1
|
Myles E, D'Sa RA, Aveyard J. Antimicrobial nitric oxide releasing gelatin nanoparticles to combat drug resistant bacterial and fungal infections. NANOSCALE ADVANCES 2025:d4na01042f. [PMID: 40207089 PMCID: PMC11976662 DOI: 10.1039/d4na01042f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 03/29/2025] [Indexed: 04/11/2025]
Abstract
Antimicrobial resistance (AMR) represents a significant global health challenge, contributing to increased mortality rates and substantial economic burdens. The development of new antimicrobial agents with dual antimicrobial and antibiofilm capabilities is crucial to mitigate AMR. Nitric oxide (NO) is a broad-spectrum antimicrobial agent which has shown promise in treating infections due to its multiple antimicrobial mechanisms. However, the high reactivity of NO poses a challenge for effective delivery to infection sites. We investigated the antimicrobial and antibiofilm capabilities, and the shelf life, of NO-releasing gelatin nanoparticles (GNP/NO) against three common hospital-acquired pathogens: Staphylococcus aureus, Escherichia coli, and Candida albicans. The synthesised GNP/NO were found to be cytocompatible and exhibited significant antimicrobial and antibiofilm efficacies against the tested pathogens in both nutrient-rich and nutrient-poor conditions. Furthermore, we found that the antimicrobial capabilities of GNP/NO were maintained for up to 6 months post synthesis, against Staphylococcus aureus (2.4 log), Escherichia coli (1.2 log) and Candida albicans (3 log) under nutrient-poor conditions. Our study demonstrates the use of a novel broad-spectrum antimicrobial with a prolonged shelf life for the treatment of infections. These findings offer an effective alternative to traditional antibiotics which would contribute to mitigating the current global AMR threat resulting from antibiotic overuse.
Collapse
Affiliation(s)
- Erin Myles
- School of Engineering, University of Liverpool The Quadrangle, Brownlow Hill L69 3GH UK
| | - Raechelle A D'Sa
- School of Engineering, University of Liverpool The Quadrangle, Brownlow Hill L69 3GH UK
| | - Jenny Aveyard
- School of Engineering, University of Liverpool The Quadrangle, Brownlow Hill L69 3GH UK
| |
Collapse
|
2
|
Hoang TN, Wu‐Lu M, Collauto A, Hagedoorn P, Alexandru M, Henschel M, Kordasti S, Mroginski MA, Roessler MM, Ebrahimi KH. The [2Fe-2S] cluster of mitochondrial outer membrane protein mitoNEET has an O 2-regulated nitric oxide access tunnel. FEBS Lett 2025; 599:952-970. [PMID: 39757450 PMCID: PMC11995679 DOI: 10.1002/1873-3468.15097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 01/07/2025]
Abstract
The mitochondrial outer membrane iron-sulphur ([Fe-S]) protein mitoNEET has been extensively studied as a target of the anti-inflammatory and type-2 diabetes drug pioglitazone and as a protein affecting mitochondrial respiratory rate. Despite these extensive past studies, its molecular function has yet to be discovered. Here, we applied an interdisciplinary approach and discovered an explicit nitric oxide (NO) access site to the mitoNEET [2Fe-2S] cluster. We found that O2 and pioglitazone block NO access to the cluster, suggesting a molecular function for the mitoNEET [2Fe-2S] cluster in mitochondrial signal transduction. Our discovery hints at a new pathway via which mitochondria can sense hypoxia through O2 protection of the mitoNEET [2Fe-2S] cluster, a new paradigm in understanding the importance of [Fe-S] clusters for gasotransmitter signal transduction in eukaryotes.
Collapse
Affiliation(s)
- Thao Nghi Hoang
- Institute of Pharmaceutical ScienceKing's College LondonUK
- Department of PharmacyDa Nang University of Medical Technology and PharmacyVietnam
| | - Meritxell Wu‐Lu
- Department of ChemistryTechnical University of BerlinGermany
| | - Alberto Collauto
- Department of Chemistry and Centre for Pulse EPR Spectroscopy (PEPR)Imperial College LondonUK
| | - Peter‐Leon Hagedoorn
- Department of BiotechnologyDelft University of TechnologyTU DelftThe Netherlands
| | - Madalina Alexandru
- Institute of Pharmaceutical ScienceKing's College LondonUK
- Comprehensive Cancer CenterKing's College LondonUK
| | - Maike Henschel
- Institute of Pharmaceutical ScienceKing's College LondonUK
- Comprehensive Cancer CenterKing's College LondonUK
| | | | | | - Maxie M. Roessler
- Department of Chemistry and Centre for Pulse EPR Spectroscopy (PEPR)Imperial College LondonUK
| | | |
Collapse
|
3
|
Chen J, Cui Y, Wu P, Dassanayake R, Yu P, Fu K, Sun Z, Liu Y, Zhou Y. Nitroxyl donating and visualization with a coumarin-based fluorescence probe. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 316:124317. [PMID: 38692102 DOI: 10.1016/j.saa.2024.124317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/27/2024] [Accepted: 04/18/2024] [Indexed: 05/03/2024]
Abstract
Nitroxyl (HNO), the single-electron reduction product of nitric oxide (NO), has attracted great interest in the treatment of congestive heart failure in clinical trials. In this paper, we describe the first coumarin-based compound N-hydroxy-2-oxo-2H-chromene-6-sulfonamide (CD1) as a dualfunctional HNO donor, which can release both an HNO signaling molecule and a fluorescent reporter. Under physiological conditions (pH 7.4 and 37 °C), the CD1 HNO donor can readily decompose with a half-life of ∼90 min. The corresponding stoichiometry HNO from the CD1 donor was confirmed using both Vitamin B12 and phosphine compound traps. In addition to HNO releasing, specifically, the degradation product 2-oxo-2H-chromene-6-sulfinate (CS1) was generated as a fluorescent marker during the decomposition. Therefore, the HNO amount released in situ can be accurately monitored through fluorescence generation. As compared to the CD1 donor, the fluorescence intensity increased by about 4.9-fold. The concentration limit of detection of HNO releasing was determined to be ∼0.13 μM according to the fluorescence generation of CS1 at physiological conditions. Moreover, the bioimaging of the CD1 donor was demonstrated in the cell culture of HeLa cells, where the intracellular fluorescence signals were observed, inferring the site of HNO release. Finally, we anticipate that this novel coumarin-based CD1 donor opens a new platform for exploring the biology of HNO.
Collapse
Affiliation(s)
- Jiajun Chen
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education and School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan 570228, China
| | - Yunxi Cui
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Peixuan Wu
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education and School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan 570228, China
| | - Rohan Dassanayake
- Department of Biosystems Technology, Faculty of Technology, University of Sri Jayewardenepura, Pitipana, Homagama 10200, Sri Lanka
| | - Peng Yu
- Department of Joint Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou 570102, China
| | - Kun Fu
- Department of Joint Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou 570102, China
| | - Zhicheng Sun
- Beijing Engineering Research Center of Printed Electronics, Beijing Institute of Graphic Communication, Beijing 102600, China
| | - Yuanyuan Liu
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education and School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan 570228, China
| | - Yang Zhou
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education and School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan 570228, China.
| |
Collapse
|
4
|
Shen W, Yuan Y, Liu X, Jiang J, Yu S, Zhou H, Zhu Q. A fluorogenic nitric oxide donor induced by yellow LED light for cells proliferation inhibition and imaging. Nitric Oxide 2024; 145:1-7. [PMID: 38309328 DOI: 10.1016/j.niox.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/18/2024] [Accepted: 01/24/2024] [Indexed: 02/05/2024]
Abstract
Nitric oxide (NO), as a vital cellular signalling molecule in physiological processes, has been found to play an important role in various biological functions. In this study, we rationally designed three NO donors by tethering nitrobenzene derivatives to three fluorescent chromophores. NX-NO was found to release NO and exhibit a high fluorescence turn-on signal ratio upon exposure to LED yellow light. Additionally, it had excellent photo-stability and good inhibitory activity against cancer cell proliferation, and was successfully applied to cell imaging. Moreover, we detected the release of NO and fluorescence response in the blood of a mouse, suggesting its potential therapeutic application in living organisms.
Collapse
Affiliation(s)
- Wei Shen
- Department of Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, 321000, China
| | - Yuqing Yuan
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xia Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jianze Jiang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Shian Yu
- Department of Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, 321000, China
| | - Haihua Zhou
- Department of Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, 321000, China
| | - Qing Zhu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
5
|
Guo Q, Qian X, Chen J, Wu Y, Fu K, Sun Z, Zheng Z, Liu Y, Zhou Y. Synthesis and nitroxyl (HNO) donating properties of benzoxadiazole-based Piloty's acids. Nitric Oxide 2023:S1089-8603(23)00048-4. [PMID: 37217001 DOI: 10.1016/j.niox.2023.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 05/24/2023]
Abstract
Developing functional nitroxyl (HNO) donors play a significant role in the further exploration of endogenous HNO in biochemistry and pharmacology. In this work, two novel Piloty's acids (SBD-D1 and SBD-D2) were proposed by incorporating benzoxadiazole-based fluorophores, in order to achieve the dual-function of releasing both HNO and a fluorophore in situ. Under physiological conditions, both SBD-D1 and SBD-D2 efficiently donated HNO (t1/2 = 10.96 and 8.18 min, respectively). The stoichiometric generation of HNO was determined by both vitamin B12 and phosphine compound traps. Interestingly, due to the different substitution groups on the aromatic ring, SBD-D1 with the chlorine showed no fluorescence emission, but SBD-D2 was strongly fluorescent due to the presence of the dimethylamine group. Specifically, the fluorescent signal would decrease during the release process of HNO. Moreover, theoretical calculations were performed to understand the emission difference. A strong radiation derived from benzoxadiazole with dimethylamine group due to the large transition dipole moment (∼4.3 Debye), while the presence of intramolecular charge transfer process in the donor with chlorine group caused a small transition dipole moment (<0.1 Debye). Finally, these studies would contribute to the future design and application of novel functional HNO donors for the exploration of HNO biochemistry and pharmacology.
Collapse
Affiliation(s)
- Qingwei Guo
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education and School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan, 570228, China
| | - Xin Qian
- Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, China
| | - Jiajun Chen
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education and School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan, 570228, China
| | - Yangyang Wu
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education and School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan, 570228, China
| | - Kun Fu
- Department of Joint Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570102, China
| | - Zhicheng Sun
- Beijing Engineering Research Center of Printed Electronics, Beijing Institute of Graphic Communication, Beijing, 102600, China
| | - Zilong Zheng
- Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, China
| | - Yuanyuan Liu
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education and School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan, 570228, China.
| | - Yang Zhou
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education and School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan, 570228, China.
| |
Collapse
|
6
|
Kashfi K. Fifty Years of Diazeniumdiolate Research: A Tribute to Dr. Larry K. Keefer. Crit Rev Oncog 2023; 28:47-55. [PMID: 37824386 PMCID: PMC11076142 DOI: 10.1615/critrevoncog.2023048491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
The pioneering studies of Dr. Larry Keefer and colleagues with diazeniumdiolates or NONOates as a platform have unraveled the chemical biology of many nitric oxides and have led to the design of a variety of promising therapeutic agents in oncology, gastroenterology, antimicrobials, wound healing, and the like. This dedication to Dr. Larry Keefer briefly highlights some of his studies using the diazeniumdiolate platform in the cancer arena.
