1
|
Behar AE, Maayan G. The First Cu(I)-Peptoid Complex: Enabling Metal Ion Stability and Selectivity via Backbone Helicity. Chemistry 2023; 29:e202301118. [PMID: 37221918 DOI: 10.1002/chem.202301118] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 05/25/2023]
Abstract
Stabilization of Cu(I) is ubiquitous within native copper proteins. Understanding how to stabilize Cu(I) within synthetic biomimetic systems is therefore desired towards biological applications. Peptoids are an important class of peptodomimetics, that can bind metal ions and stabilize them in their high oxidation state. Thus, to date, they were not used for Cu(I) binding. Here we show how the helical peptoid hexamer, having two 2,2'-bipyridine (Bipy) groups that face the same side of the helix, forms the intramolecular air stable Cu(I) complex. Further study of the binding site by rigorous spectroscopic techniques suggests that Cu(I) is tetracoordinated, binding to only three N atoms from the Bipy ligands and to the N-terminus of the peptoid's backbone. A set of control peptoids and experiments indicates that the Cu(I) stability and selectivity are dictated by the intramolecular binding, forced by the helicity of the peptoid, which can be defined as the second coordination sphere of the metal center.
Collapse
Affiliation(s)
- Anastasia E Behar
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Technion City, 3200008 Haifa, Israel
| | - Galia Maayan
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Technion City, 3200008 Haifa, Israel
| |
Collapse
|
2
|
Koebke KJ, Pinter TBJ, Pitts WC, Pecoraro VL. Catalysis and Electron Transfer in De Novo Designed Metalloproteins. Chem Rev 2022; 122:12046-12109. [PMID: 35763791 PMCID: PMC10735231 DOI: 10.1021/acs.chemrev.1c01025] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
One of the hallmark advances in our understanding of metalloprotein function is showcased in our ability to design new, non-native, catalytically active protein scaffolds. This review highlights progress and milestone achievements in the field of de novo metalloprotein design focused on reports from the past decade with special emphasis on de novo designs couched within common subfields of bioinorganic study: heme binding proteins, monometal- and dimetal-containing catalytic sites, and metal-containing electron transfer sites. Within each subfield, we highlight several of what we have identified as significant and important contributions to either our understanding of that subfield or de novo metalloprotein design as a discipline. These reports are placed in context both historically and scientifically. General suggestions for future directions that we feel will be important to advance our understanding or accelerate discovery are discussed.
Collapse
Affiliation(s)
- Karl J. Koebke
- Department of Chemistry, University of Michigan Ann Arbor, MI 48109 USA
| | | | - Winston C. Pitts
- Department of Chemistry, University of Michigan Ann Arbor, MI 48109 USA
| | | |
Collapse
|
3
|
Pirro F, Schmidt N, Lincoff J, Widel ZX, Polizzi NF, Liu L, Therien MJ, Grabe M, Chino M, Lombardi A, DeGrado WF. Allosteric cooperation in a de novo-designed two-domain protein. Proc Natl Acad Sci U S A 2020; 117:33246-33253. [PMID: 33318174 PMCID: PMC7776816 DOI: 10.1073/pnas.2017062117] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We describe the de novo design of an allosterically regulated protein, which comprises two tightly coupled domains. One domain is based on the DF (Due Ferri in Italian or two-iron in English) family of de novo proteins, which have a diiron cofactor that catalyzes a phenol oxidase reaction, while the second domain is based on PS1 (Porphyrin-binding Sequence), which binds a synthetic Zn-porphyrin (ZnP). The binding of ZnP to the original PS1 protein induces changes in structure and dynamics, which we expected to influence the catalytic rate of a fused DF domain when appropriately coupled. Both DF and PS1 are four-helix bundles, but they have distinct bundle architectures. To achieve tight coupling between the domains, they were connected by four helical linkers using a computational method to discover the most designable connections capable of spanning the two architectures. The resulting protein, DFP1 (Due Ferri Porphyrin), bound the two cofactors in the expected manner. The crystal structure of fully reconstituted DFP1 was also in excellent agreement with the design, and it showed the ZnP cofactor bound over 12 Å from the dimetal center. Next, a substrate-binding cleft leading to the diiron center was introduced into DFP1. The resulting protein acts as an allosterically modulated phenol oxidase. Its Michaelis-Menten parameters were strongly affected by the binding of ZnP, resulting in a fourfold tighter Km and a 7-fold decrease in kcat These studies establish the feasibility of designing allosterically regulated catalytic proteins, entirely from scratch.
