1
|
Guo M, Wang Y, Xu X. Superactivity of Bimetallic CuFeO 2 Submicron Particles towards Selective Proteolysis, Depending on their Surface Hydroxyls. Chemistry 2024; 30:e202402582. [PMID: 39253847 DOI: 10.1002/chem.202402582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 09/10/2024] [Indexed: 09/11/2024]
Abstract
Nano bimetallic oxides as nanoproteases have the great advantages in the heterogeneous hydrolysis of proteins. Here, we report that bimetallic delafossite CuFeO2 submicron particles (CuFeO2 SMPs) display a high protease activity towards selective cleavage of peptide bond involving hydrophobic residue at 25 °C. CuFeO2 SMPs have excellent regeneration performance with high structural stability. The strong Lewis acidity of Fe3+ and the strong nucleophilicity of Cu+ bound hydroxyl groups are both necessary for the high protease activity of CuFeO2 SMPs. Low-valent metal ion has a great advantage in that low-valent Cu+ bound hydroxyl has strong nucleophilicity, resulting in promotion of protein hydrolysis via high-efficient bimetallic catalysis. This study provides evidence that the protease activity of CuFeO2 SMPs depends on metal ion-bound hydroxyls on their surface. Our findings highlight that the valence of metal ions in artificial protease and their surface hydroxyls are two important factors that determine their catalytic efficiency.
Collapse
Affiliation(s)
- Mingxiu Guo
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Yaru Wang
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Xiaolong Xu
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
2
|
de Oliveira JAF, Terra GG, Costa TG, Szpoganicz B, Silva-Caldeira PP, de Souza ÍP, Pereira-Maia EC, Bortoluzzi AJ. Synthesis, characterization and cytotoxicity of copper (II) complex containing a 2H-benzo[e][1,3]oxazin derivative. J Inorg Biochem 2023; 239:112087. [PMID: 36508973 DOI: 10.1016/j.jinorgbio.2022.112087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/23/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022]
Abstract
A new cis-dihalo copper(II) complex, [CuII(HLbz)(Cl)2].CH3CN (1), where HLbz = (S)-2-(((2-(2-(pyridin-2-yl)-2H-benzo[e][1,3]oxazin-3(4H)-yl)ethyl)amino)methyl)phenol), was isolated by reacting copper(II) chloride dihydrate and the H2L ligand (H2L = 2,2'-((2-(pyridin-2-yl)imidazolidine-1,3-diyl)bis(methylene))diphenol) in a MeOH/CH3CN (1:3 v/v) mixture. The complex formation occurred via the ligand modification during complexation, producing a unique structure containing 2H-benzo[e][1,3]oxazin, as observed from the single crystal X-ray structure determination. The complex was characterized by elemental analysis, potentiometric titration, spectroscopic techniques (UV-Vis, FT-IR) and conductance measurements. Complex 1 inhibits the growth of myelogenous leukemia cells with an IC50 of 17.3 μmol L-1.
Collapse
Affiliation(s)
- José A F de Oliveira
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Geovana G Terra
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Thiago G Costa
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Bruno Szpoganicz
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | | | - Ívina P de Souza
- Departamento de Química, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Elene C Pereira-Maia
- Departamento de Química, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Adailton J Bortoluzzi
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil.
| |
Collapse
|
3
|
Camargo TP, Oliveira JAF, Costa TG, Szpoganicz B, Bortoluzzi AJ, Marzano IM, Silva-Caldeira PP, Bucciarelli-Rodriguez M, Pereira-Maia EC, Castellano EE, Peralta RA, Neves A. New Al IIIZn II and Al IIICu II dinuclear complexes: Phosphatase-like activity and cytotoxicity. J Inorg Biochem 2021; 219:111392. [PMID: 33752123 DOI: 10.1016/j.jinorgbio.2021.111392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 02/01/2021] [Accepted: 02/06/2021] [Indexed: 10/21/2022]
Abstract
Herein, we report the synthesis and characterization of the first two AlIII(μ-OH)MII (M = Zn (1) and Cu (2)) complexes with the unsymmetrical ligand H2L{2-[[(2-hydroxybenzyl)(2-pyridylmethyl)]aminomethyl]-6-bis(pyridylmethyl)aminomethyl}-4-methylphenol. The complexes were characterized through elemental analysis, X-ray crystallography, IR spectroscopy, mass spectrometry and potentiometric titration. In addition, complex 2 was characterized by electronic spectroscopy. Kinetics studies on the hydrolysis of the model substrate bis(2,4-dinitrophenyl)phosphate by 1 and 2 show Michaelis-Menten behavior, with 1 being slightly more active (8.31%) than 2 (at pH 7.0). The antimicrobial effect of the compounds was studied using four bacterial strains (Staphylococcus aureus, Pseudomonas aeuruginosa, Shigella sonnei and Shigella dysenteriae) and for both complexes the inhibition of bacterial growth was superior to that caused by sulfapyridine, but inferior to that of tetracycline. The dark cytotoxicity and photocytotoxicity (under UV-A light) of the complexes in a chronic myelogenous leukemia cell line were investigated. Complexes 1 and 2 exhibited significant cytotoxic activity against K562 cells, which undergoes a 2-fold increase on applying 5 min of irradiation with UV-A light. Complex 2 was more effective and a good correlation between cytotoxicity and intracellular concentration was observed, the intracellular copper concentration required to inhibit 50% of cell growth being 3.5 × 10-15 mol cell-1.
Collapse
Affiliation(s)
- Tiago P Camargo
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - José A F Oliveira
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Thiago G Costa
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Bruno Szpoganicz
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Adailton J Bortoluzzi
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Ivana M Marzano
- Departamento de Química, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | | | | | - Elene C Pereira-Maia
- Departamento de Química, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Eduardo E Castellano
- Instituto de Física, Universidade de São Paulo, São Carlos, SP 13360-979, Brazil
| | - Rosely A Peralta
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Ademir Neves
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil.
| |
Collapse
|
4
|
Durigon DC, Maragno Peterle M, Bortoluzzi AJ, Ribeiro RR, Braga AL, Peralta RA, Neves A. Cu(ii) complexes with tridentate sulfur and selenium ligands: catecholase and hydrolysis activity. NEW J CHEM 2020. [DOI: 10.1039/d0nj02806a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Two new copper(ii) mononuclear complexes (CSe and CS) were synthesized and characterized by the following techniques: X-ray crystallography, elemental analysis, IR, EPR and UV-vis spectroscopies, conductimetric analysis and mass spectrometry.
