1
|
Bhardwaj A, Mondal B. Unraveling the Geometry-Driven C═C Epoxidation and C-H Hydroxylation Reactivity of Tetra-Coordinated Nonheme Iron(IV)-Oxo Complexes. Inorg Chem 2024; 63:14468-14481. [PMID: 39030661 DOI: 10.1021/acs.inorgchem.4c01708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
The electronic structure and reactivity of tetra-coordinated nonheme iron(IV)-oxo complexes have remained unexplored for years. The recent synthesis of a closed-shell iron(IV)-oxo complex [(quinisox)FeIV(O)]+ (1) has set up a platform to understand how such complexes compare with the celebrated open-shell iron-oxo chemistry. Herein, using density functional theory and ab initio calculations, we present an in-depth electronic structure investigation of the C═C epoxidation [oxygen atom transfer (OAT)] and C-H hydroxylation [hydrogen atom transfer (HAT)] reactivity of 1. Using a solvent-coordinated geometry of 1 (1') and other potential tetra-coordinated iron(IV)-oxo complexes bearing rigid ligands (2 and 3), we established the geometric origin of spin-state energetics and reactivity of 1. Complex 1 featuring a strong Fe-O bond exhibits OAT and HAT reactivity in its quintet state. The lowest quintet OAT pathway has a lower barrier by ∼4 kcal/mol than the quintet HAT pathway, corroborating the experimentally observed gas-phase OAT reactivity preference. A conventional HAT reactivity preference for 2 and a comparable OAT and HAT reactivity for 3 are observed. This further supports the geometry-driven reactivity preference for 1. Noncovalent interaction analyses reveal a pronounced π-π interaction between the substrate and ligand in the OAT transition state, rationalizing the origin of the observed reactivity preference for 1.
Collapse
Affiliation(s)
- Akhil Bhardwaj
- School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh 175075, India
| | - Bhaskar Mondal
- School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh 175075, India
| |
Collapse
|
2
|
Chandra B, Ahsan F, Sheng Y, Swart M, Que L. A tale of two topological isomers: Uptuning [Fe IV(O)(Me 4cyclam)] 2+ for olefin epoxidation. Proc Natl Acad Sci U S A 2024; 121:e2319799121. [PMID: 38478690 PMCID: PMC10962992 DOI: 10.1073/pnas.2319799121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/30/2024] [Indexed: 03/27/2024] Open
Abstract
TMC-anti and TMC-syn, the two topological isomers of [FeIV(O)(TMC)(CH3CN)]2+ (TMC = 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane, or Me4cyclam), differ in the orientations of their FeIV=O units relative to the four methyl groups of the TMC ligand framework. The FeIV=O unit of TMC-anti points away from the four methyl groups, while that of TMC-syn is surrounded by the methyl groups, resulting in differences in their oxidative reactivities. TMC-syn reacts with HAT (hydrogen atom transfer) substrates at 1.3- to 3-fold faster rates than TMC-anti, but the reactivity difference increases dramatically in oxygen-atom transfer reactions. R2S substrates are oxidized into R2S=O products at rates 2-to-3 orders of magnitude faster by TMC-syn than TMC-anti. Even more remarkably, TMC-syn epoxidizes all the olefin substrates in this study, while TMC-anti reacts only with cis-cyclooctene but at a 100-fold slower rate. Comprehensive quantum chemical calculations have uncovered the key factors governing such reactivity differences found between these two topological isomers.
Collapse
Affiliation(s)
- Bittu Chandra
- Department of Chemistry, University of Minnesota, Minneapolis, MN55455
| | - Faiza Ahsan
- Institut de Química Computacional i Catàlisi and Department of Chemistry, University of Girona, 17003Girona, Spain
| | - Yuan Sheng
- Department of Chemistry, University of Minnesota, Minneapolis, MN55455
| | - Marcel Swart
- Institut de Química Computacional i Catàlisi and Department of Chemistry, University of Girona, 17003Girona, Spain
- ICREA, 08010Barcelona, Spain
| | - Lawrence Que
- Department of Chemistry, University of Minnesota, Minneapolis, MN55455
| |
Collapse
|
3
|
Zheng Y, Shen Q, Li Z, Jing X, Duan C. Two Copper-Containing Polyoxometalate-Based Metal-Organic Complexes as Heterogeneous Catalysts for the C-H Bond Oxidation of Benzylic Compounds and Olefin Epoxidation. Inorg Chem 2022; 61:11156-11164. [PMID: 35799381 DOI: 10.1021/acs.inorgchem.2c01073] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Using a one-pot assembly method, two novel copper-containing Keggin-type polyoxometalates (POMs)-based metal-organic complexes, that is, [CuII2(pbba)2NO3-(H2O)2(PW12O40)]·3H2O [PW12-Cu-pbba, H2pbba = 1,1'-(1,4-phenylene-bis(methylene))-bis(pyridine-3-carboxylic acid)] and [CuII2(pbba)2(H2O)2(GeW12O40)]·3H2O (GeW12-Cu-pbba), were successfully synthesized. These two complexes are isostructural, differing only in their POM components. They are applicable as heterogeneous catalysts for the C-H bond oxidation of benzylic compounds and olefin epoxidation under mild conditions, with oxygen as the oxidant and isobutyraldehyde as the coreductant. The catalytic activity of PW12-Cu-pbba was superior to that of GeW12-Cu-pbba. Under the optimal conditions, PW12-Cu-pbba catalyzed the oxidation of indane into 1-indanone with an 81% yield and >99% selectivity within 48 h. As heterogeneous catalysts, both complexes demonstrated excellent recoverability and high stability and could be stably reused five times without significant activity loss.
Collapse
Affiliation(s)
- Yiying Zheng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Qingbo Shen
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Zhentao Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Xu Jing
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
4
|
Remiya JP, Sikha TS, Shyni B. One-pot synthesis and characterization of Schiff base macrocyclic complexes as a potential bioactive core – a review. J COORD CHEM 2022. [DOI: 10.1080/00958972.2021.2025223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- J. P. Remiya
- Department of Chemistry, Mahatma Gandhi College, University of Kerala, Thiruvananthapuram, India
| | - T. S. Sikha
- Department of Chemistry, Mahatma Gandhi College, University of Kerala, Thiruvananthapuram, India
| | - B. Shyni
- Department of Chemistry, Mahatma Gandhi College, University of Kerala, Thiruvananthapuram, India
| |
Collapse
|
5
|
Zahradníková E, Císařová I, Drahoš B. Syntheses and crystal structures of Ni(II) complexes with pyridine-based macrocyclic ligands. Polyhedron 2022. [DOI: 10.1016/j.poly.2021.115552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
6
|
Latifi R, Palluccio TD, Ye W, Minnick JL, Glinton KS, Rybak-Akimova EV, de Visser SP, Tahsini L. pH Changes That Induce an Axial Ligand Effect on Nonheme Iron(IV) Oxo Complexes with an Appended Aminopropyl Functionality. Inorg Chem 2021; 60:13821-13832. [PMID: 34291939 DOI: 10.1021/acs.inorgchem.1c01312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nonheme iron enzymes often utilize a high-valent iron(IV) oxo species for the biosynthesis of natural products, but their high reactivity often precludes structural and functional studies of these complexes. In this work, a combined experimental and computational study is presented on a biomimetic nonheme iron(IV) oxo complex bearing an aminopyridine macrocyclic ligand and its reactivity toward olefin epoxidation upon changes in the identity and coordination ability of the axial ligand. Herein, we show a dramatic effect of the pH on the oxygen-atom-transfer (OAT) reaction with substrates. In particular, these changes have occurred because of protonation of the axial-bound pendant amine group, where its coordination to iron is replaced by a solvent molecule or anionic ligand. This axial ligand effect influences the catalysis, and we observe enhanced cyclooctene epoxidation yields and turnover numbers in the presence of the unbound protonated pendant amine group. Density functional theory studies were performed to support the experiments and highlight that replacement of the pendant amine with a neutral or anionic ligand dramatically lowers the rate-determining barriers of cyclooctene epoxidation. The computational work further establishes that the change in OAT is due to electrostatic interactions of the pendant amine cation that favorably affect the barrier heights.