Collapse
Affiliation(s)
- Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, 160 Convent Avenue, New York, NY 10031, USA; Graduate Program in Biology, City University of New York Graduate Center, New York, NY, USA
| |
Collapse
|
7
|
Beurton J, Boudier A, Barozzi Seabra A, Vrana NE, Clarot I, Lavalle P. Nitric Oxide Delivering Surfaces: An Overview of Functionalization Strategies and Efficiency Progress. Adv Healthc Mater 2022; 11:e2102692. [PMID: 35358359 DOI: 10.1002/adhm.202102692] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/27/2022] [Indexed: 12/15/2022]
Abstract
An overview on the design of nitric oxide (NO) delivering surfaces for biomedical purposes is provided, with a focus on the advances of the past 5 years. A localized supply of NO is of a particular interest due to the pleiotropic biological effects of this diatomic compound. Depending on the generated NO flux, the surface can mimic a physiological release profile to provide an activity on the vascular endothelium or an antibacterial activity. Three requirements are considered to describe the various strategies leading to a surface delivering NO. Firstly, the coating must be selected in accordance with the properties of the substrate (nature, shape, dimensions…). Secondly, the releasing and/or generating kinetics of NO should match the targeted biological application. Currently, the most promising structures are developed to provide an adaptable NO supply driven by pathophysiological needs. Finally, the biocompatibility and the stability of the surface must also be considered regarding the expected residence time of the device. A critical point of view is proposed to help readers in the design of the NO delivering surface according to its expected requirement and therapeutic purpose.
Collapse
Affiliation(s)
- Jordan Beurton
- Université de Lorraine CITHEFOR Nancy F‐54000 France
- Institut National de la Santé et de la Recherche Médicale Inserm UMR_S 1121 Biomaterials and Bioengineering Strasbourg F‐67085 France
- Université de Strasbourg Faculté de Chirurgie Dentaire de Strasbourg Strasbourg F‐67000 France
| | | | - Amedea Barozzi Seabra
- Center for Natural and Human Sciences (CCNH) Federal University of ABC (UFABC) Santo André SP CEP 09210‐580 Brazil
| | | | - Igor Clarot
- Université de Lorraine CITHEFOR Nancy F‐54000 France
| | - Philippe Lavalle
- Université de Strasbourg Faculté de Chirurgie Dentaire de Strasbourg Strasbourg F‐67000 France
- Center for Natural and Human Sciences (CCNH) Federal University of ABC (UFABC) Santo André SP CEP 09210‐580 Brazil
- SPARTHA Medical 14B Rue de la Canardiere Strasbourg 67100 France
| |
Collapse
|
8
|
HNO Protects the Myocardium against Reperfusion Injury, Inhibiting the mPTP Opening via PKCε Activation. Antioxidants (Basel) 2022; 11:antiox11020382. [PMID: 35204265 PMCID: PMC8869498 DOI: 10.3390/antiox11020382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/05/2022] [Accepted: 02/07/2022] [Indexed: 12/10/2022] Open
Abstract
Donors of nitroxyl (HNO), the one electron-reduction product of nitric oxide (NO.), positively modulate cardiac contractility/relaxation while limiting ischemia-reperfusion (I/R) injury. The mechanisms underpinning HNO anti-ischemic effects remain poorly understood. Using isolated perfused rat hearts subjected to 30 min global ischemia/1 or 2 h reperfusion, here we tested whether, in analogy to NO., HNO protection requires PKCε translocation to mitochondria and KATP channels activation. To this end, we compared the benefits afforded by ischemic preconditioning (IPC; 3 cycles of I/R) with those eventually granted by the NO. donor, diethylamine/NO, DEA/NO, and two chemically unrelated HNO donors: Angeli’s salt (AS, a prototypic donor) and isopropylamine/NO (IPA/NO, a new HNO releaser). All donors were given for 19 min before I/R injury. In control I/R hearts (1 h reperfusion), infarct size (IS) measured via tetrazolium salt staining was 66 ± 5.5% of the area at risk. Both AS and IPA/NO were as effective as IPC in reducing IS [30.7 ± 2.2 (AS), 31 ± 2.9 (IPA/NO), and 31 ± 0.8 (IPC), respectively)], whereas DEA/NO was significantly less so (36.2 ± 2.6%, p < 0.001 vs. AS, IPA/NO, or IPC). IPA/NO protection was still present after 120 min of reperfusion, and the co-infusion with the PKCε inhibitor (PKCV1-2500 nM) prevented it (IS = 30 ± 0.5 vs. 61 ± 1.8% with IPA/NO alone, p < 0.01). Irrespective of the donor, HNO anti-ischemic effects were insensitive to the KATP channel inhibitor, 5-OH decanoate (5HD, 100 μM), that, in contrast, abrogated DEA/NO protection. Finally, both HNO donors markedly enhanced the mitochondrial permeability transition pore (mPTP) ROS threshold over control levels (≅35–40%), an action again insensitive to 5HD. Our study shows that HNO donors inhibit mPTP opening, thus limiting myocyte loss at reperfusion, a beneficial effect that requires PKCε translocation to the mitochondria but not mitochondrial K+ channels activation.
Collapse
|
9
|
Li M, Aveyard J, Doherty KG, Deller RC, Williams RL, Kolegraff KN, Kaye SB, D’Sa RA. Antimicrobial Nitric Oxide-Releasing Electrospun Dressings for Wound Healing Applications. ACS MATERIALS AU 2022; 2:190-203. [PMID: 36855758 PMCID: PMC9888637 DOI: 10.1021/acsmaterialsau.1c00056] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Nonhealing and chronic wounds represent a major problem for the quality of life of patients and have cost implications for healthcare systems. The pathophysiological mechanisms that prevent wound healing are usually multifactorial and relate to patient overall health and nutrition, vascularity of the wound bed, and coexisting infection/colonization. Bacterial infections are one of the predominant issues that can stall a wound, causing it to become chronic. Successful wound healing often depends on weeks or months of antimicrobial therapy, but this is problematic given the rise in multidrug-resistant bacteria. As such, alternatives to antibiotics are desperately needed to aid the healing of chronic, and even acutely infected wounds. Nitric oxide (NO) kills bacteria through a variety of mechanisms, and thus, bacteria have shown no tendency to develop resistance to NO as a therapeutic agent and therefore can be a good alternative to antibiotic therapy. In this paper, we report on the development of NO-releasing electrospun membranes fabricated from polycaprolactone (PCL)/gelatin blends and optimized to reduce bacterial infection. The NO payload in the membranes was directly related to the number of amines (and hence the amount of gelatin) in the blend. Higher NO payloads corresponded with a higher degree of antimicrobial efficacy. No cytotoxicity was observed for electrospun membranes, and an in vitro wound closure assay demonstrated closure within 16 h. The results presented here clearly indicate that these NO-releasing electrospun membranes hold significant promise as wound dressings due to their antimicrobial activity and biocompatibility.
Collapse
Affiliation(s)
- Man Li
- School
of Engineering, University of Liverpool, Liverpool L69 3GH, United Kingdom
| | - Jenny Aveyard
- School
of Engineering, University of Liverpool, Liverpool L69 3GH, United Kingdom
| | - Kyle G. Doherty
- Department
of Eye and Vision Science, Institute of Life Course and Medical Science, University of Liverpool, Liverpool L7 8TX, United Kingdom
| | - Robert C. Deller
- School
of Engineering, University of Liverpool, Liverpool L69 3GH, United Kingdom
| | - Rachel L. Williams
- Department
of Eye and Vision Science, Institute of Life Course and Medical Science, University of Liverpool, Liverpool L7 8TX, United Kingdom
| | - Keli N. Kolegraff
- Department
of Plastic and Reconstructive Surgery, The
Johns Hopkins University School of Medicine, 601 North Caroline Street, Baltimore, Maryland 21287, United States
| | - Stephen B. Kaye
- Department
of Eye and Vision Science, Institute of Life Course and Medical Science, University of Liverpool, Liverpool L7 8TX, United Kingdom
| | - Raechelle A. D’Sa
- School
of Engineering, University of Liverpool, Liverpool L69 3GH, United Kingdom,
| |
Collapse
|
10
|
Amarakoon TN, Ke N, Aspinwall CA, Miranda KM. Quantification of intracellular HNO delivery with capillary zone electrophoresis. Nitric Oxide 2022; 118:49-58. [PMID: 34715361 PMCID: PMC8758193 DOI: 10.1016/j.niox.2021.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 01/03/2023]
Abstract
Redox signaling, wherein reactive and diffusible small molecules are channeled into specific messenger functions, is a critical component of signal transduction. A central principle of redox signaling is that the redox modulators are produced in a highly controlled fashion to specifically modify biotargets. Thiols serve as primary mediators of redox signaling as a function of the rich variety of adducts, which allows initiation of distinct cellular effects. Coupling the inherent reactivity of thiols with highly sensitive and selective chemical analysis protocols can facilitate identification of redox signaling agents, both in solution and in cultured cells. Here, we describe use of capillary zone electrophoresis to both identify and quantify sulfinamides, which are specific markers of the reaction of thiols with nitroxyl (HNO), a putative biologically relevant reactive nitrogen species.
Collapse
Affiliation(s)
- Thilini N Amarakoon
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721, USA
| | - Neng Ke
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721, USA
| | - Craig A Aspinwall
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721, USA; BIO5 Institute, University of Arizona, Tucson, AZ, 85721, USA; Department of Biomedical Engineering, University of Arizona, Tucson, AZ, 85721, USA
| | - Katrina M Miranda
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721, USA; BIO5 Institute, University of Arizona, Tucson, AZ, 85721, USA.
| |
Collapse
|
11
|
Kinetic Study on the Reactivity of Azanone (HNO) toward Cyclic C-Nucleophiles. Int J Mol Sci 2021; 22:ijms222312982. [PMID: 34884784 PMCID: PMC8657990 DOI: 10.3390/ijms222312982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 01/22/2023] Open
Abstract
Azanone (HNO) is an elusive electrophilic reactive nitrogen species of growing pharmacological and biological significance. Here, we present a comparative kinetic study of HNO reactivity toward selected cyclic C-nucleophiles under aqueous conditions at pH 7.4. We applied the competition kinetics method, which is based on the use of a fluorescein-derived boronate probe FlBA and two parallel HNO reactions: with the studied scavenger or with O2 (k = 1.8 × 104 M−1s−1). We determined the second-order rate constants of HNO reactions with 13 structurally diverse C-nucleophiles (k = 33–20,000 M−1s−1). The results show that the reactivity of HNO toward C-nucleophiles depends strongly on the structure of the scavenger. The data are supported with quantum mechanical calculations. A comprehensive discussion of the HNO reaction with C-nucleophiles is provided.
Collapse
|
12
|
Ramos-Inza S, Ruberte AC, Sanmartín C, Sharma AK, Plano D. NSAIDs: Old Acquaintance in the Pipeline for Cancer Treatment and Prevention─Structural Modulation, Mechanisms of Action, and Bright Future. J Med Chem 2021; 64:16380-16421. [PMID: 34784195 DOI: 10.1021/acs.jmedchem.1c01460] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The limitations of current chemotherapeutic drugs are still a major issue in cancer treatment. Thus, targeted multimodal therapeutic approaches need to be strategically developed to successfully control tumor growth and prevent metastatic burden. Inflammation has long been recognized as a hallmark of cancer and plays a key role in the tumorigenesis and progression of the disease. Several epidemiological, clinical, and preclinical studies have shown that traditional nonsteroidal anti-inflammatory drugs (NSAIDs) exhibit anticancer activities. This Perspective reports the most recent outcomes for the treatment and prevention of different types of cancers for several NSAIDs alone or in combination with current chemotherapeutic drugs. Furthermore, an extensive review of the most promising structural modifications is reported, such as phospho, H2S, and NO releasing-, selenium-, metal complex-, and natural product-NSAIDs, among others. We also provide a perspective about the new strategies used to obtain more efficient NSAID- or NSAID derivative- formulations for targeted delivery.