Collapse
Affiliation(s)
| | | | | | | | - Antonio Luiz Braga
- Departamento de Química
- Universidade Federal de Santa Catarina
- Florianópolis
- Brazil
| | | | - Ademir Neves
- Departamento de Química
- Universidade Federal de Santa Catarina
- Florianópolis
- Brazil
| |
Collapse
|
5
|
Vailati AF, Huelsmann RD, Martendal E, Bortoluzzi AJ, Xavier FR, Peralta RA. Multivariate analysis applied to oxidation of cyclohexane and benzyl alcohol promoted by mononuclear iron and copper complexes. NEW J CHEM 2020. [DOI: 10.1039/c9nj05534g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The iron complex converted higher amounts of substrates while the copper complex presented higher selectivity toward selected products.
Collapse
Affiliation(s)
- Andrei F. Vailati
- Departamento de Química
- Universidade Federal de Santa Catarina
- Florianópolis – SC
- Brazil
| | - Ricardo D. Huelsmann
- Departamento de Química
- Universidade Federal de Santa Catarina
- Florianópolis – SC
- Brazil
| | - Edmar Martendal
- Departamento de Química
- Universidade do Estado de Santa Catarina
- Joinville – SC
- Brazil
| | | | - Fernando R. Xavier
- Departamento de Química
- Universidade do Estado de Santa Catarina
- Joinville – SC
- Brazil
| | - Rosely A. Peralta
- Departamento de Química
- Universidade Federal de Santa Catarina
- Florianópolis – SC
- Brazil
| |
Collapse
|
6
|
Karpagam S, Kartikeyan R, Paravai Nachiyar P, Velusamy M, Kannan M, Krishnan M, Chitgupi U, Lovell JF, Abdulkader Akbarsha M, Rajendiran V. ROS-mediated cell death induced by mixed ligand copper(II) complexes of l-proline and diimine: effect of co-ligand. J COORD CHEM 2019. [DOI: 10.1080/00958972.2019.1680834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Sambantham Karpagam
- Department of Chemistry, School of Basic and Applied Sciences, Central University of Tamil Nadu, Thiruvarur, India
| | - Radhakrishnan Kartikeyan
- Department of Chemistry, School of Basic and Applied Sciences, Central University of Tamil Nadu, Thiruvarur, India
| | - Pappaiyan Paravai Nachiyar
- Department of Chemistry, School of Basic and Applied Sciences, Central University of Tamil Nadu, Thiruvarur, India
| | - Marappan Velusamy
- Department of Chemistry, North Eastern Hill University, Shillong, India
| | - Mani Kannan
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, India
| | - Muthukalingan Krishnan
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, India
| | - Upendra Chitgupi
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Jonathan F. Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Mohammad Abdulkader Akbarsha
- Mahatma Gandhi-Doerenkamp Center for Alternatives, Bharathidasan University, Tiruchirappalli, India
- Department of Life Sciences, National College (Autonomous), Tiruchirappalli, India
| | - Venugopal Rajendiran
- Department of Chemistry, School of Basic and Applied Sciences, Central University of Tamil Nadu, Thiruvarur, India
| |
Collapse
|
7
|
Ly HGT, Mihaylov TT, Proost P, Pierloot K, Harvey JN, Parac‐Vogt TN. Chemical Mimics of Aspartate‐Directed Proteases: Predictive and Strictly Specific Hydrolysis of a Globular Protein at Asp−X Sequence Promoted by Polyoxometalate Complexes Rationalized by a Combined Experimental and Theoretical Approach. Chemistry 2019; 25:14370-14381. [DOI: 10.1002/chem.201902675] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/13/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Hong Giang T. Ly
- Laboratory of Bioinorganic ChemistryDepartment of ChemistryKU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - Tzvetan T. Mihaylov
- Laboratory of Computational Coordination ChemistryDepartment of ChemistryKU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - Paul Proost
- Laboratory of Molecular ImmunologyRega InstituteDepartment of Microbiology, Immunology, and TransplantationKU Leuven Herestraat 49 3000 Leuven Belgium
| | - Kristine Pierloot
- Laboratory of Computational Coordination ChemistryDepartment of ChemistryKU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - Jeremy N. Harvey
- Laboratory of Computational Coordination ChemistryDepartment of ChemistryKU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - Tatjana N. Parac‐Vogt
- Laboratory of Bioinorganic ChemistryDepartment of ChemistryKU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| |
Collapse
|
8
|
Mahesh S, Tang KC, Raj M. Amide Bond Activation of Biological Molecules. Molecules 2018; 23:E2615. [PMID: 30322008 PMCID: PMC6222841 DOI: 10.3390/molecules23102615] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/09/2018] [Accepted: 10/09/2018] [Indexed: 12/02/2022] Open
Abstract
Amide bonds are the most prevalent structures found in organic molecules and various biomolecules such as peptides, proteins, DNA, and RNA. The unique feature of amide bonds is their ability to form resonating structures, thus, they are highly stable and adopt particular three-dimensional structures, which, in turn, are responsible for their functions. The main focus of this review article is to report the methodologies for the activation of the unactivated amide bonds present in biomolecules, which includes the enzymatic approach, metal complexes, and non-metal based methods. This article also discusses some of the applications of amide bond activation approaches in the sequencing of proteins and the synthesis of peptide acids, esters, amides, and thioesters.
Collapse
Affiliation(s)
- Sriram Mahesh
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849, USA.
| | - Kuei-Chien Tang
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849, USA.
| | - Monika Raj
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
9
|
Ly HGT, Fu G, Kondinski A, Bueken B, De Vos D, Parac-Vogt TN. Superactivity of MOF-808 toward Peptide Bond Hydrolysis. J Am Chem Soc 2018; 140:6325-6335. [PMID: 29684281 DOI: 10.1021/jacs.8b01902] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
MOF-808, a Zr(IV)-based metal-organic framework, has been proven to be a very effective heterogeneous catalyst for the hydrolysis of the peptide bond in a wide range of peptides and in hen egg white lysozyme protein. The kinetic experiments with a series of Gly-X dipeptides with varying nature of amino acid side chain have shown that MOF-808 exhibits selectivity depending on the size and chemical nature of the X side chain. Dipeptides with smaller or hydrophilic residues were hydrolyzed faster than those with bulky and hydrophobic residues that lack electron rich functionalities which could engage in favorable intermolecular interactions with the btc linkers. Detailed kinetic studies performed by 1H NMR spectroscopy revealed that the rate of glycylglycine (Gly-Gly) hydrolysis at pD 7.4 and 60 °C was 2.69 × 10-4 s-1 ( t1/2 = 0.72 h), which is more than 4 orders of magnitude faster compared to the uncatalyzed reaction. Importantly, MOF-808 can be recycled several times without significantly compromising the catalytic activity. A detailed quantum-chemical study combined with experimental data allowed to unravel the role of the {Zr6O8} core of MOF-808 in accelerating Gly-Gly hydrolysis. A mechanism for the hydrolysis of Gly-Gly by MOF-808 is proposed in which Gly-Gly binds to two Zr(IV) centers of the {Zr6O8} core via the oxygen atom of the amide group and the N-terminus. The activity of MOF-808 was also demonstrated toward the hydrolysis of hen egg white lysozyme, a protein consisting of 129 amino acids. Selective fragmentation of the protein was observed with 55% yield after 25 h under physiological pH.