Collapse
Affiliation(s)
- Reza Latifi
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Taryn D Palluccio
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Wanhua Ye
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Jennifer L Minnick
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Kwame S Glinton
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Elena V Rybak-Akimova
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Sam P de Visser
- Manchester Institute of Biotechnology and Department of Chemical Engineering and Analytical Science, The University of Manchester, Manchester M1 7DN, United Kingdom
| | - Laleh Tahsini
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| |
Collapse
|
7
|
Guo M, Lee YM, Fukuzumi S, Nam W. Biomimetic metal-oxidant adducts as active oxidants in oxidation reactions. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213807] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
8
|
Singh P, Stewart-Jones E, Denler MC, Jackson TA. Mechanistic insight into oxygen atom transfer reactions by mononuclear manganese(IV)-oxo adducts. Dalton Trans 2021; 50:3577-3585. [PMID: 33616141 PMCID: PMC8075156 DOI: 10.1039/d0dt04436a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
High-valent metal-oxo intermediates are well known to facilitate oxygen-atom transfer (OAT) reactions both in biological and synthetic systems. These reactions can occur by a single-step OAT mechanism or by a stepwise process initiated by rate-limiting electron transfer between the substrate and the metal-oxo unit. Several recent reports have demonstrated that changes in the metal reduction potential, caused by the addition of Brønsted or Lewis acids, cause a change in sulfoxidation mechanism of MnIV-oxo complexes from single-step OAT to the multistep process. In this work, we sought to determine if ca. 4000-fold rate variations observed for sulfoxidation reactions by a series of MnIV-oxo complexes supported by neutral, pentadentate ligands could arise from a change in sulfoxidation mechanism. We examined the basis for this rate variation by performing variable-temperature kinetic studies to determine activation parameters for the reactions of the MnIV-oxo complexes with thioanisole. These data reveal activation barriers predominantly controlled by activation enthalpy, with unexpectedly small contributions from the activation entropy. We also compared the reactivity of these MnIV-oxo complexes by a Hammett analysis using para-substituted thioanisole derivatives. Similar Hammett ρ values from this analysis suggest a common sulfoxidation mechanism for these complexes. Because the rates of oxidation of the para-substituted thioanisole derivatives by the MnIV-oxo adducts are much faster than that expected from the Marcus theory of outer-sphere electron-transfer, we conclude that these reactions proceed by a single-step OAT mechanism. Thus, large variations in sulfoxidation by this series of MnIV-oxo centers occur without a change in reaction mechanism.
Collapse
Affiliation(s)
- Priya Singh
- The University of Kansas, Department of Chemistry and Center for Environmentally Beneficial Catalysis, 1567 Irving Hill Road, Lawrence, KS 66045, USA.
| | - Eleanor Stewart-Jones
- The University of Kansas, Department of Chemistry and Center for Environmentally Beneficial Catalysis, 1567 Irving Hill Road, Lawrence, KS 66045, USA.
| | - Melissa C Denler
- The University of Kansas, Department of Chemistry and Center for Environmentally Beneficial Catalysis, 1567 Irving Hill Road, Lawrence, KS 66045, USA.
| | - Timothy A Jackson
- The University of Kansas, Department of Chemistry and Center for Environmentally Beneficial Catalysis, 1567 Irving Hill Road, Lawrence, KS 66045, USA.
| |
Collapse
|
9
|
Yepremyan A, Mekhail MA, Niebuhr BP, Pota K, Sadagopan N, Schwartz TM, Green KN. Synthesis of 12-Membered Tetra-aza Macrocyclic Pyridinophanes Bearing Electron-Withdrawing Groups. J Org Chem 2020; 85:4988-4998. [PMID: 32208700 DOI: 10.1021/acs.joc.0c00188] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The number of substituted pyridine pyridinophanes found in the literature is limited due to challenges associated with 12-membered macrocycle and modified pyridine synthesis. Most notably, the electrophilic character at the 4-position of pyridine in pyridinophanes presents a unique challenge for introducing electrophilic chemical groups. Likewise, of the few reported, most substituted pyridine pyridinophanes in the literature are limited to electron-donating functionalities. Herein, new synthetic strategies for four new macrocycles bearing the electron-withdrawing groups CN, Cl, NO2, and CF3 are introduced. Potentiometric titrations were used to determine the protonation constants of the new pyridinophanes. Further, the influence of such modifications on the chemical behavior is predicted by comparing the potentiometric results to previously reported systems. X-ray diffraction analysis of the 4-Cl substituted species and its Cu(II) complex are also described to demonstrate the metal binding nature of these ligands. DFT analysis is used to support the experimental findings through energy calculations and ESP maps. These new molecules serve as a foundation to access a range of new pyridinophane small molecules and applications in future work.
Collapse
Affiliation(s)
- Akop Yepremyan
- Department of Chemistry and Biochemistry, Texas Christian University, 2950 W. Bowie, Fort Worth, Texas 76129, United States
| | - Magy A Mekhail
- Department of Chemistry and Biochemistry, Texas Christian University, 2950 W. Bowie, Fort Worth, Texas 76129, United States
| | - Brian P Niebuhr
- Department of Chemistry and Biochemistry, Texas Christian University, 2950 W. Bowie, Fort Worth, Texas 76129, United States
| | - Kristof Pota
- Department of Chemistry and Biochemistry, Texas Christian University, 2950 W. Bowie, Fort Worth, Texas 76129, United States
| | - Nishanth Sadagopan
- Department of Chemistry and Biochemistry, Texas Christian University, 2950 W. Bowie, Fort Worth, Texas 76129, United States
| | - Timothy M Schwartz
- Department of Chemistry and Biochemistry, Texas Christian University, 2950 W. Bowie, Fort Worth, Texas 76129, United States
| | - Kayla N Green
- Department of Chemistry and Biochemistry, Texas Christian University, 2950 W. Bowie, Fort Worth, Texas 76129, United States
| |
Collapse
|
10
|
Synthesis of three new branched octadentate (N8) Schiff Base and competitive Lithium-7 NMR study of the stoichiometry and stability constant of Mn2+, Zn2+ and Cd2+ complexes in acetonitrile – [(BMIM)(PF6)] mixture. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.126965] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Mekhail MA, Pota K, Schwartz TM, Green KN. Functionalized pyridine in pyclen-based iron( iii) complexes: evaluation of fundamental properties. RSC Adv 2020; 10:31165-31170. [PMID: 34094507 PMCID: PMC8174454 DOI: 10.1039/d0ra05756h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Six iron(iii) pyridinophane complexes were evaluated to determine whether functionalizing the pyridine ring could introduce a handle by which electrochemical properties and thermodynamic stability can be tuned.
Collapse
Affiliation(s)
- Magy A. Mekhail
- Department of Chemistry and Biochemistry
- Texas Christian University
- Fort Worth
- USA
| | - Kristof Pota
- Department of Chemistry and Biochemistry
- Texas Christian University
- Fort Worth
- USA
| | - Timothy M. Schwartz
- Department of Chemistry and Biochemistry
- Texas Christian University
- Fort Worth
- USA
| | - Kayla N. Green
- Department of Chemistry and Biochemistry
- Texas Christian University
- Fort Worth
- USA
| |
Collapse
|
12
|
Terencio T, Andris E, Gamba I, Srnec M, Costas M, Roithová J. Chemoselectivity in the Oxidation of Cycloalkenes with a Non-Heme Iron(IV)-Oxo-Chloride Complex: Epoxidation vs. Hydroxylation Selectivity. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:1923-1933. [PMID: 31399940 PMCID: PMC6805805 DOI: 10.1007/s13361-019-02251-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/15/2019] [Accepted: 05/15/2019] [Indexed: 06/10/2023]
Abstract
We report and analyze chemoselectivity in the gas phase reactions of cycloalkenes (cyclohexene, cycloheptene, cis-cyclooctene, 1,4-cyclohexadiene) with a non-heme iron(IV)-oxo complex [(PyTACN)Fe(O)(Cl)]+, which models the active species in iron-dependent halogenases. Unlike in the halogenases, we did not observe any chlorination of the substrate. However, we observed two other reaction pathways: allylic hydrogen atom transfer (HAT) and alkene epoxidation. The HAT is clearly preferred in the case of 1,4-cyclohexadiene, both pathways have comparable reaction rates in reaction with cyclohexene, and epoxidation is strongly favored in reactions with cycloheptene and cis-cyclooctene. This preference for epoxidation differs from the reactivity of iron(IV)-oxo complexes in the condensed phase, where HAT usually prevails. To understand the observed selectivity, we analyze effects of the substrate, spin state, and solvation. Our DFT and CASPT2 calculations suggest that all the reactions occur on the quintet potential energy surface. The DFT-calculated energies of the transition states for the epoxidation and hydroxylation pathways explain the observed chemoselectivity. The SMD implicit solvation model predicts the relative increase of the epoxidation barriers with solvent polarity, which explains the clear preference of HAT in the condensed phase.
