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Sigel A, Operschall BP, Sigel H. Steric guiding of metal ion binding to a purine residue by a non-coordinating amino group: Examplified by 9-[(2-phosphonomethoxy)ethyl]-2-aminopurine (PME2AP), an isomer of the antiviral nucleotide analogue 9-[(2-phosphonomethoxy)ethyl]adenine (PMEA), and by related compounds. Coord Chem Rev 2012. [DOI: 10.1016/j.ccr.2011.06.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
18
|
Chandrasekhar V, Senapati T, Dey A, Sañudo EC. Rational Assembly of Soluble Copper(II) Phosphonates: Synthesis, Structure and Magnetism of Molecular Tetranuclear Copper(II) Phosphonates. Inorg Chem 2011; 50:1420-8. [DOI: 10.1021/ic101982c] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Tapas Senapati
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India
| | - Atanu Dey
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India
| | - E. Carolina Sañudo
- Departament de Química Inorgànica and Institute for Nanoscience and Nanotechnology, Universitat de Barcelona, Diagonal 647, 08028 Barcelona, Spain
| |
Collapse
|
19
|
Shankar R, Jain A, Kociok-Köhn G, Molloy KC. Diorganotin-Based Coordination Polymers Derived from Sulfonate/Phosphonate/Phosphonocarboxylate Ligands. Inorg Chem 2011; 50:1339-50. [DOI: 10.1021/ic1018423] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ravi Shankar
- Department of Chemistry, Indian Institute of Technology, Hauz Khas, New Delhi 110016, India
| | - Archana Jain
- Department of Chemistry, Indian Institute of Technology, Hauz Khas, New Delhi 110016, India
| | | | | |
Collapse
|
20
|
Chandrasekhar V, Senapati T, Dey A, Hossain S. Molecular transition-metal phosphonates. Dalton Trans 2011; 40:5394-418. [DOI: 10.1039/c0dt01069c] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
21
|
El-Sherif AA. Synthesis, Solution Equilibria and Antibacterial Activity of Co(II) with 2-(Aminomethyl)-Benzimidazole and Dicarboxylic Acids. J SOLUTION CHEM 2010. [DOI: 10.1007/s10953-010-9593-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
22
|
Chandrasekhar V, Sasikumar P, Senapati T, Dey A. Dinuclear metal phosphonates and -phosphates. Inorganica Chim Acta 2010. [DOI: 10.1016/j.ica.2010.03.038] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
23
|
Żurowska B, Ochocki J, Białońska A, Kalinowska-Lis U. Spectroscopic studies and crystal structure of a dimeric Zn(II) complex with diethyl (pyridin-2-ylmethyl)phosphate. J COORD CHEM 2010. [DOI: 10.1080/00958972.2010.520710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Bogumiła Żurowska
- a Faculty of Chemistry , University of Wroclaw , 14 F. Joliot-Curie Street, 50-383 Wroclaw, Poland
| | - Justyn Ochocki
- b Department of Bioinorganic Chemistry, Faculty of Pharmacy , Medical University , 1 Muszyńskiego Street, 90-151 Lodz, Poland
| | - Agata Białońska
- a Faculty of Chemistry , University of Wroclaw , 14 F. Joliot-Curie Street, 50-383 Wroclaw, Poland
| | - Urszula Kalinowska-Lis
- b Department of Bioinorganic Chemistry, Faculty of Pharmacy , Medical University , 1 Muszyńskiego Street, 90-151 Lodz, Poland
| |
Collapse
|
24
|
Fernández-Botello A, Operschall BP, Holy A, Moreno V, Sigel H. Metal ion-binding properties of 9-[(2-phosphonomethoxy)ethyl]-2-aminopurine (PME2AP), an isomer of the antiviral nucleotide analogue 9-[(2-phosphonomethoxy)ethyl]adenine (PMEA). Steric guiding of metal ion-coordination by the purine-amino group. Dalton Trans 2010; 39:6344-54. [DOI: 10.1039/c005238h] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
25
|
Interaction studies of a novel Co(II)-based potential chemotherapeutic agent with human serum albumin (HSA) employing biophysical techniques. Med Chem Res 2009. [DOI: 10.1007/s00044-009-9231-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
26
|