Collapse
Affiliation(s)
- Hong Giang T Ly
- Laboratory of Bioinorganic Chemistry, Department of Chemistry , KU Leuven , Celestijnenlaan 200F , 3001 Leuven , Belgium
| | - Guangxia Fu
- Centre for Surface Chemistry and Catalysis , KU Leuven , Celestijnenlaan 200F , 3001 Leuven , Belgium
| | - Aleksandar Kondinski
- Laboratory of Bioinorganic Chemistry, Department of Chemistry , KU Leuven , Celestijnenlaan 200F , 3001 Leuven , Belgium
| | - Bart Bueken
- Centre for Surface Chemistry and Catalysis , KU Leuven , Celestijnenlaan 200F , 3001 Leuven , Belgium
| | - Dirk De Vos
- Centre for Surface Chemistry and Catalysis , KU Leuven , Celestijnenlaan 200F , 3001 Leuven , Belgium
| | - Tatjana N Parac-Vogt
- Laboratory of Bioinorganic Chemistry, Department of Chemistry , KU Leuven , Celestijnenlaan 200F , 3001 Leuven , Belgium
| |
Collapse
|
10
|
Sun ZX, Wang LY, Li YT, Wu ZY, Yan CW. DNA/BSA-binding property and in vitro
anticancer activity of a new dicopper(II) complex with N-(2-hydroxy-5-nitrophenyl)-N′-[3-(diethylamino)propyl]oxamide as bridging ligand: Synthesis and crystal structure. Appl Organomet Chem 2017. [DOI: 10.1002/aoc.3835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Zeng-Xiu Sun
- School of Medicine and Pharmacy; Ocean University of China; Qingdao 266003 People's Republic of China
| | - Ling-Yang Wang
- School of Medicine and Pharmacy; Ocean University of China; Qingdao 266003 People's Republic of China
| | - Yan-Tuan Li
- School of Medicine and Pharmacy; Ocean University of China; Qingdao 266003 People's Republic of China
- Laboratory for Marine Drugs and Bioproducts; Qingdao National Laboratory for Marine Science and Technology; Qingdao 266003 People's Republic of China
| | - Zhi-Yong Wu
- School of Medicine and Pharmacy; Ocean University of China; Qingdao 266003 People's Republic of China
- Laboratory for Marine Drugs and Bioproducts; Qingdao National Laboratory for Marine Science and Technology; Qingdao 266003 People's Republic of China
| | - Cui-Wei Yan
- College of Marine Life Science; Ocean University of China; Qingdao 266003 People's Republic of China
| |
Collapse
|
11
|
Metal assisted peptide bond hydrolysis: Chemistry, biotechnology and toxicological implications. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.02.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Zheng K, Liu F, Li YT, Wu ZY, Yan CW. Synthesis and structure elucidation of new μ-oxamido-bridged dicopper(II) complexes showing in vitro anticancer activity: Evaluation of DNA/protein-binding properties by experiment and molecular docking. J Inorg Biochem 2016; 156:75-88. [DOI: 10.1016/j.jinorgbio.2015.12.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 11/30/2015] [Accepted: 12/28/2015] [Indexed: 10/22/2022]
|
13
|
Design, Synthesis, Spectral Analysis, In Vitro Anticancer Evaluation and Molecular Docking Studies of Some Fluorescent 4-Amino-2, 3-Dimethyl-1-Phenyl-3-Pyrazolin-5-One, Ampyrone Derivatives. Interdiscip Sci 2016; 9:130-139. [PMID: 26725054 DOI: 10.1007/s12539-015-0138-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 12/14/2015] [Accepted: 12/16/2015] [Indexed: 10/22/2022]
Abstract
The commenced work deals with the synthesis, characterization and evaluation of biological activities of 4-amino-2,3-dimethyl-1-phenyl-3-pyrazolin-5-one. The synthesis was done by the condensation of aromatic acid chlorides with 4-aminoantipyrine. The structures of synthesized derivatives were elucidated using IR, Mass, 1H NMR and 13C NMR spectroscopy, and their UV-Visible and fluorescence properties were studied. The compounds showed significant dual fluorescence. Molecular docking was used to understand the small molecule-receptor protein interaction. The derivatives were screened for their in vitro cytotoxic activity against the reference drug pazopanib on human cervical cancer cell line (SiHa) using MTT assay.
Collapse
|
14
|
Ly HGT, Absillis G, Parac-Vogt TN. Influence of the amino acid side chain on peptide bond hydrolysis catalyzed by a dimeric Zr(iv)-substituted Keggin type polyoxometalate. NEW J CHEM 2016. [DOI: 10.1039/c5nj00561b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Structurally different dipeptides were hydrolyzed by [{α-PW11O39Zr-(μ-OH)(H2O)}2]8−. The rate constants were dependent on bulkiness and chemical nature of the dipeptide.
Collapse
|
15
|
Darabi F, Hadadzadeh H, Simpson J, Shahpiri A. A water-soluble Pd(ii) complex with a terpyridine ligand: experimental and molecular modeling studies of the interaction with DNA and BSA; and in vitro cytotoxicity investigations against five human cancer cell lines. NEW J CHEM 2016. [DOI: 10.1039/c6nj01880g] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
[Pd(4-OHPh-tpy)Cl]Cl was prepared. The complex interacts with DNA via a combination of covalent, intercalation, and hydrogen bonding interactions.