Collapse
Affiliation(s)
- Thibault Terencio
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 43, Prague 2, Czech Republic
- School of Chemical Science and Engineering, Yachay Tech University, 100650, Yachay City of Knowledge, Urcuqui, Ecuador
| | - Erik Andris
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 43, Prague 2, Czech Republic
| | - Ilaria Gamba
- Departament de Quimica and Institute of Computational Chemistry and Catalysis (IQCC), University of Girona, Campus Montilivi, 17071, Girona, Spain
| | - Martin Srnec
- J. Heyrovsky Institute of Physical Chemistry of the CAS, v. v. i., Dolejškova 2155/3, 182 23, Prague 8, Czech Republic.
| | - Miquel Costas
- Departament de Quimica and Institute of Computational Chemistry and Catalysis (IQCC), University of Girona, Campus Montilivi, 17071, Girona, Spain.
| | - Jana Roithová
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 43, Prague 2, Czech Republic.
- Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, Netherlands.
| |
Collapse
|
13
|
Piquette MC, Kryatov SV, Rybak-Akimova EV. Kinetic Studies on the Oxoiron(IV) Complex with Tetradentate Aminopyridine Ligand PDP*: Restoration of Catalytic Activity by Reduction with H2O2. Inorg Chem 2019; 58:13382-13393. [DOI: 10.1021/acs.inorgchem.9b02269] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Marc C. Piquette
- Department of Chemistry, Tufts University, 62 Talbot Avenue, Medford, Massachusetts 02155, United States
| | - Sergiy V. Kryatov
- Department of Chemistry, Tufts University, 62 Talbot Avenue, Medford, Massachusetts 02155, United States
| | - Elena V. Rybak-Akimova
- Department of Chemistry, Tufts University, 62 Talbot Avenue, Medford, Massachusetts 02155, United States
| |
Collapse
|
14
|
Tseberlidis G, Demonti L, Pirovano V, Scavini M, Cappelli S, Rizzato S, Vicente R, Caselli A. Controlling Selectivity in Alkene Oxidation: Anion Driven Epoxidation or Dihydroxylation Catalysed by [Iron(III)(Pyridine‐Containing Ligand)] Complexes. ChemCatChem 2019. [DOI: 10.1002/cctc.201901045] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Giorgio Tseberlidis
- Department of Chemistry and ISTM-CNR-MilanoUniversità degli Studi di Milano Via Golgi 19 Milano 20133 Italy
| | - Luca Demonti
- Department of Chemistry and ISTM-CNR-MilanoUniversità degli Studi di Milano Via Golgi 19 Milano 20133 Italy
| | - Valentina Pirovano
- Department of Pharmaceutical Sciences General and Organic Chemistry Section “A. Marchesini”University of Milan Via Venezian 21 Milano 20133 Italy
| | - Marco Scavini
- Department of Chemistry and ISTM-CNR-MilanoUniversità degli Studi di Milano Via Golgi 19 Milano 20133 Italy
| | - Serena Cappelli
- Department of Chemistry and ISTM-CNR-MilanoUniversità degli Studi di Milano Via Golgi 19 Milano 20133 Italy
| | - Silvia Rizzato
- Department of Chemistry and ISTM-CNR-MilanoUniversità degli Studi di Milano Via Golgi 19 Milano 20133 Italy
| | - Rubén Vicente
- Departamento de Química Orgánica e Inorgánica and Instituto Universitario de Química Organometálica “Enrique Moles”Universidad de Oviedo c/ Julián Clavería 8 Oviedo 33007 Spain
| | - Alessandro Caselli
- Department of Chemistry and ISTM-CNR-MilanoUniversità degli Studi di Milano Via Golgi 19 Milano 20133 Italy
| |
Collapse
|
15
|
Singh R, Ganguly G, Malinkin SO, Demeshko S, Meyer F, Nordlander E, Paine TK. A Mononuclear Nonheme Iron(IV)-Oxo Complex of a Substituted N4Py Ligand: Effect of Ligand Field on Oxygen Atom Transfer and C–H Bond Cleavage Reactivity. Inorg Chem 2019; 58:1862-1876. [DOI: 10.1021/acs.inorgchem.8b02577] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Reena Singh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Gaurab Ganguly
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Sergey O. Malinkin
- Chemical Physics, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Serhiy Demeshko
- Universität
Göttingen, Institut für Anorganische Chemie, Tammanstrasse 4, D-37077 Göttingen, Germany
| | - Franc Meyer
- Universität
Göttingen, Institut für Anorganische Chemie, Tammanstrasse 4, D-37077 Göttingen, Germany
| | - Ebbe Nordlander
- Chemical Physics, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Tapan Kanti Paine
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
16
|
Nurttila SS, Brenner W, Mosquera J, van Vliet KM, Nitschke JR, Reek JNH. Size-Selective Hydroformylation by a Rhodium Catalyst Confined in a Supramolecular Cage. Chemistry 2019; 25:609-620. [PMID: 30351486 PMCID: PMC6391983 DOI: 10.1002/chem.201804333] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 10/19/2018] [Indexed: 12/28/2022]
Abstract
Size-selective hydroformylation of terminal alkenes was attained upon embedding a rhodium bisphosphine complex in a supramolecular metal-organic cage that was formed by subcomponent self-assembly. The catalyst was bound in the cage by a ligand-template approach, in which pyridyl-zinc(II) porphyrin interactions led to high association constants (>105 m-1 ) for the binding of the ligands and the corresponding rhodium complex. DFT calculations confirm that the second coordination sphere forces the encapsulated active species to adopt the ee coordination geometry (i.e., both phosphine ligands in equatorial positions), in line with in situ high-pressure IR studies of the host-guest complex. The window aperture of the cage decreases slightly upon binding the catalyst. As a result, the diffusion of larger substrates into the cage is slower compared to that of smaller substrates. Consequently, the encapsulated rhodium catalyst displays substrate selectivity, converting smaller substrates faster to the corresponding aldehydes. This selectivity bears a resemblance to an effect observed in nature, where enzymes are able to discriminate between substrates based on shape and size by embedding the active site deep inside the hydrophobic pocket of a bulky protein structure.
Collapse
Affiliation(s)
- Sandra S. Nurttila
- Van't Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098XHAmsterdamThe Netherlands
| | - Wolfgang Brenner
- Department of ChemistryUniversity of CambridgeLensfield RoadCB2 1EWCambridgeUK
| | - Jesús Mosquera
- Department of ChemistryUniversity of CambridgeLensfield RoadCB2 1EWCambridgeUK
| | - Kaj M. van Vliet
- Van't Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098XHAmsterdamThe Netherlands
| | | | - Joost N. H. Reek
- Van't Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098XHAmsterdamThe Netherlands
| |
Collapse
|
17
|
Harmalkar DS, Santosh G, Shetgaonkar SB, Sankaralingam M, Dhuri SN. A putative heme manganese(v)-oxo species in the C–H activation and epoxidation reactions in an aqueous buffer. NEW J CHEM 2019. [DOI: 10.1039/c9nj01381d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Synthesis and reactivity studies of manganese(v)-oxo species in the C–H activation of alkyl hydrocarbons and epoxidation of cyclohexene in aqueous conditions are investigated.
Collapse
Affiliation(s)
| | - G. Santosh
- School of Chemical Sciences
- Goa University
- Panaji
- India
- Divison of Chemistry
| | | | | | | |
Collapse
|
18
|
Synthesis, characterization, and oxidation catalysis studies of a monofunctionalized copper pyridine-aza macrocycle. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2018.07.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
19
|
Brewer SM, Wilson KR, Jones DG, Reinheimer EW, Archibald SJ, Prior TJ, Ayala MA, Foster AL, Hubin TJ, Green KN. Increase of Direct C-C Coupling Reaction Yield by Identifying Structural and Electronic Properties of High-Spin Iron Tetra-azamacrocyclic Complexes. Inorg Chem 2018; 57:8890-8902. [PMID: 30024738 PMCID: PMC7067264 DOI: 10.1021/acs.inorgchem.8b00777] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Macrocyclic ligands have been explored extensively as scaffolds for transition metal catalysts for oxygen and hydrogen atom transfer reactions. C-C reactions facilitated using earth abundant metals bound to macrocyclic ligands have not been well-understood but could be a green alternative to replacing the current expensive and toxic precious metal systems most commonly used for these processes. Therefore, the yields from direct Suzuki-Miyaura C-C coupling of phenylboronic acid and pyrrole to produce 2-phenylpyrrole facilitated by eight high-spin iron complexes ([Fe3+L1(Cl)2]+, [Fe3+L4(Cl)2]+, [Fe2+L5(Cl)]+, [Fe2+L6(Cl)2], [Fe3+L7(Cl)2]+, [Fe3+L8(Cl)2]+, [Fe2+L9(Cl)]+, and [Fe2+L10(Cl)]+) were compared to identify the effect of structural and electronic properties on catalytic efficiency. Specifically, catalyst complexes were compared to evaluate the effect of five properties on catalyst reaction yields: (1) the coordination requirements of the catalyst, (2) redox half-potential of each complex, (3) topological constraint/rigidity, (4) N atom modification(s) increasing oxidative stability of the complex, and (5) geometric parameters. The need for two labile cis-coordination sites was confirmed based on a 42% decrease in catalytic reaction yield observed when complexes containing pentadentate ligands were used in place of complexes with tetradentate ligands. A strong correlation between iron(III/II) redox potential and catalytic reaction yields was also observed, with [Fe2+L6(Cl)2] providing the highest yield (81%, -405 mV). A Lorentzian fitting of redox potential versus yields predicts that these catalysts can undergo more fine-tuning to further increase yields. Interestingly, the remaining properties explored did not show a direct, strong relationship to catalytic reaction yields. Altogether, these results show that modifications to the ligand scaffold using fundamental concepts of inorganic coordination chemistry can be used to control the catalytic activity of macrocyclic iron complexes by controlling redox chemistry of the iron center. Furthermore, the data provide direction for the design of improved catalysts for this reaction and strategies to understand the impact of a ligand scaffold on catalytic activity of other reactions.
