1
|
Bazany-Rodríguez I, Thangarasu P, Almada-Leyva ML, Hernández JG, Martínez-Otero D, Salomón-Flores MK, Dorazco-González A. New Fluorescent Chemodosimetric Mechanism for Selective Recognition of Selenocysteine by Dansyl-Appended Ruthenium Nitrosyl Complexes. Inorg Chem 2025; 64:3989-4004. [PMID: 39973327 PMCID: PMC11881044 DOI: 10.1021/acs.inorgchem.4c05277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/01/2025] [Accepted: 02/14/2025] [Indexed: 02/21/2025]
Abstract
Selenocysteine (Sec) is a biologically essential amino acid that serves as a crucial component in selenoproteins that play a key role in various cellular functions. Thus, developing a reliable and rapid method for detecting Sec in physiological media is of paramount importance. This report introduces for the first time a novel fluorescent chemodosimetric mechanism for the selective recognition of Sec using dansyl-appended ruthenium nitrosyl complexes. These complexes consist of a tetradentate ligand featuring a π-extended system (L = N,N'-bis(2-hydroxy-1-naphthylidene)-1,2-phenylenediamine) and a monodentate ligand derived from the conjugated dansyl group, which acts as a strong fluorescent signaling unit (ID = dansyl-imidazole, BD = dansyl-benzimidazole). The reaction between Sec and the complexes {RuNO}6 = [RuL(NO)(ID)]Cl or [RuL(NO)(BD)]Cl in an aqueous phase enhances fluorescence; as a result, it releases NO• that has been demonstrated through fluorimetric titrations, UV-vis titrations, 77Se NMR, EPR, IR, MS, and electronic density calculations. [RuL(NO)(ID)]Cl and [RuL(NO)(BD)]Cl quantitatively detect Sec within a micromolar concentration range, achieving the limit of detection as low as 0.31 and 0.12 μM, respectively, within just 5 min. Remarkably, these chemodosimeters can also be conveniently employed to detect Sec in living Saccharomyces cerevisiae cells.
Collapse
Affiliation(s)
- Iván
J. Bazany-Rodríguez
- Facultad
de Química, Universidad Nacional
Autónoma de México, C.P., Coyoacán, Ciudad de México 04510, Mexico
| | - Pandiyan Thangarasu
- Facultad
de Química, Universidad Nacional
Autónoma de México, C.P., Coyoacán, Ciudad de México 04510, Mexico
| | - M. Leticia Almada-Leyva
- Facultad
de Química, Universidad Nacional
Autónoma de México, C.P., Coyoacán, Ciudad de México 04510, Mexico
| | - José Guadalupe Hernández
- Centro
Tecnológico, Facultad de Estudios Superiores (FES-Aragón)
UNAM, Nezahualcóyotl 57130, Estado de México, Mexico
| | - Diego Martínez-Otero
- Centro
Conjunto de Investigación en Química Sustentable, UAEM-UNAM, Toluca 50200, Estado de México, Mexico
| | - María K. Salomón-Flores
- Instituto
de Química, Universidad Nacional
Autónoma de México, Coyoacán, Ciudad de México 04510, Mexico
| | | |
Collapse
|
2
|
Catevas N, Tsipis A. Axial Ligand Effects on the Mechanism of Ru-CO Bond Photodissociation and Photophysical Properties of Ru(II)-Salen PhotoCORMs/Theranostics: A Density Functional Theory Study. Molecules 2025; 30:1147. [PMID: 40076369 PMCID: PMC11901629 DOI: 10.3390/molecules30051147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 02/23/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
Density functional theory (DFT) calculations were employed to study a series of complexes of general formula [Ru(salen)(X)(CO)]0/-1 (X = Cl-, F-, SCN-, DMSO, Phosphabenzene, Phosphole, TPH, CN-, N3-, NO3-, CNH-, NHC, P(OH)3, PF3, PH3). The effect of ligands X on the Ru-CO bond was quantified by the trans-philicity, Δσ13C NMR parameter. The potential of Δσ13C to be used as a probe of the CO photodissociation by Ru(II) transition metal complexes is established upon comparing it with other trans-effect parameters. An excellent linear correlation is found between the energy barrier for the Ru-CO photodissociation and the Δσ13C parameter, paving the way for studying photoCORMs with the 13C NMR method. The strongest trans-effect on the Ru-CO bond in the [Ru(salen)(X)(CO)]0/-1 complexes are found when X = CNH-, NHC, and P(OH)3, while the weakest for X = Cl-, NO3- and DMSO trans-axial ligands. The Ru-CO bonding properties were scrutinized using Natural Bond Orbital (NBO), Natural Energy Decomposition Analysis (NEDA) and Natural Orbital of Chemical Valence (NOCV) methods. The nature of the Ru-CO bond is composite, i.e., electrostatic, covalent and charge transfer. Both donation and backdonation between CO ligand and Ru metal centre equally stabilize the Ru(II) complexes. Ru-CO photodissociation proceeds via a 3MC triplet excited state, exhibiting a conical intersection with the T13MLCT excited state. Calculations show that these complexes show bands within visible while they are expected to be red emitters. Therefore, the [Ru(salen)(X)(CO)]0/-1 complexes under study could potentially be used for dual action, photoCORMs and theranostics compounds.