Collapse
Affiliation(s)
- Farivash Darabi
- Department of Chemistry
- Isfahan University of Technology
- Isfahan 84156-83111
- Iran
| | - Hassan Hadadzadeh
- Department of Chemistry
- Isfahan University of Technology
- Isfahan 84156-83111
- Iran
| | - Jim Simpson
- Department of Chemistry
- University of Otago
- Dunedin 9054
- New Zealand
| | - Azar Shahpiri
- Department of Agricultural Biotechnology
- College of Agriculture
- Isfahan University of Technology
- Isfahan 84156-83111
- Iran
| |
Collapse
|
16
|
Pires BM, Silva DM, Visentin LC, Rodrigues BL, Carvalho NMF, Faria RB. Synthesis and Characterization of Cobalt(III), Nickel(II) and Copper(II) Mononuclear Complexes with the Ligand 1,3-bis[(2-aminoethyl)amino]-2-propanol and Their Catalase-Like Activity. PLoS One 2015; 10:e0137926. [PMID: 26379038 PMCID: PMC4574563 DOI: 10.1371/journal.pone.0137926] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 08/23/2015] [Indexed: 11/18/2022] Open
Abstract
In this work, we present the synthesis and characterization of two new mononuclear complexes with the ligand 1,3-bis[(2-aminoethyl)amino]-2-propanol (HL), [Co(L)(H2O)](ClO4)2 (1), [Ni(HL)](ClO4)2 (2), as well as the known complex [Cu(HL)](ClO4)2 (3) for comparison. Their abilities to catalyze the dismutation of H2O2 and the oxidation of cyclohexane were investigated. The complexes were characterized by X-ray diffraction, elemental analysis, electronic and infrared spectroscopy, cyclic voltammetry, electrospray ionization mass spectrometry (ESI-MS) and conductivity measurements. The X-ray structures showed that the nickel (2) and copper (3) complexes are tetracoordinated, with the metal ion bound to the nitrogen atoms of the ligand. On the other hand, the cobalt complex (1) is hexacoordinated, possessing additional bonds to the alkoxo group of the ligand and to a water molecule. Neither of the complexes was able to catalyze the oxidation of cyclohexane, but all of them exhibited catalase-like activity, following Michaelis-Menten kinetics, which suggest resemblance with the catalase natural enzymes. The catalytic activity followed the order: [Ni(HL)](ClO4)2 (2) > [Cu(HL)](ClO4)2 (3) > [Co(L)(H2O)](ClO4)2 (1). As far as we know, this is the first description of a nickel complex presenting a significant catalase-like activity.
Collapse
Affiliation(s)
- Bianca M. Pires
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daniel M. Silva
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lorenzo C. Visentin
- NanoBusiness Informação e Inovação Ltda., Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bernardo L. Rodrigues
- Departamento de Química, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Nakédia M. F. Carvalho
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Roberto B. Faria
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
17
|
Synthesis and crystal structure of new dicopper(II) complexes having asymmetric N,N'-bis(substituted)oxamides with DNA/protein binding ability: In vitro anticancer activity and molecular docking studies. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 149:129-42. [PMID: 26057022 DOI: 10.1016/j.jphotobiol.2015.05.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 05/25/2015] [Accepted: 05/25/2015] [Indexed: 11/21/2022]
Abstract
Two new dicopper(II) complexes bridged by asymmetric N,N'-bis(substituted)oxamide ligands: N-(5-chloro-2-hydroxyphenyl)-N'-[2-(dimethylamino)ethyl]oxamide (H3chdoxd) and N-hydroxypropyl-N'-(2-carboxylatophenyl)oxamide (H3oxbpa), and end-capped with 2,2'-bipyridine (bpy), namely [Cu2(ClO4)(chdoxd)(CH3OH)(bpy)]·H2O (1) and [Cu2(pic)(oxbpa)(CH3OH)(bpy)]·0.5CH3OH (2) (pic denotes picrate anion), have been synthesized and characterized by elemental analysis, molar conductivity measurement, IR and electronic spectral studies, and single-crystal X-ray diffraction. The X-ray diffraction analysis revealed that both the copper(II) ions bridged by the cis-oxamido ligands in dicopper(II) complexes 1 and 2 are all in square-pyramidal environments with the corresponding Cu⋯Cu separations of 5.194(3) and 5.1714(8)Å, respectively. In the crystals of the two complexes, there are abundant hydrogen bonds and π-π stacking interactions contributing to the supramolecular structure. The reactivities toward herring sperm DNA (HS-DNA) and bovine serum albumin (BSA) of the two complexes are studied both theoretically and experimentally, indicating that both the two complexes can interact with the DNA in the mode of intercalation, and effectively bind to BSA via the favored binding sites Trp134 for the complex 1 and Trp213 for the complex 2. Interestingly, the in vitro anticancer activities of the two complexes against the selected tumor cell lines are consistent with their DNA/BSA-binding affinities following the order of 1>2. The effects of coordinated counterions in the two complexes on DNA/BSA-binding ability and in vitro anticancer activity are preliminarily discussed.
Collapse
|
18
|
Xu XW, Li XJ, Zhu L, Li YT, Wu ZY, Yan CW. Synthesis and structure of dicopper(II) complexes bridged by N-(5-chloro-2-hydroxyphenyl)-N'-[3-(methy lamino)propyl]oxamide: evaluation of DNA/protein binding, DNA cleavage, and in vitro anticancer activity. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 147:9-23. [PMID: 25837411 DOI: 10.1016/j.jphotobiol.2015.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 03/07/2015] [Accepted: 03/09/2015] [Indexed: 11/16/2022]
Abstract
Three new dicopper(II) complexes bridged by N-(5-chloro-2-hydroxyphenyl)-N'-[3-(methylamino)-propyl]oxamide (H3chmpoxd) and end-capped with 1,10-phenanthroline (phen); 2,2'-diamino-4,4'-bithiazole (dabt); and 2,2'-bipyridine (bpy), namely [Cu2(chmpoxd)(H2O)(phen)](ClO4)⋅CH3CN (1), [Cu2(chmpoxd)(dabt)(C2H5OH)](NO3) (2) and [Cu2(chmpoxd)(H2O)(bpy)](NO3)⋅CH3CN (3), were synthesized and structurally characterized. The single-crystal X-ray diffraction analysis revealed that both the copper(II) ions bridged by the cis-chmpoxd(3-) ligands in the three complexes are in square-planar and square-pyramidal environments, respectively. The reactivity towards herring sperm DNA (HS-DNA) and protein bovine serum albumin (BSA) indicated that these copper(II) complexes can interact with the DNA in the mode of intercalation, and bind to BSA responsible for quenching of tryptophan fluorescence by the static quenching mechanism. The cytotoxicity and DNA cleavage suggested that all the dicopper(II) complexes are active against the selected tumor cell lines, and the complex 1 exhibits the cleavage capacity for plasmid DNA.