Collapse
Affiliation(s)
- Samantha M. Brewer
- Department of Chemistry and Biochemistry, Texas Christian University, 2950 S. Bowie, Fort Worth, TX 76129, United States
| | - Kevin R. Wilson
- Department of Chemistry and Physics, Southwestern Oklahoma State University, 100 Campus Drive, Weatherford, OK 73096, United States
| | - Donald G. Jones
- Department of Chemistry and Physics, Southwestern Oklahoma State University, 100 Campus Drive, Weatherford, OK 73096, United States
| | - Eric W. Reinheimer
- Rigaku Oxford Diffraction, 9009 New Trails Drive The Woodlands, TX, United States
| | - Stephen J. Archibald
- Department of Chemistry and Positron Emission Tomography Research Centre, University of Hull, Cottingham Road, Hull HU6 7RX, UK
| | - Timothy J. Prior
- Department of Chemistry and Positron Emission Tomography Research Centre, University of Hull, Cottingham Road, Hull HU6 7RX, UK
| | - Megan A. Ayala
- Department of Chemistry and Physics, Southwestern Oklahoma State University, 100 Campus Drive, Weatherford, OK 73096, United States
| | - Alexandria L. Foster
- Department of Chemistry and Physics, Southwestern Oklahoma State University, 100 Campus Drive, Weatherford, OK 73096, United States
| | - Timothy J. Hubin
- Department of Chemistry and Physics, Southwestern Oklahoma State University, 100 Campus Drive, Weatherford, OK 73096, United States
| | - Kayla N. Green
- Department of Chemistry and Biochemistry, Texas Christian University, 2950 S. Bowie, Fort Worth, TX 76129, United States
| |
Collapse
|
20
|
Zhang J, Wei WJ, Lu X, Yang H, Chen Z, Liao RZ, Yin G. Nonredox Metal Ions Promoted Olefin Epoxidation by Iron(II) Complexes with H2O2: DFT Calculations Reveal Multiple Channels for Oxygen Transfer. Inorg Chem 2017; 56:15138-15149. [DOI: 10.1021/acs.inorgchem.7b02463] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jisheng Zhang
- School of Chemistry and Chemical Engineering, Key laboratory
of Material Chemistry for Energy Conversion and Storage, Ministry
of Education, Hubei Key Laboratory of Material Chemistry and Service
Failure, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Wen-Jie Wei
- School of Chemistry and Chemical Engineering, Key laboratory
of Material Chemistry for Energy Conversion and Storage, Ministry
of Education, Hubei Key Laboratory of Material Chemistry and Service
Failure, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Xiaoyan Lu
- School of Chemistry and Chemical Engineering, Key laboratory
of Material Chemistry for Energy Conversion and Storage, Ministry
of Education, Hubei Key Laboratory of Material Chemistry and Service
Failure, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Hang Yang
- School of Chemistry and Chemical Engineering, Key laboratory
of Material Chemistry for Energy Conversion and Storage, Ministry
of Education, Hubei Key Laboratory of Material Chemistry and Service
Failure, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Zhuqi Chen
- School of Chemistry and Chemical Engineering, Key laboratory
of Material Chemistry for Energy Conversion and Storage, Ministry
of Education, Hubei Key Laboratory of Material Chemistry and Service
Failure, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Rong-Zhen Liao
- School of Chemistry and Chemical Engineering, Key laboratory
of Material Chemistry for Energy Conversion and Storage, Ministry
of Education, Hubei Key Laboratory of Material Chemistry and Service
Failure, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Guochuan Yin
- School of Chemistry and Chemical Engineering, Key laboratory
of Material Chemistry for Energy Conversion and Storage, Ministry
of Education, Hubei Key Laboratory of Material Chemistry and Service
Failure, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| |
Collapse
|
21
|
Tseberlidis G, Intrieri D, Caselli A. Catalytic Applications of Pyridine-Containing Macrocyclic Complexes. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201700633] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Giorgio Tseberlidis
- Department of Chemistry; Università degli Studi di Milano and ISTM-CNR-Milano; Via Golgi 19 20133 Milan Italy
| | - Daniela Intrieri
- Department of Chemistry; Università degli Studi di Milano and ISTM-CNR-Milano; Via Golgi 19 20133 Milan Italy
| | - Alessandro Caselli
- Department of Chemistry; Università degli Studi di Milano and ISTM-CNR-Milano; Via Golgi 19 20133 Milan Italy
| |
Collapse
|
22
|
Synthesis, characterization and crystal structure determination of a new Zn(II) Schiff base complex derived from condensation of a new asymmetrical tripodal amine, 3-((4-aminobutyl)(pyridin-2-ylmethyl)amino)propan-1-ol and 2-hydroxy-3-methoxybenzaldehyde. JOURNAL OF SAUDI CHEMICAL SOCIETY 2017. [DOI: 10.1016/j.jscs.2015.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
23
|
Vaddypally S, Kondaveeti SK, Karki S, Van Vliet MM, Levis RJ, Zdilla MJ. Reactive Pendant Mn═O in a Synthetic Structural Model of a Proposed S4 State in the Photosynthetic Oxygen Evolving Complex. J Am Chem Soc 2017; 139:4675-4681. [DOI: 10.1021/jacs.6b05906] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Shivaiah Vaddypally
- Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States
| | - Sandeep K. Kondaveeti
- Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States
| | - Santosh Karki
- Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States
| | - Megan M. Van Vliet
- Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States
| | - Robert J. Levis
- Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States
| | - Michael J. Zdilla
- Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
24
|
Villar-Acevedo G, Lugo-Mas P, Blakely MN, Rees JA, Ganas AS, Hanada EM, Kaminsky W, Kovacs JA. Metal-Assisted Oxo Atom Addition to an Fe(III) Thiolate. J Am Chem Soc 2016; 139:119-129. [PMID: 28033001 DOI: 10.1021/jacs.6b03512] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cysteinate oxygenation is intimately tied to the function of both cysteine dioxygenases (CDOs) and nitrile hydratases (NHases), and yet the mechanisms by which sulfurs are oxidized by these enzymes are unknown, in part because intermediates have yet to be observed. Herein, we report a five-coordinate bis-thiolate ligated Fe(III) complex, [FeIII(S2Me2N3(Pr,Pr))]+ (2), that reacts with oxo atom donors (PhIO, IBX-ester, and H2O2) to afford a rare example of a singly oxygenated sulfenate, [FeIII(η2-SMe2O)(SMe2)N3(Pr,Pr)]+ (5), resembling both a proposed intermediate in the CDO catalytic cycle and the essential NHase Fe-S(O)Cys114 proposed to be intimately involved in nitrile hydrolysis. Comparison of the reactivity of 2 with that of a more electron-rich, crystallographically characterized derivative, [FeIIIS2Me2NMeN2amide(Pr,Pr)]- (8), shows that oxo atom donor reactivity correlates with the metal ion's ability to bind exogenous ligands. Density functional theory calculations suggest that the mechanism of S-oxygenation does not proceed via direct attack at the thiolate sulfurs; the average spin-density on the thiolate sulfurs is approximately the same for 2 and 8, and Mulliken charges on the sulfurs of 8 are roughly twice those of 2, implying that 8 should be more susceptible to sulfur oxidation. Carboxamide-ligated 8 is shown to be unreactive towards oxo atom donors, in contrast to imine-ligated 2. Azide (N3-) is shown to inhibit sulfur oxidation with 2, and a green intermediate is observed, which then slowly converts to sulfenate-ligated 5. This suggests that the mechanism of sulfur oxidation involves initial coordination of the oxo atom donor to the metal ion. Whether the green intermediate is an oxo atom donor adduct, Fe-O═I-Ph, or an Fe(V)═O remains to be determined.