Collapse
Affiliation(s)
| | - Athanassios Tsipis
- Laboratory of Inorganic Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece;
| |
Collapse
|
3
|
Brovko AO, Kuratieva NV, Pishchur DP, Kostin GA. Heteroleptic Complexes of Ruthenium Nitrosyl with Pyridine and Bypiridine-Synthesis and Photoisomerization. Molecules 2024; 29:4039. [PMID: 39274887 PMCID: PMC11397342 DOI: 10.3390/molecules29174039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/06/2024] [Accepted: 08/14/2024] [Indexed: 09/16/2024] Open
Abstract
The reaction of [RuNO(Py)2Cl2OH] with bipyridine in water-ethanol media results in trans-(NO, OH)-[RuNO(Py)(Bpy)ClOH]+ with an acceptable yield (60-70%) as hexafluorophosphate salt. Further treatment of the hydroxy-complex with concentrated HF quantitatively leads to trans-(NO, F)-[RuNO(Py)(Bpy)ClF]+. Despite the chirality of both coordination spheres, the hexafluorophosphate salts crystallized as racemates. A NO-linkage isomerism study of the obtained complexes was performed at 80 K with different excitation wavelengths (405, 450, 488 nm). The most favorable wavelengths for the MS1 isomer (Ru-ON) formation were 405 and 450 nm, where the linkage isomer populations were 17% and 1% for [RuNO(Py)(Bpy)ClOH]PF6 and [RuNO(Py)(Bpy)ClF]PF6. The shift of the excitation wavelength to the green (488 nm) sharply decreased the MS1 population. The IR-spectral signatures of MS1 were registered. Reverse-transformation Ru-ON (MS1)-Ru-NO (GS) was investigated for [RuNO(Py)(Bpy)ClOH]PF6 using IR and DSC techniques that made it possible to determine the kinetic parameters (Ea and k0) and decay temperature.
Collapse
Affiliation(s)
- Anastasiya O Brovko
- Nikolaev Institute of Inorganic Chemistry Siberian Branch of Russian Academy of Science, Lavrentieva 3, 630090 Novosibirsk, Russia
| | - Natalya V Kuratieva
- Nikolaev Institute of Inorganic Chemistry Siberian Branch of Russian Academy of Science, Lavrentieva 3, 630090 Novosibirsk, Russia
| | - Denis P Pishchur
- Nikolaev Institute of Inorganic Chemistry Siberian Branch of Russian Academy of Science, Lavrentieva 3, 630090 Novosibirsk, Russia
| | - Gennadiy A Kostin
- Nikolaev Institute of Inorganic Chemistry Siberian Branch of Russian Academy of Science, Lavrentieva 3, 630090 Novosibirsk, Russia
| |
Collapse
|
4
|
Bhowmik R, Roy M. Recent advances on the development of NO-releasing molecules (NORMs) for biomedical applications. Eur J Med Chem 2024; 268:116217. [PMID: 38367491 DOI: 10.1016/j.ejmech.2024.116217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/02/2024] [Accepted: 02/02/2024] [Indexed: 02/19/2024]
Abstract
Nitric oxide (NO) is an important biological messenger as well as a signaling molecule that participates in a broad range of physiological events and therapeutic applications in biological systems. However, due to its very short half-life in physiological conditions, its therapeutic applications are restricted. Efforts have been made to develop an enormous number of NO-releasing molecules (NORMs) and motifs for NO delivery to the target tissues. These NORMs involve organic nitrate, nitrite, nitro compounds, transition metal nitrosyls, and several nanomaterials. The controlled release of NO from these NORMs to the specific site requires several external stimuli like light, sound, pH, heat, enzyme, etc. Herein, we have provided a comprehensive review of the biochemistry of nitric oxide, recent advancements in NO-releasing materials with the appropriate stimuli of NO release, and their biomedical applications in cancer and other disease control.
Collapse
Affiliation(s)
- Rintu Bhowmik
- Department of Chemistry, National Institute of Technology Manipur, Langol, 795004, Imphal West, Manipur, India
| | - Mithun Roy
- Department of Chemistry, National Institute of Technology Manipur, Langol, 795004, Imphal West, Manipur, India.
| |
Collapse
|
5
|
Kim M, Park S, Song D, You Y, Lim M, Lee HI. Effect of Electron-donating Group on NO Photolysis of {RuNO} 6 Ruthenium Nitrosyl Complexes with N 2 O 2 Lgands Bearing π-Extended Rings. Chem Asian J 2024; 19:e202300908. [PMID: 37969065 DOI: 10.1002/asia.202300908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/17/2023]
Abstract
In this study, we introduced the electron-donating group (-OH) to the aromatic rings of Ru(salophen)(NO)Cl (0) (salophenH2 =N,N'-(1,2-phenylene)bis(salicylideneimine)) to investigate the influence of the substitution on NO photolysis and NO-releasing dynamics. Three derivative complexes, Ru((o-OH)2 -salophen)(NO)Cl (1), Ru((m-OH)2 -salophen)(NO)Cl (2), and Ru((p-OH)2 -salophen)(NO)Cl (3) were developed and their NO photolysis was monitored by using UV/Vis, EPR, NMR, and IR spectroscopies under white room light. Spectroscopic results indicated that the complexes were diamagnetic Ru(II)-NO+ species which were converted to low-spin Ru(III) species (d5 , S=1/2) and released NO radicals by photons. The conversion was also confirmed by determining the single-crystal structure of the photoproduct of 1. The photochemical quantum yields (ΦNO s) of the photolysis were determined to be 0>1, 2, 3 at both the visible and UV excitations. Femtosecond (fs) time-resolved mid-IR spectroscopy was employed for studying NO-releasing dynamics. The geminate rebinding (GR) rates of the photoreleased NO to the photolyzed complexes were estimated to be 0≃1, 2, 3. DFT and TDDFT computations found that the introduction of the hydroxyl groups elevated the ligand π-bonding orbitals (π (salophen)), resulting in decrease of the HOMO-LUMO gaps in 1-3. The theoretical calculations suggested that the Ru-NNO bond dissociations of the complexes were mostly initiated by the ligand-to-ligand charge transfer (LLCT) of π(salophen)→π*(Ru-NO) with both the visible and UV excitations and the decreasing ΦNO s could be explained by the changes of the electronic structures in which the photoactivable bands of 1-3 have relatively less contribution of transitions related with Ru-NO bond than those of 0.