Collapse
Affiliation(s)
- Xiao-Wen Xu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China
| | - Xue-Jie Li
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China
| | - Ling Zhu
- Key Laboratory of Marine Drug, Chinese Ministry of Education, Ocean University of China, PR China
| | - Yan-Tuan Li
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China.
| | - Zhi-Yong Wu
- Key Laboratory of Marine Drug, Chinese Ministry of Education, Ocean University of China, PR China
| | - Cui-Wei Yan
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China.
| |
Collapse
|
19
|
Abstract
Site-selective peptide/protein degradation through chemical cleavage methods is an important modification of biologically relevant macromolecules which complements enzymatic hydrolysis. In this review, recent progress in chemical, site-selective peptide bond cleavage is overviewed, with an emphasis on postulated mechanisms and their implications on reactivity, selectivity, and substrate scope.
Collapse
|
20
|
Zheng K, Jiang L, Li YT, Wu ZY, Yan CW. Synthesis and structure of new dicopper(ii) complexes bridged by asymmetric N,N′-bis(substituted)oxamides: in vitro anticancer activity and molecular docking studies based on bio-macromolecular interaction. RSC Adv 2015. [DOI: 10.1039/c5ra06357d] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Two new dicopper(ii) complexes were synthesized and structurally characterized. The effect of substituent groups on the bridging ligands was explored theoretically and experimentally.
Collapse
Affiliation(s)
- Kang Zheng
- School of Medicine and Pharmacy
- Ocean University of China
- Qingdao 266003
- PR China
| | - Liu Jiang
- College of Food Science and Engineering
- Ocean University of China
- Qingdao 266003
- PR China
| | - Yan-Tuan Li
- School of Medicine and Pharmacy
- Ocean University of China
- Qingdao 266003
- PR China
| | - Zhi-Yong Wu
- School of Medicine and Pharmacy
- Ocean University of China
- Qingdao 266003
- PR China
| | - Cui-Wei Yan
- College of Marine Life Science
- Ocean University of China
- Qingdao 266003
- PR China
| |
Collapse
|
21
|
A heptadentate ligand possessing two phenol groups: Its diverse coordination chemistry and the catalytic behaviors of its transition complexes towards benzene oxidation. Polyhedron 2014. [DOI: 10.1016/j.poly.2014.07.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
22
|
Reis ACDM, Freitas MCR, Resende JA, Diniz R, Rey NA. Different coordination patterns for two related unsymmetrical compartmental ligands: crystal structures and IR analysis of [Cu(C21H21O2N3)(OH2)(ClO4)]ClO4·2H2O and [Zn2(C22H21O3N2)(C22H20O3N2)]ClO4. J COORD CHEM 2014. [DOI: 10.1080/00958972.2014.958080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Aline Cruz De Moraes Reis
- Laboratório de Síntese Orgânica e Química de Coordenação Aplicada a Sistemas Biológicos (LABSO-BIO), Department of Chemistry, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Renata Diniz
- Department of Chemistry, ICE, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Nicolás A. Rey
- Laboratório de Síntese Orgânica e Química de Coordenação Aplicada a Sistemas Biológicos (LABSO-BIO), Department of Chemistry, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
23
|
Gupta RK, Pandey R, Kumar A, Ramanujachary K, Lofland SE, Pandey DS. Structural diversity in heteroleptic dipyrrinato copper(II) complexes. Inorganica Chim Acta 2014. [DOI: 10.1016/j.ica.2013.09.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Suh J. Progress in Designing Artificial Proteases: A New Therapeutic Option for Amyloid Diseases. ASIAN J ORG CHEM 2013. [DOI: 10.1002/ajoc.201300135] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
25
|
Berthet N, Martel-Frachet V, Michel F, Philouze C, Hamman S, Ronot X, Thomas F. Nuclease and anti-proliferative activities of copper(ii) complexes of N3O tripodal ligands involving a sterically hindered phenolate. Dalton Trans 2013; 42:8468-83. [DOI: 10.1039/c3dt32659d] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
26
|
Ly HGT, Absillis G, Parac-Vogt TN. Amide bond hydrolysis in peptides and cyclic peptides catalyzed by a dimeric Zr(iv)-substituted Keggin type polyoxometalate. Dalton Trans 2013; 42:10929-38. [DOI: 10.1039/c3dt50705j] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
27
|
Tabassum S, Al-Asbahy WM, Afzal M, Arjmand F, Khan RH. Interaction and photo-induced cleavage studies of a copper based chemotherapeutic drug with human serum albumin: spectroscopic and molecular docking study. MOLECULAR BIOSYSTEMS 2012; 8:2424-2433. [PMID: 22790833 DOI: 10.1039/c2mb25119a] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The interaction of new dinuclear copper(ii) complex 1; [Cu(2)(glygly)(2)(ppz)(H(2)O)(4)]·2H(2)O, derived from dipeptide (glycyl glycine) and piperazine as a metallopeptide drug with human serum albumin (HSA) was examined by means of fluorescence spectroscopy which revealed that complex 1 has a strong ability to quench the intrinsic fluorescence of HSA through a static quenching procedure. The alterations of HSA secondary structure in the presence of complex 1 were confirmed by UV-visible, FT-IR, CD and 3D fluorescence spectroscopy. The binding constants (K), and binding site number (n), corresponding thermodynamic parameters ΔG, ΔH and ΔS at different temperatures were calculated. The molecular docking technique was utilized to ascertain the mechanism and mode of action towards the molecular target HSA indicating that complex 1 was located at the entrance of site I by electrostatic and hydrophobic forces, consistent with the corresponding experimental results. Complex 1 shows efficient photo-induced HSA cleavage activity, indicating the involvement of hydroxyl radicals as the reactive species. Furthermore, the cytotoxicity of 1 was examined on a panel of human tumor cell lines of different histological origins showing significant GI(50) values specifically towards MIAPACA2, A498 and A549 tumor cell lines. These results complement previous biological studies of new specific target metallopeptides, providing additional information about possibilities of their transport and disposition in blood plasma.