Collapse
Affiliation(s)
- Gloria Villar-Acevedo
- The Department of Chemistry, University of Washington , Box 351700, Seattle, Washington 98195-1700, United States
| | - Priscilla Lugo-Mas
- The Department of Chemistry, University of Washington , Box 351700, Seattle, Washington 98195-1700, United States
| | - Maike N Blakely
- The Department of Chemistry, University of Washington , Box 351700, Seattle, Washington 98195-1700, United States
| | - Julian A Rees
- The Department of Chemistry, University of Washington , Box 351700, Seattle, Washington 98195-1700, United States
| | - Abbie S Ganas
- The Department of Chemistry, University of Washington , Box 351700, Seattle, Washington 98195-1700, United States
| | - Erin M Hanada
- The Department of Chemistry, University of Washington , Box 351700, Seattle, Washington 98195-1700, United States
| | - Werner Kaminsky
- The Department of Chemistry, University of Washington , Box 351700, Seattle, Washington 98195-1700, United States
| | - Julie A Kovacs
- The Department of Chemistry, University of Washington , Box 351700, Seattle, Washington 98195-1700, United States
| |
Collapse
|
25
|
Sahu S, Zhang B, Pollock CJ, Dürr M, Davies CG, Confer AM, Ivanović-Burmazović I, Siegler MA, Jameson GNL, Krebs C, Goldberg DP. Aromatic C-F Hydroxylation by Nonheme Iron(IV)-Oxo Complexes: Structural, Spectroscopic, and Mechanistic Investigations. J Am Chem Soc 2016; 138:12791-12802. [PMID: 27656776 PMCID: PMC5628738 DOI: 10.1021/jacs.6b03346] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The synthesis and reactivity of a series of mononuclear nonheme iron complexes that carry out intramolecular aromatic C-F hydroxylation reactions is reported. The key intermediate prior to C-F hydroxylation, [FeIV(O)(N4Py2Ar1)](BF4)2 (1-O, Ar1 = -2,6-difluorophenyl), was characterized by single-crystal X-ray diffraction. The crystal structure revealed a nonbonding C-H···O═Fe interaction with a CH3CN molecule. Variable-field Mössbauer spectroscopy of 1-O indicates an intermediate-spin (S = 1) ground state. The Mössbauer parameters for 1-O include an unusually small quadrupole splitting for a triplet FeIV(O) and are reproduced well by density functional theory calculations. With the aim of investigating the initial step for C-F hydroxylation, two new ligands were synthesized, N4Py2Ar2 (L2, Ar2 = -2,6-difluoro-4-methoxyphenyl) and N4Py2Ar3 (L3, Ar3 = -2,6-difluoro-3-methoxyphenyl), with -OMe substituents in the meta or ortho/para positions with respect to the C-F bonds. FeII complexes [Fe(N4Py2Ar2)(CH3CN)](ClO4)2 (2) and [Fe(N4Py2Ar3)(CH3CN)](ClO4)2 (3) reacted with isopropyl 2-iodoxybenzoate to give the C-F hydroxylated FeIII-OAr products. The FeIV(O) intermediates 2-O and 3-O were trapped at low temperature and characterized. Complex 2-O displayed a C-F hydroxylation rate similar to that of 1-O. In contrast, the kinetics (via stopped-flow UV-vis) for complex 3-O displayed a significant rate enhancement for C-F hydroxylation. Eyring analysis revealed the activation barriers for the C-F hydroxylation reaction for the three complexes, consistent with the observed difference in reactivity. A terminal FeII(OH) complex (4) was prepared independently to investigate the possibility of a nucleophilic aromatic substitution pathway, but the stability of 4 rules out this mechanism. Taken together the data fully support an electrophilic C-F hydroxylation mechanism.
Collapse
Affiliation(s)
- Sumit Sahu
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Bo Zhang
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Christopher J. Pollock
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Maximilian Dürr
- Department of Chemistry and Pharmacy, University of Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Casey G. Davies
- Department of Chemistry & MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Alex M. Confer
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | | | - Maxime A. Siegler
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Guy N. L. Jameson
- Department of Chemistry & MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Carsten Krebs
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - David P. Goldberg
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
26
|
Bae JM, Lee MM, Lee SA, Lee SY, Bok KH, Kim J, Kim C. Nonheme iron complex-catalyzed efficient alcohol oxidation by t-BuOOH with N-hydroxyphthalimide (NHPI) as co-catalyst: Implication of high valent iron-oxo species. Inorganica Chim Acta 2016. [DOI: 10.1016/j.ica.2016.06.038] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
27
|
Serrano-Plana J, Aguinaco A, Belda R, García-España E, Basallote MG, Company A, Costas M. Exceedingly Fast Oxygen Atom Transfer to Olefins via a Catalytically Competent Nonheme Iron Species. Angew Chem Int Ed Engl 2016; 55:6310-4. [DOI: 10.1002/anie.201601396] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 03/21/2016] [Indexed: 10/21/2022]
Affiliation(s)
- Joan Serrano-Plana
- Grup de Química Bioinorgànica; Supramolecular i Catàlisi (QBIS-CAT); Institut de Química Computacional I Catàlisi (IQCC); Departament de Química; Universitat de Girona; Campus Montilivi 17071 Girona Catalonia, Spain
| | - Almudena Aguinaco
- Universidad de Cádiz; Facultad de Ciencias; Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica; Apdo. 40, 11510 Puerto Real Cádiz Spain
| | - Raquel Belda
- Instituto de Ciencia Molecular (ICMol); Universidad de Valencia; C/Catedrático José Beltrán, Paterna Valencia 2 46980 Spain
| | - Enrique García-España
- Instituto de Ciencia Molecular (ICMol); Universidad de Valencia; C/Catedrático José Beltrán, Paterna Valencia 2 46980 Spain
| | - Manuel G. Basallote
- Universidad de Cádiz; Facultad de Ciencias; Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica; Apdo. 40, 11510 Puerto Real Cádiz Spain
| | - Anna Company
- Grup de Química Bioinorgànica; Supramolecular i Catàlisi (QBIS-CAT); Institut de Química Computacional I Catàlisi (IQCC); Departament de Química; Universitat de Girona; Campus Montilivi 17071 Girona Catalonia, Spain
| | - Miquel Costas
- Grup de Química Bioinorgànica; Supramolecular i Catàlisi (QBIS-CAT); Institut de Química Computacional I Catàlisi (IQCC); Departament de Química; Universitat de Girona; Campus Montilivi 17071 Girona Catalonia, Spain
| |
Collapse
|
28
|
Serrano-Plana J, Aguinaco A, Belda R, García-España E, Basallote MG, Company A, Costas M. Exceedingly Fast Oxygen Atom Transfer to Olefins via a Catalytically Competent Nonheme Iron Species. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201601396] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Joan Serrano-Plana
- Grup de Química Bioinorgànica; Supramolecular i Catàlisi (QBIS-CAT); Institut de Química Computacional I Catàlisi (IQCC); Departament de Química; Universitat de Girona; Campus Montilivi 17071 Girona Catalonia, Spain
| | - Almudena Aguinaco
- Universidad de Cádiz; Facultad de Ciencias; Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica; Apdo. 40, 11510 Puerto Real Cádiz Spain
| | - Raquel Belda
- Instituto de Ciencia Molecular (ICMol); Universidad de Valencia; C/Catedrático José Beltrán, Paterna Valencia 2 46980 Spain
| | - Enrique García-España
- Instituto de Ciencia Molecular (ICMol); Universidad de Valencia; C/Catedrático José Beltrán, Paterna Valencia 2 46980 Spain
| | - Manuel G. Basallote
- Universidad de Cádiz; Facultad de Ciencias; Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica; Apdo. 40, 11510 Puerto Real Cádiz Spain
| | - Anna Company
- Grup de Química Bioinorgànica; Supramolecular i Catàlisi (QBIS-CAT); Institut de Química Computacional I Catàlisi (IQCC); Departament de Química; Universitat de Girona; Campus Montilivi 17071 Girona Catalonia, Spain
| | - Miquel Costas
- Grup de Química Bioinorgànica; Supramolecular i Catàlisi (QBIS-CAT); Institut de Química Computacional I Catàlisi (IQCC); Departament de Química; Universitat de Girona; Campus Montilivi 17071 Girona Catalonia, Spain
| |
Collapse
|
29
|
Abstract
The preparation, structure, and chemistry of hypervalent iodine compounds are reviewed with emphasis on their synthetic application. Compounds of iodine possess reactivity similar to that of transition metals, but have the advantage of environmental sustainability and efficient utilization of natural resources. These compounds are widely used in organic synthesis as selective oxidants and environmentally friendly reagents. Synthetic uses of hypervalent iodine reagents in halogenation reactions, various oxidations, rearrangements, aminations, C-C bond-forming reactions, and transition metal-catalyzed reactions are summarized and discussed. Recent discovery of hypervalent catalytic systems and recyclable reagents, and the development of new enantioselective reactions using chiral hypervalent iodine compounds represent a particularly important achievement in the field of hypervalent iodine chemistry. One of the goals of this Review is to attract the attention of the scientific community as to the benefits of using hypervalent iodine compounds as an environmentally sustainable alternative to heavy metals.