Sigel H, Operschall BP, Griesser R. Xanthosine 5'-monophosphate (XMP). Acid-base and metal ion-binding properties of a chameleon-like nucleotide. Chem Soc Rev 2009; 38:2465-94. [PMID: 19623361 DOI: 10.1039/b902181g] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The four acidity constants of threefold protonated xanthosine 5'-monophosphate, H(3)(XMP)(+), reveal that in the physiological pH range around 7.5 (X - H x MP)(3-) strongly dominates and not XMP(2-) as commonly given in textbooks and often applied in research papers. Therefore, this nucleotide, which participates in many metabolic processes, should be addressed as xanthosinate 5'-monophosphate as is stated in this critical review. Micro acidity constant schemes allow quantification of intrinsic site basicities. In 9-methylxanthine nucleobase deprotonation occurs to more than 99% at (N3)H, whereas for xanthosine it is estimated that about 30% are (N1)H deprotonated and for (X - H x MP)(3-) it is suggested that (N1)H deprotonation is further favored, especially in macrochelates where the phosphate-coordinated M(2+) interacts with N7. The formation degree of these macrochelates in the (X - H x MP x M)(-) species of Co(2+), Ni(2+), Cu(2+), Zn(2+) or Cd(2+) amounts to 90% or more. In the monoprotonated (M x X - H x MP x H)(+/-) complexes, M(2+) is located at the N7/[(C6)O] unit as the primary binding site and it forms macrochelates with the P(O)(2)(OH)(-) group to about 65% for nearly all metal ions considered (i.e., including Ba(2+), Sr(2+), Ca(2+), Mg(2+)); this indicates outer-sphere binding to P(O)(2)(OH)(-). Finally, a new method quantifying the chelate effect is applied to the M(X - H x MP)(-) species, stabilities and structures of mixed-ligand complexes are considered, and the stability constants for several M(X - H x DP)(2-) and M(X - H x TP)(3-) complexes are estimated (112 references).
Collapse
Affiliation(s)
- Helmut Sigel
- Department of Chemistry, Inorganic Chemistry, University of Basel, Spitalstrasse 51, CH-4056 Basel, Switzerland.
| | | | | |
Collapse
|
27
|
Chandrasekhar V, Senapati T, Sañudo EC, Clérac R. Tri-, Tetra-, and Hexanuclear Copper(II) Phosphonates Containing N-Donor Chelating Ligands: Synthesis, Structure, Magnetic Properties, and Nuclease Activity. Inorg Chem 2009; 48:6192-204. [DOI: 10.1021/ic900522u] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Tapas Senapati
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India
| | - E. Carolina Sañudo
- Departament de Química Inorgànica i, Institut de Nanociència i Nanotecnologia, Universitat de Barcelona, Diagonal 647, 08028 Barcelona, Spain
| | - R. Clérac
- CNRS, UPR 8641, Centre de Recherche Paul Pascal (CRPP), Equipe “Matériaux Moléculaires Magnétiques”, 115 avenue du Dr. Albert Schweitzer, Pessac, F-33600, France
- Université de Bordeaux, UPR 8641, Pessac, F-33600, France
| |
Collapse
|
28
|
Żurowska B, Ślepokura K, Lis T, Ochocki J. Different crystal forms of Zn(II) compound with diethyl (pyridin-3-ylmethyl)phosphonate (3-pmpe) ligand: Zn(3-pmpe)Cl2. Inorganica Chim Acta 2009. [DOI: 10.1016/j.ica.2008.04.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
29
|
|
30
|
Barszcz B, Jabłońska-Wawrzycka A, Stadnicka K, Jezierska J. Coordination chemistry of 2-hydroxymethylbenzimidazole complexes with copper(II) and cadmium(II) ions: Similarities and differences. Polyhedron 2008. [DOI: 10.1016/j.poly.2008.07.038] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
31
|
Chandrasekhar V, Senapati T, Sañudo EC. Synthesis, Structure, and Magnetism of Hexanuclear Copper(II) Phosphonates. Inorg Chem 2008; 47:9553-60. [DOI: 10.1021/ic8011525] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Vadapalli Chandrasekhar
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208 016, India, and Departament de Química Inorgànica and Institute for Nanoscience and Nanotechnology, Universitat de Barcelona, Diagonal 647, 08028 Barcelona, Spain