Collapse
Affiliation(s)
- Sartaj Tabassum
- Department of Chemistry, Aligarh Muslim University, Aligarh, UP-202002, India.
| | | | | | | | | |
Collapse
|
28
|
Loganathan R, Ramakrishnan S, Suresh E, Riyasdeen A, Akbarsha MA, Palaniandavar M. Mixed ligand copper(II) complexes of N,N-bis(benzimidazol-2-ylmethyl)amine (BBA) with diimine co-ligands: efficient chemical nuclease and protease activities and cytotoxicity. Inorg Chem 2012; 51:5512-32. [PMID: 22559171 DOI: 10.1021/ic2017177] [Citation(s) in RCA: 177] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A series of mononuclear mixed ligand copper(II) complexes [Cu(bba)(diimine)](ClO(4))(2)1-4, where bba is N,N-bis(benzimidazol-2-ylmethyl)amine and diimine is 2,2'-bipyridine (bpy) (1), 1,10-phenanthroline (phen) (2), 5,6-dimethyl-1,10-phenanthroline (5,6-dmp) (3), or dipyrido[3,2-d:2',3'-f]quinoxaline (dpq) (4), have been isolated and characterized by analytical and spectral methods. The coordination geometry around copper(II) in 2 is described as square pyramidal with the two benzimidazole nitrogen atoms of the primary ligand bba and the two nitrogen atoms of phen (2) co-ligand constituting the equatorial plane and the amine nitrogen atom of bba occupying the apical position. In contrast, the two benzimidazole nitrogen atoms and the amine nitrogen atom of bba ligand and one of the two nitrogen atoms of 5,6-dmp constitute the equatorial plane of the trigonal bipyramidal distorted square based pyramidal (TBDSBP) coordination geometry of 3 with the other nitrogen atom of 5,6-dmp occupying the apical position. The structures of 1-4 have been optimized by using the density functional theory (DFT) method at the B3LYP/6-31G(d,p) level. Absorption spectral titrations with Calf Thymus (CT) DNA reveal that the intrinsic DNA binding affinity of the complexes depends upon the diimine co-ligand, dpq (4) > 5,6-dmp (3) > phen (2) > bpy (1). The DNA binding affinity of 4 is higher than 2 revealing that the π-stacking interaction of the dpq ring in between the DNA base pairs with the two bzim moieties of the bba ligand stacked along the DNA surface is more intimate than that of phen. The complex 3 is bound to DNA more strongly than 1 and 2 through strong hydrophobic interaction of the methyl groups on 5,6-positions of the phen ring in the DNA grooves. The extent of the decrease in relative emission intensities of DNA-bound ethidium bromide (EB) upon adding the complexes parallels the trend in DNA binding affinities. The large enhancement in relative viscosity of DNA upon binding to 3 and 4 supports the DNA binding modes proposed. Interestingly, the 5,6-dmp complex 3 is selective in exhibiting a positive induced CD band (ICD) upon binding to DNA suggesting that it induces a B to A conformational change. In contrast, 2 and 4 show induced CD responses indicating their involvement in strong DNA binding. Interestingly, only the dpq complex 4, which displays the strongest DNA binding affinity and is efficient in cleaving DNA in the absence of an activator with a rate constant of 5.8 ± 0.1 h(-1), which is higher than the uncatalyzed rate of DNA cleavage. All the complexes exhibit oxidative DNA cleavage ability, which varies as 4 > 2 > 3 > 1 (ascorbic acid) and 3 > 2 > 4 > 1 (H(2)O(2)). Also, the complexes cleave the protein bovine serum albumin in the presence of H(2)O(2) as an activator with the cleavage ability varying in the order 3 > 4 > 2 > 1. The highest efficiency of 3 to cleave both DNA and protein in the presence of H(2)O(2) is consistent with its strong hydrophobic interaction with the biopolymers. The IC(50) values of 1-4 against cervical cancer cell lines (SiHa) are almost equal to that of cisplatin, indicating that they have the potential to act as effective anticancer drugs in a time-dependent manner. The morphological assessment data obtained by using acridine orange/ethidium bromide (AO/EB) and Hoechst 33258 staining reveal that 3 induces apoptosis much more effectively than the other complexes. Also, the alkaline single-cell gel electrophoresis study (comet assay) suggests that the same complex induces DNA fragmentation more efficiently than others.
Collapse
Affiliation(s)
- Rangasamy Loganathan
- Centre for Bioinorganic Chemistry, School of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, Tamilnadu, India
| | | | | | | | | | | |
Collapse
|
29
|
Smith SJ, Peralta RA, Jovito R, Horn A, Bortoluzzi AJ, Noble CJ, Hanson GR, Stranger R, Jayaratne V, Cavigliasso G, Gahan LR, Schenk G, Nascimento OR, Cavalett A, Bortolotto T, Razzera G, Terenzi H, Neves A, Riley MJ. Spectroscopic and Catalytic Characterization of a Functional FeIIIFeII Biomimetic for the Active Site of Uteroferrin and Protein Cleavage. Inorg Chem 2012; 51:2065-78. [DOI: 10.1021/ic201711p] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
| | | | | | | | | | | | | | - Robert Stranger
- Research School of Chemistry, Australian National University, Canberra 0200, Australia
| | - Vidura Jayaratne
- Research School of Chemistry, Australian National University, Canberra 0200, Australia
| | - Germán Cavigliasso
- Research School of Chemistry, Australian National University, Canberra 0200, Australia
| | | | - Gerhard Schenk
- Department of Chemistry, National University of Ireland—Maynooth, Maynooth County, Kildare, Ireland
| | - Otaciro R. Nascimento
- Instituto de Física, Universidade de São Paulo, 13560-970 São
Carlos, São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
30
|
Synthesis, Structure, and C-C Cross-Coupling Activity of (Amine)bis(phenolato)iron(acac) Complexes. Eur J Inorg Chem 2011. [DOI: 10.1002/ejic.201100553] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
31
|
Mikata Y, Fujimoto T, Fujiwara T, Kondo SI. Intramolecular ether oxygen coordination in the zinc complexes with dipicolylamine (DPA)-derived ligands. Inorganica Chim Acta 2011. [DOI: 10.1016/j.ica.2011.02.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
32
|
Miskevich F, Davis A, Leeprapaiwong P, Giganti V, Kostić NM, Angel LA. Metal complexes as artificial proteases in proteomics: A palladium(II) complex cleaves various proteins in solutions containing detergents. J Inorg Biochem 2011; 105:675-83. [DOI: 10.1016/j.jinorgbio.2011.01.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 01/14/2011] [Accepted: 01/18/2011] [Indexed: 11/15/2022]
|
33
|
Prakash J, Kodanko JJ. Selective Inactivation of Serine Proteases by Nonheme Iron Complexes. Inorg Chem 2011; 50:3934-45. [DOI: 10.1021/ic102320j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Jai Prakash
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Jeremy J. Kodanko
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| |
Collapse
|
34
|