Collapse
Affiliation(s)
- Akira Yoshimura
- Department of Chemistry and Biochemistry, University of Minnesota Duluth , Duluth, Minnesota 55812, United States
| | - Viktor V Zhdankin
- Department of Chemistry and Biochemistry, University of Minnesota Duluth , Duluth, Minnesota 55812, United States
| |
Collapse
|
30
|
Yoshimura A, Yusubov MS, Zhdankin VV. Synthetic applications of pseudocyclic hypervalent iodine compounds. Org Biomol Chem 2016; 14:4771-81. [DOI: 10.1039/c6ob00773b] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In this review the preparation and structural features of pseudocyclic iodine(iii) and iodine(v) derivatives are discussed, and recent developments in their synthetic applications are summarized.
Collapse
Affiliation(s)
- Akira Yoshimura
- Department of Chemistry and Biochemistry
- University of Minnesota Duluth
- Duluth
- USA
| | | | - Viktor V. Zhdankin
- Department of Chemistry and Biochemistry
- University of Minnesota Duluth
- Duluth
- USA
- The Tomsk Polytechnic University
| |
Collapse
|
31
|
Pedrazzini T, Pirovano P, Dell'Acqua M, Ragaini F, Illiano P, Macchi P, Abbiati G, Caselli A. Organometallic Reactivity of [Silver(I)(Pyridine‐Containing Ligand)] Complexes Relevant to Catalysis. Eur J Inorg Chem 2015. [DOI: 10.1002/ejic.201500771] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Tommaso Pedrazzini
- Università degli Studi di Milano and ISTM‐CNR, Via Golgi 19, 20133 Milano, Italy, http://users.unimi.it/acaselli/
| | - Paolo Pirovano
- Università degli Studi di Milano and ISTM‐CNR, Via Golgi 19, 20133 Milano, Italy, http://users.unimi.it/acaselli/
| | - Monica Dell'Acqua
- Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Generale e Organica “A. Marchesini”, Università degli Studi di Milano, Via Venezian 21, 20133 Milano, Italy http://users.unimi.it/istchimorg/giorgio.htm
| | - Fabio Ragaini
- Università degli Studi di Milano and ISTM‐CNR, Via Golgi 19, 20133 Milano, Italy, http://users.unimi.it/acaselli/
| | - Pasquale Illiano
- Università degli Studi di Milano and ISTM‐CNR, Via Golgi 19, 20133 Milano, Italy, http://users.unimi.it/acaselli/
| | - Piero Macchi
- Department of Chemistry & Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Giorgio Abbiati
- Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Generale e Organica “A. Marchesini”, Università degli Studi di Milano, Via Venezian 21, 20133 Milano, Italy http://users.unimi.it/istchimorg/giorgio.htm
| | - Alessandro Caselli
- Università degli Studi di Milano and ISTM‐CNR, Via Golgi 19, 20133 Milano, Italy, http://users.unimi.it/acaselli/
| |
Collapse
|
32
|
Lincoln KM, Arroyo - Currás N, Johnston HM, Hayden TD, Pierce BS, Bhuvanesh N, Green KN. Chemical characteristics of the products of the complexation reaction between copper(II) and a tetra-aza macrocycle in the presence of chloride ions. J COORD CHEM 2015. [DOI: 10.1080/00958972.2015.1068935] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
| | | | - Hannah M. Johnston
- Department of Chemistry, Texas Christian University, Fort Worth, TX, USA
| | - Travis D. Hayden
- Department of Chemistry, Texas Christian University, Fort Worth, TX, USA
| | - Brad S. Pierce
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, USA
| | | | - Kayla N. Green
- Department of Chemistry, Texas Christian University, Fort Worth, TX, USA
| |
Collapse
|
33
|
Singh KK, Tiwari MK, Dhar BB, Vanka K, Sen Gupta S. Mechanism of Oxygen Atom Transfer from Fe(V)(O) to Olefins at Room Temperature. Inorg Chem 2015; 54:6112-21. [PMID: 26053124 DOI: 10.1021/ic503053q] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In biological oxidations, the intermediate Fe(V)(O)(OH) has been proposed to be the active species for catalyzing the epoxidation of alkenes by nonheme iron complexes. However, no study has been reported yet that elucidates the mechanism of direct O-atom transfer during the reaction of Fe(V)(O) with alkenes to form the corresponding epoxide. For the first time, we study the mechanism of O-atom transfer to alkenes using the Fe(V)(O) complex of biuret-modified Fe-TAML at room temperature. The second-order rate constant (k2) for the reaction of different alkenes with Fe(V)(O) was determined under single-turnover conditions. An 8000-fold rate difference was found between electron-rich (4-methoxystyrene; k2 = 216 M(-1) s(-1)) and electron-deficient (methyl trans-cinnamate; k2 = 0.03 M(-1) s(-1)) substrates. This rate difference indicates the electrophilic character of Fe(V)(O). The use of cis-stilbene as a mechanistic probe leads to the formation of both cis- and trans-stilbene epoxides (73:27). This suggests the formation of a radical intermediate, which would allow C-C bond rotation to yield both stereoisomers of stilbene-epoxide. Additionally, a Hammett ρ value of -0.56 was obtained for the para-substituted styrene derivatives. Detailed DFT calculations show that the reaction proceeds via a two-step process through a doublet spin surface. Finally, using biuret-modified Fe-TAML as the catalyst and NaOCl as the oxidant under catalytic conditions epoxide was formed with modest yields and turnover numbers.
Collapse
Affiliation(s)
- Kundan K Singh
- †Chemical Engineering Division and ‡Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, CSIR-National Chemical Laboratory, Pune 411008, India
| | - Mrityunjay K Tiwari
- †Chemical Engineering Division and ‡Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, CSIR-National Chemical Laboratory, Pune 411008, India
| | - Basab B Dhar
- †Chemical Engineering Division and ‡Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, CSIR-National Chemical Laboratory, Pune 411008, India
| | - Kumar Vanka
- †Chemical Engineering Division and ‡Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, CSIR-National Chemical Laboratory, Pune 411008, India
| | - Sayam Sen Gupta
- †Chemical Engineering Division and ‡Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, CSIR-National Chemical Laboratory, Pune 411008, India
| |
Collapse
|
34
|
|
35
|
Biswas AN, Puri M, Meier KK, Oloo WN, Rohde GT, Bominaar EL, Münck E, Que L. Modeling TauD-J: a high-spin nonheme oxoiron(IV) complex with high reactivity toward C-H bonds. J Am Chem Soc 2015; 137:2428-31. [PMID: 25674662 DOI: 10.1021/ja511757j] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
High-spin oxoiron(IV) species are often implicated in the mechanisms of nonheme iron oxygenases, their C-H bond cleaving properties being attributed to the quintet spin state. However, the few available synthetic S = 2 Fe(IV)═O complexes supported by polydentate ligands do not cleave strong C-H bonds. Herein we report the characterization of a highly reactive S = 2 complex, [Fe(IV)(O)(TQA)(NCMe)](2+) (2) (TQA = tris(2-quinolylmethyl)amine), which oxidizes both C-H and C═C bonds at -40 °C. The oxidation of cyclohexane by 2 occurs at a rate comparable to that of the oxidation of taurine by the TauD-J enzyme intermediate after adjustment for the different temperatures of measurement. Moreover, compared with other S = 2 complexes characterized to date, the spectroscopic properties of 2 most closely resemble those of TauD-J. Together these features make 2 the best electronic and functional model for TauD-J to date.