Collapse
Affiliation(s)
- Fabio Pirro
- Department of Chemical Sciences, University of Napoli Federico II, 80126 Napoli, Italy
| | - Nathan Schmidt
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California, San Francisco, CA 94158-9001
| | - James Lincoff
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California, San Francisco, CA 94158-9001
| | - Zachary X Widel
- Department of Chemistry, Duke University, Durham, NC 27708-0346
| | - Nicholas F Polizzi
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California, San Francisco, CA 94158-9001
| | - Lijun Liu
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, 518055 Shenzhen, China
- DLX Scientific, Lawrence, KS 66049
| | | | - Michael Grabe
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California, San Francisco, CA 94158-9001
| | - Marco Chino
- Department of Chemical Sciences, University of Napoli Federico II, 80126 Napoli, Italy
| | - Angela Lombardi
- Department of Chemical Sciences, University of Napoli Federico II, 80126 Napoli, Italy;
| | - William F DeGrado
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California, San Francisco, CA 94158-9001;
| |
Collapse
|
4
|
Sauser L, Shoshan MS. Harnessing Peptides against lead pollution and poisoning: Achievements and prospects. J Inorg Biochem 2020; 212:111251. [PMID: 32920433 DOI: 10.1016/j.jinorgbio.2020.111251] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/16/2020] [Accepted: 08/30/2020] [Indexed: 11/24/2022]
Abstract
Among the broad applicability of peptides in numerous aspects of life and technologies, their interactions with lead (Pb), one of the most harmful substances to the environment and health, are constantly explored. So far, peptides were developed for environmental remediation of Pb-contaminations by various strategies such as hydrogelation and surface display. They were also designed for Pb detection and sensing by electrochemical and fluorescent methods and for modeling natural proteins that involve in mechanisms by which Pb is toxic. This review aims at summarizing selected examples of these applications, manifesting the enormous potential of peptides in the combat against Pb pollution. Nevertheless, the absence of new medicinal treatments against Pb poisoning that are based on peptides is noticeable. An overview of previous achievements utilizing Pb-peptide interactions towards various goals is presented and can be therefore leveraged to construct a useful toolbox for the design of smart peptides as next-generation therapeutics against Pb.
Collapse
Affiliation(s)
- Luca Sauser
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Michal S Shoshan
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| |
Collapse
|
5
|
Amdursky N. Electron Transfer across Helical Peptides. Chempluschem 2015; 80:1075-1095. [DOI: 10.1002/cplu.201500121] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 05/06/2015] [Indexed: 02/05/2023]
|
6
|
Qi J, Wang QL, Zhang AP, Tian JL, Yan SP, Cheng P, Yang GM, Liao DZ. Synthesis, crystal structure, spectroscopy and magnetism of a trinuclear nickel(II) complex with 3,5-pyrazoledicarboxylic acid as bridge ligands. CR CHIM 2014. [DOI: 10.1016/j.crci.2013.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Yu F, Cangelosi VM, Zastrow ML, Tegoni M, Plegaria JS, Tebo AG, Mocny CS, Ruckthong L, Qayyum H, Pecoraro VL. Protein design: toward functional metalloenzymes. Chem Rev 2014; 114:3495-578. [PMID: 24661096 PMCID: PMC4300145 DOI: 10.1021/cr400458x] [Citation(s) in RCA: 332] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Fangting Yu
- University of Michigan, Ann Arbor, Michigan 48109, United States
| | | | | | | | | | - Alison G. Tebo
- University of Michigan, Ann Arbor, Michigan 48109, United States
| | | | - Leela Ruckthong
- University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Hira Qayyum
- University of Michigan, Ann Arbor, Michigan 48109, United States
| | | |
Collapse
|
8
|
|
9
|