Collapse
Affiliation(s)
- Sandra Ramos-Inza
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, E-31008 Pamplona, Spain
| | - Ana Carolina Ruberte
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, E-31008 Pamplona, Spain
| | - Carmen Sanmartín
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, E-31008 Pamplona, Spain
| | - Arun K Sharma
- Department of Pharmacology, Penn State Cancer Institute, CH72, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Daniel Plano
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, E-31008 Pamplona, Spain
| |
Collapse
|
13
|
Muniz Carvalho E, Silva Sousa EH, Bernardes‐Génisson V, Gonzaga de França Lopes L. When NO
.
Is not Enough: Chemical Systems, Advances and Challenges in the Development of NO
.
and HNO Donors for Old and Current Medical Issues. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100527] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Edinilton Muniz Carvalho
- Bioinorganic Group Department of Organic and Inorganic Chemistry Center of Sciences Federal University of Ceará Pici Campus Fortaleza 60455-760 Brazil
- CNRS Laboratoire de Chimie de Coordination LCC UPR 8241 205 Route de Narbonne, 44099 31077 Toulouse, Cedex 4 France
- Université de Toulouse Université Paul Sabatier UPS 118 Route de Narbonne 31062 Toulouse, Cedex 9 France
| | - Eduardo Henrique Silva Sousa
- Bioinorganic Group Department of Organic and Inorganic Chemistry Center of Sciences Federal University of Ceará Pici Campus Fortaleza 60455-760 Brazil
| | - Vania Bernardes‐Génisson
- CNRS Laboratoire de Chimie de Coordination LCC UPR 8241 205 Route de Narbonne, 44099 31077 Toulouse, Cedex 4 France
- Université de Toulouse Université Paul Sabatier UPS 118 Route de Narbonne 31062 Toulouse, Cedex 9 France
| | - Luiz Gonzaga de França Lopes
- Bioinorganic Group Department of Organic and Inorganic Chemistry Center of Sciences Federal University of Ceará Pici Campus Fortaleza 60455-760 Brazil
| |
Collapse
|
14
|
Zhang Z, Luo X, Yang Y. From Spontaneous to Photo‐Triggered and Photo‐Calibrated Nitric Oxide Donors. Isr J Chem 2020. [DOI: 10.1002/ijch.202000084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ziqian Zhang
- Guangxi Scientific Research Center of Traditional Chinese Medicine Guangxi University of Chinese Medicine Wuhe avenue 13 Nanning 530200 China
| | - Xiao Luo
- School of Chemistry and Molecular Engineering East China Normal University Dongchuan Road 500 Shanghai 200241 China
| | - Youjun Yang
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy East China University of Science and Technology Meilong Road 130 Shanghai 200237 China
| |
Collapse
|
15
|
Lv X, Chen K, Shi G, Lin W, Bai H, Li H, Tang G, Wang C. Design and tuning of ionic liquid-based HNO donor through intramolecular hydrogen bond for efficient inhibition of tumor growth. SCIENCE ADVANCES 2020; 6:eabb7788. [PMID: 33158861 PMCID: PMC7673712 DOI: 10.1126/sciadv.abb7788] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 09/23/2020] [Indexed: 05/20/2023]
Abstract
Developing ionic liquid (IL) drugs broaden new horizons in pharmaceuticals. The tunable nature endows ILs with capacity to delivery active ingredients. However, the tunability is limited to screen ionic components, and none realizes the kinetic tuning of drug release, which is a key challenge in the design of IL drugs. Here, a series of ILs are developed using biocompatible ionic components, which realizes absorption of gaseous NO to yield IL-NONOates. These IL-NONOates serve as HNO donors to release active ingredient. The release kinetics can be tuned through configuring the geometric construction of ILs (release half-lives, 4.2 to 1061 min). Mechanism research indicates that the tunability depends on the strength of intramolecular hydrogen bond. Furthermore, the IL-based HNO donors exert pharmacological potential to inhibit tumor progression by regulating intratumoral redox state. Coupled with biosafety, these IL-based HNO donors with facile preparation and tunable functionalization can be promising candidates for pharmaceutical application.
Collapse
Affiliation(s)
- Xiaoyu Lv
- Department of Chemistry, ZJU-NHU United R&D Center, Zhejiang University, Hangzhou 310027, China
| | - Kaihong Chen
- Department of Chemistry, ZJU-NHU United R&D Center, Zhejiang University, Hangzhou 310027, China
| | - Guiling Shi
- Department of Chemistry, ZJU-NHU United R&D Center, Zhejiang University, Hangzhou 310027, China
| | - Wenjun Lin
- Department of Chemistry, ZJU-NHU United R&D Center, Zhejiang University, Hangzhou 310027, China
| | - Hongzhen Bai
- Department of Chemistry, ZJU-NHU United R&D Center, Zhejiang University, Hangzhou 310027, China.
| | - Haoran Li
- Department of Chemistry, ZJU-NHU United R&D Center, Zhejiang University, Hangzhou 310027, China
| | - Guping Tang
- Department of Chemistry, ZJU-NHU United R&D Center, Zhejiang University, Hangzhou 310027, China
| | - Congmin Wang
- Department of Chemistry, ZJU-NHU United R&D Center, Zhejiang University, Hangzhou 310027, China.
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
16
|
Jiang D, Cheng L, Xue Y, Chen C, Wang C, Yang G, Xu A, Yang Y, Gao Y, Zhang W. Modulation of the lifespan of C. elegans by the controlled release of nitric oxide. Chem Sci 2020; 11:8785-8792. [PMID: 34123131 PMCID: PMC8163451 DOI: 10.1039/c9sc06072c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The frontier of nitric oxide biology has gradually shifted from mechanism elucidation to biomanipulation, e.g. cell-proliferation promotion, cell-apoptosis induction, and lifespan modulation. This warrants biocompatible nitric oxide (NO) donating materials, whose NO release is not only controlled by a bioorthogonal trigger, but also self-calibrated allowing real-time monitoring and hence an onset/offset of the NO release. Additionally, the dose of NO release should be facilely adjusted in a large dynamic range; flux and the dose are critical to the biological outcome of NO treatment. Via self-assembly of a PEGylated small-molecule NO donor, we developed novel NO-donating nanoparticles (PEG-NORM), which meet all the aforementioned criteria. We showcased that a low flux of NO induced cell proliferation, while a high flux induced cell oxidative stress and, ultimately, death. Notably, PEG-NORM was capable of efficiently modulating the lifespan of C. elegans. The average lifespan of C. elegans could be fine-tuned to be as short as 15.87 ± 0.29 days with a high dose of NO, or as long as 21.13 ± 0.41 days with a low dose of NO, compared to an average life-span of 18.87 ± 0.46 days. Thus, PEG-NORM has broad potential in cell manipulation and life-span modulation and could drive the advancement of NO biology and medicine.
Collapse
Affiliation(s)
- Dawei Jiang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering Shanghai China
| | - Lei Cheng
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China Hefei Anhui 230026 China
| | - Yudong Xue
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering Shanghai China
| | - Chao Chen
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Chaochao Wang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering Shanghai China
| | - Guoliang Yang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering Shanghai China
| | - An Xu
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China Hefei Anhui 230026 China
| | - Youjun Yang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Yun Gao
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering Shanghai China
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering Shanghai China
| |
Collapse
|
17
|
Dillon KM, Carrazzone RJ, Matson JB, Kashfi K. The evolving landscape for cellular nitric oxide and hydrogen sulfide delivery systems: A new era of customized medications. Biochem Pharmacol 2020; 176:113931. [PMID: 32224139 PMCID: PMC7263970 DOI: 10.1016/j.bcp.2020.113931] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/20/2020] [Indexed: 02/09/2023]
Abstract
Nitric oxide (NO) and hydrogen sulfide (H2S) are industrial toxins or pollutants; however, both are produced endogenously and have important biological roles in most mammalian tissues. The recognition that these gasotransmitters have a role in physiological and pathophysiological processes has presented opportunities to harness their intracellular effects either through inhibition of their production; or more commonly, through inducing their levels and or delivering them by various modalities. In this review article, we have focused on an array of NO and H2S donors, their hybrids with other established classes of drugs, and the various engineered delivery platforms such a fibers, polymers, nanoparticles, hydrogels, and others. In each case, we have reviewed the rationale for their development.
Collapse
Affiliation(s)
- Kearsley M Dillon
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, USA; Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA 24061, USA
| | - Ryan J Carrazzone
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, USA; Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA 24061, USA
| | - John B Matson
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, USA; Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Khosrow Kashfi
- Department of Molecular, Cellular, and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, 160 Convent Avenue, New York, NY 10031, USA; Graduate Program in Biology, City University of New York Graduate Center, NY, USA.
| |
Collapse
|
18
|
Li M, Aveyard J, Fleming G, Curran JM, McBride F, Raval R, D'Sa RA. Nitric Oxide Releasing Titanium Surfaces for Antimicrobial Bone-Integrating Orthopedic Implants. ACS APPLIED MATERIALS & INTERFACES 2020; 12:22433-22443. [PMID: 32320193 DOI: 10.1021/acsami.0c00871] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Titanium implants in orthopedic applications can fail due to infection and impaired integration into the host. Most research efforts that facilitate osseointegration of the implant have not considered infection, and vice versa. Moreover, most infection control measures involve the use of conventional antibiotics which contributes to the global epidemic of antimicrobial resistance. Nitric oxide (NO) is a promising alternative to antibiotics, and while researchers have investigated NO releasing coatings, there are few reports on the function/robustness or the mechanism of NO release. Our comprehensive mechanistic study has allowed us to design, characterize, and optimize NO releasing coatings to achieve maximum antimicrobial efficacy toward bacteria with minimum cytotoxicity to human primary osteoblasts in vitro. As the antibiotic era is coming to an end and the future of infection control continues to demand new alternatives, the coatings described herein represent a promising therapeutic strategy for use in orthopedic surgeries.