Collapse
Affiliation(s)
- Achintesh N Biswas
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | | | | | | | | | | | | | | |
Collapse
|
36
|
|
37
|
Rezaeivala M, Keypour H. Schiff base and non-Schiff base macrocyclic ligands and complexes incorporating the pyridine moiety – The first 50 years. Coord Chem Rev 2014. [DOI: 10.1016/j.ccr.2014.06.007] [Citation(s) in RCA: 173] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
38
|
Shin JW, Bae JM, Kim C, Min KS. Catalysis and molecular magnetism of dinuclear iron(III) complexes with N-(2-pyridylmethyl)-iminodiethanol/-ate. Dalton Trans 2014; 43:3999-4008. [PMID: 24452503 DOI: 10.1039/c3dt53376j] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reaction of N-(2-pyridylmethyl)iminodiethanol (H2pmide) and Fe(NO3)3·9H2O in MeOH led to the formation of a dimeric iron(III) complex, [(Hpmide)Fe(NO3)]2(NO3)2·2CH3OH (1). Its anion-exchanged form, [(pmide)Fe(N3)]2 (2), was prepared by the reaction of 1and NaN3 in MeOH, during which the Hpmide ligand of 1 was also deprotonated. These compounds were investigated by single crystal X-ray diffraction and magnetochemistry. In complex 1, one iron(III) ion was bonded with a mono-deprotonated Hpmide ligand and a nitrate ion. The two iron(III) ions within the dinuclear unit were connected by two ethoxy groups with an inversion center. In 2, one iron(III) ion was coordinated with a deprotonated pmide ligand and an azide ion. The Fe(pmide)(N3) unit was related by symmetry through an inversion center. Both 1 and 2 efficiently catalyzed the oxidation of a variety of alcohols under mild conditions. The oxidation mechanism was proposed to involve an Fe(IV)=O intermediate as the major reactive species and an Fe(V)=O intermediate as a minor oxidant. Evidence for this proposal was derived from reactivity and Hammett studies, KIE (kH/kD) values, and the use of MPPH (2-methyl-1-phenylprop-2-yl hydroperoxide) as a mechanistic probe. Both compounds had significant antiferromagnetic interactions between the iron(III) ions via the oxygen atoms. 1 showed a strong antiferromagnetic interaction within the Fe(III) dimer, while 2 had a weak antiferromagnetic coupling within the Fe(III) dimer.
Collapse
Affiliation(s)
- Jong Won Shin
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu, 702-701, Republic of Korea
| | | | | | | |
Collapse
|
39
|
Development of new hypervalent iodine reagents with improved properties and reactivity by redirecting secondary bonds at iodine center. Coord Chem Rev 2014. [DOI: 10.1016/j.ccr.2014.04.007] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
40
|
Bryliakov KP, Talsi EP. Active sites and mechanisms of bioinspired oxidation with H2O2, catalyzed by non-heme Fe and related Mn complexes. Coord Chem Rev 2014. [DOI: 10.1016/j.ccr.2014.06.009] [Citation(s) in RCA: 189] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
41
|
Lincoln KM, Offutt ME, Hayden TD, Saunders RE, Green KN. Structural, Spectral, and Electrochemical Properties of Nickel(II), Copper(II), and Zinc(II) Complexes Containing 12-Membered Pyridine- and Pyridol-Based Tetra-aza Macrocycles. Inorg Chem 2014; 53:1406-16. [DOI: 10.1021/ic402119s] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Kimberly M. Lincoln
- Department
of Chemistry, Texas Christian University, Fort Worth, Texas 76109, United States
| | - Michael E. Offutt
- Department
of Chemistry, Texas Christian University, Fort Worth, Texas 76109, United States
| | - Travis D. Hayden
- Department
of Chemistry, Texas Christian University, Fort Worth, Texas 76109, United States
| | - Ryker E. Saunders
- Department
of Chemistry, Texas Christian University, Fort Worth, Texas 76109, United States
| | - Kayla N. Green
- Department
of Chemistry, Texas Christian University, Fort Worth, Texas 76109, United States
| |
Collapse
|
42
|
Coggins MK, Toledo S, Kovacs JA. Isolation and characterization of a dihydroxo-bridged iron(III,III)(μ-OH)2 diamond core derived from dioxygen. Inorg Chem 2013; 52:13325-31. [PMID: 24229319 PMCID: PMC3885352 DOI: 10.1021/ic4010906] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dioxygen addition to coordinatively unsaturated [Fe(II)(O(Me2)N4(6-Me-DPEN))](PF6) (1) is shown to afford a complex containing a dihydroxo-bridged Fe(III)2(μ-OH)2 diamond core, [Fe(III)(O(Me2)N4(6-Me-DPEN))]2(μ-OH)2(PF6)2·(CH3CH2CN)2 (2). The diamond core of 2 resembles the oxidized methane monooxygenase (MMOox) resting state, as well as the active site product formed following H-atom abstraction from Tyr-OH by ribonucleotide reductase (RNR). The Fe-OH bond lengths of 2 are comparable with those of the MMOHox suggesting that MMOHox contains a Fe(III)2(μ-OH)2 as opposed to Fe(III)2(μ-OH)(μ-OH2) diamond core as had been suggested. Isotopic labeling experiments with (18)O2 and CD3CN indicate that the oxygen and proton of the μ-OH bridges of 2 are derived from dioxygen and acetonitrile. Deuterium incorporation (from CD3CN) suggests that an unobserved intermediate capable of abstracting a H-atom from CH3CN forms en route to 2. Given the high C-H bond dissociation energy (BDE = 97 kcal/mol) of acetonitrile, this indicates that this intermediate is a potent oxidant, possibly a high-valent iron oxo. Consistent with this, iodosylbenzene (PhIO) also reacts with 1 in CD3CN to afford the deuterated Fe(III)2(μ-OD)2 derivative of 2. Intermediates are not spectroscopically observed in either reaction (O2 and PhIO) even at low-temperatures (-80 °C), indicating that this intermediate has a very short lifetime, likely due to its highly reactive nature. Hydroxo-bridged 2 was found to stoichiometrically abstract hydrogen atoms from 9,10-dihydroanthracene (C-H BDE = 76 kcal/mol) at ambient temperatures.
Collapse
Affiliation(s)
| | | | - Julie A. Kovacs
- The Department of Chemistry, University of Washington: Box 351700 Seattle, WA 98195-1700
| |
Collapse
|
43
|
Cussó O, Garcia-Bosch I, Ribas X, Lloret-Fillol J, Costas M. Asymmetric epoxidation with H2O2 by manipulating the electronic properties of non-heme iron catalysts. J Am Chem Soc 2013; 135:14871-8. [PMID: 24060452 DOI: 10.1021/ja4078446] [Citation(s) in RCA: 186] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A non-heme iron complex that catalyzes highly enantioselective epoxidation of olefins with H2O2 is described. Improvement of enantiomeric excesses is attained by the use of catalytic amounts of carboxylic acid additives. Electronic effects imposed by the ligand on the iron center are shown to synergistically cooperate with catalytic amounts of carboxylic acids in promoting efficient O-O cleavage and creating highly chemo- and enantioselective epoxidizing species which provide a broad range of epoxides in synthetically valuable yields and short reaction times.
Collapse
Affiliation(s)
- Olaf Cussó
- QBIS ResearchGroup, Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona , Campus Montilivi, Girona E-17071, Catalonia, Spain
| | | | | | | | | |
Collapse
|
44
|
Pap JS, Cranswick MA, Balogh-Hergovich E, Baráth G, Giorgi M, Rohde GT, Kaizer J, Speier G, Que L. An Iron(II)(1,3-bis(2'-pyridylimino)isoindoline) Complex as a Catalyst for Substrate Oxidation with H 2O 2. Evidence for a Transient Peroxodiiron(III) Species. Eur J Inorg Chem 2013; 2013:3858-3866. [PMID: 24587695 PMCID: PMC3935335 DOI: 10.1002/ejic.201300162] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Indexed: 11/06/2022]
Abstract
The complex [Fe(indH)(solvent)3](ClO4)2 (1) has been isolated from the reaction of equimolar amounts of 1,3-bis(2'-pyridylimino)isoindoline (indH) and Fe(ClO4)2 in acetonitrile and characterized by X-ray crystallography and several spectroscopic techniques. It is a suitable catalyst for the oxidation of thioanisoles and benzyl alcohols with H2O2 as the oxidant. Hammett correlations and kinetic isotope effect experiments support the involvement of an electrophilic metal-based oxidant. A metastable green species (2) is observed when 1 is reacted with H2O2 at -40 °C, which has been characterized to have a FeIII(μ-O)(μ-O2)FeIII core on the basis of UV-Vis, electron paramagnetic resonance, resonance Raman, and X-ray absorption spectroscopic data.