Collapse
Affiliation(s)
- Minyoung Kim
- Department of Chemistry and Green-Nano Research Center, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Seongchul Park
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan, 46241, Republic of Korea
| | - Dayoon Song
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Youngmin You
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Manho Lim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan, 46241, Republic of Korea
| | - Hong-In Lee
- Department of Chemistry and Green-Nano Research Center, Kyungpook National University, Daegu, 41566, Republic of Korea
| |
Collapse
|
6
|
Kumbhakar S, Gupta P, Giri B, Muley A, Karumban KS, Misra A, Maji S. Photolability of NO in ruthenium nitrosyls with pentadentate ligand induces exceptional cytotoxicity towards VCaP, 22Rv1 and A549 cancer cells under therapeutic condition. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Lacroix PG, Malfant I, Labra-Vázquez P, Fárfan N, Ramos-Ortiz G. Two-photon absorption-based delivery of nitric oxide from ruthenium nitrosyl complexes. Dalton Trans 2022; 51:14833-14841. [PMID: 36169419 DOI: 10.1039/d2dt02553a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Since the discovery of the numerous physiological roles exhibited by nitric oxide (NO), ruthenium nitrosyl (RuNO) complexes have been regarded as one of the most promising NO donors, stable, well tolerated by the body and capable of releasing NO locally and quantitatively, under light irradiation. This release can be achieved by two-photon absorption (TPA) processes, which allow the irradiation to be performed in the near infrared domain, where light has its maximum depth of penetration in biological tissues. This review provides a short introduction on the biological properties of NO, on RuNO complexes with photo-releasing capabilities, and on the origin of TPA properties in molecules. Then, the RuNO complexes with TPA capabilities are thoroughly discussed either as monometallic or polymetallic species.
Collapse
Affiliation(s)
- Pascal G Lacroix
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, F-31077 Toulouse, France.
| | - Isabelle Malfant
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, F-31077 Toulouse, France.
| | - Pablo Labra-Vázquez
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, F-31077 Toulouse, France. .,Facultad de Química, Departamento de Química Orgánica, Universidad Nacional Autónoma de México, 04510 México D.F., Mexico
| | - Norberto Fárfan
- Facultad de Química, Departamento de Química Orgánica, Universidad Nacional Autónoma de México, 04510 México D.F., Mexico
| | - Gabriel Ramos-Ortiz
- Centro de Investigaciones en Óptica (CIO), A.P. 1-948, 37000 León, Gto, Mexico
| |
Collapse
|
8
|
Kim M, Park S, Song D, Moon D, You Y, Lim M, Lee HI. Visible-light NO photolysis of ruthenium nitrosyl complexes with N 2O 2 ligands bearing π-extended rings and their photorelease dynamics. Dalton Trans 2022; 51:11404-11415. [PMID: 35822310 DOI: 10.1039/d2dt01019d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
NO photorelease and its dynamics for two {RuNO}6 complexes, Ru(salophen)(NO)Cl (1) and Ru(naphophen)(NO)Cl (2), with salen-type ligands bearing π-extended systems (salophenH2 = N,N'-(1,2-phenylene)-bis(salicylideneimine) and naphophenH2 = N,N'-1,2-phenylene-bis(2-hydroxy-1-naphthylmethyleneimine)) were investigated. NO photolysis was performed under white room light and monitored by UV/Vis, EPR, and NMR spectroscopies. NO photolysis was also performed under 459 and 489 nm irradiation for 1 and 2, respectively. The photochemical quantum yields of the NO photolysis (ΦNO) of both 1 and 2 were determined to be 9% at the irradiation wavelengths. The structural and spectroscopic characteristics of the complexes before and after the photolysis confirmed the conversion of diamagnetic Ru(II)(L)(Cl)-NO+ to paramagnetic S = ½ Ru(III)(L)(Cl)-solvent by photons (L = salophen2- and naphophen2-). The photoreleased NO radicals were detected by spin-trapping EPR. DFT and TDDFT calculations found that the photoactive bands are configured as mostly the ligand-to-ligand charge transfer (LLCT) of π(L) → π*(Ru-NO), suggesting that the NO photorelease was initiated by the LLCT. Dynamics of NO photorelease from the complexes in DMSO under 320 nm excitation were investigated by femtosecond (fs) time-resolved mid-IR spectroscopy. The primary photorelease of NO occurred for less than 0.32 ps after the excitation. The rate constants (k-1) of the geminate rebinding of NO to the photolyzed 1 and 2 were determined to be (15 ps)-1 and (13 ps)-1, respectively. The photochemical quantum yields of NO photolysis (ΦNO, λ = 320 nm) were estimated to be no higher than 14% for 1 and 11% for 2, based on the analysis of the fs time-resolved IR data. The results of fs time-resolved IR spectroscopy and theoretical calculations provided some insight into the overall kinetic reaction pathway, localized electron pathway or resonance pathway, of the NO photolysis of 1 and 2. Overall, our study found that the investigated {RuNO}6 complexes, 1 and 2, with planar N2O2 ligands bearing π-extended rings effectively released NO under visible light.