Collapse
Affiliation(s)
- Man Li
- School of Engineering, University of Liverpool, Liverpool L69 3GH, U.K
| | - Jenny Aveyard
- School of Engineering, University of Liverpool, Liverpool L69 3GH, U.K
| | - George Fleming
- School of Engineering, University of Liverpool, Liverpool L69 3GH, U.K
| | - Judith M Curran
- School of Engineering, University of Liverpool, Liverpool L69 3GH, U.K
| | - Fiona McBride
- The Open Innovation Hub for Antimicrobial Surfaces, Surface Science Research Centre, Department of Chemistry, University of Liverpool, Liverpool L69 3BX, U.K
| | - Rasmita Raval
- The Open Innovation Hub for Antimicrobial Surfaces, Surface Science Research Centre, Department of Chemistry, University of Liverpool, Liverpool L69 3BX, U.K
| | - Raechelle A D'Sa
- School of Engineering, University of Liverpool, Liverpool L69 3GH, U.K
| |
Collapse
|
19
|
Qin CX, Anthonisz J, Leo CH, Kahlberg N, Velagic A, Li M, Jap E, Woodman OL, Parry LJ, Horowitz JD, Kemp-Harper BK, Ritchie RH. Nitric Oxide Resistance, Induced in the Myocardium by Diabetes, Is Circumvented by the Nitric Oxide Redox Sibling, Nitroxyl. Antioxid Redox Signal 2020; 32:60-77. [PMID: 31680536 DOI: 10.1089/ars.2018.7706] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Aim: Impairment of tissue responsiveness to exogenous and endogenous nitric oxide (NO•), known as NO• resistance, occurs in many cardiovascular disease states, prominently in diabetes and especially in the presence of marked hyperglycemia. In this study, we sought to determine in moderate and severe diabetes (i) whether NO• resistance also occurs in the myocardium, and (ii) whether the NO• redox sibling nitroxyl (HNO) circumvents this. Results: The spectrum of acute NO• effects (induced by diethylamine-NONOate), including vasodilation, and enhanced myocardial contraction and relaxation were impaired by moderately diabetic rats ([blood glucose] ∼20 mM). In contrast, acute HNO effects (induced by isopropylamine-NONOate) were preserved even in more severe diabetes ([blood glucose] >28 mM). Intriguingly, the positive inotropic effects of HNO were significantly enhanced in diabetic rat hearts. Further, progressive attenuation of soluble guanylyl cyclase (sGC) contribution to myocardial NO• responses occurred with increasing severity of diabetes. Nevertheless, activation of sGC by HNO remained intact in the myocardium. Innovation: Diabetes is associated with marked attenuation of vascular and myocardial effects of NO and NO donors, and this NO• resistance is circumvented by HNO, suggesting potential therapeutic utility for HNO donors in cardiovascular emergencies in diabetics. Conclusion: These results provide the first evidence that NO• resistance occurs in diabetic hearts, and that HNO largely circumvents this problem. Further, the positive inotropic and lusitropic effects of HNO are enhanced in a severely diabetic myocardium, a finding that warrants further mechanistic interrogation. The results support a potential role for therapeutic HNO administration in acute treatment of ischemia and/or heart failure in diabetics.
Collapse
Affiliation(s)
- Cheng Xue Qin
- Heart Failure Pharmacology, Baker Heart & Diabetes Institute, Melbourne, Australia.,Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne, Australia.,Department of Medicine (Central Clinical School), Monash University, Melbourne, Australia
| | - Jarryd Anthonisz
- Heart Failure Pharmacology, Baker Heart & Diabetes Institute, Melbourne, Australia.,Department of Medicine (Central Clinical School), Monash University, Melbourne, Australia
| | - Chen Huei Leo
- School of Biosciences, University of Melbourne, Parkville, Australia.,Science and Maths Cluster, Singapore University of Technology & Design, Singapore Singapore
| | - Nicola Kahlberg
- School of Biosciences, University of Melbourne, Parkville, Australia
| | - Anida Velagic
- Heart Failure Pharmacology, Baker Heart & Diabetes Institute, Melbourne, Australia.,Department of Medicine (Central Clinical School), Monash University, Melbourne, Australia
| | - Mandy Li
- Heart Failure Pharmacology, Baker Heart & Diabetes Institute, Melbourne, Australia
| | - Edwina Jap
- Heart Failure Pharmacology, Baker Heart & Diabetes Institute, Melbourne, Australia
| | - Owen L Woodman
- Heart Failure Pharmacology, Baker Heart & Diabetes Institute, Melbourne, Australia
| | - Laura J Parry
- School of Biosciences, University of Melbourne, Parkville, Australia
| | - John D Horowitz
- Cardiology Unit, The Queen Elizabeth Hospital, Basil Hetzel Institute, The University of Adelaide, Woodville SA, Australia
| | - Barbara K Kemp-Harper
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Rebecca H Ritchie
- Heart Failure Pharmacology, Baker Heart & Diabetes Institute, Melbourne, Australia.,Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne, Australia.,Department of Medicine (Central Clinical School), Monash University, Melbourne, Australia
| |
Collapse
|
20
|
|
21
|
Aveyard J, Deller RC, Lace R, Williams RL, Kaye SB, Kolegraff KN, Curran JM, D'Sa RA. Antimicrobial Nitric Oxide Releasing Contact Lens Gels for the Treatment of Microbial Keratitis. ACS APPLIED MATERIALS & INTERFACES 2019; 11:37491-37501. [PMID: 31532610 DOI: 10.1021/acsami.9b13958] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Microbial keratitis is a serious sight threatening infection affecting approximately two million individuals worldwide annually. While antibiotic eye drops remain the gold standard treatment for these infections, the significant problems associated with eye drop drug delivery and the alarming rise in antimicrobial resistance has meant that there is an urgent need to develop alternative treatments. In this work, a nitric oxide releasing contact lens gel displaying broad spectrum antimicrobial activity against two of the most common causative pathogens of microbial keratitis is described. The contact lens gel is composed of poly-ε-lysine (pεK) functionalized with nitric oxide (NO) releasing diazeniumdiolate moieties which enables the controlled and sustained release of bactericidal concentrations of NO at physiological pH over a period of 15 h. Diazeniumdiolate functionalization was confirmed by Fourier transform infrared (FTIR), and the concentration of NO released from the gels was determined by chemiluminescence. The bactericidal efficacy of the gels against Pseudomonas aeruginosa and Staphylococcus aureus was ascertained, and between 1 and 4 log reductions in bacterial populations were observed over 24 h. Additional cell cytotoxicity studies with human corneal epithelial cells (hCE-T) also demonstrated that the contact lens gels were not cytotoxic, suggesting that the developed technology could be a viable alternative treatment for microbial keratitis.
Collapse
Affiliation(s)
- Jenny Aveyard
- School of Engineering , University of Liverpool , Brownlow Hill , Liverpool L69 3GH , United Kingdom
| | - Robert C Deller
- School of Engineering , University of Liverpool , Brownlow Hill , Liverpool L69 3GH , United Kingdom
| | - Rebecca Lace
- Institute of Ageing and Chronic Diseases Department of Eye and Vision Science , University of Liverpool , Apex Building, West Derby Street , Liverpool L7 8TX , United Kingdom
| | - Rachel L Williams
- Institute of Ageing and Chronic Diseases Department of Eye and Vision Science , University of Liverpool , Apex Building, West Derby Street , Liverpool L7 8TX , United Kingdom
| | - Stephen B Kaye
- St Paul's Eye Unit, Department of Corneal and External Eye Diseases , Royal Liverpool University Hospital , Liverpool L7 8XP , United Kingdom
| | - Keli N Kolegraff
- Department of Plastic and Reconstructive Surgery , The Johns Hopkins University School of Medicine , 601 North Caroline Street , Baltimore , Maryland 21287 , United States
| | - Judith M Curran
- School of Engineering , University of Liverpool , Brownlow Hill , Liverpool L69 3GH , United Kingdom
| | - Raechelle A D'Sa
- School of Engineering , University of Liverpool , Brownlow Hill , Liverpool L69 3GH , United Kingdom
| |
Collapse
|
22
|
Allison CL, Lutzke A, Reynolds MM. Examining the effect of common nitrosating agents on chitosan using a glucosamine oligosaccharide model system. Carbohydr Polym 2019; 203:285-291. [PMID: 30318215 DOI: 10.1016/j.carbpol.2018.09.052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 09/19/2018] [Accepted: 09/19/2018] [Indexed: 11/15/2022]
Abstract
Chitosan has received substantial attention as a biomaterial due to its unique properties. It has become increasingly common to derivatize chitosan to produce nitric oxide (NO)-releasing materials that exert various therapeutic effects through the action of NO. It is generally the case that these NO-releasing polymers are prepared by exposure to high-pressure NO or nitrosating agents like nitrous acid (HNO2) or alkyl nitrites (RONO). In our study, mass spectrometry and spectroscopic methods demonstrate that both monomeric and oligomeric glucosamine experience chemical alteration after exposure to HNO2-based nitrosating conditions from the literature. In polymeric chitosan, HNO2-based nitrosating conditions were found to induce degradation through the formation of 2,5-anhydro-d-mannose and oligosaccharides. In contrast, the RONO tert-butyl nitrite and high-pressure NO were not found to significantly degrade or otherwise alter the structure of glucosamine or its oligomers, supporting the suitability of these approaches.
Collapse
Affiliation(s)
- Christopher L Allison
- Department of Chemistry, Colorado State University, 1801 Campus Delivery, Fort Collins, CO 80523, United States.
| | - Alec Lutzke
- Department of Chemical and Biological Engineering, Colorado State University, 1370 Campus Delivery, Fort Collins, CO 80523, United States.
| | - Melissa M Reynolds
- Department of Chemistry, Colorado State University, 1801 Campus Delivery, Fort Collins, CO 80523, United States; Department of Chemical and Biological Engineering, Colorado State University, 1370 Campus Delivery, Fort Collins, CO 80523, United States; School of Biomedical Engineering, Colorado State University, 1376 Campus Delivery, Fort Collins, CO 80523, United States.
| |
Collapse
|
23
|
Chuang WJ, Narwane M, Chen HY, Kao CL, Huang B, Hsu KM, Wang YM, Hsu SCN. Nitric oxide-release study of a bio-inspired copper(i)-nitrito complex under chemical and biological conditions. Dalton Trans 2018; 47:13151-13157. [PMID: 30175363 DOI: 10.1039/c8dt02281j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The selective and efficient nitrite reduction process is ubiquitous in biological systems. To understand copper-mediated nitrite reduction, we developed a bio-inspired model system to investigate the mechanism of copper-containing nitrite reductase. A well-characterized copper(i)-nitrate complex with amino functionalized 2-(diphenylphosphino)aniline ligands, [(Ph2PC6H4(o-NH2))2Cu(ONO)], demonstrated the aniline protonation will cause NO release in an acidic environment. To further understand NO releasing ability, we also performed pH-dependency experiments and confocal imaging to release NO under physiological buffer conditions. According to titration and spectroscopic studies on the protonation reaction of complex [(Ph2PC6H4(o-NH2))2Cu(ONO)], we proposed a mechanistic pathway for proton transfer and NO release. Furthermore, DFT calculations predicted that the release of NO takes place via aniline in both organic and aqueous media. These results highlight the importance of the proton-rich microenvironment around the copper(i)-nitrite core to induce nitrate reduction in a chemical and biological environment.