Yu F, Penner-Hahn JE, Pecoraro VL. De novo-designed metallopeptides with type 2 copper centers: modulation of reduction potentials and nitrite reductase activities. J Am Chem Soc 2013; 135:18096-107. [PMID: 24182361 DOI: 10.1021/ja406648n] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Enzymatic reactions involving redox processes are highly sensitive to the local electrostatic environment. Despite considerable effort, the complex interactions among different influential factors in native proteins impede progress toward complete understanding of the structure-function relationship. Of particular interest is the type 2 copper center Cu(His)3, which may act as an electron transfer center in peptidylglycine α-hydroxylating monooxygenase (PHM) or a catalytic center in copper nitrite reductase (CuNiR). A de novo design strategy is used to probe the effect of modifying charged amino acid residues around, but not directly bound to, a Cu(His)3 center embedded in three-stranded coiled coils (TRI-H)3 [TRI-H = Ac-G WKALEEK LKALEEK LKALEEK HKALEEK G-NH2]. Specifically, the peptide TRI-EH (=TRI-HK22E) alters an important lysine to glutamate just above the copper binding center. With a series of TRI-EH peptides mutated below the metal center, we use a variety of spectroscopies (EPR, UV-vis, XAS) to show a direct impact on the protonation equilibria, copper binding affinities, reduction potentials, and nitrite reductase activities of these copper-peptide complexes. The potentials at a specific pH vary by 100 mV, and the nitrite reductase activities range over a factor of 4 in rates. We also observe that the affinities, potentials, and catalytic activities are strongly influenced by the pH conditions (pH 5.8-7.4). In general, Cu(II) affinities for the peptides are diminished at low pH values. The interplay among these factors can lead to a 200 mV shift in reduction potential across these peptides, which is determined by the pH-dependent affinities of copper in both oxidation states. This study illustrates the strength of de novo protein design in elucidating the influence of ionizable residues on a particular redox system, an important step toward understanding the factors that govern the properties of this metalloenzyme with a goal of eventually improving the catalytic activity.
Collapse
Affiliation(s)
- Fangting Yu
- Department of Chemistry, University of Michigan , 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | | | | |
Collapse
|
10
|
Zastrow ML, Pecoraro VL. Designing functional metalloproteins: from structural to catalytic metal sites. Coord Chem Rev 2013; 257:2565-2588. [PMID: 23997273 PMCID: PMC3756834 DOI: 10.1016/j.ccr.2013.02.007] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Metalloenzymes efficiently catalyze some of the most important and difficult reactions in nature. For many years, coordination chemists have effectively used small molecule models to understand these systems. More recently, protein design has been shown to be an effective approach for mimicking metal coordination environments. Since the first designed proteins were reported, much success has been seen for incorporating metal sites into proteins and attaining the desired coordination environment but until recently, this has been with a lack of significant catalytic activity. Now there are examples of designed metalloproteins that, although not yet reaching the activity of native enzymes, are considerably closer. In this review, we highlight work leading up to the design of a small metalloprotein containing two metal sites, one for structural stability (HgS3) and the other a separate catalytic zinc site to mimic carbonic anhydrase activity (ZnN3O). The first section will describe previous studies that allowed for a high affinity thiolate site that binds heavy metals in a way that stabilizes three-stranded coiled coils. The second section will examine ways of preparing histidine rich environments that lead to metal based hydrolytic catalysts. We will also discuss other recent examples of the design of structural metal sites and functional metalloenzymes. Our work demonstrates that attaining the proper first coordination geometry of a metal site can lead to a significant fraction of catalytic activity, apparently independent of the type of secondary structure of the surrounding protein environment. We are now in a position to begin to meet the challenge of building a metalloenzyme systematically from the bottom-up by engineering and analyzing interactions directly around the metal site and beyond.