Collapse
Affiliation(s)
- Minyoung Kim
- Department of Chemistry and Green-Nano Research Center, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Seongchul Park
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea.
| | - Dayoon Song
- Division of Chemical Engineering and Materials Science, and Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Dohyun Moon
- Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Youngmin You
- Division of Chemical Engineering and Materials Science, and Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Manho Lim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea.
| | - Hong-In Lee
- Department of Chemistry and Green-Nano Research Center, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
9
|
Stepanenko I, Zalibera M, Schaniel D, Telser J, Arion V. Ruthenium-nitrosyl complexes as NO-releasing molecules and potential anticancer drugs. Dalton Trans 2022; 51:5367-5393. [DOI: 10.1039/d2dt00290f] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of new types of mono- and polynuclear ruthenium nitrosyl complexes is driving progress in the field of NO generation for a variety of applications. Light-induced Ru-NO bond dissociation...
Collapse
|
10
|
Cho JH, Kim M, You Y, Lee HI. A new photoactivable NO-releasing {Ru-NO} 6 ruthenium nitrosyl complex with a tetradentate ligand containing aniline and pyridine moieties. Chem Asian J 2021; 17:e202101244. [PMID: 34921511 DOI: 10.1002/asia.202101244] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/25/2021] [Indexed: 11/12/2022]
Abstract
A new type of photoactivable NO-releasing ruthenium nitrosyl complex, [Ru(EPBP)Cl(NO)], with a tetradentate ligand, N,N'-(ethane-1,2-diyldi-o-phenylene)-bis(pyridine-2-carboxamide) (= H2 EPBP) was synthesized. Single crystal X-ray crystallography revealed that the complex has a distorted octahedral coordination geometry and NO is positioned at cis to Cl- ion. NO-photolysis was observed under a white room light. The photodissociation of Ru-NO bond was identified by various techniques including X-ray crystallography, IR, UV/Vis absorption, electron paramagnetic resonance (EPR), and NMR spectroscopies. Quantum yields for the NO-photolysis of the complex in CH3 OH, CHCl3 , DMSO, CH3 CN, and CH3 NO2 were measured to be 0.19-0.36 with 400 (±5) nm excitation. Density functional theory (DFT) and time-dependent density functional theory (TDDFT) calculations were performed to understand the details of the photodissociation of the complex. The calculations suggest that the NO photolysis is most likely initiated by the electronic transition from the aniline moiety π MOs (π (aniline)) of the EPBP2- chelating ligand to the π-antibonding MO of Ru-NO (π*(Ru-NO)). Experimental and theoretical investigations indicate that the EPBP2- ligand provides an effective platform forming ruthenium nitrosyl complexes useful for NO-photoreleasing.
Collapse
Affiliation(s)
- Jang-Hoon Cho
- Department of Chemistry and Green-Nano Research Center, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Minyoung Kim
- Department of Chemistry and Green-Nano Research Center, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Youngmin You
- Division of Chemical Engineering and Materials Science and Graduated Program in System Health Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Hong-In Lee
- Department of Chemistry and Green-Nano Research Center, Kyungpook National University, Daegu, 41566, Republic of Korea
| |
Collapse
|
11
|
Weinstain R, Slanina T, Kand D, Klán P. Visible-to-NIR-Light Activated Release: From Small Molecules to Nanomaterials. Chem Rev 2020; 120:13135-13272. [PMID: 33125209 PMCID: PMC7833475 DOI: 10.1021/acs.chemrev.0c00663] [Citation(s) in RCA: 324] [Impact Index Per Article: 64.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Indexed: 02/08/2023]
Abstract
Photoactivatable (alternatively, photoremovable, photoreleasable, or photocleavable) protecting groups (PPGs), also known as caged or photocaged compounds, are used to enable non-invasive spatiotemporal photochemical control over the release of species of interest. Recent years have seen the development of PPGs activatable by biologically and chemically benign visible and near-infrared (NIR) light. These long-wavelength-absorbing moieties expand the applicability of this powerful method and its accessibility to non-specialist users. This review comprehensively covers organic and transition metal-containing photoactivatable compounds (complexes) that absorb in the visible- and NIR-range to release various leaving groups and gasotransmitters (carbon monoxide, nitric oxide, and hydrogen sulfide). The text also covers visible- and NIR-light-induced photosensitized release using molecular sensitizers, quantum dots, and upconversion and second-harmonic nanoparticles, as well as release via photodynamic (photooxygenation by singlet oxygen) and photothermal effects. Release from photoactivatable polymers, micelles, vesicles, and photoswitches, along with the related emerging field of photopharmacology, is discussed at the end of the review.