Collapse
Affiliation(s)
- Wan-Jung Chuang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Manmath Narwane
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Hsing-Yin Chen
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Chai-Lin Kao
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan. and Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Bin Huang
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Kuang-Mei Hsu
- Department of Biological Science and Technology, Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu 300, Taiwan.
| | - Yun-Ming Wang
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 807, Taiwan and Department of Biological Science and Technology, Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu 300, Taiwan.
| | - Sodio C N Hsu
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan. and Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| |
Collapse
|
24
|
Puglisi MP, Bradaric MJ, Pontikis J, Cabai J, Weyna T, Tednes P, Schretzman R, Rickert K, Cao Z, Andrei D. Novel primary amine diazeniumdiolates-Chemical and biological characterization. Drug Dev Res 2018; 79:136-143. [DOI: 10.1002/ddr.21428] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 04/11/2018] [Indexed: 12/23/2022]
Affiliation(s)
- Melany P. Puglisi
- Department of Pharmaceutical Sciences; Chicago State University; Chicago Illinois
| | - Michael J. Bradaric
- Department of Pharmaceutical Sciences; Chicago State University; Chicago Illinois
| | - John Pontikis
- Department of Chemistry; Dominican University; River Forest Illinois
| | - Jonathan Cabai
- Department of Chemistry; Dominican University; River Forest Illinois
| | - Theodore Weyna
- Department of Chemistry; Dominican University; River Forest Illinois
| | - Patrick Tednes
- Department of Chemistry; Dominican University; River Forest Illinois
| | - Robert Schretzman
- Department of Chemistry; Dominican University; River Forest Illinois
| | - Karl Rickert
- Department of Chemistry; Dominican University; River Forest Illinois
| | - Zhao Cao
- Basic Research Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research; Frederick Maryland
| | - Daniela Andrei
- Department of Chemistry; Dominican University; River Forest Illinois
| |
Collapse
|
25
|
Zhou Y, Cink RB, Fejedelem ZA, Cather Simpson M, Seed AJ, Sampson P, Brasch NE. Development of Photoactivatable Nitroxyl (HNO) Donors Incorporating the (3‐Hydroxy‐2‐naphthalenyl)methyl Phototrigger. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800092] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yang Zhou
- Department of Chemistry and Biochemistry Kent State University 44242 Kent OH USA
| | - Ruth B. Cink
- School of Science Auckland University of Technology Private Bag 92006 1142 Auckland New Zealand
| | - Zachary A. Fejedelem
- Department of Chemistry and Biochemistry Kent State University 44242 Kent OH USA
| | - M. Cather Simpson
- The Photon Factory School of Chemical Sciences The University of Auckland Private Bag 92019 Auckland New Zealand
| | - Alexander J. Seed
- Department of Chemistry and Biochemistry Kent State University 44242 Kent OH USA
| | - Paul Sampson
- Department of Chemistry and Biochemistry Kent State University 44242 Kent OH USA
| | - Nicola E. Brasch
- School of Science Auckland University of Technology Private Bag 92006 1142 Auckland New Zealand
| |
Collapse
|
26
|
Oliveira C, Benfeito S, Fernandes C, Cagide F, Silva T, Borges F. NO and HNO donors, nitrones, and nitroxides: Past, present, and future. Med Res Rev 2017; 38:1159-1187. [PMID: 29095519 DOI: 10.1002/med.21461] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/26/2017] [Accepted: 06/28/2017] [Indexed: 12/18/2022]
Abstract
The biological effects attributed to nitric oxide (• NO) and nitroxyl (HNO) have been extensively studied, propelling their array of putative clinical applications beyond cardiovascular disorders toward other age-related diseases, like cancer and neurodegenerative diseases. In this context, the unique properties and reactivity of the N-O bond enabled the development of several classes of compounds with potential clinical interest, among which • NO and HNO donors, nitrones, and nitroxides are of particular importance. Although primarily studied for their application as cardioprotective agents and/or molecular probes for radical detection, continuous efforts have unveiled a wide range of pharmacological activities and, ultimately, therapeutic applications. These efforts are of particular significance for diseases in which oxidative stress plays a key pathogenic role, as shown by a growing volume of in vitro and in vivo preclinical data. Although in its early stages, these efforts may provide valuable guidelines for the development of new and effective N-O-based drugs for age-related disorders. In this report, we review recent advances in the chemistry of NO and HNO donors, nitrones, and nitroxides and discuss its pharmacological significance and potential therapeutic application.
Collapse
Affiliation(s)
- Catarina Oliveira
- CIQUP/Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Sofia Benfeito
- CIQUP/Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Carlos Fernandes
- CIQUP/Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Fernando Cagide
- CIQUP/Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Tiago Silva
- CIQUP/Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Fernanda Borges
- CIQUP/Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| |
Collapse
|
27
|
Zhou Y, Cink RB, Dassanayake RS, Seed AJ, Brasch NE, Sampson P. Rapid Photoactivated Generation of Nitroxyl (HNO) under Neutral pH Conditions. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201605160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yang Zhou
- Department of Chemistry and Biochemistry; Kent State University (KSU); Kent OH 44240 USA
| | - Ruth B. Cink
- School of Applied Sciences; Auckland University of Technology (AUT); Private Bag 92006 Auckland 1142 New Zealand
| | - Rohan S. Dassanayake
- Department of Chemistry and Biochemistry; Kent State University (KSU); Kent OH 44240 USA
| | - Alexander J. Seed
- Department of Chemistry and Biochemistry; Kent State University (KSU); Kent OH 44240 USA
| | - Nicola E. Brasch
- School of Applied Sciences; Auckland University of Technology (AUT); Private Bag 92006 Auckland 1142 New Zealand
| | - Paul Sampson
- Department of Chemistry and Biochemistry; Kent State University (KSU); Kent OH 44240 USA
| |
Collapse
|
28
|
Zhou Y, Cink RB, Dassanayake RS, Seed AJ, Brasch NE, Sampson P. Rapid Photoactivated Generation of Nitroxyl (HNO) under Neutral pH Conditions. Angew Chem Int Ed Engl 2016; 55:13229-13232. [DOI: 10.1002/anie.201605160] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 08/03/2016] [Indexed: 01/17/2023]
Affiliation(s)
- Yang Zhou
- Department of Chemistry and Biochemistry; Kent State University (KSU); Kent OH 44240 USA
| | - Ruth B. Cink
- School of Applied Sciences; Auckland University of Technology (AUT); Private Bag 92006 Auckland 1142 New Zealand
| | - Rohan S. Dassanayake
- Department of Chemistry and Biochemistry; Kent State University (KSU); Kent OH 44240 USA
| | - Alexander J. Seed
- Department of Chemistry and Biochemistry; Kent State University (KSU); Kent OH 44240 USA
| | - Nicola E. Brasch
- School of Applied Sciences; Auckland University of Technology (AUT); Private Bag 92006 Auckland 1142 New Zealand
| | - Paul Sampson
- Department of Chemistry and Biochemistry; Kent State University (KSU); Kent OH 44240 USA
| |
Collapse
|
29
|
Smirnov GA, Gordeev PB, Nikitin SV, Pokhvisneva GV, Ternikova TV, Luk’yanov OA. Synthesis of 1-alkoxy-3-methyl-1-triazene 2-oxides and 3, 3´-methylene-bis(1-alkoxy-3-methyl-1-triazene 2-oxides). Russ Chem Bull 2016. [DOI: 10.1007/s11172-015-1212-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
30
|
HNO/Thiol Biology as a Therapeutic Target. OXIDATIVE STRESS IN APPLIED BASIC RESEARCH AND CLINICAL PRACTICE 2016. [DOI: 10.1007/978-3-319-30705-3_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
31
|
Xu N, Christian JH, Dalal NS, Abucayon EG, Lingafelt C, Powell DR, Richter-Addo GB. Six-coordinate ferric porphyrins containing bidentate N-t-butyl-N-nitrosohydroxylaminato ligands: structure, magnetism, IR spectroelectrochemisty, and reactivity. Dalton Trans 2015; 44:20121-30. [PMID: 26530148 DOI: 10.1039/c5dt03074a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
NONOates (diazeniumdiolates) containing the [X{N2O2}](-) functional group are frequently employed as nitric oxide (NO) donors in biology, and some NONOates have been shown to bind to metalloenzymes. We report the preparation, crystal structures, detailed magnetic behavior, redox properties, and reactivities of the first isolable alkyl C-NONOate complexes of heme models, namely (OEP)Fe(η(2)-ON(t-Bu)NO) (1) and (TPP)Fe(η(2)-ON(t-Bu)NO) (2) (OEP = octaethylporphyrinato dianion, TPP = tetraphenylporphyrinato dianion). The compounds display the unusual NONOate O,O-bidentate binding mode for porphyrins, resulting in significant apical Fe displacements (+0.60 Å for 1, and +0.69 Å for 2) towards the axial ligands. Magnetic susceptibility and magnetization measurements made from 1.8-300 K at magnetic fields from 0.02 to 5 T, yielded magnetic moments of 5.976 and 5.974 Bohr magnetons for 1 and 2, respectively, clearly identifying them as high-spin (S = 5/2) ferric compounds. Variable-frequency (9.4 GHz and 34.5 GHz) EPR measurements, coupled with computer simulations, confirmed the magnetization results and yielded more precise values for the spin Hamiltonian parameters: g(avg) = 2.00 ± 0.03, |D| = 3.89 ± 0.09 cm(-1), and E/D = 0.07 ± 0.01 for both compounds, where D and E are the axial and rhombic zero-field splittings. IR spectroelectrochemistry studies reveal that the first oxidations of these compounds occur at the porphyrin macrocycles and not at the Fe-NONOate moieties. Reactions of 1 and 2 with a histidine mimic (1-methylimidazole) generate RNO and NO, both of which may bind to the metal center if sterics allow, as shown by a comparative study with the Cupferron complex (T(p-OMe)PP)Fe(η(2)-ON(Ph)NO). Protonation of 1 and 2 yields N2O as a gaseous product, presumably from the initial generation of HNO that dimerizes to the observed N2O product.
Collapse
Affiliation(s)
- Nan Xu
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, USA. and Division of Mathematics and Natural Sciences, Penn State Altoona, 3000 Ivyside Park, Altoona, PA 16601, USA.
| | - Jonathan H Christian
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL 32306, USA.
| | - Naresh S Dalal
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL 32306, USA.
| | - Erwin G Abucayon
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, USA.
| | - Colin Lingafelt
- Division of Mathematics and Natural Sciences, Penn State Altoona, 3000 Ivyside Park, Altoona, PA 16601, USA.
| | - Douglas R Powell
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, USA.
| | - George B Richter-Addo
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, USA.
| |
Collapse
|
32
|
Basudhar D, Cheng RC, Bharadwaj G, Ridnour LA, Wink DA, Miranda KM. Chemotherapeutic potential of diazeniumdiolate-based aspirin prodrugs in breast cancer. Free Radic Biol Med 2015; 83:101-14. [PMID: 25659932 PMCID: PMC4441830 DOI: 10.1016/j.freeradbiomed.2015.01.029] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 01/05/2015] [Accepted: 01/13/2015] [Indexed: 12/12/2022]
Abstract
Diazeniumdiolate-based aspirin prodrugs have previously been shown to retain the anti-inflammatory properties of aspirin while protecting against the common side effect of stomach ulceration. Initial analysis of two new prodrugs of aspirin that also release either nitroxyl (HNO) or nitric oxide (NO) demonstrated increased cytotoxicity toward human lung carcinoma cells compared to either aspirin or the parent nitrogen oxide donor. In addition, cytotoxicity was significantly lower in endothelial cells, suggesting cancer-specific sensitivity. To assess the chemotherapeutic potential of these new prodrugs in treatment of breast cancer, we studied their effect both in cultured cells and in a nude mouse model. Both prodrugs reduced growth of breast adenocarcinoma cells more effectively than the parent compounds while not being appreciably cytotoxic in a related nontumorigenic cell line (MCF-10A). The HNO donor also was more cytotoxic than the related NO donor. The basis for the observed specificity was investigated in terms of impact on metabolism, DNA damage and repair, apoptosis, angiogenesis and metastasis. The results suggest a significant pharmacological potential for treatment of breast cancer.