Drewry JA, Gunning PT. Recent advances in biosensory and medicinal therapeutic applications of zinc(II) and copper(II) coordination complexes. Coord Chem Rev 2011. [DOI: 10.1016/j.ccr.2010.10.018] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
35
|
Counter-anions and their coordination behavior with Cu(II) complexes of thiophen-3-yl-dipicolylamine. Inorganica Chim Acta 2010. [DOI: 10.1016/j.ica.2010.08.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
36
|
Protas AM, Bonna A, Kopera E, Bal W. Selective peptide bond hydrolysis of cysteine peptides in the presence of Ni(II) ions. J Inorg Biochem 2010; 105:10-6. [PMID: 21134597 DOI: 10.1016/j.jinorgbio.2010.09.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2010] [Revised: 09/16/2010] [Accepted: 09/20/2010] [Indexed: 11/16/2022]
Abstract
Recently, we described a sequence-specific R1-(Ser/Thr) peptide bond hydrolysis reaction in peptides of a general sequence R1-(Ser/Thr)-Xaa-His-Zaa-R, which occurs in the presence of Ni(II) ions [A. Krężel, E. Kopera, A. M. Protas, A. Wysłouch-Cieszyńska, J. Poznański, W. Bal, J. Am. Chem. Soc. 132 (2010) 3355-3366]. In this study we explored the possibility of substituting the Ser/Thr and the His residues, necessary for the reaction to occur according to the Ni(II)-assisted acyl shift reaction mechanism, with Cys residues. We tested this concept by synthesizing three homologous peptides: R1-Ser-Arg-Cys-Trp-R2, R1-Cys-Arg-His-Trp-R2, and R1-Cys-Arg-Cys-Trp-R2, and the R1-Ser-Arg-His-Trp-R2 peptide as comparator (R1 and R2 were CH3CO-Gly-Ala and Lys-Phe-Leu-NH2, respectively). We studied their hydrolysis in the presence of Ni(II) ions, under anaerobic conditions and in the presence of TCEP as a thiol group antioxidant. We measured hydrolysis rates using HPLC and identified products of reaction using electrospray mass spectrometry. Potentiometry and UV-vis spectroscopy were used to assess Ni(II) complexation. We demonstrated that Ni(II) is not compatible with the Cys substitution of the Ser/Thr acyl acceptor residue, but the substitution of the Ni(II) binding His residue with a Cys yields a peptide susceptible to Ni(II)-related hydrolysis. The relatively high activity of the R1-Ser-Arg-Cys-Trp-R2 peptide at pH 7.0 suggests that this peptide and its Cys-containing analogs might be useful in practical applications of Ni(II)-dependent peptide bond hydrolysis.
Collapse
Affiliation(s)
- Anna Maria Protas
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | | | | | | |
Collapse
|
37
|
Patel RN. Synthesis, characterization, and superoxide dismutase activity of two new copper(II) complexes of benzoylpyridine 4-phenylsemicarbazone. J COORD CHEM 2010. [DOI: 10.1080/00958971003735432] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Ram N. Patel
- a Department of Chemistry , A.P.S. University , Rewa 486003, Madhya Pradesh, India
| |
Collapse
|
38
|
Hussain A, Lahiri D, Ameerunisha Begum MS, Saha S, Majumdar R, Dighe RR, Chakravarty AR. Photocytotoxic Lanthanum(III) and Gadolinium(III) Complexes of Phenanthroline Bases Showing Light-Induced DNA Cleavage Activity. Inorg Chem 2010; 49:4036-45. [DOI: 10.1021/ic901791f] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
| | | | | | - Sounik Saha
- Department of Inorganic and Physical Chemistry
| | | | - Rajan R. Dighe
- Department of Molecular Reproduction, Development, and Genetics
| | | |
Collapse
|
39
|
Krȩżel A, Kopera E, Protas AM, Poznański J, Wysłouch-Cieszyńska A, Bal W. Sequence-Specific Ni(II)-Dependent Peptide Bond Hydrolysis for Protein Engineering. Combinatorial Library Determination of Optimal Sequences. J Am Chem Soc 2010; 132:3355-66. [DOI: 10.1021/ja907567r] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Artur Krȩżel
- Laboratory of Protein Engineering, Faculty of Biotechnology, University of Wrocław, Tamka 2, 50-137 Wrocław, Poland, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland, Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland, and Central Institute for Labour Protection—National Research Institute, Czerniakowska 16, 00-701 Warsaw, Poland
| | - Edyta Kopera
- Laboratory of Protein Engineering, Faculty of Biotechnology, University of Wrocław, Tamka 2, 50-137 Wrocław, Poland, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland, Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland, and Central Institute for Labour Protection—National Research Institute, Czerniakowska 16, 00-701 Warsaw, Poland
| | - Anna Maria Protas
- Laboratory of Protein Engineering, Faculty of Biotechnology, University of Wrocław, Tamka 2, 50-137 Wrocław, Poland, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland, Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland, and Central Institute for Labour Protection—National Research Institute, Czerniakowska 16, 00-701 Warsaw, Poland
| | - Jarosław Poznański
- Laboratory of Protein Engineering, Faculty of Biotechnology, University of Wrocław, Tamka 2, 50-137 Wrocław, Poland, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland, Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland, and Central Institute for Labour Protection—National Research Institute, Czerniakowska 16, 00-701 Warsaw, Poland
| | - Aleksandra Wysłouch-Cieszyńska
- Laboratory of Protein Engineering, Faculty of Biotechnology, University of Wrocław, Tamka 2, 50-137 Wrocław, Poland, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland, Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland, and Central Institute for Labour Protection—National Research Institute, Czerniakowska 16, 00-701 Warsaw, Poland
| | - Wojciech Bal
- Laboratory of Protein Engineering, Faculty of Biotechnology, University of Wrocław, Tamka 2, 50-137 Wrocław, Poland, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland, Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland, and Central Institute for Labour Protection—National Research Institute, Czerniakowska 16, 00-701 Warsaw, Poland
| |
Collapse
|
40
|
de Souza B, Bortoluzzi AJ, Bortolotto T, Fischer FL, Terenzi H, Ferreira DEC, Rocha WR, Neves A. DNA photonuclease activity of four new copper(ii) complexes under UV and red light: theoretical/experimental correlations with active species generation. Dalton Trans 2010; 39:2027-35. [DOI: 10.1039/b920122j] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
41
|
Abstract
A new paradigm for drug activity is presented, which includes both recognition and subsequent irreversible inactivation of therapeutic targets. Application to both RNA and protein biomolecules has been demonstrated. In contrast to RNA targets that are subject to strand scission chemistry mediated by ribose H-atom abstraction, proteins appear to be inactivated either through oxidative damage to amino acid side chains around the enzyme active site, or by backbone hydrolysis.