| | - Tapas Senapati
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208 016, India, and Departament de Química Inorgànica and Institute for Nanoscience and Nanotechnology, Universitat de Barcelona, Diagonal 647, 08028 Barcelona, Spain
| | - E. Carolina Sañudo
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208 016, India, and Departament de Química Inorgànica and Institute for Nanoscience and Nanotechnology, Universitat de Barcelona, Diagonal 647, 08028 Barcelona, Spain
| |
Collapse
|
32
|
Acid–base and metal ion binding properties of 2-thiocytidine in aqueous solution. J Biol Inorg Chem 2008; 13:663-74. [DOI: 10.1007/s00775-008-0351-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2007] [Accepted: 02/07/2008] [Indexed: 10/22/2022]
|
33
|
Chandrasekhar V, Azhakar R, Senapati T, Thilagar P, Ghosh S, Verma S, Boomishankar R, Steiner A, Kögerler P. Synthesis, structure, magnetism and nuclease activity of tetranuclear copper(ii) phosphonates containing ancillary 2,2′-bipyridine or 1,10-phenanthroline ligands. Dalton Trans 2008:1150-60. [DOI: 10.1039/b712876b] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
34
|
Sigel H, Massoud SS, Song B, Griesser R, Knobloch B, Operschall BP. Acid-base and metal-ion-binding properties of xanthosine 5'-monophosphate (XMP) in aqueous solution: complex stabilities, isomeric equilibria, and extent of macrochelation. Chemistry 2007; 12:8106-22. [PMID: 16888737 DOI: 10.1002/chem.200600160] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The four acidity constants of threefold protonated xanthosine 5'-monophosphate, H3(XMP)+, reveal that at the physiological pH of 7.5 (XMP-H)(3-) strongly dominates (and not XMP(2-) as given in textbooks); this is in contrast to the related inosine (IMP(2-)) and guanosine 5'-monophosphate (GMP(2-)) and it means that XMP should better be named as xanthosinate 5'-monophosphate. In addition, evidence is provided for a tautomeric (XMP-HN1)(3-)/(XMP-HN3)(3-) equilibrium. The stability constants of the M(H;XMP)+ species were estimated and those of the M(XMP) and M(XMP-H)- complexes (M2+=Mg2+, Ca2+, Sr2+, Ba2+, Mn2+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+) measured potentiometrically in aqueous solution. The primary M2+ binding site in M(XMP) is (mostly) N7 of the monodeprotonated xanthine residue, the proton being at the phosphate group. The corresponding macrochelates involving P(O)2(OH)- (most likely outer-sphere) are formed to approximately 65% for nearly all M2+. In M(XMP-H)- the primary M2+ binding site is (mostly) the phosphate group; here the formation degree of the N7 macrochelates varies widely from close to zero for the alkaline earth ions, to approximately 50% for Mn2+, and approximately 90% or more for Co2+, Ni2+, Cu2+, Zn2+, and Cd2+. Because for (XMP-H)(3-) the micro stability constants quantifying the M2+ affinity of the xanthosinate and PO3(2-) residues are known, one may apply a recently developed quantification method for the chelate effect to the corresponding macrochelates; this chelate effect is close to zero for the alkaline earth ions and it amounts to about one log unit for Co2+, Ni2+, Cu2+. This method also allows calculation of the formation degrees of the monodentatally coordinated isomers; this information is of relevance for biological systems because it demonstrates how metal ions can switch from one site to another through macrochelate formation. These insights are meaningful for metal-ion-dependent reactions of XMP in metabolic pathways; previous mechanistic proposals based on XMP(2-) need revision.
Collapse
Affiliation(s)
- Helmut Sigel
- Department of Chemistry, Inorganic Chemistry, University of Basel, Spitalstrasse 51, 4056 Basel, Switzerland.