Collapse
Affiliation(s)
- Roy Weinstain
- School
of Plant Sciences and Food Security, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Tomáš Slanina
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| | - Dnyaneshwar Kand
- School
of Plant Sciences and Food Security, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Petr Klán
- Department
of Chemistry and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
12
|
Zhang Z, Luo X, Yang Y. From Spontaneous to Photo‐Triggered and Photo‐Calibrated Nitric Oxide Donors. Isr J Chem 2020. [DOI: 10.1002/ijch.202000084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ziqian Zhang
- Guangxi Scientific Research Center of Traditional Chinese Medicine Guangxi University of Chinese Medicine Wuhe avenue 13 Nanning 530200 China
| | - Xiao Luo
- School of Chemistry and Molecular Engineering East China Normal University Dongchuan Road 500 Shanghai 200241 China
| | - Youjun Yang
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy East China University of Science and Technology Meilong Road 130 Shanghai 200237 China
| |
Collapse
|
13
|
Giri B, Saini T, Kumbhakar S, Selvan K K, Muley A, Misra A, Maji S. Near-IR light-induced photorelease of nitric oxide (NO) on ruthenium nitrosyl complexes: formation, reactivity, and biological effects. Dalton Trans 2020; 49:10772-10785. [PMID: 32706352 DOI: 10.1039/d0dt01788d] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polypyridyl backbone nitrosyl complexes of ruthenium with the molecular framework [RuII(antpy)(bpy)NO+/˙]n+ [4](PF6)3 (n = 3), [4](PF6)2 (n = 2), where antpy = 4'-(anthracene-9-yl)-2,2':6',2''-terpyridine and bpy = 2,2'-bipyridine, were synthesized via a stepwise synthetic route from the chloro precursor [RuII(antpy)(bpy)(Cl)](PF6) [1](PF6) and [RuII(antpy)(bpy)(CH3CN)](PF6)2 [2](PF6)2 and [RuII(antpy)(bpy)(NO2)](PF6) [3](PF6). After column chromatographic purification, all the synthesized complexes were fully characterized using different spectroscopic and analytical techniques including mass spectroscopy, 1H NMR, FT-IR and UV-vis spectrophotometry. The Ru-NO stretching frequency of [4](PF6)3 was observed at 1941 cm-1, which suggests moderately strong Ru-NO bonding. A massive shift in the νNO frequency occurred at Δν = 329 cm-1 (solid) upon reducing [4](PF6)3 to [4](PF6)2. To understand the molecular integrity of the complexes, the structure of [3](PF6) was successfully determined by X-ray crystallography. The redox properties of [4](PF6)3 were thoroughly investigated together with the other precursor complexes. The rate constants for the first-order photo-release of NO from [4](PF6)3 and [4](PF6)2 were determined to be 8.01 × 10-3 min-1 (t1/2 ∼ 86 min) and 3.27 × 10-2 min-1 (t1/2 ∼ 21 min), respectively, when exposed to a 200 W Xenon light. Additionally, the photo-cleavage of Ru-NO occurred within ∼2 h when [4](PF6)3 was irradiated with an IR light source (>700 nm) at room temperature. The first-order rate constant of 9.4 × 10-3 min-1 (t1/2 ∼ 73 min) shows the efficacy of the system and its capability to release NO in the photo-therapeutic window. The released NO triggered by light was trapped by reduced myoglobin, a biologically relevant target protein. The one-electron reduction of [4](PF6)3 to [4](PF6)2 was systematically carried out chemically (hydrazine hydrate), electrochemically and biologically. In the biological reduction, it was found that the reduction is much slower with double-stranded DNA compared to a single-stranded oligonucleotide (CAAGGCCAACCGCGAGAAGATGAC). Moreover, [4](PF6)3 exhibited significant photo-toxicity to the VCaP prostate cancer cell line upon irradiation with a visible light source (IC50 ∼ 8.97 μM).
Collapse
Affiliation(s)
- Bishnubasu Giri
- Department of Chemistry, Indian Institute of Technology, Hyderabad, Kandi, Sangareddy 502285, Telangana, India.
| | - Taruna Saini
- Department of Biotechnology, Indian Institute of Technology, Hyderabad, Kandi, Sangareddy 502285, Telangana, India
| | - Sadananda Kumbhakar
- Department of Chemistry, Indian Institute of Technology, Hyderabad, Kandi, Sangareddy 502285, Telangana, India.
| | - Kalai Selvan K
- Department of Chemistry, Indian Institute of Technology, Hyderabad, Kandi, Sangareddy 502285, Telangana, India.
| | - Arabinda Muley
- Department of Chemistry, Indian Institute of Technology, Hyderabad, Kandi, Sangareddy 502285, Telangana, India.
| | - Ashish Misra
- Department of Biotechnology, Indian Institute of Technology, Hyderabad, Kandi, Sangareddy 502285, Telangana, India
| | - Somnath Maji
- Department of Chemistry, Indian Institute of Technology, Hyderabad, Kandi, Sangareddy 502285, Telangana, India.