Collapse
Affiliation(s)
- Melissa L. Zastrow
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
11
|
Ma D, Bettis SE, Hanson K, Minakova M, Alibabaei L, Fondrie W, Ryan DM, Papoian GA, Meyer TJ, Waters ML, Papanikolas JM. Interfacial Energy Conversion in RuII Polypyridyl-Derivatized Oligoproline Assemblies on TiO2. J Am Chem Soc 2013; 135:5250-3. [DOI: 10.1021/ja312143h] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Da Ma
- Department of Chemistry, CB
3290, University of North Carolina, Chapel
Hill, North Carolina 27599, United States
| | - Stephanie E. Bettis
- Department of Chemistry, CB
3290, University of North Carolina, Chapel
Hill, North Carolina 27599, United States
| | - Kenneth Hanson
- Department of Chemistry, CB
3290, University of North Carolina, Chapel
Hill, North Carolina 27599, United States
| | - Maria Minakova
- Department of Chemistry and
Biochemistry, University of Maryland, College
Park, Maryland 20742, United States
| | - Leila Alibabaei
- Department of Chemistry, CB
3290, University of North Carolina, Chapel
Hill, North Carolina 27599, United States
| | - William Fondrie
- Department of Chemistry, CB
3290, University of North Carolina, Chapel
Hill, North Carolina 27599, United States
| | - Derek M. Ryan
- Department of Chemistry, CB
3290, University of North Carolina, Chapel
Hill, North Carolina 27599, United States
| | - Garegin A. Papoian
- Department of Chemistry and
Biochemistry, University of Maryland, College
Park, Maryland 20742, United States
| | - Thomas J. Meyer
- Department of Chemistry, CB
3290, University of North Carolina, Chapel
Hill, North Carolina 27599, United States
| | - Marcey L. Waters
- Department of Chemistry, CB
3290, University of North Carolina, Chapel
Hill, North Carolina 27599, United States
| | - John M. Papanikolas
- Department of Chemistry, CB
3290, University of North Carolina, Chapel
Hill, North Carolina 27599, United States
| |
Collapse
|
12
|
Designing a functional type 2 copper center that has nitrite reductase activity within α-helical coiled coils. Proc Natl Acad Sci U S A 2012; 109:21234-9. [PMID: 23236170 DOI: 10.1073/pnas.1212893110] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
One of the ultimate objectives of de novo protein design is to realize systems capable of catalyzing redox reactions on substrates. This goal is challenging as redox-active proteins require design considerations for both the reduced and oxidized states of the protein. In this paper, we describe the spectroscopic characterization and catalytic activity of a de novo designed metallopeptide Cu(I/II)(TRIL23H)(3)(+/2+), where Cu(I/II) is embeded in α-helical coiled coils, as a model for the Cu(T2) center of copper nitrite reductase. In Cu(I/II)(TRIL23H)(3)(+/2+), Cu(I) is coordinated to three histidines, as indicated by X-ray absorption data, and Cu(II) to three histidines and one or two water molecules. Both ions are bound in the interior of the three-stranded coiled coils with affinities that range from nano- to micromolar [Cu(II)], and picomolar [Cu(I)]. The Cu(His)(3) active site is characterized in both oxidation states, revealing similarities to the Cu(T2) site in the natural enzyme. The species Cu(II)(TRIL23H)(3)(2+) in aqueous solution can be reduced to Cu(I)(TRIL23H)(3)(+) using ascorbate, and reoxidized by nitrite with production of nitric oxide. At pH 5.8, with an excess of both the reductant (ascorbate) and the substrate (nitrite), the copper peptide Cu(II)(TRIL23H)(3)(2+) acts as a catalyst for the reduction of nitrite with at least five turnovers and no loss of catalytic efficiency after 3.7 h. The catalytic activity, which is first order in the concentration of the peptide, also shows a pH dependence that is described and discussed.