Collapse
Affiliation(s)
- Lalintip Hocharoen
- Evans Laboratory of Chemistry, Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA
| | | |
Collapse
|
42
|
Xavier FR, Neves A, Casellato A, Peralta RA, Bortoluzzi AJ, Szpoganicz B, Severino PC, Terenzi H, Tomkowicz Z, Ostrovsky S, Haase W, Ozarowski A, Krzystek J, Telser J, Schenk G, Gahan LR. Unsymmetrical FeIIICoII and GaIIICoII Complexes as Chemical Hydrolases: Biomimetic Models for Purple Acid Phosphatases (PAPs). Inorg Chem 2009; 48:7905-21. [DOI: 10.1021/ic900831q] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Fernando R. Xavier
- Departamento de Química, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Ademir Neves
- Departamento de Química, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Annelise Casellato
- Departamento de Química, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Rosely A. Peralta
- Departamento de Química, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Adailton J. Bortoluzzi
- Departamento de Química, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Bruno Szpoganicz
- Departamento de Química, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Patricia C. Severino
- Departamento de Bioquímica, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Hernán Terenzi
- Departamento de Bioquímica, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Zbigniew Tomkowicz
- Institute of Physics, Reymonta 4, Jagiellonian University, PL-30-059 Kraków, Poland
- Institut für Physikalische Chemie, Technische Universität Darmstadt, Petersenstrasse 20, D-64287 Darmstadt, Germany
| | - Sergei Ostrovsky
- Institute of Applied Physics, Academy of Sciences of Moldova, Academy Str. 5, 2028 Chisinau, Moldava
- Institut für Physikalische Chemie, Technische Universität Darmstadt, Petersenstrasse 20, D-64287 Darmstadt, Germany
| | - Wolfgang Haase
- Institut für Physikalische Chemie, Technische Universität Darmstadt, Petersenstrasse 20, D-64287 Darmstadt, Germany
| | - Andrew Ozarowski
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310
| | - Jerzy Krzystek
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310
| | - Joshua Telser
- Department of Biological, Chemical and Physical Sciences, Roosevelt University, Chicago, Illinois 60605
| | - Gerhard Schenk
- School of Molecular and Microbial Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Lawrence R. Gahan
- School of Molecular and Microbial Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| |
Collapse
|
43
|
Raman N, Jeyamurugan R. Synthesis, characterization, and DNA interaction of mononuclear copper(II) and zinc(II) complexes having a hard–soft NS donor ligand. J COORD CHEM 2009. [DOI: 10.1080/00958970902825195] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- N. Raman
- a Research Department of Chemistry , VHNSN College , Virudhunagar-626 001, Tamil Nadu, India
| | - R. Jeyamurugan
- a Research Department of Chemistry , VHNSN College , Virudhunagar-626 001, Tamil Nadu, India
| |
Collapse
|
44
|
Oliveira MCB, Mazera D, Scarpellini M, Severino PC, Neves A, Terenzi H. Mononuclear Cu(II)-phenolate bioinspired complex is catalytically promiscuous: phosphodiester and peptide amide bond cleavage. Inorg Chem 2009; 48:2711-3. [PMID: 19254035 DOI: 10.1021/ic802208v] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this work, the cleavage activity of the metal complex [Cu(C(21)H(21)N(3)O(2))(OH(2))(2)](2+) is demonstrated to occur toward double-stranded DNA, in addition to its previously described amide bond cleavage activity, thus suggesting catalytic promiscuity for this complex.
Collapse
Affiliation(s)
- Mauricio C Bof Oliveira
- Centro de Biologia Molecular Estrutural, Departamento de Bioquímica, Universidade Federal de Santa Catarina, 88040-900 Florianópolis-SC, Brazil
| | | | | | | | | | | |
Collapse
|
45
|
Lee TY, Suh J. Target-selective peptide-cleaving catalysts as a new paradigm in drug design. Chem Soc Rev 2009; 38:1949-57. [PMID: 19551175 DOI: 10.1039/b710345j] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
This tutorial review describes the evolution of peptide-hydrolyzing metal catalysts towards artificial metalloproteases cleaving target proteins selectively. The catalytic cleavage of the backbone of a protein related to a disease may effect a cure. In particular, a new therapeutic option for amyloid diseases such as Alzheimer's disease, diabetes and Parkinson's disease has been presented. The new paradigm of drug design based on artificial metalloproteases should be of interest to researchers in the areas of biomimetic chemistry, as well as medicinal chemistry.
Collapse
Affiliation(s)
- Tae Yeon Lee
- Department of Chemistry, Seoul National University, Seoul 151-747, Korea
| | | |
Collapse
|
46
|
Maity B, Roy M, Saha S, Chakravarty AR. Photoinduced DNA and Protein Cleavage Activity of Ferrocene-Conjugated Ternary Copper(II) Complexes. Organometallics 2009. [DOI: 10.1021/om801036f] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Basudev Maity
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Mithun Roy
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Sounik Saha
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Akhil R. Chakravarty
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
47
|
Roy M, Bhowmick T, Santhanagopal R, Ramakumar S, Chakravarty AR. Photo-induced double-strand DNA and site-specific protein cleavage activity of l-histidine (μ-oxo)diiron(iii) complexes of heterocyclic bases. Dalton Trans 2009:4671-82. [DOI: 10.1039/b901337g] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
48
|
Yashiro M, Kawakami Y, Taya JI, Arai S, Fujii Y. Zn(ii) complex for selective and rapid scission of protein backbone. Chem Commun (Camb) 2009:1544-6. [DOI: 10.1039/b818022a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
49
|
Mathrubootham V, Addison AW, Holman KT, Sinn E, Thompson LK. A novel copper(II) complex of a tripodal ligand with phenolate-phenol interligand, intramolecular hydrogen bonding. Dalton Trans 2009:8111-6. [DOI: 10.1039/b910188h] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
50
|
|