| |
Collapse
|
14
|
Giri B, Kumbhakar S, Kalai Selvan K, Muley A, Maji S. Formation, reactivity, photorelease, and scavenging of NO in ruthenium nitrosyl complexes. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2019.119360] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
15
|
Half-sandwich d 6 metal complexes with bis(pyridine carboxamide)benzene ligand: Synthesis and spectral analysis. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2017.07.098] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
16
|
Kumar R, Yadav A, Ratnam A, Kumar S, Bala M, Sur D, Narang S, Singh UP, Mandal PK, Ghosh K. Organometallic Ruthenium Nitrosyl Obtained by C-H Bond Activation - Photoinduced Delivery of Nitric Oxide and NO-Mediated Antiproliferation Activity Studies. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201700839] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Rajan Kumar
- Department of Chemistry; Indian Institute of Technology, Roorkee; 247667 Roorkee Uttarakhand India
| | - Anjlika Yadav
- Department of Biotechnology; Indian Institute of Technology, Roorkee; 247667 Roorkee Uttarakhand India
| | - Anand Ratnam
- Department of Chemistry; Indian Institute of Technology, Roorkee; 247667 Roorkee Uttarakhand India
| | - Sushil Kumar
- Department of Chemistry; Indian Institute of Technology, Roorkee; 247667 Roorkee Uttarakhand India
| | - Manju Bala
- Department of Chemistry; Indian Institute of Technology, Roorkee; 247667 Roorkee Uttarakhand India
| | - Debpali Sur
- Department of Biotechnology; Indian Institute of Technology, Roorkee; 247667 Roorkee Uttarakhand India
| | - Shikha Narang
- Department of Chemistry; Indian Institute of Technology, Roorkee; 247667 Roorkee Uttarakhand India
| | - Udai P. Singh
- Department of Chemistry; Indian Institute of Technology, Roorkee; 247667 Roorkee Uttarakhand India
| | - Prabhat K. Mandal
- Department of Biotechnology; Indian Institute of Technology, Roorkee; 247667 Roorkee Uttarakhand India
| | - Kaushik Ghosh
- Department of Chemistry; Indian Institute of Technology, Roorkee; 247667 Roorkee Uttarakhand India
| |
Collapse
|
17
|
Xiang HJ, Guo M, Liu JG. Transition-Metal Nitrosyls for Photocontrolled Nitric Oxide Delivery. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201601135] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Hui-Jing Xiang
- School of Chemistry and Molecular Engineering; East China University of Science and Technology; 200237 Shanghai P. R. China
| | - Min Guo
- School of Chemistry and Molecular Engineering; East China University of Science and Technology; 200237 Shanghai P. R. China
| | - Jin-Gang Liu
- School of Chemistry and Molecular Engineering; East China University of Science and Technology; 200237 Shanghai P. R. China
| |
Collapse
|
18
|
Amabilino S, Tasse M, Lacroix PG, Mallet-Ladeira S, Pimienta V, Akl J, Sasaki I, Malfant I. Photorelease of nitric oxide (NO) on ruthenium nitrosyl complexes with phenyl substituted terpyridines. NEW J CHEM 2017. [DOI: 10.1039/c7nj00866j] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Transandcisisomers of ruthenium nitrosyl complexes release NO upon irradiation by visible light and give a unique photoproduct.
Collapse
Affiliation(s)
- Silvia Amabilino
- CNRS
- LCC (Laboratoire de Chimie de Coordination)
- 31077 Toulouse
- France
- Université de Toulouse
| | - Marine Tasse
- CNRS
- LCC (Laboratoire de Chimie de Coordination)
- 31077 Toulouse
- France
- Université de Toulouse
| | - Pascal G. Lacroix
- CNRS
- LCC (Laboratoire de Chimie de Coordination)
- 31077 Toulouse
- France
- Université de Toulouse
| | - Sonia Mallet-Ladeira
- CNRS
- LCC (Laboratoire de Chimie de Coordination)
- 31077 Toulouse
- France
- Université de Toulouse
| | - Véronique Pimienta
- Laboratoire des Interactions Moléculaires et de la Réactivité Chimique et Photochimique
- Université Paul Sabatier de Toulouse
- 31062 Toulouse Cedex 9
- France
| | - Joëlle Akl
- CNRS
- LCC (Laboratoire de Chimie de Coordination)
- 31077 Toulouse
- France
- Université de Toulouse
| | - Isabelle Sasaki
- CNRS
- LCC (Laboratoire de Chimie de Coordination)
- 31077 Toulouse
- France
- Université de Toulouse
| | - Isabelle Malfant
- CNRS
- LCC (Laboratoire de Chimie de Coordination)
- 31077 Toulouse
- France
- Université de Toulouse
| |
Collapse
|
19
|
Xiang HJ, Guo M, An L, Yang SP, Zhang QL, Liu JG. A multifunctional nanoplatform for lysosome targeted delivery of nitric oxide and photothermal therapy under 808 nm near-infrared light. J Mater Chem B 2016; 4:4667-4674. [DOI: 10.1039/c6tb00730a] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
NIR light induced spatiotemporal delivery of NO to lysosome accompanied by hyperthermia was realized.
Collapse
Affiliation(s)
- Hui-Jing Xiang
- Key Laboratory for Advanced Materials of MOE & Department of Chemistry
- East China University of Science and Technology
- Shanghai
- China
| | - Min Guo
- Key Laboratory for Advanced Materials of MOE & Department of Chemistry
- East China University of Science and Technology
- Shanghai
- China
| | - Lu An
- Key Laboratory of Resource Chemistry of MOE & Shanghai Key Laboratory of Rare Earth Functional Materials
- Shanghai Normal University
- Shanghai
- China
| | - Shi-Ping Yang
- Key Laboratory of Resource Chemistry of MOE & Shanghai Key Laboratory of Rare Earth Functional Materials
- Shanghai Normal University
- Shanghai
- China
| | - Qian-Ling Zhang
- Shenzhen Key Laboratory of Functional Polymer
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen
- China
| | - Jin-Gang Liu
- Key Laboratory for Advanced Materials of MOE & Department of Chemistry
- East China University of Science and Technology
- Shanghai
- China
| |
Collapse
|
20
|
Kumar R, Kumar S, Bala M, Ratnam A, Singh UP, Ghosh K. Site-specific orthometallation via C–H bond activation and syntheses of ruthenium(iii) organometallics: studies on nitric oxide (NO) reactivity and photorelease of coordinated NO. RSC Adv 2016. [DOI: 10.1039/c6ra17223g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
σ-Aryl ruthenium(iii) complexes were synthesized by C–H bond activation and organometallic nitrosyl complexes were synthesized and characterized by spectroscopy and crystal structure. Coordinated NO molecule was found to be photolabile.