Collapse
|
13
|
Wilger DJ, Bettis SE, Materese CK, Minakova M, Papoian GA, Papanikolas JM, Waters ML. Tunable Energy Transfer Rates via Control of Primary, Secondary, and Tertiary Structure of a Coiled Coil Peptide Scaffold. Inorg Chem 2012; 51:11324-38. [DOI: 10.1021/ic300669t] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Dale J. Wilger
- Department
of Chemistry, CB
3290, University of North Carolina, Chapel
Hill, North Carolina 27599, United States
| | - Stephanie E. Bettis
- Department
of Chemistry, CB
3290, University of North Carolina, Chapel
Hill, North Carolina 27599, United States
| | - Christopher K. Materese
- Department
of Chemistry, CB
3290, University of North Carolina, Chapel
Hill, North Carolina 27599, United States
| | - Maria Minakova
- Department
of Chemistry, CB
3290, University of North Carolina, Chapel
Hill, North Carolina 27599, United States
| | - Garegin A. Papoian
- Department of Chemistry and
Biochemistry, University of Maryland, College
Park, Maryland 20742, United States
| | - John M. Papanikolas
- Department
of Chemistry, CB
3290, University of North Carolina, Chapel
Hill, North Carolina 27599, United States
| | - Marcey L. Waters
- Department
of Chemistry, CB
3290, University of North Carolina, Chapel
Hill, North Carolina 27599, United States
| |
Collapse
|
14
|
Sangeetha S, Ramamoorthy U, Sreeram KJ, Nair BU. Enhancing collagen stability through nanostructures containing chromium(III) oxide. Colloids Surf B Biointerfaces 2012; 100:36-41. [PMID: 22766281 DOI: 10.1016/j.colsurfb.2012.05.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 05/12/2012] [Indexed: 10/28/2022]
Abstract
Stabilization of collagen for various applications employs chemicals such as aldehydes, metal ions, polyphenols, etc. Stability against enzymatic, thermal and mechanical degradation is required for a range of biomedical applications. The premise of this research is to explore the use of nanoparticles with suitable functionalization/encapsulation to crosslink with collagen, such that the three dimensional architecture had the desired stability. Collagen solution prepared as per standard protocols is treated with chromium(III) oxide nanoparticules encapsulated within a polymeric matrix (polystyrene-block-polyacrylic acid copolymer). Selectivity towards encapsulation was ensured by the reaction in dimethyl sulfoxide, where the PS groups popped out and encapsulated the Cr(2)O(3). Subsequently when immersed in aqueous solution, PAA units popped up to react with functional groups of collagen. The interaction with collagen was monitored through techniques such as CD, FTIR, viscosity measurements, stress analysis. CD studies and FTIR showed no degradation of collagen. Thermal stability was enhanced upon interaction of nanostructures with collagen. Self-assembly of collagen was delayed but not inhibited, indicating a compete binding of the metal oxide encapsulated polymer to collagen. Metal oxide nanoparticles encapsulated within a polymeric matrix could provide thermal and mechanical stability to collagen. The formed fibrils of collagen could serve as ideal material for various smart applications such as slow/sustained drug release. The study is also relevant to the leather industry in that the nanostructures can diffuse through the highly networked collagen fibre bundles in skin matrix easily, thus overcoming the rate limiting step of diffusion.
Collapse
Affiliation(s)
- Selvam Sangeetha
- Chemical Laboratory, Central Leather Research Institute, Council of Scientific and Industrial Research, Adyar, Chennai 600020, India
| | | | | | | |
Collapse
|
15
|
Zaytsev DV, Xie F, Mukherjee M, Bludin A, Demeler B, Breece RM, Tierney DL, Ogawa MY. Nanometer to millimeter scale peptide-porphyrin materials. Biomacromolecules 2010; 11:2602-9. [PMID: 20804210 PMCID: PMC2952671 DOI: 10.1021/bm100540t] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
AQ-Pal14 is a 30-residue polypeptide that was designed to form an α-helical coiled coil that contains a metal-binding 4-pyridylalanine residue on its solvent-exposed surface. However, characterization of this peptide shows that it exists as a three-stranded coiled coil, not a two-stranded one as predicted from its design. Reaction with cobalt(III) protoporphyrin IX (Co-PPIX) produces a six-coordinate Co-PPIX(AQ-Pal14)(2) species that creates two coiled-coil oligomerization domains coordinated to opposite faces of the porphyrin ring. It is found that this species undergoes a buffer-dependent self-assembly process: nanometer-scale globular materials were formed when these components were reacted in unbuffered H(2)O, while millimeter-scale, rod-like materials were prepared when the reaction was performed in phosphate buffer (20 mM, pH 7). It is suggested that assembly of the globular material is dictated by the conformational properties of the coiled-coil forming AQ-Pal14 peptide, whereas that of the rod-like material involves interactions between Co-PPIX and phosphate ion.