| | | | | | | | | | | |
Collapse
|
35
|
Ternary copper(II) complexes involving 2-(aminomethyl)-benzimidazole and some bio-relevant ligands. Equilibrium studies and kinetics of hydrolysis for glycine methyl ester under complex formation. Inorganica Chim Acta 2007. [DOI: 10.1016/j.ica.2006.07.108] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
36
|
Odani A, Kozlowski H, Swiatek-Kozlowska J, Brasuń J, Operschall BP, Sigel H. Extent of metal ion-sulfur binding in complexes of thiouracil nucleosides and nucleotides in aqueous solution. J Inorg Biochem 2007; 101:727-35. [PMID: 17320183 DOI: 10.1016/j.jinorgbio.2006.12.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2006] [Revised: 12/17/2006] [Accepted: 12/22/2006] [Indexed: 10/23/2022]
Abstract
Previously published stability constants of several metal ion (M2+) complexes formed with thiouridines and their 5'-monophosphates, together with recently obtained log K(M(U))(M) versus pK(U)(H) plots for M2+ complexes of uridinate derivatives (U-) allowed now a quantitative evaluation of the effect that the exchange of a (C)O by a (C)S group has on the stability of the corresponding complexes. For example, the stability of the Ni2+, Cu2+ and Cd2+ complexes of 2-thiouridinate is increased by about 1.6, 2.3, and 1.3 log units, respectively, by the indicated exchange of groups. Similar results were obtained for other thiouridinates, including 4-thiouridinate. The structure of these complexes and the types of chelates formed (involving (N3)- and (C)S) are discussed. A recently advanced method for the quantification of the chelate effect allows now also an evaluation of several complexes of thiouridinate 5'-monophosphates. In most instances the thiouracilate coordination dominates the systems, allowing only the formation of small amounts of phosphate-bound isomers. Among the complexes studied only the one formed by Cu2+ with 2-thiouridinate 5'-monophosphate leads to significant amounts of the macrochelated isomer, which means that in this case Cu2+ is able to force the nucleotide from the anti to the syn conformation, allowing thus metal ion binding to both potential sites and this results in the formation of about 58% of the macrochelated isomer. The remaining 42% are species in which Cu2+ is overwhelmingly coordinated to the thiouracilate residue; Cu2+ binding to the phosphate group occurs in this case only in trace amounts.
Collapse
Affiliation(s)
- Akira Odani
- Department of Chemistry, Graduate School of Sciences, Nagoya University, Nagoya 464-8602, Japan.
| | | | | | | | | | | |
Collapse
|
37
|
Arjmand F, Mohani B, Ahmad S. Synthesis, antibacterial, antifungal activity and interaction of CT-DNA with a new benzimidazole derived Cu(II) complex. Eur J Med Chem 2005; 40:1103-10. [PMID: 16006016 DOI: 10.1016/j.ejmech.2005.05.005] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2004] [Revised: 05/13/2005] [Accepted: 05/18/2005] [Indexed: 11/25/2022]
Abstract
The ligand [C(16)H(10)O(2)N(4)S(2)] L has been synthesized by the condensation reaction of 2-mercaptobenzimidazole and diethyloxalate. The ligand L was allowed to react with bis(ethylenediamine)Cu(II)/Ni(II) complexes to yield [C(20)H(22)N(8)S(2)Cu]Cl(2)1 and [C(20)H(22)N(8)S(2)Ni]Cl(2)2 complexes. The Ni(II) complex was synthesized only to elucidate the structure of the complex. The complexes 1 and 2 were characterized by elemental analyses, IR, NMR, EPR, UV-vis spectroscopy and molar conductance measurements. Both the complexes are ionic in nature and possess square-planar geometry. The binding of the complex 1 to calf thymus DNA was investigated spectrophotometrically. The absorption spectra of complex 1 exhibits a slight red shift with "hyperchromic effect" in presence of CTDNA. Electrochemical analysis and viscosity measurements were also carried out to ascertain the mode of binding. The complex 1 in the absence and in presence of CT DNA in aqueous solution exhibits one quasi-reversible redox wave corresponding to Cu(II)/Cu(I) redox couple at a scan rate of 0.2 V s(-1). The shift in DeltaE(p), E(1/2) and I(pa)/I(pc) values ascertain the interaction of calf thymus DNA with copper(II) complex. There is decrease in viscosity of CTDNA which indicates that the complex 1 binds to CTDNA through a partial intercalative mode. The antibacterial and antifungal studies of the [C(7)H(6)N(2)S], [C(4)H(16)N(4)Cu]Cl(2,) [C(16)H(10)N(4)S(2)O(2)] and [C(20)H(22)N(8)S(2)Cu]Cl(2) were carried out against S. aureus, E. coli and A. niger. All the results reveal that the complex 1 is highly active against the bacterial strains and also inhibits fungal growth.