Collapse
Affiliation(s)
- Debashree Basudhar
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - Robert C Cheng
- Radiation Biology Branch, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gaurav Bharadwaj
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - Lisa A Ridnour
- Radiation Biology Branch, National Institutes of Health, Bethesda, MD 20892, USA
| | - David A Wink
- Radiation Biology Branch, National Institutes of Health, Bethesda, MD 20892, USA
| | - Katrina M Miranda
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
33
|
Guthrie DA, Ho A, Takahashi CG, Collins A, Morris M, Toscano JP. “Catch-and-Release” of HNO with Pyrazolones. J Org Chem 2015; 80:1338-48. [DOI: 10.1021/jo502330w] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Daryl A. Guthrie
- Department
of Chemistry, 3400 North
Charles Street, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Anthony Ho
- Department
of Chemistry, 3400 North
Charles Street, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Cyrus G. Takahashi
- Department
of Chemistry, 3400 North
Charles Street, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Anthony Collins
- Department
of Chemistry, 3400 North
Charles Street, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Matthew Morris
- Department
of Chemistry, 3400 North
Charles Street, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - John P. Toscano
- Department
of Chemistry, 3400 North
Charles Street, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
34
|
Comparison of the chemical reactivity of synthetic peroxynitrite with that of the autoxidation products of nitroxyl or its anion. Nitric Oxide 2015; 44:39-46. [DOI: 10.1016/j.niox.2014.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 10/21/2014] [Accepted: 11/03/2014] [Indexed: 11/18/2022]
|
35
|
Shaikh N, Valiev M, Lymar SV. Decomposition of amino diazeniumdiolates (NONOates): Molecular mechanisms. J Inorg Biochem 2014; 141:28-35. [DOI: 10.1016/j.jinorgbio.2014.08.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Revised: 08/12/2014] [Accepted: 08/13/2014] [Indexed: 10/24/2022]
|
36
|
Zhu G, Groneberg D, Sikka G, Hori D, Ranek MJ, Nakamura T, Takimoto E, Paolocci N, Berkowitz DE, Friebe A, Kass DA. Soluble guanylate cyclase is required for systemic vasodilation but not positive inotropy induced by nitroxyl in the mouse. Hypertension 2014; 65:385-92. [PMID: 25452469 DOI: 10.1161/hypertensionaha.114.04285] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nitroxyl (HNO), the reduced and protonated form of nitric oxide (NO·), confers unique physiological effects including vasorelaxation and enhanced cardiac contractility. These features have spawned current pharmaceutical development of HNO donors as heart failure therapeutics. HNO interacts with selective redox sensitive cysteines to effect signaling but is also proposed to activate soluble guanylate cyclase (sGC) in vitro to induce vasodilation and potentially enhance contractility. Here, we tested whether sGC stimulation is required for these HNO effects in vivo and if HNO also modifies a redox-sensitive cysteine (C42) in protein kinase G-1α to control vasorelaxation. Intact mice and isolated arteries lacking the sGC-β subunit (sGCKO, results in full sGC deficiency) or expressing solely a redox-dead C42S mutant protein kinase G-1α were exposed to the pure HNO donor, CXL-1020. CXL-1020 induced dose-dependent systemic vasodilation while increasing contractility in controls; however, vasodilator effects were absent in sGCKO mice whereas contractility response remained. The CXL-1020 dose reversing 50% of preconstricted force in aortic rings was ≈400-fold greater in sGCKO than controls. Cyclic-GMP and cAMP levels were unaltered in myocardium exposed to CXL-1020, despite its inotropic-vasodilator activity. In protein kinase G-1α(C42S) mice, CXL-1020 induced identical vasorelaxation in vivo and in isolated aortic and mesenteric vessels as in littermate controls. In both groups, dilation was near fully blocked by pharmacologically inhibiting sGC. Thus, sGC and cGMP-dependent signaling are necessary and sufficient for HNO-induced vasodilation in vivo but are not required for positive inotropic action. Redox modulation of protein kinase G-1α is not a mechanism for HNO-mediated vasodilation.
Collapse
Affiliation(s)
- Guangshuo Zhu
- From the Department of Medicine, Division of Cardiology, Johns Hopkins School of Medicine, Baltimore MD (G.Z., M.J.R., T.N., E.T., N.P., D.A.K.); Institut of Vegetative Physiology, Julius Maximilians-Universität Würzburg, Würzburg, Germany (D.G., A.F.); and Departments of Anesthesia (G.S., D.E.B.) and Surgery (D.H.), Johns Hopkins Medical Institutions, Baltimore MD
| | - Dieter Groneberg
- From the Department of Medicine, Division of Cardiology, Johns Hopkins School of Medicine, Baltimore MD (G.Z., M.J.R., T.N., E.T., N.P., D.A.K.); Institut of Vegetative Physiology, Julius Maximilians-Universität Würzburg, Würzburg, Germany (D.G., A.F.); and Departments of Anesthesia (G.S., D.E.B.) and Surgery (D.H.), Johns Hopkins Medical Institutions, Baltimore MD
| | - Gautam Sikka
- From the Department of Medicine, Division of Cardiology, Johns Hopkins School of Medicine, Baltimore MD (G.Z., M.J.R., T.N., E.T., N.P., D.A.K.); Institut of Vegetative Physiology, Julius Maximilians-Universität Würzburg, Würzburg, Germany (D.G., A.F.); and Departments of Anesthesia (G.S., D.E.B.) and Surgery (D.H.), Johns Hopkins Medical Institutions, Baltimore MD
| | - Daijiro Hori
- From the Department of Medicine, Division of Cardiology, Johns Hopkins School of Medicine, Baltimore MD (G.Z., M.J.R., T.N., E.T., N.P., D.A.K.); Institut of Vegetative Physiology, Julius Maximilians-Universität Würzburg, Würzburg, Germany (D.G., A.F.); and Departments of Anesthesia (G.S., D.E.B.) and Surgery (D.H.), Johns Hopkins Medical Institutions, Baltimore MD
| | - Mark J Ranek
- From the Department of Medicine, Division of Cardiology, Johns Hopkins School of Medicine, Baltimore MD (G.Z., M.J.R., T.N., E.T., N.P., D.A.K.); Institut of Vegetative Physiology, Julius Maximilians-Universität Würzburg, Würzburg, Germany (D.G., A.F.); and Departments of Anesthesia (G.S., D.E.B.) and Surgery (D.H.), Johns Hopkins Medical Institutions, Baltimore MD
| | - Taishi Nakamura
- From the Department of Medicine, Division of Cardiology, Johns Hopkins School of Medicine, Baltimore MD (G.Z., M.J.R., T.N., E.T., N.P., D.A.K.); Institut of Vegetative Physiology, Julius Maximilians-Universität Würzburg, Würzburg, Germany (D.G., A.F.); and Departments of Anesthesia (G.S., D.E.B.) and Surgery (D.H.), Johns Hopkins Medical Institutions, Baltimore MD
| | - Eiki Takimoto
- From the Department of Medicine, Division of Cardiology, Johns Hopkins School of Medicine, Baltimore MD (G.Z., M.J.R., T.N., E.T., N.P., D.A.K.); Institut of Vegetative Physiology, Julius Maximilians-Universität Würzburg, Würzburg, Germany (D.G., A.F.); and Departments of Anesthesia (G.S., D.E.B.) and Surgery (D.H.), Johns Hopkins Medical Institutions, Baltimore MD
| | - Nazareno Paolocci
- From the Department of Medicine, Division of Cardiology, Johns Hopkins School of Medicine, Baltimore MD (G.Z., M.J.R., T.N., E.T., N.P., D.A.K.); Institut of Vegetative Physiology, Julius Maximilians-Universität Würzburg, Würzburg, Germany (D.G., A.F.); and Departments of Anesthesia (G.S., D.E.B.) and Surgery (D.H.), Johns Hopkins Medical Institutions, Baltimore MD
| | - Dan E Berkowitz
- From the Department of Medicine, Division of Cardiology, Johns Hopkins School of Medicine, Baltimore MD (G.Z., M.J.R., T.N., E.T., N.P., D.A.K.); Institut of Vegetative Physiology, Julius Maximilians-Universität Würzburg, Würzburg, Germany (D.G., A.F.); and Departments of Anesthesia (G.S., D.E.B.) and Surgery (D.H.), Johns Hopkins Medical Institutions, Baltimore MD
| | - Andreas Friebe
- From the Department of Medicine, Division of Cardiology, Johns Hopkins School of Medicine, Baltimore MD (G.Z., M.J.R., T.N., E.T., N.P., D.A.K.); Institut of Vegetative Physiology, Julius Maximilians-Universität Würzburg, Würzburg, Germany (D.G., A.F.); and Departments of Anesthesia (G.S., D.E.B.) and Surgery (D.H.), Johns Hopkins Medical Institutions, Baltimore MD
| | - David A Kass
- From the Department of Medicine, Division of Cardiology, Johns Hopkins School of Medicine, Baltimore MD (G.Z., M.J.R., T.N., E.T., N.P., D.A.K.); Institut of Vegetative Physiology, Julius Maximilians-Universität Würzburg, Würzburg, Germany (D.G., A.F.); and Departments of Anesthesia (G.S., D.E.B.) and Surgery (D.H.), Johns Hopkins Medical Institutions, Baltimore MD.
| |
Collapse
|
37
|
Johnson GM, Chozinski TJ, Gallagher ES, Aspinwall CA, Miranda KM. Glutathione sulfinamide serves as a selective, endogenous biomarker for nitroxyl after exposure to therapeutic levels of donors. Free Radic Biol Med 2014; 76:299-307. [PMID: 25064322 PMCID: PMC4254043 DOI: 10.1016/j.freeradbiomed.2014.07.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 07/15/2014] [Accepted: 07/16/2014] [Indexed: 11/21/2022]
Abstract
Nitroxyl (HNO) donors exhibit promising pharmacological characteristics for treatment of cardiovascular disorders, cancer, and alcoholism. However, whether HNO also serves as an endogenous signaling agent is currently unknown, largely because of the inability to selectively and sensitively detect HNO in a cellular environment. Although a number of methods to detect HNO have been developed recently, sensitivity and selectivity against other nitrogen oxides or biological reductants remain problematic. To improve selectivity, the electrophilic nature of HNO has been harnessed to generate modifications of thiols and phosphines that are unique to HNO, especially compared to nitric oxide (NO). Given high bioavailability, glutathione (GSH) is expected to be a major target of HNO. As a result, the putative selective product glutathione sulfinamide (GS(O)NH2) may serve as a high-yield biomarker of HNO production. In this work, the formation of GS(O)NH2 after exposure to HNO donors was investigated. Fluorescent labeling followed by separation and detection using capillary zone electrophoresis with laser-induced fluorescence allowed quantitation of GS(O)NH2 with nanomolar sensitivity, even in the presence of GSH and derivatives. Formation of GS(O)NH2 was found to occur exclusively upon exposure of GSH to HNO donors, thus confirming selectivity. GS(O)NH2 was detected in the lysate of cells treated with low-micromolar concentrations of HNO donors, verifying that this species has sufficient stability to server as a biomarker of HNO. Additionally, the concentration-dependent formation of GS(O)NH2 in cells treated with an HNO donor suggests that the concentration of GS(O)NH2 can be correlated to intracellular levels of HNO.