Collapse
Affiliation(s)
- József S Pap
- Department of Chemistry, University of Pannonia, 8201 Veszprém, Wartha Vince u. 1., Hungary
| | - Matthew A Cranswick
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN 55455, USA
| | - E Balogh-Hergovich
- Department of Chemistry, University of Pannonia, 8201 Veszprém, Wartha Vince u. 1., Hungary
| | - Gábor Baráth
- Department of Chemistry, University of Pannonia, 8201 Veszprém, Wartha Vince u. 1., Hungary
| | - Michel Giorgi
- Aix-Marseille Université, FR1739, Spectropole, Campus St. Jérôme, Avenue Escadrille Normandie-Niemen, 13397 Marseille cedex 20, France
| | - Gregory T Rohde
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN 55455, USA
| | - József Kaizer
- Department of Chemistry, University of Pannonia, 8201 Veszprém, Wartha Vince u. 1., Hungary
| | - Gábor Speier
- Department of Chemistry, University of Pannonia, 8201 Veszprém, Wartha Vince u. 1., Hungary
| | - Lawrence Que
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN 55455, USA
| |
Collapse
|
45
|
Sahu S, Widger LR, Quesne MG, de Visser SP, Matsumura H, Moënne-Loccoz P, Siegler MA, Goldberg DP. Secondary coordination sphere influence on the reactivity of nonheme iron(II) complexes: an experimental and DFT approach. J Am Chem Soc 2013; 135:10590-3. [PMID: 23834409 PMCID: PMC3746373 DOI: 10.1021/ja402688t] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Indexed: 11/29/2022]
Abstract
The new biomimetic ligands N4Py(2Ph) (1) and N4Py(2Ph,amide) (2) were synthesized and yield the iron(II) complexes [Fe(II)(N4Py(2Ph))(NCCH3)](BF4)2 (3) and [Fe(II)(N4Py(2Ph,amide))](BF4)2 (5). Controlled orientation of the Ph substituents in 3 leads to facile triplet spin reactivity for a putative Fe(IV)(O) intermediate, resulting in rapid arene hydroxylation. Addition of a peripheral amide substituent within hydrogen-bond distance of the iron first coordination sphere leads to stabilization of a high-spin Fe(III)OOR species which decays without arene hydroxylation. These results provide new insights regarding the impact of secondary coordination sphere effects at nonheme iron centers.
Collapse
Affiliation(s)
- Sumit Sahu
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Leland R. Widger
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Matthew G. Quesne
- Manchester Institute of Biotechnology
and School of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street,
Manchester M1 7DN, United Kingdom
| | - Sam P. de Visser
- Manchester Institute of Biotechnology
and School of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street,
Manchester M1 7DN, United Kingdom
| | - Hirotoshi Matsumura
- Division of Environmental and Biomolecular Systems, Institute of
Environmental Health, Oregon Health & Science University, Beaverton, Oregon 97006, United States
| | - Pierre Moënne-Loccoz
- Division of Environmental and Biomolecular Systems, Institute of
Environmental Health, Oregon Health & Science University, Beaverton, Oregon 97006, United States
| | - Maxime A. Siegler
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - David P. Goldberg
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
46
|
|
47
|
Sun X, Kryatov SV, Rybak-Akimova EV. Kinetic insights into the reactivity of the intermediates generated from hydrogen peroxide and diiron(III) complex with tris(picolyl)amine (TPA). Dalton Trans 2013; 42:4427-35. [PMID: 23338901 DOI: 10.1039/c2dt32599c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two intermediates (2 and 3) are formed consecutively in the reaction of a diiron(III) complex [Fe(III)(2)(μ-O)(OH)(H(2)O)(TPA)(2)](ClO(4))(3) (TPA = tris(2-pyridylmethyl)amine, tris(picolyl)amine) with H(2)O(2) in CH(3)CN at -40 °C. Low-temperature stopped-flow studies showed that both species are kinetically competent in oxidation of phosphines and phenols. The first intermediate (2) reacts with substrates very rapidly (second-order rate constants reach 10(5)-10(6) M(-1) s(-1) for substituted triarylphosphines and 10(3)-10(5) M(-1) s(-1) for substituted phenols), in keeping with a diiron(IV)-oxo formulation. The second intermediate (3), a mixed-valent Fe(III)Fe(IV) species, is more stable than 2, and reacts with substrates more slowly (second-order rate constants range from 150 to 550 M(-1) s(-1) for triaryl phosphine oxidation, and from 18 to 790 M(-1) s(-1) for phenol oxidation). Reaction rates increase with increasing electron donating abilities of substituents, indicating that both 2 and 3 act as electrophilic oxidants.
Collapse
Affiliation(s)
- Xianru Sun
- Department of Chemistry, Tufts University, Medford, MA, USA.
| | | | | |
Collapse
|
48
|
Chambers MB, Groysman S, Villagrán D, Nocera DG. Iron in a trigonal tris(alkoxide) ligand environment. Inorg Chem 2013; 52:3159-69. [PMID: 23432161 DOI: 10.1021/ic302634q] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mononuclear Fe(II) and Fe(III) complexes residing in a trigonal tris(ditox) (ditox = (t)Bu2(Me)CO(-)) ligand environment have been synthesized and characterized. The Fe(III) ditox complex does not react with oxidants such as PhIO, whereas NMe3O substitutes a coordinated tetrahydrofuran (THF) in the apical position without undergoing oxo transfer. In contrast, the Fe(II) ditox complex reacts rapidly with PhIO or Me3NO in THF or cyclohexadiene to furnish a highly reactive intermediate, which cleaves C-H bonds to afford the Fe(III)-hydroxide complex. When generated in 1,2-difluorobenze, this intermediate can be intercepted to oxidize phosphines to phosphine oxide. The fast rates at which these reactions occur is attributed to a particularly weak ligand field imparted by the tris(alkoxide) ancillary ligand environment.
Collapse
Affiliation(s)
- Matthew B Chambers
- Department of Chemistry, 6-335, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139-4307, USA
| | | | | | | |
Collapse
|
49
|
Ségaud N, Rebilly JN, Sénéchal-David K, Guillot R, Billon L, Baltaze JP, Farjon J, Reinaud O, Banse F. Iron Coordination Chemistry with New Ligands Containing Triazole and Pyridine Moieties. Comparison of the Coordination Ability of the N-Donors. Inorg Chem 2013; 52:691-700. [DOI: 10.1021/ic301834x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Nathalie Ségaud
- Institut de
Chimie Moléculaire et des Matériaux d’Orsay, Université Paris Sud, F-91405 Orsay, France
| | - Jean-Noël Rebilly
- Laboratoire de Chimie et de
Biochimie Pharmacologiques et Toxicologiques, Université Paris Descartes, CNRS UMR 8601, F-75270 Paris Cedex
06, France
| | - Katell Sénéchal-David
- Institut de
Chimie Moléculaire et des Matériaux d’Orsay, Université Paris Sud, F-91405 Orsay, France
| | - Régis Guillot
- Institut de
Chimie Moléculaire et des Matériaux d’Orsay, Université Paris Sud, F-91405 Orsay, France
| | - Laurianne Billon
- Institut de
Chimie Moléculaire et des Matériaux d’Orsay, Université Paris Sud, F-91405 Orsay, France
| | - Jean-Pierre Baltaze
- Institut de
Chimie Moléculaire et des Matériaux d’Orsay, Université Paris Sud, F-91405 Orsay, France
| | - Jonathan Farjon
- Institut de
Chimie Moléculaire et des Matériaux d’Orsay, Université Paris Sud, F-91405 Orsay, France
| | - Olivia Reinaud
- Laboratoire de Chimie et de
Biochimie Pharmacologiques et Toxicologiques, Université Paris Descartes, CNRS UMR 8601, F-75270 Paris Cedex
06, France
| | - Frédéric Banse
- Institut de
Chimie Moléculaire et des Matériaux d’Orsay, Université Paris Sud, F-91405 Orsay, France
| |
Collapse
|
50
|
Hong S, So H, Yoon H, Cho KB, Lee YM, Fukuzumi S, Nam W. Reactivity comparison of high-valent iron(iv)-oxo complexes bearing N-tetramethylated cyclam ligands with different ring size. Dalton Trans 2013; 42:7842-5. [DOI: 10.1039/c3dt50750e] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|