Collapse
Affiliation(s)
- Daniil V. Zaytsev
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, OH 43403
| | - Fei Xie
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, OH 43403
| | - Madmuhita Mukherjee
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, OH 43403
| | - Alexey Bludin
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, OH 43403
| | - Borries Demeler
- Center for Analytical Ultracentrifugation of Macromolecular Assemblies, University of Texas Health Science Center, San Antonio, TX 78229
| | - Robert M. Breece
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056
| | - David L. Tierney
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056
| | - Michael Y. Ogawa
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, OH 43403
| |
Collapse
|
16
|
Keyes TE, Forster RJ, Blackledge C. Time resolved spectroscopy of inorganic complexes. SPECTROSCOPIC PROPERTIES OF INORGANIC AND ORGANOMETALLIC COMPOUNDS 2010. [DOI: 10.1039/9781849730853-00211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Time resolved spectroscopy has revolutionised our understanding of photochemical and photophysical reactions of inorganic complexes. In this review, we briefly describe the most common time resolved optical spectroscopic methods applied to inorganic complexes and outline some examples and highlights from the recent literature. The review is not intended to be exhaustive, but highlights key recent papers from coordination chemistry, supramolecular chemistry, carbonyl chemistry and bioinorganic chemistry, as well as, recent insights from ultrafast spectroscopy into the photophysics of important prototypes such as [Ru(bpy)3]2+ and [Cu(dmp)2]+. A brief perspective is then presented which discusses areas where time resolved spectroscopy of inorganic complexes could play a particularly important role in the next few years.
Collapse
Affiliation(s)
- Tia E. Keyes
- National Biophotonics and Imaging Platform School of Chemical Sciences, Dublin City University Glasnevin, Dublin 7 Ireland
| | - Robert J. Forster
- National Biophotonics and Imaging Platform School of Chemical Sciences, Dublin City University Glasnevin, Dublin 7 Ireland
| | - Charles Blackledge
- National Biophotonics and Imaging Platform School of Chemical Sciences, Dublin City University Glasnevin, Dublin 7 Ireland
| |
Collapse
|
17
|
Yang C, Wang QL, Tang GT, Wang C, Yan SP, Liao DZ. Synthesis, crystal structure, spectroscopy, and magnetism of a mixed valence Co(III)–Co(II)–Co(III) complex stabilized by N-(2-hydroxybenzyl)salicylaldimine. J COORD CHEM 2010. [DOI: 10.1080/00958970903509277] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Chun Yang
- a Department of Chemistry , Nankai University , Tianjin 300071, P.R. China
- b School of Chemical Engineering and Technology, Hebei University of Technology , Tianjin 300130, P.R. China
| | - Qing-Lun Wang
- a Department of Chemistry , Nankai University , Tianjin 300071, P.R. China
| | - Guo-Tao Tang
- a Department of Chemistry , Nankai University , Tianjin 300071, P.R. China
| | - Chao Wang
- a Department of Chemistry , Nankai University , Tianjin 300071, P.R. China
| | - Shi-Ping Yan
- a Department of Chemistry , Nankai University , Tianjin 300071, P.R. China
| | - Dai-Zheng Liao
- a Department of Chemistry , Nankai University , Tianjin 300071, P.R. China
| |
Collapse
|
18
|
Jabre ND, Respondek T, Ulku SA, Korostelova N, Kodanko JJ. A Divergent Strategy for Attaching Polypyridyl Ligands to Peptides. J Org Chem 2010; 75:650-9. [DOI: 10.1021/jo9021953] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Nitinkumar D. Jabre
- Department of Chemistry, Wayne State Universty, 5101 Cass Ave, Detroit, Michigan 48202
| | - Tomasz Respondek
- Department of Chemistry, Wayne State Universty, 5101 Cass Ave, Detroit, Michigan 48202
| | - Selma A. Ulku
- Department of Chemistry, Wayne State Universty, 5101 Cass Ave, Detroit, Michigan 48202