Collapse
Affiliation(s)
- Rajan Kumar
- Department of Chemistry
- Indian Institute of Technology Roorkee
- Roorkee – 247667
- India
| | - Sushil Kumar
- Department of Chemistry
- Indian Institute of Technology Roorkee
- Roorkee – 247667
- India
| | - Manju Bala
- Department of Chemistry
- Indian Institute of Technology Roorkee
- Roorkee – 247667
- India
| | - Anand Ratnam
- Department of Chemistry
- Indian Institute of Technology Roorkee
- Roorkee – 247667
- India
| | - U. P. Singh
- Department of Chemistry
- Indian Institute of Technology Roorkee
- Roorkee – 247667
- India
| | - Kaushik Ghosh
- Department of Chemistry
- Indian Institute of Technology Roorkee
- Roorkee – 247667
- India
| |
Collapse
|
21
|
Ramidi P, Felton CM, Subedi BP, Zhou H, Tian ZR, Gartia Y, Pierce BS, Ghosh A. Synthesis and characterization of manganese(III) and high-valent manganese-oxo complexes and their roles in conversion of alkenes to cyclic carbonates. J CO2 UTIL 2015. [DOI: 10.1016/j.jcou.2014.12.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
22
|
Recent Progress in Photoinduced NO Delivery With Designed Ruthenium Nitrosyl Complexes. ADVANCES IN INORGANIC CHEMISTRY 2015. [DOI: 10.1016/bs.adioch.2014.11.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
23
|
Ghosh S, Paul SS, Mitra J, Mukherjea KK. Rhenium(II) nitrosyl complexes: synthesis, characterization, DFT calculations and DNA nuclease activity. J COORD CHEM 2014. [DOI: 10.1080/00958972.2014.924622] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Swapna Ghosh
- Department of Chemistry, Jadavpur University, Kolkata, India
- Department of Chemistry, Sreegopal Banerjee College, Hooghly, India
| | | | - Joyee Mitra
- Department of Chemistry, IIT Kanpur, Kanpur, India
| | | |
Collapse
|
24
|
Pierri AE, Muizzi DA, Ostrowski AD, Ford PC. Photo-Controlled Release of NO and CO with Inorganic and Organometallic Complexes. LUMINESCENT AND PHOTOACTIVE TRANSITION METAL COMPLEXES AS BIOMOLECULAR PROBES AND CELLULAR REAGENTS 2014. [DOI: 10.1007/430_2014_164] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
25
|
Ruthenium(II) complexes derived from the ligands having carboxamide groups: Reactivity and scavenging of nitric oxide (NO). J Organomet Chem 2014. [DOI: 10.1016/j.jorganchem.2013.10.054] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
26
|
deBoer-Maggard TR, Fry NL, Mascharak PK. Evidence of dexter energy transfer in NO photolability of dye-sensitized ruthenium nitrosyls. Inorganica Chim Acta 2013. [DOI: 10.1016/j.ica.2013.04.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
27
|
Kumar A, Pandey R, Gupta RK, Ghosh K, Pandey DS. Synthesis, characterization and photochemical properties of some ruthenium nitrosyl complexes. Polyhedron 2013. [DOI: 10.1016/j.poly.2012.07.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
28
|
Meghdadi S, Mirkhani V, Kia R, Moghadam M, Tangestaninejad S, Mohammadpoor-Baltork I. Electrochemical synthesis and crystal structure of zinc(II) complexes with N2N′2S2 amide–thioether hexadentate ligands. Polyhedron 2012. [DOI: 10.1016/j.poly.2012.04.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
29
|
Liu N, Yin P, Chen Y, Deng Y, He L. Preparation of α-Sulfonylethanone Oximes from Oxidized Hydroxylamine. European J Org Chem 2012. [DOI: 10.1002/ejoc.201200133] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
30
|
Zheng W, Wu S, Zhao S, Geng Y, Jin J, Su Z, Fu Q. Carbonyl Amine/Schiff Base Ligands in Manganese Complexes: Theoretical Study on the Mechanism, Capability of NO Release. Inorg Chem 2012; 51:3972-80. [DOI: 10.1021/ic2011953] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Weili Zheng
- Institute of Functional Material Chemistry, Faculty
of Chemistry, Northeast Normal University, Changchun 130024, Jilin, People’s Republic of China
| | - Shuixing Wu
- Institute of Functional Material Chemistry, Faculty
of Chemistry, Northeast Normal University, Changchun 130024, Jilin, People’s Republic of China
| | - Shanshan Zhao
- Institute of Functional Material Chemistry, Faculty
of Chemistry, Northeast Normal University, Changchun 130024, Jilin, People’s Republic of China
| | - Yun Geng
- Institute of Functional Material Chemistry, Faculty
of Chemistry, Northeast Normal University, Changchun 130024, Jilin, People’s Republic of China
| | - Junling Jin
- Institute of Functional Material Chemistry, Faculty
of Chemistry, Northeast Normal University, Changchun 130024, Jilin, People’s Republic of China
| | - Zhongmin Su
- Institute of Functional Material Chemistry, Faculty
of Chemistry, Northeast Normal University, Changchun 130024, Jilin, People’s Republic of China
| | - Qiang Fu
- Institute of Functional Material Chemistry, Faculty
of Chemistry, Northeast Normal University, Changchun 130024, Jilin, People’s Republic of China
| |
Collapse
|
31
|
Fry NL, Mascharak PK. Photolability of NO in designed metal nitrosyls with carboxamido-N donors: a theoretical attempt to unravel the mechanism. Dalton Trans 2012; 41:4726-35. [PMID: 22388493 DOI: 10.1039/c2dt12470j] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
During the past few years, photoactive metal nitrosyls (NO complexes of metals) have drawn attention as potential drugs for delivery of nitric oxide (NO) to biological targets under the control of light. Major success in this area has been achieved with designed metal nitrosyls derived from ligands that contain carboxamide group(s). A number of iron, manganese and ruthenium {MNO}(6) nitrosyls of such kind exhibit excellent NO photolability under low-power visible and near-IR light. The results of theoretical studies on these NO-donors have provided insight into (a) the electronic transitions that lead to photorelease of NO and (b) the structural features of the ligands that dictate the sensitivity of the nitrosyls to light of specific wavelengths. In addition, the results have afforded clear understanding of the electronic configurations of the various nitrosyls. This article highlights these results in a coherent manner. Good matches between the predicted and observed spectral features and NO photolability strongly suggest that theoretical studies should be an integral part of the smart design of such NO-donors in the future research.