Collapse
Affiliation(s)
- Gail M Johnson
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - Tyler J Chozinski
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - Elyssia S Gallagher
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - Craig A Aspinwall
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - Katrina M Miranda
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
38
|
Crucho CIC. Stimuli-responsive polymeric nanoparticles for nanomedicine. ChemMedChem 2014; 10:24-38. [PMID: 25319803 DOI: 10.1002/cmdc.201402290] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 09/17/2014] [Indexed: 12/28/2022]
Abstract
Nature continues to be the ultimate in nanotechnology, where polymeric nanometer-scale architectures play a central role in biological systems. Inspired by the way nature forms functional supramolecular assemblies, researchers are trying to make nanostructures and to incorporate these into macrostructures as nature does. Recent advances and progress in nanoscience have demonstrated the great potential that nanomaterials have for applications in healthcare. In the realm of drug delivery, nanomaterials have been used in vivo to protect the drug entity in the systemic circulation, ensuring reproducible absorption of bioactive molecules that do not naturally penetrate biological barriers, restricting drug access to specific target sites. Several building blocks have been used in the formulation of nanoparticles. Thus, stability, drug release, and targeting can be tailored by surface modification. Herein the state of the art of stimuli-responsive polymeric nanoparticles are reviewed. Such systems are able to control drug release by reacting to naturally occurring or external applied stimuli. Special attention is paid to the design and nanoparticle formulation of these so-called smart drug-delivery systems. Future strategies for further developments of a promising controlled drug delivery responsive system are also outlined.
Collapse
Affiliation(s)
- Carina I C Crucho
- Department of Chemistry REQUIMTE/CQFB, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal).
| |
Collapse
|
39
|
Holland RJ, Klose JR, Deschamps J, Cao Z, Keefer LK, Saavedra JE. Direct reaction of amides with nitric oxide to form diazeniumdiolates. J Org Chem 2014; 79:9389-93. [PMID: 25210948 PMCID: PMC4184460 DOI: 10.1021/jo501670e] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Indexed: 01/20/2023]
Abstract
We report the apparently unprecedented direct reaction of nitric oxide (NO) with amides to generate ions of structure R(C═O)NH-N(O)═NO(-), with examples including R = Me (1a) or 3-pyridyl (1b). The sodium salts of both released NO in pH 7.4 buffer, with 37 °C half-lives of 1-3 min. As NO-releasing drug candidates, diazeniumdiolated amides would have the advantage of generating only 1 equiv of base on hydrolyzing exhaustively to NO, in contrast to their amine counterparts, which generate 2 equiv of base.
Collapse
Affiliation(s)
- Ryan J. Holland
- Drug Design Section, Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - John R. Klose
- Frederick
National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland 21702, United States
| | - Jeffrey
R. Deschamps
- Center for Biomolecular Science and Engineering, Naval Research Laboratory, Washington, District of Columbia 20375, United States
| | - Zhao Cao
- Frederick
National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland 21702, United States
| | - Larry K. Keefer
- Drug Design Section, Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Joseph E. Saavedra
- Frederick
National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland 21702, United States
| |
Collapse
|
40
|
Bharadwaj G, Benini PGZ, Basudhar D, Ramos-Colon CN, Johnson GM, Larriva MM, Keefer LK, Andrei D, Miranda KM. Analysis of the HNO and NO donating properties of alicyclic amine diazeniumdiolates. Nitric Oxide 2014; 42:70-8. [PMID: 25192820 DOI: 10.1016/j.niox.2014.08.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 08/28/2014] [Accepted: 08/31/2014] [Indexed: 11/17/2022]
Abstract
Nitroxyl (HNO) donors have been shown to elicit a variety of pharmacological responses, ranging from tumoricidal effects to treatment of heart failure. Isopropylamine-based diazeniumdiolates have been shown to produce HNO on decomposition under physiological conditions. Herein, we report the synthesis and HNO release profiles of primary alicyclic amine-based diazeniumdiolates. These compounds extend the range of known diazeniumdiolate-based HNO donors. Acetoxymethyl ester-protected diazeniumdiolates were also synthesized to improve purification and cellular uptake. The acetoxymethyl derivative of cyclopentylamine diazeniumdiolate not only showed higher cytotoxicity toward cancer cells as compared to the parent anion but was also effective in combination with tamoxifen for targeting estrogen receptor α-negative breast cancer cells.
Collapse
Affiliation(s)
- Gaurav Bharadwaj
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, USA
| | - Patricia G Z Benini
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, USA
| | - Debashree Basudhar
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, USA
| | - Cyf N Ramos-Colon
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, USA
| | - Gail M Johnson
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, USA
| | - Marti M Larriva
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, USA
| | - Larry K Keefer
- Chemical Biology Laboratory, National Cancer Institute at Frederick, Frederick, Maryland 21702, USA
| | - Daniela Andrei
- Chemical Biology Laboratory, National Cancer Institute at Frederick, Frederick, Maryland 21702, USA
| | - Katrina M Miranda
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, USA.
| |
Collapse
|
41
|
Cheng RYS, Basudhar D, Ridnour LA, Heinecke JL, Kesarwala AH, Glynn S, Switzer CH, Ambs S, Miranda KM, Wink DA. Gene expression profiles of NO- and HNO-donor treated breast cancer cells: insights into tumor response and resistance pathways. Nitric Oxide 2014; 43:17-28. [PMID: 25153034 DOI: 10.1016/j.niox.2014.08.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 08/07/2014] [Accepted: 08/14/2014] [Indexed: 01/27/2023]
Abstract
Nitric oxide (NO) synthase 2 (NOS2), a major inflammatory protein, modulates disease progression via NO in a number of pathologies, including cancer. The role of NOS2-derived NO is not only flux-dependent, which is higher in mouse vs human cells, but also varies based on spatial and temporal distribution both within tumor cells and in the tumor microenvironment. NO donors have been utilized to mimic NO flux conditions and to investigate the effects of varied NO concentrations. As a wide range of effects mediated by NO and other nitrogen oxides such as nitroxyl (HNO) have been elucidated, multiple NO- and HNO-releasing compounds have been developed as potential therapeutics, including as tumor modulators. One of the challenges is to determine differences in biomarker expression from extracellular vs intracellular generation of NO or HNO. Taking advantage of new NO and HNO releasing agents, we have characterized the gene expression profile of estrogen receptor-negative human breast cancer (MDA-MB-231) cells following exposure to aspirin, the NO donor DEA/NO, the HNO donor IPA/NO andtheir intracellularly-activated prodrug conjugates DEA/NO-aspirin and IPA/NO-aspirin. Comparison of the gene expression profiles demonstrated that several genes were uniquely expressed with respect to NO or HNO, such as miR-21, HSP70, cystathionine γ-lyase and IL24. These findings provide insight into targets and pathways that could be therapeutically exploited by the redox related species NO and HNO.
Collapse
Affiliation(s)
- Robert Y S Cheng
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA.
| | - Debashree Basudhar
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA; Department of Chemistry, University of Arizona, Tucson, AZ 85721, USA
| | - Lisa A Ridnour
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Julie L Heinecke
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Aparna H Kesarwala
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | | | - Christopher H Switzer
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Stefan Ambs
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Katrina M Miranda
- Department of Chemistry, University of Arizona, Tucson, AZ 85721, USA
| | - David A Wink
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| |
Collapse
|
42
|
Bobko AA, Khramtsov VV. Mechanistic studies of oxidative decomposition of Angeli's salt and PAPA NONOate. Nitric Oxide 2014; 40:92-8. [PMID: 24947085 DOI: 10.1016/j.niox.2014.05.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 05/13/2014] [Accepted: 05/31/2014] [Indexed: 10/25/2022]
Abstract
Nitric oxide, (·)NO, and product of its one-electron reduction, nitroxyl NO(-), are important molecules in the biochemistry of living organisms. At physiological conditions nitroxyl exists in its protonated form, HNO. Angeli's salt, AS, and diazeniumdiolates, NONOates, are widely used donors of HNO and (·)NO, correspondingly. In this work we observed oxidative decomposition of AS and PAPA NONOate in the presence of mild oxidizing agents, 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, cPTIO, and 2,2'-azinobis(3-ethylbenzolthiazoline-6-sulfonate) radical, ABTS(·-). The observed unexpected fast oxidative decomposition of AS with release of NO instead of HNO suggests the need for a reevaluation of some of the biological effects of AS assigned to action of HNO. While oxidative decomposition of NONOate did not result in release of alternative NOx specimen but only (·)NO, it significantly affects the rates and stoichiometry of (·)NO release. In summary, possible contribution of oxidative decomposition of AS and NONOates should be taken into account upon interpretation of their actions in chemical and biological systems.
Collapse
Affiliation(s)
- Andrey A Bobko
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA.
| | - Valery V Khramtsov
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
43
|
Duong HTT, Jung K, Kutty SK, Agustina S, Adnan NNM, Basuki JS, Kumar N, Davis TP, Barraud N, Boyer C. Nanoparticle (Star Polymer) Delivery of Nitric Oxide Effectively Negates Pseudomonas aeruginosa Biofilm Formation. Biomacromolecules 2014; 15:2583-9. [DOI: 10.1021/bm500422v] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
| | | | | | | | | | | | | | - Thomas P. Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Melbourne Victoria, Australia, 3052
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | | | | |
Collapse
|
44
|
Biswas D, Hrabie JA, Saavedra JE, Cao Z, Keefer LK, Ivanic J, Holland RJ. Aminolysis of an N-diazeniumdiolated amidine as an approach to diazeniumdiolated ammonia. J Org Chem 2014; 79:4512-6. [PMID: 24766285 PMCID: PMC4033653 DOI: 10.1021/jo500551n] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Recent theoretical studies have suggested
that the parent diazeniumdiolate
ion, H2N–N(O)=NO– (“diazeniumdiolated
ammonia”), might be stable enough to be isolated and that it
could potentially serve as a uniquely advantageous prodrug form of
bioactive nitroxyl (HNO). Here, we report on an attempt to isolate
its O2-benzylated derivative by aminolysis of the C=N
bond in PhC(NH2)=N–N(O)=NOBn. The
reaction proved remarkably sluggish in comparison to aminolysis of
unsubstituted benzamidine, and the desired product could not be isolated,
apparently because of base sensitivity of the NH2 group.
Consistent with this interpretation, O-benzylhydroxylamine
and N2O were recovered from the reaction mixture in high
yields, along with N,N′-dibutylbenzamidine.
Theoretical calculations rationalize the observed slow aminolysis
by demonstrating that the diazeniumdiolate group greatly suppresses
the electrophilicity of the adjacent C=N carbon center, rendering
attack at that position endothermic. The data provide significant
insights into the challenges inherent to the pursuit of diazeniumdiolated
ammonia.
Collapse
Affiliation(s)
- Debanjan Biswas
- Drug Design Section, Chemical Biology Laboratory, and ‡Basic Science Program and §Advanced Biomedical Computing Center, Information Systems Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research , Frederick, Maryland 21702, United States
| | | | | | | | | | | | | |
Collapse
|
45
|
Holland RJ, Paulisch R, Cao Z, Keefer LK, Saavedra JE, Donzelli S. Enzymatic generation of the NO/HNO-releasing IPA/NO anion at controlled rates in physiological media using β-galactosidase. Nitric Oxide 2013; 35:131-6. [PMID: 24126017 PMCID: PMC3881966 DOI: 10.1016/j.niox.2013.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Revised: 09/19/2013] [Accepted: 10/04/2013] [Indexed: 11/21/2022]
Abstract
We introduce a strategy for generating mixtures of nitric oxide (NO) and nitroxyl (HNO) at tunable rates in physiological media. The approach involves converting a spontaneously HNO/NO-generating ion to a caged (prodrug) form that is essentially stable in neutral media, but that can be activated for HNO/NO release by adding an enzyme capable of efficiently opening the cage to regenerate the ion. By judiciously choosing the enzyme, substrate, and reaction conditions, unwanted scavenging of the HNO and NO by the protein can be minimised and the catalytic efficiency of the enzyme can be maintained. We illustrate this approach with a proof-of-concept study wherein the prodrug is Gal-IPA/NO, a diazeniumdiolate of structure iPrHN-N(O)NOR, with R=β-d-galactosyl. Escherichia coli-derived β-d-galactosidase at concentrations of 1.9-15nM hydrolysed 56μM substrate with half-lives of 140-19min, respectively, producing the IPA/NO anion (iPrHN-N(O)NO(-), half-life ∼3min), which in turn spontaneously hydrolysed to mixtures of HNO with NO. Using saturating substrate concentrations furnished IPA/NO generation rates that were directly proportional to enzyme concentration. Consistent with these data, the enzyme/substrate combination applied to ventricular myocytes isolated from wild-type mouse hearts resulted not only in a significant positive inotropic effect, but also rescued the cells from the negative inotropy, hypercontractions, and occasional cell death seen with the enzyme alone. This mechanism represents an alternate approach for achieving controlled fluxes of NO/HNO to investigate their biological actions.