| | - Nadiya Korostelova
- Department of Chemistry, Wayne State Universty, 5101 Cass Ave, Detroit, Michigan 48202
| | - Jeremy J. Kodanko
- Department of Chemistry, Wayne State Universty, 5101 Cass Ave, Detroit, Michigan 48202
| |
Collapse
|
19
|
Engineering responsive mechanisms to control the assembly of peptide-based nanostructures. Biochem Soc Trans 2009; 37:653-9. [PMID: 19614570 DOI: 10.1042/bst0370653] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Complex biological machines arise from self-assembly on the basis of structural features programmed into sequence-specific macromolecules (i.e. polypeptides and polynucleotides) at the molecular level. As a consequence of the near-absolute control of macromolecular architecture that results from such sequence specificity, biological structural platforms may have advantages for the creation of functional supramolecular assemblies in comparison with synthetic polymers. Thus biological structural motifs present an attractive target for the synthesis of artificial nanoscale systems on the basis of relationships between sequence and supramolecular structure that have been established for native biological assemblies. In the present review, we describe an approach to the creation of structurally defined supramolecular assemblies derived from synthetic alpha-helical coiled-coil structural motifs. Two distinct challenges are encountered in this approach to materials design: the ability to recode the canonical sequences of native coiled-coil structural motifs to accommodate the formation of structurally defined supramolecular assemblies (e.g. synthetic helical fibrils) and the development of methods to control supramolecular self-assembly of these peptide-based materials under defined conditions that would be amenable to conventional processing methods. In the present review, we focus on the development of mechanisms based on guest-host recognition to control fibril assembly/disassembly. This strategy utilizes the latent structural specificity encoded within sequence-defined peptides to couple a conformational transition within the coiled-coil motifs to incremental changes in environmental conditions. The example of a selective metal-ion-induced conformational switch will be employed to validate the design principles.
Collapse
|
20
|
|
21
|
|
22
|
Mukherjee M, Zhu X, Ogawa MY. Cd2+-Induced Conformational Change of a Synthetic Metallopeptide: Slow Metal Binding Followed by a Slower Conformational Change. Inorg Chem 2008; 47:4430-2. [DOI: 10.1021/ic702370k] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Madhumita Mukherjee
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403
| | - Xianchun Zhu
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403
| | - Michael Y. Ogawa
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403
| |
Collapse
|
23
|
Dublin SN, Conticello VP. Design of a Selective Metal Ion Switch for Self-Assembly of Peptide-Based Fibrils. J Am Chem Soc 2008; 130:49-51. [DOI: 10.1021/ja0775016] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Tsurkan MV, Ogawa MY. Metal-Mediated Peptide Assembly: Use of Metal Coordination to Change the Oligomerization State of an α-Helical Coiled-Coil. Inorg Chem 2007; 46:6849-51. [PMID: 17661463 DOI: 10.1021/ic700958h] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Metal coordination is used to alter the oligomerization state of a designed peptide structure. The 30-residue polypeptide AQ-Pal14Pal21contains two metal-binding 4-pyridylalanine (Pal) residues on its solvent-exposed surface and exists as a very stable two-stranded alpha-helical coiled-coil. Upon the addition of Pt(en)(NO3)2, a significant conformational change to a metal-bridged, four-helix bundle is seen.
Collapse
Affiliation(s)
- Mikhail V Tsurkan
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, OH 43403, USA
| | | |
Collapse
|