Collapse
Affiliation(s)
- Nicole L Fry
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | | |
Collapse
|
32
|
Merkle AC, McQuarters AB, Lehnert N. Synthesis, spectroscopic analysis and photolabilization of water-soluble ruthenium(iii)–nitrosyl complexes. Dalton Trans 2012; 41:8047-59. [DOI: 10.1039/c2dt30464c] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
33
|
Tfouni E, Truzzi DR, Tavares A, Gomes AJ, Figueiredo LE, Franco DW. Biological activity of ruthenium nitrosyl complexes. Nitric Oxide 2012; 26:38-53. [DOI: 10.1016/j.niox.2011.11.005] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 11/29/2011] [Accepted: 11/30/2011] [Indexed: 12/20/2022]
|
34
|
Chowdhury AD, De P, Mobin SM, Lahiri GK. Influence of nitrosyl coordination on the binding mode of quinaldate in selective ruthenium frameworks. Electronic structure and reactivity aspects. RSC Adv 2012. [DOI: 10.1039/c2ra00953f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
35
|
Fry NL, Wei J, Mascharak PK. Triggered Dye Release via Photodissociation of Nitric Oxide from Designed Ruthenium Nitrosyls: Turn-ON Fluorescence Signaling of Nitric Oxide Delivery. Inorg Chem 2011; 50:9045-52. [DOI: 10.1021/ic201242d] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Nicole L. Fry
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, United States
| | - Julia Wei
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, United States
| | - Pradip K. Mascharak
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, United States
| |
Collapse
|
36
|
Fry NL, Mascharak PK. Photoactive ruthenium nitrosyls as NO donors: how to sensitize them toward visible light. Acc Chem Res 2011; 44:289-98. [PMID: 21361269 DOI: 10.1021/ar100155t] [Citation(s) in RCA: 277] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Nitric oxide (NO) can induce apoptosis (programmed cell death) at micromolar or higher doses. Although cell death via NO-induced apoptosis has been studied quite extensively, the targeted delivery of such doses of NO to infected or malignant tissues has not been achieved. The primary obstacle is indiscriminate NO release from typical systemic donors such as glycerin trinitrate: once administered, the drug travels throughout the body, and NO is released through a variety of enzymatic, redox, and pH-dependent pathways. Photosensitive NO donors have the ability to surmount this difficulty through the use of light as a localized stimulus for NO delivery. The potential of the method has prompted synthetic research efforts toward new NO donors for use as photopharmaceuticals in the treatment of infections and malignancies. Over the past few years, we have designed and synthesized several metal nitrosyls (NO complexes of metals) that rapidly release NO when exposed to low-power (milliwatt or greater) light of various wavelengths. Among them, the ruthenium nitrosyls exhibit exceptional stability in biological media. However, typical ruthenium nitrosyls release NO upon exposure to UV light, which is hardly suitable for phototherapy. By following a few novel synthetic strategies, we have overcome this problem and synthesized a variety of ruthenium nitrosyls that strongly absorb light in the 400-600-nm range and rapidly release NO under such illumination. In this Account, we describe our progress in designing photoactive ruthenium nitrosyls as visible-light-sensitive NO donors. Our research has shown that alteration of the ligands, in terms of (i) donor atoms, (ii) extent of conjugation, and (iii) substituents on the ligand frames, sensitizes the final ruthenium nitrosyls toward visible light in a predictable fashion. Density functional theory (DFT) and time-dependent DFT (TDDFT) calculations provide guidance in this "smart design" of ligands. We have also demonstrated that direct attachment of dye molecules as light-harvesting antennas also sensitize ruthenium nitrosyls to visible light, and TDDFT calculations provide insight into the mechanisms of sensitization by this technique. The fluorescence of the dye ligands makes these NO donors "trackable" within cellular matrices. Selected ruthenium nitrosyls have been used to deliver NO to cellular targets to induce apoptosis. Our open-design strategies allow the isolation of a variety of these ruthenium nitrosyls, depending on the choices of the ligand frames and dyes. These designed nitrosyls will thus be valuable in the future endeavor of synthesizing novel pharmaceuticals for phototherapy.
Collapse
Affiliation(s)
- Nicole L. Fry
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, United States
| | - Pradip K. Mascharak
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, United States
| |
Collapse
|
37
|
Stasicka Z. Transition metal complexes as solar photocatalysts in the environment. ADVANCES IN INORGANIC CHEMISTRY 2011. [DOI: 10.1016/b978-0-12-385904-4.00004-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
38
|
De P, Maji S, Dutta Chowdhury A, Mobin SM, Kumar Mondal T, Paretzki A, Lahiri GK. Ruthenium nitrosyl complexes with 1,4,7-trithiacyclononane and 2,2′-bipyridine (bpy) or 2-phenylazopyridine (pap) coligands. Electronic structure and reactivity aspects. Dalton Trans 2011; 40:12527-39. [DOI: 10.1039/c1dt10761e] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|