Collapse
Affiliation(s)
- Ryan J Holland
- Drug Design Section, Chemical Biology Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702, USA.
| | | | | | | | | | | |
Collapse
|
46
|
Basudhar D, Bharadwaj G, Cheng RY, Jain S, Shi S, Heinecke JL, Holland RJ, Ridnour LA, Caceres VM, Spadari-Bratfisch RC, Paolocci N, Velázquez-Martínez CA, Wink DA, Miranda KM. Synthesis and chemical and biological comparison of nitroxyl- and nitric oxide-releasing diazeniumdiolate-based aspirin derivatives. J Med Chem 2013; 56:7804-20. [PMID: 24102516 DOI: 10.1021/jm400196q] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Structural modifications of nonsteroidal anti-inflammatory drugs (NSAIDs) have successfully reduced the side effect of gastrointestinal ulceration without affecting anti-inflammatory activity, but they may increase the risk of myocardial infarction with chronic use. The fact that nitroxyl (HNO) reduces platelet aggregation, preconditions against myocardial infarction, and enhances contractility led us to synthesize a diazeniumdiolate-based HNO-releasing aspirin and to compare it to an NO-releasing analogue. Here, the decomposition mechanisms are described for these compounds. In addition to protection against stomach ulceration, these prodrugs exhibited significantly enhanced cytotoxcity compared to either aspirin or the parent diazeniumdiolate toward nonsmall cell lung carcinoma cells (A549), but they were not appreciably toxic toward endothelial cells (HUVECs). The HNO-NSAID prodrug inhibited cylcooxgenase-2 and glyceraldehyde 3-phosphate dehydrogenase activity and triggered significant sarcomere shortening on murine ventricular myocytes compared to control. Together, these anti-inflammatory, antineoplasic, and contractile properties suggest the potential of HNO-NSAIDs in the treatment of inflammation, cancer, or heart failure.
Collapse
Affiliation(s)
- Debashree Basudhar
- Department of Chemistry and Biochemistry, University of Arizona , Tucson, Arizona 85721, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Johnson GM, Chozinski TJ, Salmon DJ, Moghaddam AD, Chen HC, Miranda KM. Quantitative detection of nitroxyl upon trapping with glutathione and labeling with a specific fluorogenic reagent. Free Radic Biol Med 2013; 63:476-84. [PMID: 23685286 DOI: 10.1016/j.freeradbiomed.2013.05.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 05/08/2013] [Indexed: 11/25/2022]
Abstract
Donors of nitroxyl (HNO) have shown promise for treatment of stroke, heart failure, alcoholism and cancer. However, comparing the pharmacological capacities of various donors is difficult without first quantifying the amount of HNO released from each donor. Detection and quantitation of HNO has been complicated by the rapid self-consumption of HNO through irreversible dimerization, poor selectivity of trapping agents against other nitrogen oxides, and/or low sensitivity towards HNO. Here, an assay is described for the trapping of HNO by glutathione (GSH) followed by labeling of GSH with the fluorogenic agent, naphthalene-2,3-dicarboxaldehyde (NDA), and subsequent quantitation by fluorescence difference. The newly developed assay was used to validate the pH-dependence of HNO release from isopropylamine NONOate (IPA/NO), which is a dual donor of HNO and NO at physiological pH. Furthermore, varied assay conditions were utilized to suggest the ratios of the products of the reaction of GSH with HNO. At intracellular concentrations of GSH, the disulfide (GSSG) was the major product, but significant concentrations of glutathione sulfinamide (GS(O)NH₂) were also detected. This suggests that GS(O)NH₂, which is a selective biomarker of HNO, may be produced in concentrations that are amenable to in vivo analysis.
Collapse
Affiliation(s)
- Gail M Johnson
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721
| | | | | | | | | | | |
Collapse
|
48
|
Dautov RF, Ngo DTM, Licari G, Liu S, Sverdlov AL, Ritchie RH, Kemp-Harper BK, Horowitz JD, Chirkov YY. The nitric oxide redox sibling nitroxyl partially circumvents impairment of platelet nitric oxide responsiveness. Nitric Oxide 2013; 35:72-8. [PMID: 24012721 DOI: 10.1016/j.niox.2013.08.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 08/21/2013] [Accepted: 08/28/2013] [Indexed: 01/17/2023]
Abstract
Impaired platelet responsiveness to nitric oxide (NO resistance) is a common characteristic of many cardiovascular disease states and represents an independent risk factor for cardiac events and mortality. NO resistance reflects both scavenging of NO by superoxide (O2(-)), and impairment of the NO receptor, soluble guanylate cyclase (sGC). There is thus an urgent need for circumvention of NO resistance in order to improve clinical outcomes. Nitroxyl (HNO), like NO, produces vasodilator and anti-aggregatory effects, largely via sGC activation, but is not inactivated by O2(-). We tested the hypothesis that HNO circumvents NO resistance in human platelets. In 57 subjects with or without ischemic heart disease, platelet responses to the HNO donor isopropylamine NONOate (IPA/NO) and the NO donor sodium nitroprusside (SNP) were compared. While SNP (10μM) induced 29±3% (p<0.001) inhibition of platelet aggregation, IPA/NO (10μM) caused 75±4% inhibition (p<0.001). In NO-resistant subjects (n=28), the IPA/NO:SNP response ratio was markedly increased (p<0.01), consistent with partial circumvention of NO resistance. Similarly, cGMP accumulation in platelets was greater (p<0.001) with IPA/NO than with SNP stimulation. The NO scavenger carboxy-PTIO (CPTIO, 200μM) inhibited SNP and IPA/NO responses by 92±7% and 17±4% respectively (p<0.001 for differential inhibition), suggesting that effects of IPA/NO are only partially NO-mediated. ODQ (10μM) inhibited IPA/NO responses by 36±8% (p<0.001), consistent with a contribution of sGC/haem to IPA/NO inhibition of aggregation. There was no significant relationship between whole blood ROS content and IPA/NO responses. Thus the HNO donor IPA/NO substantially circumvents platelet NO resistance while acting, at least partially, as a haem-mediated sGC activator.
Collapse
Affiliation(s)
- R F Dautov
- Cardiology Unit, Basil Hetzel Institute, The Queen Elizabeth Hospital, University of Adelaide, Woodville, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Wang YN, Collins J, Holland RJ, Keefer LK, Ivanic J. Decoding nitric oxide release rates of amine-based diazeniumdiolates. J Phys Chem A 2013; 117:6671-7. [PMID: 23834533 PMCID: PMC3763926 DOI: 10.1021/jp404589p] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Amine-based diazeniumdiolates (NONOates) have garnered widespread use as nitric oxide (NO) donors, and their potential for nitroxyl (HNO) release has more recently been realized. While NO release rates can vary significantly with the type of amine, half-lives of seconds to days under physiological conditions, there is as yet no way to determine a priori the NO or HNO production rates of a given species, and no discernible trends have manifested other than that secondary amines produce only NO (i.e., no HNO). As a step to understanding these complex systems, here we describe a procedure for modeling amine-based NONOates in water solvent that provides an excellent correlation (R(2) = 0.94) between experimentally measured dissociation rates of seven secondary amine species and their computed NO release activation energies. The significant difference in behavior of NONOates in the gas and solvent phases is also rigorously demonstrated via explicit additions of quantum mechanical water molecules. The presented results suggest that the as-yet unsynthesized simplest amine-based NONOate, the diazeniumdiolated ammonia anion [H2N-N(O)═NO(-)], could serve as an unperturbed HNO donor. These results provide a step forward toward the accurate modeling of general NO and/or HNO donors as well as for the identification of tailored prodrug candidates.
Collapse
Affiliation(s)
- Yan-Ni Wang
- Advanced Biomedical Computing Center, Information Systems Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702
| | - Jack Collins
- Advanced Biomedical Computing Center, Information Systems Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702
| | - Ryan J. Holland
- Drug Design Section, Chemical Biology Laboratory, National Cancer Institute, Frederick, MD 21702
| | - Larry K. Keefer
- Drug Design Section, Chemical Biology Laboratory, National Cancer Institute, Frederick, MD 21702
| | - Joseph Ivanic
- Advanced Biomedical Computing Center, Information Systems Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702
| |
Collapse
|
50
|
Irvine JC, Cao N, Gossain S, Alexander AE, Love JE, Qin C, Horowitz JD, Kemp-Harper BK, Ritchie RH. HNO/cGMP-dependent antihypertrophic actions of isopropylamine-NONOate in neonatal rat cardiomyocytes: potential therapeutic advantages of HNO over NO. Am J Physiol Heart Circ Physiol 2013; 305:H365-77. [PMID: 23729209 DOI: 10.1152/ajpheart.00495.2012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nitroxyl (HNO) is a redox congener of NO. We now directly compare the antihypertrophic efficacy of HNO and NO donors in neonatal rat cardiomyocytes and compare their contributing mechanisms of actions in this setting. Isopropylamine-NONOate (IPA-NO) elicited concentration-dependent inhibition of endothelin-1 (ET1)-induced increases in cardiomyocyte size, with similar suppression of hypertrophic genes. Antihypertrophic IPA-NO actions were significantly attenuated by l-cysteine (HNO scavenger), Rp-8-pCTP-cGMPS (cGMP-dependent protein kinase inhibitor), and 1-H-(1,2,4)-oxodiazolo-quinxaline-1-one [ODQ; to target soluble guanylyl cyclase (sGC)] but were unaffected by carboxy-PTIO (NO scavenger) or CGRP8-37 (calcitonin gene-related peptide antagonist). Furthermore, IPA-NO significantly increased cardiomyocyte cGMP 3.5-fold (an l-cysteine-sensitive effect) and stimulated sGC activity threefold, without detectable NO release. IPA-NO also suppressed ET1-induced cardiomyocyte superoxide generation. The pure NO donor diethylamine-NONOate (DEA-NO) reproduced these IPA-NO actions but was sensitive to carboxy-PTIO rather than l-cysteine. Although IPA-NO stimulation of purified sGC was preserved under pyrogallol oxidant stress (in direct contrast to DEA-NO), cardiomyocyte sGC activity after either donor was attenuated by this stress. Excitingly IPA-NO also exhibited acute antihypertrophic actions in response to pressure overload in the intact heart. Together these data strongly suggest that IPA-NO protection against cardiomyocyte hypertrophy is independent of both NO and CGRP but rather utilizes novel HNO activation of cGMP signaling. Thus HNO acutely limits hypertrophy independently of NO, even under conditions of elevated superoxide. Development of longer-acting HNO donors may thus represent an attractive new strategy for the treatment of cardiac hypertrophy, as stand-alone and/or add-on therapy to standard care.
Collapse
Affiliation(s)
- Jennifer C Irvine
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|