Collapse
Affiliation(s)
- Farukh Arjmand
- Department of Chemistry, Aligarh Muslim University, Aligarh, UP, India.
| | | | | |
Collapse
|
38
|
Coordination properties of didentate N,O heterocyclic alcohols and aldehydes towards Cu(II), Co(II), Zn(II) and Cd(II) ions in the solid state and aqueous solution. Coord Chem Rev 2005. [DOI: 10.1016/j.ccr.2005.02.020] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
39
|
Arjmand F, Chauhan M. Binding Studies of Asymmetric Pentacoordinate Copper(II) Complexes Containing Phenanthroline and Ethane-1,2-diamine Ligands with Calf-Thymus DNA. Helv Chim Acta 2005. [DOI: 10.1002/hlca.200590177] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
40
|
Barszcz B, Hodorowicz SA, Stadnicka K, Jabłońska-Wawrzycka A. A comparison of the coordination geometries of some 4-methylimidazole-5-carbaldehyde complexes with Zn(II), Cd(II) and Co(II) ions in the solid state and aqueous solution. Polyhedron 2005. [DOI: 10.1016/j.poly.2005.01.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
41
|
Fernández-Botello A, Holý A, Moreno V, Sigel H. Intramolecular stacking interactions in ternary copper(II) complexes formed by a heteroaromatic amine and 9-[2-(2-phosphonoethoxy)ethyl]adenine, a relative of the antiviral nucleotide analogue 9-[2-(phosphonomethoxy)ethyl]adenine☆. J Inorg Biochem 2004; 98:2114-24. [PMID: 15541501 DOI: 10.1016/j.jinorgbio.2004.08.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2004] [Revised: 07/31/2004] [Accepted: 08/03/2004] [Indexed: 11/29/2022]
Abstract
The stability constants of the mixed-ligand complexes formed between Cu(Arm)2+, where Arm=2,2'-bipyridine (Bpy) or 1,10-phenanthroline (Phen), and the dianions of 9-[2-(2-phosphonoethoxy)ethyl]adenine (PEEA2-) and (2-phosphonoethoxy)ethane (PEE2-), also known as [2-(2-ethoxy)ethyl]phosphonate, were determined by potentiometric pH titrations in aqueous solution (25 degrees C; I=0.1 M, NaNO3). The ternary Cu(Arm)(PEEA) complexes are considerably more stable than the corresponding Cu(Arm)(R-PO3) species, where R-PO3(2-) represents a phosph(on)ate ligand with a group R that is unable to participate in any kind of interaction within the complexes. The increased stability is attributed to intramolecular stack formation in the Cu(Arm)(PEEA) complexes and also, to a smaller extent, to the formation of 6-membered chelates involving the ether oxygen atom present in the -CH2-O-CH2-CH2-PO3(2-) residue of PEEA2-. This latter interaction is separately quantified by studying the ternary Cu(Arm)(PEE) complexes which can form the 6-membered chelates but where no intramolecular ligand-ligand stacking is possible. Application of these results allows a quantitative analysis of the intramolecular equilibria involving three structurally different Cu(Arm)(PEEA) species; e.g., of the Cu(Bpy)(PEEA) system about 11% exist with the metal ion solely coordinated to the phosphonate group, 4% as a 6-membered chelate involving the ether oxygen atom of the -CH2-O-CH2CH2-PO3(2-) residue, and 85% with an intramolecular stack between the adenine moiety of PEEA2- and the aromatic rings of Bpy. In addition, the Cu(Arm)(PEEA) complexes may be protonated, leading to Cu(Arm)(H;PEEA)+ species for which it is concluded that the proton is located at the phosphonate group and that the complexes are mainly formed (50 and 70%) by a stacking adduct between Cu(Arm)2+ and the adenine residue of H(PEEA)-. Finally, the stacking properties of adenosine 5'-monophosphate (AMP2-), of the dianion of 9-[2-(phophonomethoxy)ethyl]adenine (PMEA2-) and of several of its analogues (=PA2-) are compared in their ternary Cu(Arm)(AMP) and Cu(Arm)(PA) systems. Conclusions regarding the antiviral properties of several acyclic nucleoside phosphonates are shortly discussed.
Collapse
Affiliation(s)
- Alfonso Fernández-Botello
- Department of Chemistry, Inorganic Chemistry, University of Basel, Spitalstrasse 51, CH-4056 Basel, Switzerland
| | | | | | | |
Collapse
|